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Symplectic packings in dimension 4
and singular curves

EMMANUEL OPSHTEIN

The main goal of this paper is to give constructive proofs of sev-
eral existence results for symplectic embeddings. The strong rela-
tion between symplectic packings and singular symplectic curves,
which can be derived from McDuff’s inflations on the blow-ups, is
revisited through a new inflation technique that lives at the level
of the manifold. As an application, we explain constructions of
maximal symplectic packings of P2 by 6, 7 or 8 balls.

1. Introduction

In [8], M. Gromov shows a striking relation between curves and symplectic
embeddings. Namely, the symplectic curves may give obstructions to symplec-
tic embeddings beyond the volume constraint. For packings (i.e. embeddings
of disjoint balls), the basic idea is to produce symplectic curves through the
centers of the balls of the packing, within a prescribed homology class. Such
a curve automatically gives an obstruction to the size of the balls. In [I3],
McDuff and Polterovich proved a converse statement for less than nine balls
in P2: in particular, the only symplectic obstructions are given by such curves.
This result hints at an even deeper relation between packings and symplec-
tic curves, which has been mostly confirmed by McDuff via her blow-up and
inflation techniques [9HI1]. For instance, the following theorem follows from
these techniques (see also [3]):

Theorem 1. Let (M*, w) be a symplectic manifold with rational class (Jw] €
H?(M,Q)). Then there is a symplectic packing by closed disjoint balls

[1B*a:) > M (1 €Q)
i=1

if and only if there exists an irreducible symplectic curve 3 Poincaré dual to
k[w], with p nodal singularities of multiplicities (kay + 1, ..., ka, + 1).
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It will be clear through this text that these "4+1” can mostly be disre-
garded in a first approximation, the important point being the linear growth
rate (see also Theorem . The rough idea is that symplectic blow-up and
blow-down establish a correspondence between symplectic forms on blow-ups
and existence of packings, while the inflation technique - based on curves
of the blow-up, hence on singular curves of M - produces symplectic forms
on the blow-up. This strategy works well for theoretic result, but not for
constructions. The main lack for effectiveness lies in the above mentioned
correspondence, which is far from being explicit. Several works have therefore
been concerned with explicit constructions of symplectic packings, with com-
pletely independent techniques coming from toric geometry [21], 23 24]. On
this side of the story, the ”obstruction curves” for the packings - the symplec-
tic curves responsible for the obstruction - are completely discarded. In short,
inflation provides existence results from the obstruction curves but fails to be
effective, while the toric constructions hide one symplectic aspect of the pack-
ings, since they do not describe the obstruction curves at all. The main object
of this paper is to reprove Theorem [I] in an effective way: given a symplectic
curve with prescribed singularity, we construct the desired symplectic pack-
ing. The idea is to use Liouville vector fields in order to "inflate” directly in
the manifold rather than on the blow-up. This more direct approach leads to
a more accurate version of Theorem [1] (see Section [2)) and allows for instance
to construct maximal symplectic packings of P? by six, seven and eight balls
(up to five balls, the constructions are already available, see [17]).

Theorem 2. There exist symplectic packings of P? by siz, seven and eight
open balls of capacity 2/5, 3/8 and 6/17 respectively (the maximal capacities).
Each of these open balls intersects the predicted obstruction curve along a
finite number of Hopf discs.

Of course, we will not only prove this theorem but also explain the con-
structions of these maximal packings. The boundary regularity of these pack-
ings will be also briefly addressed.

Close to the packing problem, the question whether an ellipsoid embeds
into a symplectic manifold has also been thoroughly considered. The question
is really about flexibility of symplectic embeddings: how much can such a map
fold a Euclidean domain such as an ellipsoid [I5] 20]? Again, McDuff used the
inflation process, this time in successive blow-ups to get the optimal results
[12]: in a certain class of symplectic manifolds (containing P? or the 4-ball),
embedding an ellipsoid is equivalent to some specific ball packing problem.
Again, this answer is of theoretical nature, and does not provide constructions,
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even from ball packings. The next result is in the wake of Theorem [I| and
mostly follows from [12].

Theorem 3. Let (M* w) be a symplectic manifold with rational class. Then
the closed ellipsoid

E(a,b) :=71E(p,q) (p,q€Z, 7€ Q, ged(p,q) =1)

symplectically embeds into M if and only if there exists an irreducible sym-
plectic curve &2, Poincaré dual to k[w], with an ordinary singular point, with
local symplectic model

kT
[1G—a;2)., (o €C).

The existence of an ellipsoid embedding also depends on the existence of
a singular symplectic curve, now with a multi-cusp. The number of branches
and the singularity type of the cusps are, respectively, responsible for the size
and the shape of the ellipsoid. Again, our aim is to give an effective proof. It
will also be clear that ellipsoid packings can be considered, and simply need
curves with several singularities.

The paper is organized as follows. First, we give more precise versions
of Theorem [I} which will be useful in practice, for instance to prove The-
orem [2l Then we explain the main idea of the paper by sketching a proof
for Theorem [I] In Section [@ we explain some properties and constructions
of Liouville forms that will be needed to perform our inflations. Sections
and [6]are devoted to the proofs of the theorems on balls packings and ellipsoid
embeddings, respectively, letting aside technical assertions about Donaldson’s
method. We deal with this last point in Section [7] and end the paper with
some remarks and questions.

Notations. We adopt the following conventions throughout this paper:

- All angles will take values in R/Z. In other terms an angle 1 is a full
turn in the plane, and the integral of the form df over a circle around
the origin in the plane is 1.

- The standard symplectic form on C? = R* is wgt := > dr? A df;, where
(r;,0;) are polar coordinates on the plane factors. With this convention,
the euclidean ball of radius 1 has capacity 1.

- A Liouville form X of a symplectic form w is a one-form satisfying w =
—d\. The standard Liouville form on the plane is gt := —r2d#.
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- A symplectic ball or ellipsoid is the image of a Euclidean ball or ellipsoid
in C" by a symplectic embedding.

- The Hopf discs of a Euclidean ball in C? are its intersections with com-
plex lines.

- &(a,b) denotes the 4-dimensional ellipsoid {a=!|z|> + b~ w|?* < 1} C
C?(z,w). Because of our normalizations, its Gromov width is min(a, b).

- When there is no ambiguity for the symplectic form w on a manifold
M, we often abbreviate (M, Tw) by 7M.

Acknowledgements. [ wish to thank V. Kharlamov and D. Auroux for
the useful discussions we had.

2. More precise statements

In this paragraph, we present three variations on Theorem (1|, where we either
remove a hypothesis (such as the irreducibility) or get slightly more precise
results (constructing open objects of maximal size, for instance). These pre-
cisions may not be of fundamental importance, but they will be useful in
practice. The first remark is that irreducibility can be omitted for cheap. In
the theorem below, an n-cross of size a refers to a figure composed of n sym-
plectic discs of area a which all intersect transversally at exactly one point.
A symplectic model is simply the intersection of B*(a) with n complex lines
in C?, which we call a standard n-cross.

Theorem 4. Let (M* w) be a rational symplectic manifold.

i) If there exists a symplectic packing by closed balls

B(al)l_l-‘-I_IB(ap)(—>M, a; € Q,

then for all sufficiently large k for which the ka; are integers, there exists
a symplectic irreducible curve Poincaré dual to klw] in M, with exactly
p nodes of multiplicities (kai, ..., ka,).

ii) Given a symplectic curve ¥ Poincaré dual to k[w] with p nodes of mul-
tiplicities (aiky, ..., apky), one can construct a symplectic packing by
open balls

B(a)U---UB(ap) = M
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provided that k; > k for each © and that the curve X contains p disjoint
closed k;a;-crosses of size a; around each node. When ¥ is irreducible
and k; = k, this last condition is equivalent to the volume obstruction.

Theorem {| obviously implies Theorem |1| (apply Theorem (4] to a slightly
larger ball to get the "+17). Notice that when only the interior of the crosses
are disjoint, Theorem (4] ii) allows to construct balls of size a; — e for arbi-
trarily small €. The next variation is concerned with the construction part
ii) only, and states that we can even take £ = 0. This apparently innocent
precision is rather expensive for the proof: it needs the introduction of the
notion of a tame Liouville form and some analysis (not very difficult however).
This is the reason why we state it separately: the proof will be given indepen-
dently, so that the reader can discard this technical part at first. The main
purpose of this precision is to allow for constructions of maximal packings
by open balls of maximal size, and not only by balls of approximately opti-
mal size. In my opinion, the importance of this point is of conceptual nature.
The impossibility of reaching the limit size would mean that a deep rigidity
phenomenon appears, which would need an explanation - recall that prior
to the present paper, the only available proof for the existence of maximal
packings by open balls in P? relied on a deep result on symplectic isotopies
[1T]. Theorem [5| ensures that such a phenomenon does not happen in general,
and that nothing deep hides here.

Theorem 5. Let (M,w) be a rational symplectic manifold. From a symplec-
tic curve ¥ Poincaré dual to k[w] with p nodes of multiplicities (kyaq, . . ., kpap)
one can construct a C'-smooth symplectic packing by p open balls of capac-
ity a;, provided that k; > k for all ¢ and that X contains p disjoint open
kia;-crosses of size a; around each node.

The last variation we give concerns the rationality hypothesis. Classically,
the main importance of this hypothesis is the existence of symplectic polar-
izations in the sense of Biran [4] (curves Poincaré dual to a multiple of the
symplectic form). Of course, no such curve exists if the symplectic form is
irrational, but a singular notion of polarization was defined in [18].

Definition 2.1. A polarization of a symplectic manifold (M, w) is a union of
weighted symplectic curves X := {(3;,7;), [ =1,...,n} (1 € R"), such that

zn: TlPD(Zl) = [w],
=1
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the intersections between different curves are positive, and the singularities of
each curve have the symplectic type of a complex singularity (these last two
conditions can be replaced by assuming J-holomorphicity for 3, but almost
complex curves play no role here). The curve ¥ := UY}; will be called the total
curve of the polarization.

It might be worth making clear from the begining that we will be only
interested in very specific singularities: crosses and multi-cusps. Although
the theorems of this paper are easier to state and understand in the rational
setting, this definition makes the rationality hypothesis completely irrelevant.

Theorem 6. Let (M,w) be a symplectic 4-manifold. Then there is a sym-
plectic packing by closed disjoint balls

p
1 B*(a:) = M
=1

if and only if there exists a polarization (X, 7)1=1,..n of M with the following
properties:

« lts total curve  has p nodes (w1, ..., xp,) of multiplicities k' (i € [1,.. .,
p]). We also denote by ki the number of branches of ¥ through x; (so
Yki=k).

« Y possesses p disjoint closed k'-crosses of size a; centered at x;.

o Foreachi, Y kit > a;.

It will be clear from the proof that the same precision for the construction
of open balls from open crosses will hold also in this situation. Moreover, all
these variations also hold for the problem of ellipsoid embeddings.

3. Sketch of the proof

Before going into proofs, let us illustrate the basic idea of the paper by explain-
ing (not proving) theorem (1| for one ball.

i). In one direction, the argument is the following. Assume you have a ball
B of capacity a in M. We wish to prove that for k sufficiently large, there is a
symplectic curve, Poincaré dual to k[w] whose intersection with B is exactly
k Hopf discs. Now by Donaldson’s result, there are curves Poincaré dual to
kw for k large. The observation is that the work is almost done: These curves
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naturally pass through 0B along ka Hopf circles, because we know (from the
McDuff blow-up process) that we can think of B as a curve of symplectic
area a, whose points correspond to the Hopf circles of 0B. Now cutting out
the part of this curve inside the ball, and pasting in the ka corresponding
Hopf discs gives the desired singular curve.

ii). Conversely, given an irreducible curve ¥ Poincaré dual to k[w]| with
exactly one singularity, composed of ka transverse branches, we need to con-
struct a ball of capacity a. The construction relies on the three following
observations.

« First, provided that a satisfies the volume constraint ¢*/2 < Vol M, we
can find a ka-cross X of size a in ¥ (ka discs in ¥ of area a, which
intersect one another exactly at the singular point). Indeed,

Aw(Z):/w@/ WA kw=2kVol M > ka® = ka - a.
5 M

By a standard neighbourhood theorem, there exists an embedding ¢ of
a neighbourhood of the cross X, 1= UA; := U{z = aqyw} N B*(a) into
a neighbourhood of the cross X in M. The desired ball will be obtained
by inflating this standard neighbourhood of the cross in M through
well-chosen Liouville vector fields.

« Next, there is a (contracting) Liouville vector field on B*(a)\ X4, which
points away from the A; and whose flow, restricted to any neighbour-
hood of Xj,, but considered for all positive times (when it is defined),
recovers the whole of B4(a).

. Finally, there is a Liouville vector field on M\, also pointing outwards
along .. Since M is assumed to be closed, this vector field is defined
for all positive times.

The construction of the embedding then goes as follows. Take any point in
B*(a). From this point, follow negatively the flow of the Liouville vector field,
until you reach the domain of definition of the local embedding . Note 7 the
amount of time you had to flow. Then use ¢ to send the point to M, and flow
positively along the Liouville vector field in M for time 7. Provided this map
is well-defined, it is defined on B*(a) by the second point above, and it is
symplectic. For this map to be well-defined, we need that the Liouville vector
field in M is an extension of the push-forward of the Liouville vector field in
B*(a) by . This is a cohomological constraint which involves the residue of
the corresponding Liouville forms, and which is easy to deal with.
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4. Generalities on Liouville forms

As we explained in the previous paragraph, the central objects of this paper
are Liouville forms, on the manifolds and on the objects we wish to embed.
The aim of the present section is to present the main features and examples
of these Liouville forms which we will need subsequently.

4.1. Residues of a Liouville form

Consider a symplectic manifold (M,w) equipped with a polarization 3 =
U(X;, 74)i=1,...n (see Definition . Thus

[w]: Z TiPD(ZZ‘)7

i=1,...,n

where 7; are positive numbers and 3; are possibly singular symplectic curves.
Note that the symplectic form is exact on M\, so there are Liouville forms
on M\X. Fix also a smooth, local disc fibration above the regular part ¥;**
of ¥;, with the additional property that each disc must intersect ¥J; orthog-
onally with respect to the symplectic form. We mostly view these fibrations
as families D;(p) of symplectic discs, smoothly parameterized by p € ¥:*. In
each such disc, we choose a collection of loops 7 (p) which approach p as e
goes to 0.

Lemma 4.1. LetV be a tubular neighbourhood of ¥ in M, and 5 a Liouville
form on V\X. Then:

i) If p € ¥;, the numbers

805 0) = [

75 (p)

have a limit b;(p) when € goes to zero.

ii) The numbers b;(p) depend neither on p € 3;, nor on the chosen fibra-
tion. The number b; will be called the residue of 5 at ¥;.

iii) If B has residues (1;) at 3, then the form [ extends to a Liouville form
on M\X.

Similarly, if V is a regular neighbourhood in M of any simply connected open
subset U of ¥, and B is a Liouville form on V\X, then:
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iv) The restriction of 5 to any proper open subset of V extends to a Liouville
form on M\X, as long as B has residues (1;) at 3.

Here are some remarks about this lemma.

1) In iv), if U meets only some components of ¥ (say 3, j = 1,...,p),
the condition on 3 is Res (3,%;;) = 7;.

J

2) If ¥ is an irreducible polarization, any Liouville form 5 on M\X verifies

lim 5(v;(p)) =7,  where [w] = 7PD(X).

e—0

For instance, the residue of a Liouville form on P? minus an irreducible
curve of degree k is 1/k.

3) By contrast, when there is a linear dependence between the Poincaré
dual classes of the ¥;, a lot of residues are allowed. If ¥; are (possibly
singular) curves of P? of degree d;, there is a Liouville form on M\ U X
with residues pi/a; at ¥; assoon as Y p; = 1 (simply average the Liouville
forms on M\Y;). In particular, there is a Liouville form on P2\ U Y,
whose residues at any branch of ¥ is 1/di+-+d,.

Proof of Lemma[4.1 The point i) is obvious: (£ (p)) converges to A, (D;(p))
— B(0D;(p)). In order to prove ii), observe that the symplectic orthogonals
to D(p) induce a connection on our local fibration above X.°¢. For two points
p,q € X%, consider a path «:[0,1] — X:** between p and ¢, and parallel
transport a circle C, C D;(p) along « (this is possible provided C, is close
enough to p). Call S the surface obtained by gluing the three following pieces:

. the cylinder A := [Lé 1}P(';(Cp), where P! denotes the parallel transport,
te(o,

. the disc D; bounded by C, in D;(p),

« the disc Dy bounded by C, := P(C,) in D;(q).
Now by definition of our connection, A is a lagrangian cylinder. This has two
consequences. On one hand, since S is null-homologous, the symplectic area

of Dy and Dy are the same. On the other hand, since A lies in V\X, on which
B is a well-defined Liouville form for w, we get

B(Cp> = rB(Cq) + Au(A) = ﬁ(Cq)'
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We therefore see that b;(p) = b;(q), since

bi(p) = B(Cp) — Au(D1) = B(Cy) — Au(D2) = bi(q).

In order to see that the residue does not depend on the chosen fibration,
consider two fibrations D} (p), D?(p), construct a third one which contains
the discs D} (p) and D?(q) and apply the last result to this new fibration.

In order to prove iii), consider a Liouville form A on M\ X. By ii), this form
has residues 7; + f; at ;. When the residues of A are the 7;, the extension of
B is obvious. Indeed, 5 — A is closed on V\¥ and has no period by hypothesis,
so it is even exact. Writing 8 — A = dh, any extension hof hto M \X provides
an extension B ‘= A+ dh of B. Assume now that the f; do not vanish. The
first observation is that

(1) > fiPD(Z;) =0.

Indeed, if C' is any surface in M,

w=Y Res(\,5;)C-%; => (1 + fi)C - %
c i—1 i=1
= ZTzPD(E,‘) . {C} = Z’QC DI
=1 =1

SO ZszD(Ez) -C=0.

Consider now a collection of closed 2-forms o; representing the class
PD(X;). They are obviously exact on M\X;, so there exist 1-forms «; on
M\Y; such that o; = —da. It is easy to check that «; also has a well-defined
residue at 3J;, and even that Res (a;, ¥;) = 1. Since by , the form Y f;o; is
exact on M, we can write

d (Z fz’ai) =db,

where 6 is a 1-form defined on the whole of M. The form a := 3" f;o; — 0 is
therefore closed on M\X, with residues f; at ;. The form A — « is thus a
Liouville form on M\X, with residues 7; on ¥;, and we are in the previous
situation. The proof of iv) is completely similar. O

4.2. Liouville forms on balls

The relevant Liouville forms on the balls are restrictions of global Liouville
forms on C2? obtained in the following way. The symplectic form on C? is
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wst = dRy A dby + dRy A dfy, where (Ry = |21]?, 01, Ro := |22]?, 62) are polar
coordinates on C?(21, 23), so for dy := {23 = 0} C C?, the 1-form

)\7— = (7’ — Rg)d92 — R1d91

is Liouville, has residue 7 at dy. Any convex combination of pull backs of such
Liouville forms by unitary maps gives a Liouville form on the complement of
lines in C? with computable residues.

Proposition 4.2. Let X := A U---UA, be a standard n-cross in B(a) C
C% If1,...,7a € RY are such that 3. 7; > a, there exists a Liouville form \
on B(a)\X, with residues

Res ()\, Al) = T,

and whose associated Liouville vector field has the following properties:

i) It is not defined on X, but it points outwards along the cross.

ii) Its flow is radius increasing: Xy - r > 0. In particular, the negative flow
of any point in B(a) is well-defined until it reaches one of the A;. In
other terms, the basin of repulsion of X, defined by

{p € B(a)|3r € R* with O, () eaists for ¢ € [0,7] }

. —t
%1_{2 Py (p) e X

is exactly é(a).
iii) More basically, if U is any neighbourhood of X in B(a),

| @'y, () = B(a).

t>0

Proof. Observe that when k > a, the 1-form A\, defined above is wgt-dual to
the vector field

0 0
S Ri,
ORs OR;y
with X, - (R1 + Rz) = k — Ry — R, so @ increases the radius inside B(a)
(it is tangent to 0B(a) exactly when x = a). Moreover, since

Xy = (k — R2)

o _190
8R2 N 27’287’27
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X, explodes and points outwards along dy. Given now (A;, 7;) as in Proposi-
tion consider unitary transformations u; taking dy to d; := (A;), positive
weights p; (with >~ p; = 1), and real numbers k; > a such that p;k; = 7;.
Since the u; are symplectic and radius-preserving, the Liouville form

A= Z,uiui*)\,ﬂ

has the properties announced. U
4.3. Liouville forms on ellipsoids

Ellipsoids can be presented as quotient of balls by ramified symplectic cov-
erings. Pushing-forward Liouville forms from the balls, we now produce the
analogous Liouville forms in ellipsoids. Fix an ellipsoid E(a,b) with ¢/b € Q,
and put a := 7p, b := 7q, where p, g are relatively prime integers.

Lemma 4.3. The map

o B(7pq) — F
(R1a917R2a92) —

—

a,b) = TE(p, q)
’ q917 %7 p92)

|

q

is a symplectic covering of degree pq, ramified over the coordinate axis { Ry =
0} and {Ry = 0}. It is invariant by the diagonal action of Z, X L, ~ {(62”%,
™)} on C2.

Definition 4.4. Let o := |a|e’” be a complex number. We denote by A, C
E(a,b) the cone defined by

Rl = ‘Oé’RQ
pby =qls + p -

It is a symplectic surface, smooth except at the origin (the vertex of the cone),
and whose intersection with 0F(a,b) is a characteristic leaf.

A straightforward computation shows that the preimage of A, is a union
of pq lines, invariant by the action of Z,, x Z,. Averaging a Liouville form with
residue k around one of these disc (given by Proposition by this action,
we therefore get a Liouville form on B(7pq), which descends to a Liouville
form on E(a,b)\A,, with the same nice features as for the Liouville forms
on the ball. For instance, if the residue at A, is at least 7, then the residues
of the Liouville forms on B(7pq) are at least 7, and the Liouville vector
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field is radius increasing. The Liouville vector field on the ellipsoid therefore
increases the function ¢Ry + pRs, hence the function Bi/a + R2/s. Averaging
the different Liouville forms associated to different A,, we get the analogue
of Proposition [4.2] for ellipsoids.

Proposition 4.5. Let oy, ..., a, be n complex numbers and Ay, , ..., Nq, C
TE(p,q) their associated cones. If 7,...,7, € RT are such that Y 1, > T,
there exists a Liouville form A on TE(a,b)\Aq, U---UA,, , with residues

Res (A, Ay,) = 7,
and whose associated Liouville vector field has the following properties:

i) It is not defined on UA,,, but it points outwards along these curves.

ii) Its flow is "radius increasing” Namely, if R := % + %, Xy-R>0.
In particular, the negative flow of any point in TE(a,b) is well-defined
until it reaches one of the A,,. In other terms, the basin of repulsion of
UA,,, defined by

€ Tloi’(a b)| 3T € R with oy, (p)t caists for t € (0,7
P ’ th_)H% (I))_(A (p) € Aq,

is exactly Tlo?(a, b).
iii) More basically, if U is any neighbourhood of UA,, in TE(a,b),

| @, U) = 7E(a,b).

t>0

4.4. Tameness

In this paragraph, we define a regularity notion for Liouville forms, which will
be central in producing maximal open packings or embeddings.

Definition 4.6 (Angular form). Let ¥ be a codimension-2 submanifold in
M and N its normal bundle in M. Endow Ny, with a hermitian metric and
a hermitian connection «. An angular form around ¥ is the push-forward of
a by any smooth local embedding of (N, 0pr,) into (M, X). More informally,
it is a 1-form which is locally the df of local polar coordinates around 3.

If ¥ is a symplectic submanifold, we further impose a compatibility con-
dition: o must be positive on the small closed loops that turn positively
around X.
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Definition 4.7 (Tameness). Let (M*, ) be a 4-dimensional manifold with
a codimension-2 submanifold with isolated singularities. We say that a 1-
form A is tame at U C X if there exists a smooth function x on some
neighbourhood V of U in M, a smooth 1-form g on V\U which is bounded
(i.e. its coefficients are bounded near U), and an angular form « over ¥re#
such that

A=kra+p onV\U.

For simplicity, we will say that a 1-form is tame at X if it is tame at 2.
When we need to be more precise, we call a-tame a form which is tame with
respect to a specific angular form «. The aim of this section is to produce tame
Liouville forms associated to any polarization with reasonable singularities.

Remark 4.8. Tameness is a differentiable notion: if the fibration or the
connection is modified, the class of tame forms remains unchanged.

Remark 4.9. The Liouville forms defined in Section [d.2] provide tame Liou-
ville forms with arbitrary residues on the complement of a cross in a ball.

Remark 4.10. If ) is a tame Liouville form with positive residues on M\,
where Y is a symplectic polarization, the associated vector field X points
outwards the regular part of X.

Proof. Let (z, R =12,0) be coordinates in a neighbourhood V of a point
p € X, with

VNY={R=0} and w=dRAdO+ 7",
where 7 is a symplectic form on ¥ and 7(R, 0, z) = (0,0, z). Tameness of A

means that

A = kdf + p,

and positivity of the residue means that x takes positive values in V', provided
V' is small enough. Thus,

0 Kk 0
Xn=kgs+Z=——+2
YRR T 2ror 2
where Z is a bounded vector field (it is w-dual to a bounded form). Near
¥ = {r = 0}, this vector field is clearly radius increasing. O
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Remark 4.11. For a fixed angular form «, a-tame forms can be glued.
Namely, let A1, Ao be two a-tame 1-forms, defined in neighbourhoods V7, V5
of Uy, Uy C X5, with well-defined residues at X (there might be several ones
if Uy or U, is not connected). Assume that the residues coincide, and that
A1 — A2 is exact on (V3\Up) N (V2\Usz). Then there exists a tame 1-form A in
V1 U V5 which coincides with A; on V; and with Ay on an arbitrary compact

subset of V5\ (V1 N V4).

Proof. By assumption, A\; — Ay = dh, with h € C*°(V; N V5\U; N Us), and since
A1, A9 are a-tame,

(A1 = Ao)(2) = [ma (@) — ma(2)]r + p,

where « is an angular form over U; N Uy, K1, ko are smooth functions and pis a
smooth 1-form on V4 N V5. Imposing the same residues implies that k1 — kg =
0 on Uy NUs, so (k1 — ke)(z) = rb(x), where r is a radial coordinate around
¥ and b is a bounded, smooth function on V\U. Now the form r« is bounded
on a neighbourhood of X, so h is a smooth function on V3 N5\ (U N Us)
with bounded derivatives. This function can be extended by a function with
arbitrary compact support in a neighbourhood of Vi N V5, still with bounded
derivatives near U; N Usy. The gluing is the form that coincides with A\; on V}
and Ag 4+ dh on V5. O

Lemma 4.12. If X is smooth and o is a 2-form representing the Poincaré
dual class to X3, there exists a tame 1-form X\ on M\Y with d\ = o and residue
1 at X. The same holds when X has isolated singularities, provided that each
singularity has some neighbourhood B already equipped with a tame 1-form
with residue 1, whose differential is a smooth form on B.

Since tame forms are singular along ¥, it may seem strange to assume
that their differential is smooth. Notice however that this assumption auto-
matically holds true for Liouville forms for instance.

Proof. Consider first the case when ¥ is non-singular. Let V be a tubular
neighbourhood of ¥, 7:V — ¥ a disc fibration and a an angular 1-form
associated to some connection form on this fiber bundle. Inside V, da repre-
sents PD(X), so

da — o =du,

where p is a smooth 1-form on V. The form o' := a — yu is therefore a tame
primitive of o, but is defined only in V. Choose now a 1-form A on M\X with
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d\ = 0. Let also D be a local disc transverse to ¥ at p and 7. a family of
loops of D converging to p. As in Lemmal4.1|i), A(7.) has a limit, denoted by
k. Considering a deformation of ¥ whose intersections with 3 are very close
to p, and which coincides with a union of discs very close to D near p, we see
that x must be 1, as soon as the normal bundle is non-trivial. On the other
hand, when it is trivial, the 1-form o’ previously defined is closed. Hence, the
1-form A — ka/, defined on V\X, is closed. Since

. N / _
ig%)\ k' (7:) =0,

it follows that A — ka/(7.) = 0 for all e. Now, if v; is any basis of Hy(X), there
is a closed 1-form v on X with periods

v(vi) = A — k' (%),

where 7; is a small perturbation of 7; in V\X. The form A — ka/ — 7*v is
therefore exact on V\X so there is a function h € C*°(V\X) such that

X — kd — v = dh.

Any extension & of h to M\X defines a primitive of o on M\X (by A — dh),
which is tame (because it coincides with ko’ — 7*r on V). Notice that it
is even a-tame for an angular form « that was choosen arbitrarily at the
begining of the argument.

When ¥ has isolated singularities (p;), and when each singularity has
a small neighbourhood B; equipped with a tame 1-form \; with residue 1
at ¥ N B;, with d\; smooth on B;, we proceed as follows. Consider first an
angular form « on ¥7°¢ which extends the one for which the \; are tame (which
means that each ); is a-tame). Notice that the forms ); can be assumed to
be primitives of ¢. Indeed, since d); extends to a smooth 2-form on B; the
form o — d\; = du for a smooth one-form p defined on B;. Correcting \; by
adding p, we therefore get a primitive of o on B;\X, tame at ¥ N B; and with
residue 1.

Consider now a smooth perturbation ¥’ of ¥ which coincides with X
outside balls Bf much smaller than B;. By the previous argument, there
exists a primitive A of 0 on M\Y', a-tame and with residue 1 at ¥'. In
view of Remark [£.11] we only need to understand that A — ); is exact in a
neighbourhood of 9(B;\X). Since A and \; have the same residues, it amounts
to showing that A — ); vanishes on the knot defined by dB; N X. Consider a
connected component C of this knot, and fill it inside B; with a possibly
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singular disc D, which does not meet B, and whose singularities lie outside
Y. Then,

AC) = / o—D-Y (because A has residue 1 at X)
D
= / c—D-(¥NB) (because D avoids By)
D
=\ (C) (because A; has residue 1 at 3).

0

Corollary 4.13. Let (M,w) be a symplectic manifold with a singular polar-
ization ¥ = (X;) with nodal singularities only. Then, if

[w] =) KkPD(;),

there exists a tame Liouville form on M\X with residues k; at 3;.

Proof. Since each singularity consists of several branches intersecting transver-
sally, there exists a tame Liouville form with residue x; at ¥; near each sin-
gularity of ¥; (see Remark . Moreover, this Liouville form decomposes as
a sum of tame 1-forms near each J;, whose differentials are smooth. Consider
now closed two-forms o; on M Poincaré dual to ¥;, such that > k;0; = w. By
Lemma , there exists a tame 1-form \; on M\, with residue 1 such that
d\; = ;. Our tame Liouville form on M\X is simply A := > k;\;. O

Of course, in view of Proposition the same statement holds when the
singularities have the form I, (2P — aw?). Let us now explain the relevance
of tameness in our discussion. As we observed in Remark the Liouville
vector field associated to a tame form § on M\X is radial around the polar-
ization - and it explodes in a controled way. A basic consequence is that there
is a well-defined Xg-trajectory emanating from any point of the polarization
in each normal direction. In other terms, the flow of X3 is well-defined on
pairs (p € X,60) - where 6 is a local angular coordinate around ¥ -, in other
terms on the blow-up ¥* of ¥ (see [19], appendix A for details). As a result,
we get the following (local) statement.
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Proposition 4.14. Let \ be a tame Liouville form on B\A := B*(1)\{ze =
0} € C2%, and By the basin of attraction of A in B:

By :={pe B|3r, (P;(:(p) € A}

Let also (M* w, %, 8) be a closed symplectic manifold with symplectic polar-
ization ¥ and tame Liouville form on M\X, and ¢ : A* < 3* be a lift to
the blow-ups of an area preserving map between A and . Assume that the
residues of A\ and 3 at A and p(A) coincide. Then, there exists a unique C*
symplectic embedding ® : By — M, such that ®|p = ¢ and &*3 = \.

5. Ball packings
5.1. Proof of Theorem [4]

Proof of i). Assume that M has a symplectic packing by closed balls B; of
capacities a; € Q. Consider the symplectic blow-up (M , &) of M along all the
balls (recall that they are closed and disjoint). The cohomology class of @ is
therefore

@] = [7*w] — Zaiei,

where 7 : M — M is the blow-up map and the e; are the Poincaré duals of
the exceptional divisors F; corresponding to the balls B;. Since w is assumed
to be a rational form, and the a; are rational numbers, the form @ is also
rational. By Donaldson’s result, for all £ sufficiently large and such that
k[®] € H2(M,Z), there is a symplectic curve 3 Poincaré dual to k[@]. By
definition, the homological intersection between f]k and F; is ka;, but there
may be positive and negative intersections. The following lemma ensures that
these intersections may be assumed to be positive. It is an easy, well-known
adaptation of Donaldson’s proof done in Section

Lemma 5.1. For any k sufficiently large and such that k@] € HQ(M,Z),
there exists a symplectic curve Sy Poincaré dual to k[&] and whose intersec-
tions with the E; are transverse and positive. They therefore consist of ka;
distinct points.

A [¢]
Now Xy, := 7(Xy) is a symplectic curve in M\ U B; with boundary. The
boundary components are precisely a union of ka; Hopf circles of each 0B;.
Gluing to X the corresponding Hopf discs inside the B;, we get a symplectic
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curve which almost convenes. It is obviously Poincaré dual to k[w], irreducible
(because 3, is by Donaldson’s method itself), and it has the desired singu-
larities at the centers of the balls. The only problem is that ¥; may well be
non-smooth along the union of the Hopf circles if we do not care about the
smoothness of the gluing (it is a priori only topological). However, in [I7],
lemma 5.2, it is proved that starting with the topological gluing, one can
casily smoothen - while keeping the curve symplectic - by a C°-small pertur-
bation localized inside the B; and near the Hopf circles. In short, one can find
a smooth gluing, so X, is the required curve. O

Remark. Lemma [5.1| can be easily proved using pseudo-holomorphic meth-
ods, as in [I3]. Indeed, the curves 33 given by Donaldson’s method are Jj,
holomorphic for some almost-complex structure Ji, which are close to an
almost-complex structure J compatible with ©. For instance, J can be a
structure inherited from a compatible almost complex structure on M such
that the E; are J-holomorphic (see [14]). Then using automatic regularity of
the exceptional J-spheres and their uniqueness (in a fixed homology class),
we can deform the E; to exceptional Ji-spheres E!, which therefore intersect
Y positively and transversally. By positivity of intersections, the E! do not
intersect, and these deformations come from a global Hamiltonian isotopy.
Applying the inverse Hamiltonian flow to Sk, we get the needed symplectic
curve, which proves Lemma [5.1] We present however a different proof in Sec-
tion [7} which only relies on Donaldson’s techniques, and which is more suited
to treat the singular situation raised by ellipsoid embeddings.

Proof of ii). Here is what we call the inflation procedure. Consider a curve
¥ Poincaré dual to k[w] with p nodes, of mutliplicities kjaq, ..., kpap,, with
k < k; for all 7. Assume that there are p disjoint closed k;a;-crosses X; of size
a; in ¥, hence also disjoint crosses X; of size a; +¢. Each cross X} has a
simply connected neighbourhood Vi symplectomorphic (by a map ¢;) to a
neighbourhood U of a union of k;a; Hopf discs in B(a; + ). Consider the
Liouville form \; on B(a;) associated by Proposition to these kja; Hopf
discs, with residues k. It is also defined on B(a; + €), so since the closed
crosses X; are disjoint, the form

Brvs = isdijus

defines a Liouville form on UVf with residue !/k. By Corollary the
restriction of 4 to V := UVS extends to a tame Liouville form on M\X. Since
kiai/l, > a; for all ¢, Proposition iii) ensures that the (obviously disjoint)
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basins of attraction of the sets V;, defined by

B; = o%, (W),

t>0

each contain an open symplectic ball of capacity a;. The embedding is given
by

x> 0% op;o®y (x), where @3] (z) € U

Figure [1]is meant at illustrating this inflation process. O

(M, w)
wim\s = dB

Figure 1: Inflation of a neighbourhood of a cross.

(I) k; < k: inflating the cross does not lead to the embedding of the whole ball.
(IT) k; = k: inflating the cross allows the embedding of the whole open ball. Sin-
gularities on the boundaries are due to the explosion of the Hopf circles at
the boundary of the basin of attraction of the cross in the standard ball.
(ITI) k; > k: inflating leads to an embedding of more than the ball. Then the closed
ball embeds smoothly, provided the crosses themselves are smooth.

5.2. Proof of Theorem [G

Compared with the previous paragraph, we need to understand what hap-
pens when the closures of the crosses are not disjoint anymore. The argument
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is roughly the same, but is based on Proposition 4.14] i.e. on the analysis
performed in the appendix to [19]. We first fix the notation and describe the
geometric picture. In each B(a;), consider a cross X/ which is symplectomor-
phic to X;. Consider also disjoint symplectic balls Bf in M, of capacity e,
centered at the singular points p;, and seen as the embeddings of the closed
balls B(e) C B(a;) by a map ;. We further assume that these embeddings
send X/ N B(e) to X;. Denote by A; the Liouville form on B(a;)\X; with
residues 1/k given by Proposition By Corollary we can extend the
Liouville forms ¢, \; defined on UBS to a tame Liouville form 3 on M\X. Our
goal is now to extend the ¢; to embeddings of the open balls.

Extension to X!*. Fix angular coordinates 6; and ¢, around X;\{p;} and
X\{0} respectively, and denote by X7, X/* the blow-ups:

X7 ={(p,0:),p € Xi\{pi},0; € R\Z}.
We can freely assume at this point that the restriction of ¢; to X!* N B(e)

verify o;(p', 0;) = (@i(p'), 0;). Consider now any extension @; of ¢ X/nB(e) to
an area-preserving map of X/ into X;. Then the formula

pi(0'0) == (2:(p),0:)  on X

defines an extension of ¢; to X/* which is smooth on X/*.

Il

Figure 2: Blowing-up ;.

Inflation. As we explained already, the tameness hypothesis implies that
the positive flow of Xz is well-defined on X;*. Similarly, the backward flow of
a point x € B(a;) either reaches B(e) or a point on X/ (by Proposition
because k; > k), along a certain direction, whose angle will be denoted 6.(z).
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We now inflate each ¢; to an embedding of the open ball B(a;) in the following
way:

{ X, O @i 0 oy (o), when @3 (z) € B(e),

z —T —T
% 0 il @57 (1).6(2), when By (1) € X)\B(e).

The map is well-defined but this formula raises several questions. The
first one concerns regularity: ®; is not obviously smooth, nor even continu-
ous. However, ®; is clearly C!'-smooth on the basin of attraction of the open
ball B(e) and of the open annulus X/\B(e) by Proposition In order
to see that ®; is actually C! on B(a;), define ®? by the same formula, but
replacing B(e) by B(¢/2). The map ®7 is smooth on the basin of attraction
of X!\ B(¢/2) - which contains the locus where ®; is not known to be smooth.
On the other hand, ®? coincides with ®; by the uniqueness part of Proposi-
tion Thus ®; is C'-smooth on B(a;). The same proof shows that ®; is
symplectic. Finally, the different embeddings are disjoint because they lie in
the basins of attraction of disjoint subsets of the polarization. O

5.3. Different shapes for efficient packings

The previous proof shows two important things. First, the natural objects
that can be embedded are the basins of attraction in C2? of crosses under the
Liouville vector fields associated to

@) A= %Zu;)\j, where
A]‘ = (nﬁj — R1>d91 — Rodbs, u; € U(Z)

Moreover, the ”vertical part of the embedding”, in other terms the infla-
tion process is smooth. If the discs of the crosses are smooth up to the
boundary, then the embedding of the corresponding basin of attraction is C'-
smooth up to the boundary, locally near the boundary of the cross. Combining
these two observations, we get the following general theorem. The notation
B((Kj)j=1..m; (@) j=1..m; (u;)j=1..m) stands for the open basin of attraction
in C? of the "anisotropic” standard m-cross composed of standard open discs
of sizes (a;) inside complex lines d; := u;j({z2 = 0}) (u; € U(2)), under the
flow of the Liouville vector field associated to the form given by .
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Theorem 7. Let X be a polarization of M
N
[w] = ZT[PD(E[).
=1

Assume that ¥ is covered by r mj-crosses each composed of mlk discs of ¥, of
sizes (a])j<m,, with respective positions described by (u])j<m,. Then M has a
full packing by

r
HB((Th...,’7’1,...,TN,...,TN);(G},.--,G;W);(U?)>-
=1 N—— ———

1 N
m; m;

Moreover, around each smooth boundary point of the crosses in %, the corre-
sponding embeddings are C*-smooth up to the boundary.

This theorem may look a bit surprising, in that it seems to give too
many different full packings. It is well-known and understandable that curves
of different degrees or different kind of singularities, which have no obvious
symplectic relations, give different packings. But the parameters (u;) are too
much. Indeed, easy local perturbations of the curves allow to modify freely
these parameters. Why should it allow different embeddings? It turns out
that the basins of attraction do not really depend on these extra-parameters.

Proposition 5.2. The basins B((k;); (a;); (u;)) and B((k;); (a;); (vj)) are
domains of C? with symplectomorphic boundaries.

Proof. Consider the standard anisotropic crosses X and Y (associated to
((5); (aj); (uj)) and ((k4); (a;); (v;)) respectively), and a non-standard cross
Z C C? which coincides with Y in B(e) and with X in the complement of
B(2¢). Denote by X, Y and Z the infinite crosses in which X, Y and Z lie
(just extend by complex lines). Let Ay, Ay be the standard Liouville forms
on C2\ X, C2\Y. By Remark there is a tame Liouville form Az on C2\Z
which coincides with Ay inside B(e) and with Ax outside B(2¢). Following
now step by step the proof of Theorem [5, we see that the basins of attraction
of Y and Z are symplectomorphic. On the other hand, the basin of attraction
of Z\B(2¢) coincides with that of X\ B(2¢). O

5.4. Some explicit packings

We now explain how to construct geometrically maximal packings of P? by
6, 7 and 8 balls, proving Theorem
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Six balls. Recall that the capacity of the optimal packing is 2/5, and that the
obstruction comes from 6 conics passing each through five of the six centers of
the balls (on the blow-up, these curves lie in classes 2L — Fy — - -+ — Es5, 2L —
Ey—--—Ey—Fg,...,2L — Ey — --- — Eg). In fact, the same configuration
of curves allows to construct the maximal packing. Indeed, fix six generic
points p1, ..., pe in P2, and consider a conic through any five points of them.
The curve formed by the union of these conics has degree 12, passes five times
through each p;, and it can be split into six crosses centered on the p;, each
disc of the cross having area 2/5 (simply divide each conic in five such discs).
Moreover, the condition on the degree of this curve is verified: 2/5-12 < 5.
Thus, the six crosses can be inflated to a ball packing of maximal capacity.
It may be worth noticing that the produced packing is not very singular on
its boundary: it can be chosen for instance to have exactly 10 singularities at
each ball, precisely along the polarization, each singularity being rather nice
(see the discussion and Figure 2 in [I7] for a more precise description).

Seven balls. In this case, the best capacity is 3/8 and the obstruction comes
from a singular cubic passing once through six of the centers of the balls and
twice through the last one (on the blow-up, this curve lies in class 3L —
2Fy — Ey — - -+ — Ey). This particular cubic is not enough for our purpose of
constructing seven balls of capacity 3/8, but almost. Consider seven generic
points (p1, . . ., pr) in P2, Consider one singular cubic through (2py, pa, . - ., p7),
one through (p1,2p2, ..., p7) and one conic through (ps, ..., pr7). The union of
these curves is a curve of degree 8 that passes exactly 3 times through each
pi. Split each cubic into 8 discs of area 3/s centered on the p; and consider
also discs of area 3/8 around ps,...,p7 in the conic (it is possible because
5-3/8 <2). We thus have found a cross of area 3/8 with 3 branches around
each p; inscribed in a curve of degree 8. That is what is needed for getting
the optimal packing. Regularity on the boundary is however more difficult
to handle, precisely because in this situation, the capacity of the balls (3/3)
is really the same as the quantity multiplicity/degree. Thus the singularities
that appear in the partition of the curves into discs propagate along the
Liouville vector field (hence giving rise to "nice” discs of singularities), and
new ones appear (which we cannot control at all), at the Hopf discs that are
not in the basin of attraction of the cross.

Eight balls. The best capacity is 6/17. In order to produce the packing, we
therefore need a curve of degree 17 passing six times through each points,
or a curve of degree 34 passing 12 times through each point and so on. In
fact we will produce a curve of degree 51 passing 18 times through each
point. The obstruction comes from a sextic, passing three times through one
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point, and twice through all other points (on the blow-up, the class of this
curve is 6L — 3E; — 2FEy — - -+ — 2Eg). As before, the curve that allows the
construction will be obtained from this "obstruction” curve. Namely, the curve
we consider is composed of eight sextics, each passing twice through each
point but one (each time different), where it passes three times. This curve
has degree 48 and passes exactly 17 times through each point. Add to this
curve a cubic passing once through each of the eight points, and you get the
announced curve of degree 51.

Remarks. i) The description of the maximal packings by 7 or 8 balls above
involves reducible curves. However, one can check that for both cases, there
are extra-intersections for the total curves that allow to produce irreducible
ones passing through the same set of points, with the same multiplicities.
These curves are less explicit on one hand, but the discs that compose the
crosses can be choosen to be disjoint, which allows for less singular packings.

ii) It might be worth noticing that this method to construct explicit embed-
dings really works when there is an obstruction curve. When the obstruction
is due to the volume constraint, it usually does not provide a maximal pack-
ing. In order to illustrate this point, consider for example ten balls in P2.
By Biran’s result on packing stability [2], combined with McDuff’s isotopies
[TT], there is a packing of P? by ten open balls of capacities 1/vio. If we try
to construct this packing by a method similar to that explained above, we
need to consider approximations of 1/vio by rational numbers a,,, then find
a curve of large degree k(n) with ten nodal singularities with multiplicities
k(n)a, (note that k(n) must be large since a, has large denominator), and
then inflate to get the balls. But this would give ten balls of size a,,, not 1/v1o.
Even constructing a sequence of balls with capacities growing to the right size
requires to be able to produce an infinite sequence of curves, with appropriate
nodal singularities.

5.5. Proof of Theorem

First assume that there are p disjoint closed balls B; of size (a;)i=1..p, in M.
Consider rational symplectic forms wy, ..., wy very close to w, such that each
w; coincides with w in a neighbourhood of the balls, and such that [w] lies in
the convex hull of the [w;] in H?(M,R):

w] = Zul[wl], Zuz =1, > 0.
I=1
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Since the w; coincide in a neighbourhood of the balls, the symplectic blow-
ups of (M,w;) along the p balls provide different symplectic forms @; on
the same manifold M, with the same exceptional divisors E;. Now, applying
Lemma we find @;-symplectic curves il Poincaré dual to k;@; and whose
intersections with the F; are transverse and positive. It will also follow from
the proof of this lemma that the intersections of E; with the different 3, can
be assumed to be disjoint (see Remark . In fact, we can even require that
the 3, are (- symplectic, and intersect positively and transversally in M (see
[18], Theorem 2). Projecting these curves down to M, and gluing smoothly
the convenient Hopf discs, we get curves ¥; Poincaré dual to kjw;, and whose
intersections with B; consists of k{ = kja; Hopf discs. Now, 3 := (3, m/k,) is
a polarization of M with p nodes of multiplicities &* := 3" k!, which contains
the p disjoint k’-crosses of size a; by construction. Finally,

Z k:ln = Z k;“ul Z k‘laz Z Hha; = a;.

If you wish to verify that the left hand side above may even be strictly larger
than a;, simply notice that M contains also disjoint closed balls of radii a; + €.

Conversely, the proof that a polarization with the properties listed in
Theorem [6] allows to construct the ball packing is exactly the same as in The-
orem [ ii). O

6. Ellipsoid embeddings

As for balls, it will be convenient to be able to blow up the ellipsoids. The
result is a symplectic orbifold, that we describe now. The reader can also
consult [0 [16].

6.1. Blowing-up an ellipsoid

Weighted projective space. In this paragraph, we fix two relatively prime
integers p, q. It is well-known that P? is symplectically a closed ball, whose
boundary has undergone a symplectic reduction, i.e. has been collapsed along
its characteristic foliation. We define similarly P?(1, p, q) as the ellipsoid E(p, q)
whose boundary has been collapsed along its characteristic foliation. It is easy
to see that this definition gives the same topology to P?(1,p,q) as the more
classical one

]P)Q(lapv Q) = Ci/))(Ca with action 5 TR= (le,prQ,fng),
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but it has the advantage of giving an easier geometric model for the symplectic
structure. Notice that it is easy to see (using any of these two models) that
the divisor at infinity {z; = 0}, which corresponds to the boundary of the
ellipsoid after the collapsing process, is topologically the weighted projective
space PX(p, ¢) - we determine its symplectic area below.

Let @ : B(pq) — E(p,q) be the ramified pg-covering of the ellipsoid by
the ball described in the previous paragraph. It obviously sends the charac-
teristic foliation of B to the one of OF(p, q), so it descends to a symplectic
(ramified) covering of P?(1,p, q) by P?(pq) (meaning that the projective line
has area pq). The importance of this covering is two-fold. First, it explicitly
presents P%(1, p, q) as a symplectic orbifold, with an explicit desingularizing
map. Notice that the divisor at infinity, which is itself singular, is also desin-
gularized by this map, since it corresponds to a projective line. The second
point is that it allows to complete the description of our weighted blow-up by
giving us the symplectic area of the divisor at infinity. It is precisely 1, since
it is a quotient of a symplectic line of area pq by a symplectic group covering
of degree pq. Let us sum up this discussion:

Proposition 6.1. Let p,q be two relatively prime integers. The weighted
projective space P2(1,p, q) is obtained from the ellipsoid E(p,q) by collapsing
the Hopf fibration of OE(p, q). It is a symplectic orbifold, with group Z, x Zi,
and a desingularization map ® : P?(pq) — P%(1,p,q). Finally, it has three
“distinguished” curves: the horizontal one of area p, the vertical one of area
q, and the divisor at infinity, of area 1.

Blowing-up ellipsoids. Assume now that a closed ellipsoid E(a,b) = TE(p,
q) embeds into a symplectic manifold (M, w).

Proposition 6.2. Removing from M the interior of the ellipsoid E(a,b)
and collapsing the characteristic foliation of the resulting boundary (which is
O0E(a,b)), we get a symplectic orbifold with one or two singularities located on
the exceptional divisor (the projection of OF(a,b)). This exceptional divisor
1s a symplectic suborbifold of area T, which is desingularized by a symplectic
desingularization of M.

The resulting symplectic orbifold will be called the blow-up of M along
E(a,b) and denoted (M ,&). Recall that classical blow-up gives a presentation
of a symplectic manifold with some ball inside as a Gompf sum of the classical
blow-up and the projective space along the exceptional divisor on one side
and a projective line on the other. Similarly, this singular notion of blow-up
allows to think of a symplectic manifold with some ellipsoid E(a,b) inside
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as a Gompf sum of two symplectic orbifolds - the blow-up and the weighted
projective space 7P?(1, p, q) - along symplectic suborbifolds - the exceptional
divisor and the line at infinity.

Proof of Proposition[6.2 Observe that the map ® : 7B(pq) — E(a,b) defined
above extends to the whole of C2, hence in a neighbourhood of 7B(pq). More-
over, if the closed ellipsoid E(a,b) symplectically embeds into M, so does a
slightly larger ellipsoid. The extension of ® to a covering of this larger ellip-
soid therefore gives a symplectic desingularization of the manifold described
in Proposition [6.2] O

6.2. Proof of Theorem [3

Let us first assume that £ := E(a,b) = TE(p,q) embeds into (M,w) where
w is a rational class (p, ¢ are relatively prime integers). Consider the blow-
up M of M along this ellipsoid, and call £ the resulting exceptional divisor.
Provided that 7 is rational, the symplectic form & on M is rational. Although
the manifold is singular and the present framework is that of symplectic
orbifolds, the next lemma asserts that Donaldson’s techniques can be carried
out in this setting.

Lemma 6.3. For any k sufficiently large and such that k[0] € H*(M,7Z),
there exists a smooth symplectic curve 3y, Poincaré dual to k[®], which inter-
sects the exceptional divisor transversally and positively at exactly kT reqular
poInts.

Projecting a curve 33, down to M, we get a symplectic curve X, whose bound-
ary is made of k7 regular characteristic leaves of 0. Now each such char-
acteristic bounds a complex curve of equation 2{ = a2} in €. Gluing these
complex curves to X, we get a closed curve Poincaré dual to k[w]. As before,
this gluing can be assumed to be smooth by [I7]. The resulting symplectic

curve has therefore all the required properties.

Conversely, assume that M contains a symplectic curve > Poincaré dual to
k|w], with a singularity composed of k7 branches locally of the form z{ = az5.
Namely, we assume that a neighbourhood of the singularity has a Darboux

chart where ¥ restricts to the curve

kT

[ — izb) =o.

i=1
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Now, cut the part of this curve that lies inside a very small ellipsoid 7' E(p, q)
centered at the singularity x, and glue back smoothly the cone over the result-
ing boundary, with center at the origin. The curve ¥’ that results from this
operation is Poincaré dual to k[w]| and locally modeled on a cone singularity
over a (p,q)-torus knot. Assuming that the volume obstruction is satisfied,
we get:

kT.qu:kabSkVOlM:/ k:w/\w@/w:Aw(E)?
M 3

so ¥ contains k7 disjoint (singular) discs of area 7pg that meet at x, that
is a copy of T :=U;=1, krQa,(p,q) (see Definition . Now, M\ has a
Liouville form with residue 1/x at ¥ as well as E(a,b)\T. The associated
Liouville vector field on E(a,b) is radius increasing by Proposition ii)
because kT - 1/k > 7, so the same construction as for Theorem 4| embeds the
ellipsoid E(a,b). O

7. Donaldson curves in blow-ups
7.1. In the blow-up of a ball

We prove now Lemma [5.1] avoiding the use of pseudo-holomorphic curves.
The general statement is the following:

Proposition 7.1. Let (M, w) be a symplectic manifold with [w] € H*(M,Z).
Let N be a closed symplectic submanifold of arbitrary codimension. Then for
all sufficiently large k, there exists a symplectic hypersurface ¥ Poincaré-
dual to k[w] and such that the transverse intersection ¥ N N is a symplectic
hypersurface of N Poincaré dual to k[w)y].

Applying this proposition to the blow-up and its exceptional divisor yields
a proof of Lemma Although it is easy and rather folkloric (a more subtle
version for Lagrangian submanifold can be found in [I]), we sketch a proof of
Proposition because we also need to adapt it to the less usual setting of
symplectic orbifolds, see Section

Quick review of Donaldson’s construction. Let J be a compatible
almost complex structure, £ a hermitian line bundle over M with curvature
w. Donaldson’s proof of the existence of a symplectic hypersurface consists
in producing an approximately holomorphic and 7-transverse section of L.
Recall the following definitions from [5]:
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Definition 7.2. A sequence of sections (s3) of L2 is said
e approximately holomorphic if |dsi| < C/vE,
e n-transverse if |dsg(z)| > n for each z € M such that |si(z)] < 7.

The vanishing locus of sections belonging to such a sequence are clearly
smooth and symplectic when k is sufficiently large. For convenience, we usu-
ally forget the term ”sequence” and speak of approximately holomorphic sec-
tions.

These sections are obtained as a perturbation of the zero-section by
approximately-holomorphic peak-sections very localized around the points
of the manifolds. These peak-sections decrease exponentially fast around a
point, and have support in balls of radius of order 1/¥/%. Let us describe a bit
more the peak-section 0]’; around a point p € M. Identify a neighbourhood
of pin M with a ball in C" by a map x, that takes p to the origin, w to
the standard symplectic form on C" and J to i+ O(]z]). Inside this ball,
the bundle £®* has a connection given by d + k3 zjdzZj — Zjdz; and in the
trivialization of the bundle given by radial parallel transport with respect to
this connection, the peak section is a]l,f = x(z)e*kp‘z, where x(z) is a cut-off
function at the right scale (notice that ek g i-holomorphic). Donaldson’s
method consists in adding inductively to the zero-section some small enough
multiple of these peak-functions, centered at points on a regular grid, so that
the perturbations gain transversality on the balls where the peak-section are
added, while being cautious enough not to destroy the transversality already

obtained.

Proof of Proposition[7.1 Take J compatible with w, but also with wy (in
particular, .J preserves TN). Notice that the restriction of the bundle £®*
to N has curvature kwy. By classical neighbourhood theorems, a neighbour-
hood of a point p € N can be identified symplectically with a symplectic ball,
where J is again i + O(z) and N is a (complex) linear subspace. In these
coordinates, the above mentioned peak-section a;; on M restricts to the peak
section afv,p on N (associated to (N, w)y, J|n)). Therefore, perturbing the zero
section first above N by Donaldson’s recipe provides a section which is zero
at distance 1/¥% of N, and which is n-transverse to zero over N. If we then
continue the process with perturbations sufficiently small, we do not affect
the transversality of the section over N, which implies that the intersection
of the vanishing locus of the final section with N is transverse and defines a
symplectic polarization of degree k of N. O
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For the proof of Theorem [6], we need a slightly stronger version of this
statement. Namely, we must know that if wq,...,w,, are rational and close
enough to a given symplectic form w, the intersections of Donaldson hyper-
surfaces ¥¥, ..., ¥F with N, which are Donaldson’s hypersurfaces of N as
we already saw, can be assumed to intersect transversally (in dimension 4,
this will imply that these intersections are disjoint). This point is obtained
by requiring the n-transversality for the sections of E;@k &) E?k (where L; is
Donaldson’s bundle associated to w;). This analysis is done in detail in [I§].
As in the previous proof, getting this transversality first above N and then
on M gives the desired result.

Remark 7.3. In dimension 4, the intersections of w;-Donaldson hypersur-
faces with a symplectic curve N can be assumed to be disjoint, provided the
wy are close enough to a fixed symplectic form.

7.2. In the blow-up of an ellipsoid

In this paragraph, we explain that Donaldson’s techniques generalize to the
setting of 4-dimensional orbifolds. Recall that a cyclic orbifold singularity is
a quotient of (C2,0) by the action (¢*7/7., ¢*™/1.) of Z, x Z,. Lemma [7.1| has
the following analogue:

Lemma 7.4. Let (M,w) be a 4-dimensional symplectic orbifold with isolated
cyclic singularities and [w] € H*(M,Z). Let N be a closed symplectic suborb-
ifold which is desingularized in the uniformizing charts of M (in particular, N
has only isolated cyclic singularities). Then for all sufficiently large k, there
exists a symplectic curve ¥ Poincaré-dual to k[w], which avoids all singular
points of M and N, and whose intersection with N is transverse and positive.

This lemma may well be true in a more general setting but this version
is enough for proving Lemma [6.3] which is our purpose. Before proving this
lemma, we first need to understand that Donaldson’s method works in sym-
plectic orbifolds.

Theorem 8. Let (M,w) be a 4-dimensional symplectic orbifold with iso-
lated cyclic singularities, and [w] € H*(M,Z). Then for all sufficiently large
k, there is a smooth symplectic curve ¥y Poincaré dual to k[w] which avoids
all singular points of M.

As explained in the previous paragraph, Donaldson’s method is based on
several ingredients. One needs:
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(1) A compatible almost complex structure J on (M, w) (call g the induced
metric),

(2) Regular grids I'y, of M at scale 1/vk,

(3) A line bundle £ on M of curvature w,

(4) The highly localized approximately holomorphic sections a]'j.

Then the method consists in adding iteratively to the zero-section (or to any
approximately holomorphic section) of L& some linear combination of the
0]’;, where p belongs to the grid I'y. The first question is to decide whether
the ingredients of the recipe are available in the orbiworld. An almost com-
plex structure is easy to produce: in a uniformizing chart near the singu-
larity, choose J =i. Since the action of the covering group is by unitary
maps, it preserves ¢ so J defines a complex structure on some neighbour-
hood of the singularities, which we can extend to an almost complex struc-
ture by general arguments. Similarly, in the uniformizing chart, the connec-
tion d + kY zjdz; — Zjdz; (with curvature kw) is also unitary-invariant, so it
projects to a connection on the trivial line bundle over a neighbourhood of
the singularities with curvature kw. Provided k is a multiple of a convenient
number (the product of the orders of the local groups defining the orbifold),
this trivial line bundle extends a line bundle over M with curvature kw. The
regular grid is also not a problem. But the fourth object above has no obvious
equivalent. Indeed, the controlled decay rate for the peak sections depends
heavily on the existence of Darboux charts around each point p of the manifold
which depend smoothly on p. But this point fails dramatically on symplectic
orbifolds, because Darboux charts around regular points close to a singularity
cannot contain this singularity, so they must be very distorted. Hence, this
straightforward approach does not go through. Instead we proceed as follows.
We first fix a Darboux uniformizing chart around each singularity. Namely,
this is a symplectic covering

d:BY1)—UcCM

ramified along the axes {z; = 0}, and invariant under the symplectic action
of G :=Z, x Z, on B*(1) given by

(3) (€1,82) - (21, 22) = (§121,&222)

In the complement of the neighbourhood U of the singularities given by
the union of these charts, the needed parametric Darboux charts exist. Our



Symplectic packings in dimension 4 and singular curves 337

approach is simply to produce a Donaldson section over M\U (approxi-
mately holomorphic and n-transverse) which naturally extends to M to a
non-vanishing section over U. A classical way of summarizing Donaldson’s
method can be the following:

Proposition 7.5. Let s be a sequence of sections of LZ* such that

(4) Iskllco <1
(5) 10sk]lco < ¢/VE (approzimately holomorphic).

Then there exist constants wi(p), p € T such that Sy := sy, + Zwk(p)a;f is
approzimately holomorphic and n-transverse for some n > 0 independent of k.

Starting for instance from the sequence s = 0, Donaldson gets de exis-
tence result of [5]. However, nothing prevents a priori to start with a different
section, and that is what we did in paragraph As we already explained,
the method consists in adding a combination of the peak sections a}j in order
to gain transitivity on larger and larger sets. Then the condition seems
rather strong and unnecessary since in the region where |sy| is large, transver-
sality is already achieved and we do not need to modify s, in this region. The
next proposition weakens this hypothesis. The control on ||s||co can not be
totally removed, but it is enough to assume that the regions where s, is large

or small lie sufficiently apart one from the other.

Proposition 7.6. Let €2 be an open subset of M, and denote by Q5 O Q
the 1/Vk-neighbourhood of Q. Assume that sy is a sequence of sections of LZF
over M such that:

(6) |sk| > 1 on M\Q2
(7) l|skllco <2 on Qi
(8) [0skllco < ¢/VE.

Then there exist constants wi(p), p € T N Q such that S, := s + > wy (p)a;f
is approximately holomorphic and n-transverse on M, with || > 1/2 on M\.

The proof goes by checking that Donaldson’s method works in this setting.
In a few words, the estimates (|7]) and ensures that s is uniformly bounded
and approximately holomorphic on the balls By(p), p € T'y, N Q2. Then the local
analysis ([5], Theorem 20) can be performed because it only involves the
boundedness of the section on balls of size 1/v&. Finally, the local-to-global
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procedure works the same, because all estimates rely on the decay rates of
the a]’j, which depend themselves only on estimates on the derivatives of the
Darboux charts for p € I'y, N €, still available in our relative setting.

Corollary 7.7. If B is a closed ball in M, there exists an approzimately
holomorphic and n-transverse section of Lk whose zero set avoids B.

It might be worth recalling that Donaldson’s remark concerning the con-
vergence in the sense of currents of (a renormalization of) the vanishing loci of
these sections to w holds under the condition that the derivatives of the sec-
tions are bounded. The apparent contradiction with this corollary is explained
by the fact that this condition does not hold for the sections produced below.
Proof: By standard neighbourhoods results, since B is a closed ball, there
exists a symplectic embedding of a larger ball that extends B. To fix ideas,
assume that B = ¢(B(1)) and that ¢ extends to B(2). Consider the sections

s 1= x(|e)eh P
of the trivial line bundle over B(2), where y =1 on B(3/2) and y = 0 near
0B(2). This sequence of sections is holomorphic on B(3/2) (for the complex
structures on the bundle £&*) and since the derivatives of x are of order 1,

19sillco < lIxllere™ on B(2),

which means that sj is indeed approximately holomorphic on B(2). Finally,
|sk| > 1 on B(1), |sg] <1 on B(2)\B(1), and |si| < e on B(1)\B(1 — 1/Vk).
Applying Proposition we get a section whose zero set obviously avoids
B(1).

Proof of Theorem[§. Consider the bundle £, described right after the state-
ment of Theorem |8] which extends the trivial bundle U x C over U with cur-
vature qw for some g € N. Near the singularities, this bundle is of the form
(B xC)/q ~ Byg x C. The local section sy, := x(|2]?)ekakal=l* oyer B(1) -
already used in the previous corollary - is G-equivariant (because G acts triv-
ially on the fibers and by unitary action on the base). It therefore descends
to a section s; of L& supported in a neighbourhood of each singularity.
Moreover, this section has exactly the same decreasing properties as the cor-
responding ones in the ball, so they satisfy the estimates @, and for
Q2 := M\U. Now the complement of U is a smooth symplectic manifold, and
Proposition [7.6] applies exactly as in Corollary This concludes our proof.
It is also clear that the same argument as for Proposition [7.1] applies and
proves Lemma |7.4 g
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8. Remarks and questions
Faithful symplectic charts

This paper is about the relations between symplectic embeddings and curve
singularities. As already pointed out in paragraph we have no reason
to limit ourselves to embeddings of balls or ellipsoids. In fact, any algebraic
singularity of a curve gives rise to an embedding of some domain (the basin
of attraction of the curve with respect to the Liouville vector field dual to
dIn | f|, where f(z) = 0 is an equation of our singularity). A natural question
is the following:

Question. Isthere a symplectic topology of curve singularities? For instance,
what can be said about the symplectic invariants (like capacities) of the
domain D(S) obtained by inflation along a curve with some singularity with
prescribed type S7

These domains D(S) might be used to find big symplectic charts. Let
me comment a bit on this. A smooth manifold always contains a ball that
covers almost everything, in the sense that its complement is of codimension
at least one. In symplectic geometry, this is wrong, but there are ellipsoidal
charts with this property, at least in rational symplectic manifolds (see [17]).
In particular, the volume of its complement vanishes. But this ellipsoid may
be very thin and long, so it may not represent well the symplectic features of
the ambient manifold.

Question. Given a set of capacities, and a symplectic manifold M, is there
a domain 2 C C? with the same capacities as M, and which embeds into M?
Can the domains D(S) help?

Minimal degree of curves with prescribed singularities [7), [22]

In Section[5.4] we use algebraic geometry to produce symplectic packings. But
the reverse direction can also be investigated, and we can ask whether the
symplectic point of view produces something new to the algebraic geometry
of singularities. One very natural question is the following:

Question. Given a list of singularity types (S;)i=1..», what is the minimal
degree d(S;) of an algebraic curve of P? with r singular points of type S;?
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Of course, "singularity type” can have various meanings (up to analytic,
or topological equivalence), which may lead to different answers. We refer
for instance to [7, 22] for algebraic approaches to this problem. Now the
remark is the following: in view of Theorems [I] and [3] and since the packing
problem was completely solved for any configuration of balls and ellipsoids in
P? by McDuff in [12], the corresponding question in a symplectic setting has a
complete solution, at least asymptotically in the degree. But any symplectic
lower bound for d(S;) is also an algebraic one, and it might sometimes be
better than what is known. For instance, we know from [I2] that the closed
ellipsoid 7E(1,6) embeds into P? if and only if 7 < 2/5. Thus,

Theorem 9. Let S be a singularity with a symplectic model given by m
smooth branches intersecting in one point with tangency order 6:

8 = [{w(w — 2%+ (w = (m = 1)2%) = 0}
Then d(S) > 3m.

The universal bound given in [22] /u(S) +1=+v6m? —Tm+1+1~

2.45m is smaller that 2.5m when m is large.
McDuff’s result on ellipsoid embeddings

Let us recall that McDuff proved in [12] that on some manifolds, the embed-
ding problem for an ellipsoid with fixed shape is equivalent to the packing
problem for some balls with given ratio between the different radii. It seems
natural to ask whether this result can be directly proved at the level of curve
singularities. In some sense, the question is whether when we have a Gromov-
Witten invariant for some problem involving a curve in some class with some
simple singularities (several nodal points for instance), one can deform this
curve in order to produce a new curve with a single but more complicated
singularity.
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