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A Hamiltonian circle action on a compact symplectic manifold is
known to be a closed geodesic with respect to the Hofer metric on
the group of Hamiltonian diffeomorphisms. If the momentum map
attains its minimum or maximum at an isolated fixed point with
isotropy weights not all equal to plus or minus one, then this closed
geodesic can be deformed into a loop of shorter Hofer length. In this
paper we give a lower bound for the possible amount of shortening,
and we give a lower bound for the index (“number of independent
shortening directions”). If the minimum or maximum is attained
along a submanifold B, then we deform the circle action into a
loop of shorter Hofer length whenever the isotropy weights have
sufficiently large absolute values and the normal bundle of B is
sufficiently un-twisted.
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1. Introduction

A Hamiltonian circle action on a compact symplectic manifold (M,ω) can be
viewed as a loop in the group Ham(M,ω) of Hamiltonian diffeomorphisms,
parametrized by R/Z. We are concerned with deforming this loop, through
loops in Ham(M,ω), into a loop whose Hofer length is smaller. In short,
we call such a deformation “shortening”. The reader may go directly to
Section 3 for the precise statements of the new results that we prove in this
paper.

One motivation for such a study comes from Riemannian geometry,
where one studies the action functional γ 7→

∫ 1
0 ‖γ̇(t)‖2dt on spaces of loops

or paths with fixed endpoints in a compact Riemannian manifold. Critical
points are geodesics; the index of a critical point is finite and is equal to the
number (counting multiplicity) of conjugate points along the geodesic; every
homotopy class contains a minimal geodesic. Morse theory in this context
has played a major role in the study of the topology of compact Lie groups.
See Milnor’s book [17].

The infinite dimensional group Ham(M,ω) is a central object in sym-
plectic geometry. It has a natural Finsler metric, introduced by Hofer, which
induces a non-trivial distance function. The length of a path γ : [0, 1]→
Ham(M,ω) with respect to this Finsler metric is called the Hofer length of
γ. It is equal to the sum of the positive Hofer length and the negative Hofer
length; see Section 2.

There have been various attempts to extend to this setting notions that
had been applied successfully to the action functional of Riemannian geom-
etry. The situation here is more difficult and it is not yet clear to what
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extent the analogy can be carried out. But the partial results that exist are
beautiful and deep. A main theme is to express Morse properties of Hofer’s
functional on a space of paths in Ham(M,ω) in terms of the dynamics of
the flows on M given by these paths.

There are several notions of “geodesic path” in Ham(M,ω). With all of
these notions, every time-independent Hamiltonian flow is geodesic. (But not
every geodesic is time-independent.) Thus, every Hamiltonian circle action
is a geodesic loop in Ham(M,ω).

Starting with a Hamiltonian circle action {φt : M →M}0≤t≤1 on a com-
pact connected symplectic manifold, here is a sample of known results. Con-
sidering the opposite circle action gives the analogous results with “max-
imum” replaced by “minimum” and “positive Hofer length” replaced by
“negative Hofer length”.

1) Suppose that the circle action is semi-free near the set where the
momentum map is maximal. (Semi-free means that only the trivial
group and the entire circle occur as stabilizers.) Then its positive Hofer
length is minimal among homotopic loops. See [19], the paragraph after
Thm. 1.21, whose proof relies on [15, Thm. 1.9].

In particular, if the circle action is semi-free on M then it is length-
minimizing among homotopic loops in Ham(M,ω). This was already
shown by McDuff-Slimowitz [14, Theorem 1.4].

Another consequence is that, if the circle action is semi-free near
the set where the momentum map is maximal, then the circle action is
non-contractible in Ham(M,ω). This was already shown by McDuff-
Tolman [15, Theorem 1.1].

2) Suppose that the momentum map attains its maximum at an isolated
fixed point and that the circle action is not semi-free near the maxi-
mum. Then the circle action can be deformed to a loop in Ham(M,ω)
whose Hofer length is smaller. See Ustilovsky [24, Theorem 1.2.E].

3) If n is a sufficiently large integer, then the non-effective circle action
{φnt}0≤t≤1 can be deformed into a loop of smaller Hofer length. See
Polterovich [18, p. 86].

Let B be the set where the momentum map attains its maximum.
If there exists a Hamiltonian diffeomorphism g such that g(B) ∩B =
∅, then the non-effective circle action {φ2t}0≤t≤1 can be deformed to
a loop in Ham(M,ω) of smaller Hofer length. See Polterovich [18,
Theorem 8.2.H].
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Many results in the literature apply to spaces of paths in Ham(M,ω)
with fixed endpoints and to geodesic loops or paths that are possibly time-
dependent. We refer the reader to Hofer [6, 7], Hofer and Zehnder [8], Bialy-
Polterovich [3], Yi Ming Long [12], Siburg [22], Ustilovsky [24], Lalonde-
McDuff [10, 11], McDuff-Slimowitz [14], McDuff [13], and Savelyev [19, 20].
Polterovich’s book [18] contains systematic explanations of many results in
the subject.

Example 1.1. Let e2πit ∈ S1 act on CP2 by [u, z, w] 7→ [u, e−2πitz, e2πitw],
with the Fubini Study form normalized such that the momentum map is
(|w|2 − |z|2)/(|u|2 + |z|2 + |w|2) + constant. Take an equivariant blow-up at
the point [0, ?, 0] where the momentum map is minimal. This yields a Hamil-
tonian circle action on a symplectic manifold (M,ω) whose isotropy weights
where the momentum map is maximal are−1,−2 and whose isotropy weights
where the momentum map is minimal are 1, 1. It is an effective circle action
that represents a non-trivial element of π1(M,ω) (by the above item (1),
applied to the minimum) but that can be deformed into a shorter loop in
Ham(M,ω) (by the above item (2), applied to the maximum).

Typically, to show that a geodesic cannot be deformed to a loop of
smaller Hofer length requires “hard” holomorphic curve techniques, whereas
to show that a geodesic can be shortened is possible with “soft” techniques.

In this paper we use “soft” techniques to explore the behaviour of the
Hofer length functional as we deform a Hamiltonian circle action within the
space of loops in Ham(M,ω). Starting with a circle action is a very restrictive
assumption, but it allows us to obtain new results that do not follow from
general existing results. Our new results are sketched in the abstract and
stated in Section 3. In brief,

? Our Theorem 3.1 is the first quantitative shortening estimate for effec-
tive Hamiltonian circle actions.

? Our Theorem 3.7, Theorem 3.9, and Corollary 3.12 are the first short-
ening results that apply when the extrema of the momentum map are
not necessarily displaceable and the circle action is effective.

? Our Theorem 3.17 gives a lower bound on the index of the Hofer
length functional. It confirms a prediction of Yasha Savelyev. (But see
Remark 1.2.)

We now give an overview of the paper.
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In Section 2 we review standard background material. The purpose of
this review is to remind equivariant symplectic geometers of facts about
time-dependent Hamiltonian flows and to remind symplectic topologists of
facts about momentum maps. In Section 3 we state our results, give exam-
ples, and pose further questions.

In Sections 4–7 we develop the main tools for the later proofs of our
main results. We warm up by describing, in Section 4, Polterovich’s short-
ening trick for non-effective circle actions (item (3) in the above sample of
known results). In our later proofs we use variations of this Polterovich trick;
we give such variations in Section 5: take a Hamiltonian circle action with
momentum map H, and assume that, near the set where H is maximal,
we can write H = K + F where K and F also generate circle actions. Also
assume that the sets where K and F are maximal have non-empty inter-
section, and that there exists a symplectic isotopy that disjoins the first of
these sets from the second. Finally, assume that the infimum of the sum
of K and F is equal to the sum of their infima. We deduce that the circle
action can be deformed to a shorter loop in Ham(M,ω), and we estimate
the amount by which this loop is shorter. Our actual statement is slightly
more technical; see Lemma 5.1. The qualitative part of this result can be
strengthened if H decomposes, near its maximum, into a sum of more than
two momentum maps; see Lemma 5.10. Sections 6 and 7 contain variations
on the simple fact that a disc of area A1 can be disjoined from a disc of area
A2 inside a disc of area greater than A1 +A2. See Lemmas 6.1 and 7.1.

In Section 8 we prove our first new result, Theorem 3.1: when the momen-
tum map attains its maximum at an isolated fixed point and one of the
isotropy weights has absolute value ≥ 2, we give a lower bound for the
amount of possible shortening, in terms of the gap between the two largest
critical values of the momentum map. The proof consists of the following
steps. There exists an equivariant Darboux chart whose image is the entire
set of points where the momentum map is larger than the second-largest
critical value; this set can be identified with an ellipsoid in Cn. We view
this ellipsoid as a family of discs in C parametrized by points in a subset
of Cn−1, where the circle action on the C component is non-effective. From
the results of Section 5 we get shortening by an amount that depends on
the size of a family of discs that can be disjoined from another such family
through a Hamiltonian isotopy supported in the ellipsoid. Such an estimate,
in turn, is obtained from the results of Section 7. For effective circle actions,
these are the first shortening results that are quantitative.

In Sections 9 and 10 we prove our second new result (more precisely,
set of results). We now allow the momentum map to attain its maximum
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along a submanifold B of positive dimension. To describe a neighbourhood
of B in M , we use Sternberg’s minimal coupling procedure and Weinstein’s
symplectic tubular neighbourhood theorem. Let E denote the normal bundle
of B in M . In the simplest case, we may assume that E has k sections that
are nowhere all vanishing, where k + 1 is the smallest absolute value of an
isotropy weight in E. In the general case, we make a similar assumption for
a sub-bundle E′ of E. The idea of the proof is to express the circle action
as a composition of k + 1 circle actions on a neighbourhood of B and to
then apply the results of Section 5. For the precise results, and for some
special cases, see Theorems 3.7 and 3.9 and Corollary 3.12. These are the
first shortening results when the maximum is attained along a manifold that
is not necessarily displaceable and the circle action is effective.

Finally, in Section 11, we prove our third new result, Theorem 3.17: we
give a lower bound for the index of the Hofer length functional, assum-
ing that the momentum map attains its maximum at an isolated fixed
point. Composing with an equivariant Darboux chart, we may work with
a linear circle action on Cn that rotates the coordinates of Cn with speeds
−k1, . . . ,−kn, where the kjs are positive integers. We write the action on the
jth coordinate as a composition of kj terms, φt ◦ · · · ◦ φt, where φ−t gener-
ates the scalar multiplication circle action. We obtain a family of shortenings
by applying Polterovich’s trick of Section 4 to the different factors of these
compositions: in each coordinate, we conjugate all but one of the φts by a
translation of C. Varying over the two dimensional family of translations
of C, independently in each one of the

∑
(kj − 1) conjugations, we obtain

a family of loops in Ham(M,ω) that depends on 2
∑

(kj − 1) real parame-
ters and such that the original circle action corresponds to the origin in the
parameter space R2

∑
(kj−1). An explicit computation then shows that the

Hofer length of these loops, as a function on R2
∑

(kj−1), achieves its max-
imum at the origin, and its Hessian is negative definite at the origin. This
confirms one direction of a prediction for the index that was made by Yasha
Savelyev.

Remark 1.2. While completing this paper, we learned that Savelyev [21]
can now confirm his conjecture with the methods of Ustilovsky [24].

This paper is the outgrowth of a joint project that took place in the
years 1999-2001. Yael Karshon takes the responsibility for any errors that
might be present.

Acknowledgement. We thank Leonid Polterovich for inspiring conversa-
tions and helpful suggestions. We thank Yasha Savelyev for suggesting to
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compute the index of the Hofer length functional and telling us his conjec-
ture for its value. We also thank Fabian Ziltener and Brian Lee for helpful
discussions. Finally, we are grateful to the referee for his or her extremely
thorough report and numerous helpful comments.

2. Preliminaries

The purpose of this section is to remind equivariant symplectic geometers
of facts about time-dependent Hamiltonian flows and to remind symplectic
topologists of facts about momentum maps.

Hamiltonian isotopies

Let (M,ω) be a symplectic manifold. A smooth path of symplectomorphisms
is a map t 7→ ψt, from an interval I to the group of symplectomorphisms of
(M,ω), such that the map (t,m) 7→ ψt(m) from I ×M to M is smooth.
Such a path is a Hamiltonian isotopy if its velocity vector field, defined
by d

dtψt = Xt ◦ ψt, is generated by a smooth function H : I ×M → R, by
Hamilton’s equations dHt = −ι(Xt)ω, where Ht(·) = H(t, ·). The function
H = {Ht}t∈I is called the Hamiltonian. If the Hamiltonian isotopy {ψt} is
compactly supported, its Hofer length is

length{ψt}t∈I =

∫
I

(
max
x∈M

Ht(x)− min
x∈M

Ht(x)

)
dt.

A symplectomorphism is Hamiltonian if it can be connected to the identity
map by a Hamiltonian isotopy.

The positive and negative Hofer length functionals

Suppose that M is compact. The Hamiltonian {Ht} is normalized if∫
M
Ht ω

n = 0 for all t.

The positive Hofer length functional associated to a Hamiltonian isotopy
{ϕt}a≤t≤b in Ham(M,ω) is the number

`+(ϕ) =

∫ b

a
max
M

Ht dt
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where {Ht}a≤t≤b is the normalized Hamiltonian that generates the isotopy.
The negative Hofer length functional is, similarly,

`−(ϕ) =

∫ b

a
max
M
−Ht dt.

The Hofer length of ϕ is then `+(ϕ) + `−(ϕ).

Conjugation

If {ψt} is a Hamiltonian isotopy, generated by {Ht}, and b is a symplecto-
morphism, then {bψtb−1} is a Hamiltonian isotopy, generated by {Ht ◦ b−1}.
If Ht is normalized then Ht ◦ b−1 is also normalized.

Reparametrization

Let {ψt} be a Hamiltonian isotopy, generated by a function {Ht}. Let
t = t(τ) be a smooth function. Then ψτ := ψt(τ) is a Hamiltonian isotopy,

generated by the product Hτ := Ht(τ)
dt
dτ .

Indeed, let ξt be the vector field that generates the isotopy, so that
d
dtψt = ξt ◦ ψt and dHt = −ι(ξt)ω. Let ξτ = ξt(τ)

dt
dτ . Then dHτ = dHt(τ)

dt
dτ =

−ι(ξτ )ω and d
dτψτ = d

dt ψt|t=t(τ)
dt
dτ = ξτ ◦ ψτ .

Composition and inverse

If {ψKt }t∈I is a Hamiltonian isotopy generated by {Kt}t∈I , and {ψFt }t∈I is
a Hamiltonian isotopy generated by {Ft}t∈I , then {ψKt ◦ ψFt }t∈I is a Hamil-
tonian isotopy generated by {Kt + Ft(ψ

K
t )−1}t∈I , and (ΨK

t )−1 is a Hamil-
tonian isotopy generated by −Kt ◦ΨK

t . If Kt and Ft are normalized, so are

Kt + Ft
(
ψKt
)−1

and −Kt ◦ΨK
t .

The group of Hamiltonian symplectomorphisms is denoted Ham(M,ω).

Paths in the Hamiltonian group

If {ψt} is a smooth path in the group of symplectomorphisms of (M,ω), and
for each t the symplectomorphism ψt is in the subgroup Ham(M,ω), then
{ψt} is a Hamiltonian isotopy. This is a result due to Banyaga [2, p.190,
prop. II.3.3]. In textbooks, the proof is often omitted or is intertwined with
proofs of more difficult facts. We recall the proof.
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Let ξt be the velocity vector field, defined by d
dtψt = ξt ◦ ψt. The path

{ψt} is a Hamiltonian isotopy if and only if ι(ξt)ω is exact for all t, if and only
if the H1(M ;R)-valued integral Flux({ψτ}0≤τ≤t) :=

∫ t
0 [ι(ξτ )ω]dτ is zero for

all t. (We then set Ht(x) = −
∫ x
x0
ι(ξt)ω.)

The evaluation of the flux on a smooth loop γ : S1 →M is equal to
the symplectic area of the surface γ̃ : S1 × [0, t]→M given by γ̃(s, τ) :=
ψτ (γ(s)); this follows from Stokes’s formula. It follows that the flux of a
closed loop of symplectomorphisms is a class in H1(M ;R) whose evaluation
on elements of H1(M ;Z) takes values in the countable set 〈ω,H2(M ;Z)〉.
Such classes make up a countable subgroup of H1(M ;R).

Suppose that {ψt} is a path of symplectomorphisms and that each ψt
is Hamiltonian. Then for each t the path {ψτ}0≤τ≤t can be completed to a
closed loop of symplectomorphisms by a Hamiltonian isotopy. This comple-
tion does not effect the flux. So t 7→ Flux({ψτ}0≤τ≤t) is a continuous map
that takes values in a countable subgroup of H1(M ;R). Such a map must
be constant. Since it is zero for t = 0, it is zero for all t.

Hamiltonian circle actions

Let (M,ω) be a symplectic manifold with a circle action generated by a
Hamiltonian H : M → R. The momentum map for the circle action is the
Hamiltonian H.

The critical points of H are the fixed points for the circle action. Let p ∈
M be such a point. The linearized isotropy action on TpM is linearly equiv-
ariantly symplectomorphic to Cn with the standard symplectic form and
with the circle acting as a subgroup of (S1)n, namely, e2πit · (z1, . . . , zn) =
(e2πik1tz1, . . . , e

2πikntzn). The integers k1, . . . , kn, which measure the speeds
at which the linearized S1-action rotates its eigenspaces, are called the
isotropy weights at p. They are unique up to permutation. This isomor-
phism TpM ∼= Cn carries the Hessian of H to the quadratic form πk1|z1|2 +
· · ·+ πkn|zn|2. So if H attains its maximum at p then all the isotropy weights
at p are non-positive.

The equivariant Darboux theorem asserts that a neighbourhood of p in
M is equivariantly symplectomorphic to a neighbourhood of the origin in
TpM . In particular, if p is an isolated fixed point then the isotropy weights
at p are all non-zero. Thus, at least one isotropy weight at p has absolute
value greater than one if and only if every neighbourhood of p contains a
point whose stabilizer is finite and non-trivial. Also, the set Bmax where H
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is maximal is a symplectic submanifold, and the circle acts on the fibres of
its normal bundle with negative weights.

The momentum map H is a Bott-Morse function with even indices and
coindices. Assuming that M is compact and connected, this implies that
the level sets of H are connected and that preimages of intervals are con-
nected. Thus, the maximum of H is attained along a connected component
of the fixed point set. If a fixed point p is a local maximum for H then it
is also a global maximum. If a neighbourhood of p in M is equivariantly
symplectomorphic to the ellipsoid {z |

∑
kjπ|zj |2 < ε} with the momentum

map −
∑
kjπ|zj |2, then this neighbourhood contains all the points in M

where H is ε-close to its maximum.
See [1, 5].

3. New results and further questions

In this section we state our main results. We prove them in Sections 8, 10,
and 11. We also give some examples, corollaries, and further questions.

In each of these results, we start with a Hamiltonian circle action, viewed
as a loop in the group of Hamiltonian diffeomorphisms, and we deform it to
a loop whose Hofer length is smaller. Moreover, throughout the deformation,
the negative Hofer length remains constant, and the positive Hofer length
eventually becomes smaller without ever becoming larger than the initial
one.

Shortening on a manifold with an isolated maximum

Theorem 3.1. Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Suppose that the momentum map attains its
maximum at an isolated fixed point and that at least one of the isotropy
weights at that point has absolute value greater than one. Let d be a positive
number that is smaller than the gap between the two largest critical values
of the momentum map. Then the circle action can be deformed to a loop
in Ham(M,ω) whose Hofer length is smaller than that of the original circle
action by 2d/9.

Remark 3.2. In Theorem 3.1, we can choose the deformation such that
the positive Hofer length never exceeds the initial one and the negative Hofer
length remains constant. Specifically, let H denote the momentum map, let
pmax denote the point where H attains its maximum, let α denote the gap
between the two largest critical values of H, and consider the subset of M
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given by

(3.3) {m | H(m) > H(pmax)− α}.

We can choose the deformation such that the normalized deformed Hamil-
tonians remain between H(pmax)− α and H(pmax) on the set (3.3) and
coincide with H outside this set.

Remark 3.4. In Theorem 3.1, we actually obtain a better estimate than
2
9d. If one of the isotropy weights is even then we can shorten by 1

4d. Oth-
erwise, let −k1 be the weight whose absolute value is largest; then we can
shorten by 1

4(1− 1
k2
1
)d. When k1 = 3, this becomes 2

9d.

This is the first quantitative result for shortening of loops in Ham(M,ω)
that are effective circle actions. We prove it in Section 8.

The estimate of Theorem 3.1 is far from sharp, as we see in the following
example.

Example 3.5. Let a, b be positive integers that are relatively prime. Let
e2πit ∈ S1 act on CP2 by [u, z, w] 7→ [u, e−2πitaz, e2πitbw], with the Fubini-
Study form normalized such that the momentum map is (−a|z|2 + b|w|2)/
(|u|2 + |z|2 + |w|2) + constant. The Hofer length of this action is a+ b. The
isotropy weights at the maximum are −b,−(a+ b); the isotropy weights at
the minimum are a, a+ b. Applying the shortening result of Theorem 3.1 and
the analogous result with maximum replaced by minimum, for any ε > 0 we
can deform the circle action to a loop of Hofer length < 7/9(a+ b) + ε. This
upper bound is greater than one. But the action can be deformed to a loop
of Hofer length one or zero, so the bound is not optimal. (To see that the
action can be deformed to a loop of Hofer length one or zero, notice that the
action extends to an action of PU(3), that π1(PU(3)) ∼= Z/3Z, and that the
non-trivial elements of π1(PU(3)) are represented by the actions [u, z, w] 7→
[u, e−2πitz, w] and [u, z, w] 7→ [u, z, e2πitw], which have Hofer length equal to
one.)

Remark 3.6. The above example is inspired by Proposition 1.3 of the
paper [16] of McDuff and Tolman: if G is a compact Lie group with trivial
centre and M is a coadjoint orbit of G, then every non-trivial element of
π1(G) is represented by a sub-circle of G that acts on M semi-freely.
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Shortening on a manifold with an arbitrary maximum

Recall that, on a compact connected symplectic manifold with a Hamiltonian
circle action, the set where the momentum map is maximal is a connected
symplectic submanifold.

In the following theorem, a subset B of a symplectic manifold M is sym-
plectically k-displaceable in a neighbourhood V if there exist k symplecto-
morphisms b1, . . . , bk of M , each connected to the identity through a path of
symplectomorphisms supported in V , such that B ∩ b1(B) ∩ · · · ∩ bk(B) = ∅.

In the symplectic literature, “B is displaceable” often means that there
exists a Hamiltonian symplectomorphism g such that B ∩ g(B) = ∅. Thus,
a set can be symplectically k-displaceable in every neighbourhood without
being displaceable (even when k = 1).

Theorem 3.7. Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Let Bmax be the set where the momentum map is
maximal. Let −k1, . . . ,−ks denote the distinct weights for the circle action
on the normal bundle of Bmax, and let k := min{k1, . . . , ks} − 1. Suppose
that Bmax is symplectically k-displaceable in every neighbourhood. Then the
circle action can be deformed through loops in Ham(M,ω) into a loop of
smaller Hofer length.

Remark 3.8. In Theorem 3.7, we can choose the deformation such that
the positive Hofer length never exceeds the initial one and the negative
Hofer length remains constant. Specifically, let H denote the momentum
map. For every positive number α, we can choose the deformation such that
the normalized deformed Hamiltonians remain between H(Bmax)− α and
H(Bmax) on the set {m ∈M | H(m) > H(Bmax)− α} and coincide with H
outside this set.

In practice, the easiest way to show that a symplectic submanifold is
symplectically k-displaceable in every neighbourhood is to show that its nor-
mal bundle has k sections that are nowhere all vanishing. (k-displaceability
then follows from the symplectic tubular neighbourhood theorem (9.5) and
Lemma 9.10.) More generally, we have the following theorem.

Theorem 3.9. Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Let Bmax be the set where the momentum map is
maximal. Let E′ → Bmax be an S1-invariant subbundle of the normal bundle
to Bmax in M , and let −k′1, . . . ,−k′s′ be the distinct weights for the circle
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action on E′. Let

k′ = min{k′1, . . . , k′s′} − 1.

Suppose that

(3.10) E′ has k′ sections that are nowhere all vanishing.

Then the circle action can be deformed through loops in Ham(M,ω) into a
loop of smaller Hofer length.

Remark 3.11. In Theorem 3.9, we can choose the deformation such that
the positive Hofer length never exceeds the initial one and the negative
Hofer length remains constant. Specifically, let H denote the momentum
map. For every positive number α, we can choose the deformation such that
the normalized deformed Hamiltonians remain between H(Bmax)− α and
H(Bmax) on the set {m ∈M | H(m) > H(Bmax)− α} and coincide with H
outside this set.

Theorem 3.9 has the following corollaries.

Corollary 3.12. Let (M,ω) be a compact symplectic manifold with a Hamil-
tonian circle action. Let Bmax be the subset of M where the momentum map
attains its maximum. Let E denote the normal bundle of Bmax in M and
−k1, . . . ,−ks the distinct weights for the circle action on E. Suppose that
one of the following conditions holds.

1) The normal bundle of Bmax in M has a trivial sub-bundle on which
the circle acts with a weight of absolute value ≥ 2.

(In particular, this holds under the assumptions of Theorem 3.1.)

2) We have

kj > 1 +
dimBmax

codimBmax

for all j ∈ {1, . . . , s}.

3) After a possible relabeling, assume that k1 < · · · < ks. Let Ej denote
the sub-bundle where the circle acts with weight −kj. There exists j ∈
{1, . . . , s} such that

(kj − 1) rank(Ej ⊕ · · · ⊕ Es) > dimBmax.

(For j = 1, this condition amounts to case (2).)
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Then the circle action can be deformed through loops in Ham(M,ω) to a
loop of smaller Hofer length.

Moreover, we can choose a deformation with the properties described in
Remark 3.11.

Proof of Corollary 3.12. In each of the three cases, (3.10) holds for an appro-
priate choice of sub-bundle E′:

1) Let E′ be a trivial sub-bundle of E on which S1 acts with a weight
−k′1 of absolute value k′1 ≥ 2. Then k′ = k′1 − 1 ≥ 1, and (3.10) holds
because E′ is trivial.

2) Let E′ = E. Then rankE′ = codimBmax. Our assumption on the
weights give k′ > dimBmax

codimBmax
. So k′ rankE′ > dimBmax, and (3.10) holds

for generic sections.

3) Let E′ = Ej ⊕ · · · ⊕ Es. Then k′ = kj − 1. The assumption on the
weights gives k′ rankE′ > dimBmax, and again (3.10) holds for generic
sections.

In each of these cases, the shortening result follows from Theorem 3.9. �

Remark 3.13. Let k and k′ be as in Theorems 3.7 and 3.9. Existence of
k′ sections of E′ that are nowhere all vanishing does not necessarily imply
the existence of k sections of E that are nowhere all vanishing, because k′

can be larger than k. So Theorem 3.9 does not follow from Theorem 3.7.

Remark 3.14. Informally, the assumptions of Theorems 3.7 and 3.9 and
Corollary 3.12 mean that the normal bundle is “sufficiently untwisted”.

Remark 3.15. There seems to be an interesting relationship with the work
of McDuff-Tolman. In the terminology of Section 1.1 of McDuff-Tolman’s
paper [15], the component Bmax is homologically visible if and only if the
Euler class of the obstruction bundle (E1 ⊗ Ck1−1)⊕ · · · ⊕ (Es ⊗ Cks−1) is
non-zero. Here, k1, . . . , ks are the weights of the circle action on the normal
bundle, and Ej is the subbundle on which the circle acts with weight kj .
By Theorem 1.2 of [15], if Bmax is homologically visible then the circle
action is non-contractible in Ham(M,ω). (We are not sure whether Bmax

being homologically visible further implies that the circle action is minimal
among homotopic loops. Proposition 3.3 of [15] might be relevant.) The
condition (3.10) of our Theorem 3.9 implies that Bmax is not homologically
visible. (k′ sections of E′ that are nowhere all vanishing can be considered
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as a non-vanishing section of E′ ⊗ Ck′ . Writing E′ = E′1 ⊕ · · · ⊕ E′s′ where
the circle acts on E′j with weight k′j , we get a nonvanishing section of (E′1 ⊗
Ck′)⊕ · · · ⊕ (E′s′ ⊗ Ck′). Because k′ ≤ k′j − 1 for all j = 1, . . . , s′, we get a

non-vanishing section of (E′1 ⊗ Ck′1−1)⊕ · · · ⊕ (E′s′ ⊗ Ck′s′−1). Because this
is a subbundle of the obstruction bundle, the obstruction bundle has a non-
vanishing section, and hence its Euler class is zero.)

We prove Theorems 3.7 and 3.9 in Section 10. These are the first short-
ening results that apply to situations when the maximum is not necessarily
displaceable.

Example 3.16. Let e2πit ∈ S1 act on CP4 by

[z0, z1, z2, z3, z4] 7→ [z0, z1, e
−2πitz2, e

−2πit·2z3, e
−2πit·3z4],

with momentum map (−|z2|2 − 2|z3|2 − 3|z4|2)/(|z0|2 + |z1|2 + |z2|2 + |z3|2
+ |z4|2) + constant. The momentum map attains its maximum along the
submanifold Bmax = {[z0, z1, 0, 0, 0]}, which is isomorphic to CP1. The neg-
ative isotropy weights along Bmax are −1,−2,−3. The momentum map
attains its minimum at the isolated fixed point [0, 0, 0, 0, z4]. The isotropy
weights at the minimum are 1, 2, 3, 3. In the notation of item (3) of Corol-
lary 3.12, applied at Bmax, we have the following values.

j kj rankEj
1 1 2
2 2 2
3 3 2

We can apply item (3) of Corollary 3.12 to either E2 ⊕ E3 or E3. Also
applying Theorem 3.1 at the minimum, we conclude that the circle action
can be deformed to a loop whose positive Hofer length and negative Hofer
length are both smaller. Nevertheless, the circle action is not contractible in
Ham(M,ω): it is homotopic (in PU(5)) to the circle action [z0, z1, z2, z3, z4] 7→
[e−2πitz0, z1, z2, z3, z4, z5], which is semi-free and thus non-contractible (by
item (1) on p. 211).

The index of the Hofer positive length functional

Theorem 3.17. Let (M,ω) be a 2n dimensional compact connected sym-
plectic manifold with a Hamiltonian circle action. Suppose that the momen-
tum map attains its maximum at an isolated fixed point. Let −k1, . . . ,−kn
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be the isotropy weights at the maximum, with possible repetitions. Then
there exists a neighbourhood D of the origin in R

∑
2(kj−1), and, for each

λ ∈ D, a loop {ψ(λ)
t }0≤t≤1 in Ham(M,ω), such that the following properties

hold. For λ = 0, the loop {ψ(0)
t }0≤t≤1 is the given circle action. The function

λ 7→ length({ψ(λ)
t }) is smooth, λ = 0 is a critical point of this function, and

the Hessian of this function at λ = 0 is negative definite.

Remark 3.18. In fact, we can choose the deformation such that the nega-
tive Hofer length remains constant. Specifically, let H denote the momentum
map, and let pmax denote the point where H attains its maximum. For every
positive number α, we can choose the deformation such that the normalized
deformed Hamiltonian remains between H(pmax)− α and H(pmax) on the
set {m ∈M | H(m) > H(pmax)− α} and coincides with H outside this set.

Savelyev [19, 20], in the setup of Theorem 3.17, predicted that the index
of the positive Hofer length functional on the space of loops in Ham(M,ω)
at the given Hamiltonian circle action is equal to

∑
2(ki − 1). Theorem 3.17

is a sense in which the index of the positive Hofer length functional is at
least

∑
i 2(ki − 1). So Theorem 3.17 confirms the ≥ direction of Savelyev’s

prediction. (But see Remark 1.2.)

Further questions

1) Are there examples where the estimate of Theorem 3.1 is sharp?

2) Can the estimate of Theorem 3.1 be improved in the presence of high
isotropy weights?

As noted by Polterovich, this question is also interesting for non-
effective circle actions obtained by iterating an effective circle action,
as it may provide information on the asymptotic norm of the homotopy
class of the effective circle action (see [18]).

3) Under the assumptions of Theorem 3.7 or of Theorem 3.9, can one
obtain a quantitative estimate?

4) In Theorem 3.9, can the condition (3.10) be replaced by the condition
that Bmax not be homologically visible? (Cf. Remark 3.15.)

5) Can Theorem 3.17 be extended to cases in which the maximum is
attained along a manifold of positive dimension?

6) Savelyev’s prediction for the index of the positive Hofer length func-
tional is an even number. Polterovich expects the index to be even in
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additional cases. On a compact connected manifold, a Morse function
with even indices and coindices has nice topological properties: every
local minimum is a global minimum, and the level sets are connected.
Palais-Smale-Morse theory does not apply to the space of loops in
Ham(M,ω), but we may seek analogies.

If a loop in the Hamiltonian group is a local minimum for the posi-
tive Hofer length functional, is it also a global minimum in its homo-
topy class?

Suppose that a homotopy class in π1(Ham(M,ω)) contains two cir-
cle actions that are semi-free near the set where the momentum map
is maximal. (Cf. item (1) on p. 211.) Can we deform one to the other
through loops of constant positive Hofer length?

4. Shortening a non-effective circle action

To warm up, we describe a procedure, which we learned from Leonid
Polterovich, for shortening a non-effective Hamiltonian circle action by dis-
placing the set where its momentum map is maximal.

Let H : M → R be a time independent Hamiltonian. Suppose that 1
2H

generates a circle action, {φt}0≤t≤1, so that H generates the non-effective
circle action

(4.1) ψHt = φ2t = φt ◦ φt.

Let b : M →M be a symplectomorphism. Then

(4.2) ψHt := {φt b φt b−1}0≤t≤1

is a loop in Ham(M), based at the identity, and generated by the Hamilto-
nian

(4.3) Ht =
1

2
H +

1

2
Hb−1φ−1

t .

If H is normalized, so is Ht.
If b can be connected to the identity through a path of symplecto-

morphisms, then the loop (4.2) is a deformation of the loop (4.1). Since
Ht(x) ≤ maxH and Ht(x) ≥ minH for all x ∈M and all t,

(4.4) length({ψHt }) ≤ length({ψHt }),

and this is a strict inequality if maxHt < maxH for some t.
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Denote by BH
max the subset of M where H takes its maximal value. If

BH
max ∩ b(BH

max) = ∅ then, for t = 0, the maximum of H0 = 1
2H + 1

2Hb
−1 is

strictly smaller than that of H.
We have shown that, if there exists a symplectic isotopy that displaces

the set where the momentum map is maximal, then the non-effective circle
action can be deformed to a loop of shorter Hofer length. A similar argument
gives a quantitative result: if there exists a symplectic isotopy that displaces
the set where the momentum map is ε-close to its maximum, then the non-
effective circle action can be deformed to a loop whose Hofer length is shorter
by ε from that of the original circle action.

5. Shortening a combined action

In this section we give variations of Polterovich’s trick that apply to effective
circle actions. We begin with a lemma that we will use to prove Theorem 3.1.
The lemma has two parts – a qualitative part and a quantitative part.

We say that a symplectomorphism b disjoins a set A from a set B if
b(A) ∩B = ∅.

Lemma 5.1. Let (M,ω) be a compact symplectic manifold. Let H : M → R
be the momentum map for a circle action {ψHt }0≤t≤1. Let

i : (U, ω0)→ (M,ω)

be an open symplectic embedding. Suppose that

(5.2) i∗H = K + F on U,

where K and F generate commuting circle actions {ψKt }0≤t≤1 and {ψFt }0≤t≤1

on U .
Let N̂ : U → R be a function that Poisson commutes with K and F and

satisfies

(5.3) inf
N̂−1(α)

(K + F ) = inf
N̂−1(α)

K + inf
N̂−1(α)

F for every α ∈ R.

Also suppose that

(5.4) i(U) does not meet the set where H is minimal.
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1) Let

BH
max = {m ∈M | H is maximal at m},

BK
max = {u ∈ U | K is maximal at u},

and BF
max = {u ∈ U | F is maximal at u}.

Suppose that

(5.5) BH
max ⊂ i(U) and BK

max ∩BF
max 6= ∅.

Suppose that there exists a symplectomorphism b : U → U that disjoins
BF

max from BK
max and such that b can be connected to the identity

through a path of symplectomorphisms that are compactly supported
in U and that preserve the function N̂ .

Then the circle action {ΨH
t } can be deformed, through loops in

Ham(M,ω), to a loop {ΨH
t } whose Hofer length is smaller.

2) Let ε > 0. Let

NH
ε = {m ∈M | H(m) > maxH − ε},
NK
ε = {u ∈ U | K(u) > maxK − ε},

and NF
ε = {u ∈ U | F (u) > maxF − ε}.

Suppose that

(5.6) NH
ε ⊂ i(U) and BK

max ∩BF
max 6= ∅.

Suppose that there exists a symplectomorphism b : U → U that disjoins
N F
ε from NK

ε and such that b can be connected to the identity through
a path of symplectomorphisms that are compactly supported in U and
that preserve the function N̂ .

Then the circle action {ΨH
t } can be deformed, through loops in

Ham(M,ω), to a loop {ΨH
t } whose Hofer length is smaller than that

of {ΨH
t } by at least ε.

In each of these two cases, the deformation can be chosen such that the nor-
malized deformed Hamiltonians remain between inf H(i(U)) and maxH(M)
on the set i(U) and coincide with H outside this set, so the positive Hofer
length never exceeds the initial one and the negative Hofer length remains
the same throughout the deformation.
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Proof. Because K and F generate commuting circle actions, K ◦ ψFt = K
and F ◦ ψKt = F for all t.

Because BH
max ⊂ i(U), i∗H = K + F , and BK

max ∩BF
max 6= ∅,

(5.7) BH
max = i

(
BK

max ∩BF
max

)
.

Let b : U → U be a compactly supported symplectomorphism of U .
The loop

ψHt =

{
i ◦
(
ψKt ◦ bψFt b−1

)
◦ i−1 on i(U)

ψHt outside i(U)

is generated by the Hamiltonian Ht : M → R that is given by

(5.8) Ht =

{(
K + Fb−1(ψKt )−1

)
◦ i−1 on i(U)

H outside i(U).

If H is normalized, so is Ht.
If b can be connected to the identity through a compactly supported

symplectic isotopy, then the loop {ψHt } is a deformation of the loop {ψHt }
in Ham(M,ω).

By (5.7) and (5.8), we have maxHt ≤ maxH for all t. So the positive

Hofer length of {ψHt } does not exceed that of the circle action {ψHt }.
If b preserves N̂ , then, by (5.3), (5.4), (5.8), and because ψKt preserves

N̂ , we have minHt = minH for all t. So the negative Hofer length of {ψHt }
is equal to that of the circle action {ψHt }.

Suppose that b disjoins BF
max from BK

max. Then, for t = 0, we have
maxH0 = max(K + Fb−1) < maxK + maxF = maxH. This strict inequal-
ity is because BK

max ∩BFb−1

max , being equal to BK
max ∩ b(BF

max), is empty. (In
fact, maxHt < maxH for all t; this follows from K + Fb−1(ψKt )−1 = (K +
Fb−1)(ψKt )−1 and BK

max ∩ b(BF
max) = ∅.) Because the inequality maxHt ≤

maxH holds for all t and is strict for t = 0, the positive Hofer length of
{ψHt } is strictly smaller than that of the circle action {ψHt }.

This completes the proof of the first, qualitative, part of the lemma.
To prove the second, quantitative, part of the lemma, suppose now that

b disjoins NF
ε from NK

ε , let m be a point in M , and we will show that
Ht(m) ≤ maxH − ε for all t.

Suppose that m is not in i(U), and, thus, also not in NH
ε . Then Ht(m) =

H(m) and H(m) ≤ maxH − ε, so

Ht(m) ≤ maxH − ε.
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Now suppose that m is in i(U), say, m = i(u) for u ∈ U . By (5.8),

Ht(m) = K(u) + F (u′)

where u′ = b−1(ψKt )−1(u). If Ht(m) is ε-close to maxH, then u ∈ NK
ε and

u′ ∈ NF
ε , that is,

(5.9) u ∈ NK
ε ∩ ψKt (b(N F

ε )).

Because K = K ◦ ψKt , the set NK
ε is preserved under ψKt , so we can re-

write (5.9) as u ∈ ψKt (NK
ε ∩ b(N F

ε )). But, by assumption, NK
ε ∩ b(N F

ε ) is
empty. So Ht(m) cannot be ε-close to maxH, and again we conclude that
Ht(m) ≤ maxH − ε. So Ht(m) ≤ maxH − ε for all m ∈M and for all t.
Since Ht is normalized, we conclude that the positive Hofer lengths satisfy
`+({ψHt }) ≤ `+({ψHt })− ε, as required. �

The second, quantitative, part of Lemma 5.1 does not automatically
extend to more than two summands. The first, qualitative, part does extend
to more than two summands. We now give such an extension. We will use
it to prove Theorems 3.7 and 3.9.

Lemma 5.10. Let (M,ω) be a compact symplectic manifold. Let H : M →
R be the momentum map for a circle action {ψHt }0≤t≤1. Let

i : (U, ω0)→ (M,ω)

be an open symplectic embedding. Suppose that

(5.11) i∗H = H(0) +H(1) + · · ·+H(k) on U

where H(0), H(1), . . . ,H(k) generate commuting circle actions on U .
Let

BH
max = {m ∈M | H is maximal at m}

and, for each 0 ≤ j ≤ k,

B(j)
max = {u ∈ U | H(j) is maximal at u}.

Suppose that

(5.12) BH
max ⊂ i(U) and B(0)

max ∩B(1)
max ∩ · · · ∩B(k)

max 6= ∅.
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Suppose that

(5.13) inf
U

(
H(0) +H(1) + · · ·+H(k)

)
=

k∑
j=0

inf
U
H(j)

and that

(5.14) i(U) does not meet the set where H is minimal.

Suppose that there exist symplectomorphisms b1, . . . , bk of U such that

(5.15) B(0)
max ∩ b1(B(1)

max) ∩ · · · ∩ bk(B(k)
max) = ∅

and such that each bj can be connected to the identity through a path of
symplectomorphisms that is compactly supported in U .

Then the circle action {ψHt } can be deformed, through loops in Ham(M,ω),
to a loop {ψt} whose Hofer length is smaller.

The deformation can be chosen such that the normalized deformed Hamil-
tonians remain between inf H(i(U)) and maxH(M) on the set i(U) and
coincide with H outside this set, so the positive Hofer length never exceeds
the initial one and the negative Hofer length remains the same.

Proof. Denote by

{ψ(0)
t }0≤t≤1, . . . , {ψ(k)

t }0≤t≤1

the circle actions on U that are generated by H(0), . . . ,H(k). Let b1, . . . , bk
be arbitrary compactly supported symplectomorphisms of U . For each j ∈
{0, . . . , k}, let

(5.16) ψ
(j)
t := ψ

(0)
t ◦

(
b1ψ

(1)
t b−1

1

)
◦ · · · ◦

(
bjψ

(j)
t b−1

j

)
.

This is a loop in Ham(U, ω0). We have the following three facts:

1) {ψ(j)
t } is generated by the Hamiltonian

(5.17) H
(j)
t := H(0) +H(1)b

−1
1 (ψ

(0)
t )−1 + · · ·+H(j)b

−1
j (ψ

(j−1)
t )−1.

2) Outside a compact subset of U ,

ψ
(j)
t = ψ

(0)
t ◦ ψ

(1)
t ◦ · · · ◦ ψ

(j)
t and H

(j)
t = H(0) +H(1) + · · ·+H(j).
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3) For all t,

(5.18)

∫
U

(
H

(j)
t − (H(0) +H(1) + · · ·+H(j))

)
ωn0 = 0.

Facts (1) and (2) are shown by induction on j. As for Fact (3), by (5.17),
the left hand side of (5.18) is the sum over m = 1, . . . , j of

(5.19)

∫
U
H(m) ◦

(
b−1
m ◦ (ψ

(m−1)
t )−1

)
ωn0 −

∫
U
H(m)ω

n
0 .

The map b−1
m ◦ (ψ

(m−1)
t )−1 is a symplectomorphism, so it preserves the vol-

ume form ωn0 , and so (5.19) vanishes.
By the above items (1) and (2), we can define a loop in Ham(M,ω) by

ψt :=

{
i ◦ ψ(k)

t ◦ i−1 on i(U)

ψHt on M r i(U),

and it is generated by the Hamiltonian

(5.20) Ht :=

{
H

(k)
t ◦ i−1 on i(U),

H on M r i(U).

By the above item (3), if H is normalized, so is Ht.
From (5.11), (5.13), (5.14), (5.17), and (5.20), we deduce that min

M
Ht =

min
M

H. So the negative Hofer length of {ψt} is equal to that of the circle

action {ψHt }.
From (5.11), (5.12), (5.17), and (5.20), we see that max

M
Ht ≤ max

M
H for

all t, with a strict inequality when t = 0 if b1, . . . , bk satisfy (5.15). Inte-
grating, we get the inequality

∫ 1
0 max

M
Htdt ≤

∫ 1
0 max

M
Hdt, and if b1, . . . , bk

satisfy (5.15) then this inequality is strict (because in this case the point-
wise inequality between the integrands is strict in a neighbourhood of t = 0).
That is, the positive Hofer length of {ψt} does not exceed that of {ψHt }, and,
if b1, . . . , bk satisfy (5.15), then the positive Hofer length of {ψt} is strictly
smaller than that of {ψHt }.

The lemma is obtained by applying this argument as b1, . . . , bk vary
over smooth paths of symplectomorphisms that start with the identity, are
compactly supported in U , and end with b1, . . . , bk that satisfy (5.15). �
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6. Disjoining discs in C

For every neighbourhood of the origin in C, there exists a Hamiltonian iso-
topy, supported in this neighbourhood, that disjoins the origin from itself.
Such an isotopy can be generated by a function F : C→ R whose Hamilto-
nian vector field is zero outside the given neighbourhood, is equal to − ∂

∂x on
a neighbourhood of the origin, and is equal to a non-negative multiple of − ∂

∂x
everywhere on the x-axis. For example, if the given neighbourhood contains
the set {z | π|z|2 ≤ 3ε}, we may take the function F (z) = y ρ(π|z|2/ε− 1)
where y is the imaginary part of z and where ρ(s) is equal to one for s ≤ 0,

to zero for s ≥ 1, and to (
∫ 1
s e
− 1

τ(1−τ)dτ)/(
∫ 1

0 e
− 1

τ(1−τ)dτ) for 0 ≤ s ≤ 1.
For our quantitative results we will need to keep track of the sizes of

neighbourhood of the origin that get disjoined. We do so in the following
lemma.

Lemma 6.1. There exists a smooth family of functions

FA,εt : C→ R, 0 ≤ t ≤ 1,

parametrized by A ≥ 0 and 0 < ε < 1, such that FA,εt (z) = 0 for z outside the

disc {z | π|z|2 < 1 +A+ ε} and such that the Hamiltonian flow bA,εt : C→
C of FA,εt , at time t = 1, carries the disc {z | π|z|2 ≤ 1} into the annulus
{z | A < π|z|2 < 1 +A+ ε}.

Remark 6.2. Smooth family means that the function (A, ε, t, z) 7→ FA,εt (z)
from [0,∞)× (0, 1)× [0, 1]× C to R is smooth in the usual sense. It follows
that the function (A, ε, t, z) 7→ bA,εt (z) is smooth.

Lemma 6.1 is used in the next section, in the proof of Lemma 7.1. The
rest of this section is devoted to the proof of Lemma 6.1. The reader may
skip the proof and proceed to the next section.

Lemma 6.3. There exists a smooth family of (time independent) functions
Hε : C→ R, parametrized by 0 < ε < 1, whose Hamiltonian flows bεt have
the following properties.

• For every t, the diffeomorphism bεt is the identity map outside the disc

(6.4) {z | π|z|2 < 1 + ε}.
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• For t > 1, the diffeomorphism bεt carries the disc

(6.5) {z | π|z|2 ≤ 1}

into the slit disc

(6.6) {z | π|z|2 < 1 + ε}r the non-negative x-axis.

Proof. We choose Hε such that, for each ε, the Hamiltonian vector field of
Hε is zero outside the disc (6.4), is equal to − 1√

π
∂
∂x on the segment [0, 1√

π
]

of the x-axis, and is equal to a non-negative multiple of − ∂
∂x on the rest of

the x-axis.
For example, we may take Hε(z) = 1√

π
yρ((π|z|2 − 1)/ε) where y is the

imaginary part of z and where ρ(s) is equal to 1 for s ≤ 0, to 0 for s ≥ 1,
and is non-negative.

For each t, the Hamiltonian flow generated by the function Hε, at

times t ≥ 0, carries the segment [−
√

1+ε
π , 1√

π
] to a segment of the form

[−
√

1+ε
π , xt]; if t > 1, then xt < 0. Also, this flow carries the segment [ 1√

π
,√

1+ε
π ] to the segment [xt,

√
1+ε
π ], and it is the identity map outside the

disc (6.4). Thus, it satisfies the requirements of the lemma. �

Lemma 6.7. There exists a smooth family of functions Hε,δ
t : C→ R, par-

ametrized by 0 < ε < 1 and 0 < δ < ε, whose Hamiltonian flows bε,δt : C→ C
have the following properties.

• The diffeomorphism bε,δt is the identity map outside the disc {z | π|z|2 <
t+ 1 + ε}.

• The diffeomorphism bε,δt carries the set

(6.8) {reiθ | δ ≤ πr2 ≤ 1 + ε− δ , δ ≤ θ ≤ 2π − δ}

to the set

(6.9) {reiθ | t+ δ ≤ πr2 ≤ t+ 1 + ε− δ , δ ≤ θ ≤ 2π − δ}.

Proof. We choose Hε,δ
t whose Hamiltonian vector field vanishes outside the

annulus {z | t < π|z|2 < 1 + t+ ε} and, on the set (6.9), it is equal to 1
2πr

∂
∂r .

(Then, on the set (6.9), the derivative of the function π|z|2 along this vector
field is equal to one.) The Hamiltonian flow generated by the function Hε,δ

t ,
at time t ≥ 0, will carry the set (6.8) to the set (6.9), as required.
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To be explicit, we may take Hε,δ
t (reiθ) = − θ

2πρ
δ
1(θ)ρε,δ2 (πr2 − t) where

0 ≤ θ < 2π and t ≤ πr2 ≤ 1 + t+ ε, where ρδ1 : [0, 2π]→ R is a smooth fam-
ily of functions that vanish to all orders at θ = 0 and θ = 2π and such that
ρδ1 is equal to one on [δ, 2π − δ], and where ρε,δ2 : R→ R is a smooth family

of functions that vanish outside [0, 1 + ε] and such that ρε,δ2 is equal to one
on [δ, 1 + ε− δ]. �

Proof of Lemma 6.1. Every closed subset of C which is contained in the slit
disc

(6.10) {z | π|z|2 < 1 + ε}r the non-negative x-axis

is also contained in a set of the form

{reiθ | δ ≤ πr2 ≤ 1 + ε− δ , δ ≤ θ ≤ 2π − δ}

for some δ > 0. Moreover, for every closed subset of (0, 1)× C which is con-
tained in the product of the open segment (0, 1) with the slit disc (6.10),
there exists a positive smooth function ε 7→ δε such that the closed subset is
also contained in the subset

(6.11) {(ε, reiθ) | 0 < ε < 1 , δε ≤ πr2 ≤ 1 + ε− δε , δε ≤ θ ≤ 2π − δε}

of (0, 1)× C.
Let bεt be the Hamiltonian flows of Lemma 6.3. Because (ε, z) 7→ (ε, bεt(z))

is a diffeomorphism of (0, 1)× C, it carries the set {(ε, z) | π|z|2 ≤ 1} to a
closed subset of (0, 1)× C. For t > 1, by the second item of Lemma 6.3, this
closed subset is contained in the product of (0, 1) with the slit disc (6.10).
Fix T > 1, and fix a smooth function ε 7→ δε such that the set {(ε, bεT (z)) |
π|z|2 ≤ 1} is contained in the set (6.11).

Let bε,δt be the Hamiltonian flows of Lemma 6.7.
Let ρ : [0, 1]→ [0, 1] be a smooth function that takes 0 to 0 and 1 to

1 and whose derivatives of all orders vanish at the endpoints 0 and 1. For

example, we may take ρ(s) =
∫ s

0 e
− 1

s(1−s)ds/
∫ 1

0 e
− 1

s(1−s)ds. The Hamiltonian
flow

bA,ετ =

{
bεTρ(2τ) 0 ≤ τ ≤ 1/2

bε,δεAρ(2τ−1) 1/2 ≤ τ ≤ 1

satisfies the requirements of Lemma 6.1. �
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7. Disjoining a family of discs

The purpose of this section is to prove the following quantitative result,
which is later used in the proof of Theorem 3.1. Recall that a function from
a topological space X to a topological space Y is proper if the preimage of
every compact subset of Y is a compact subset of X.

Lemma 7.1. Let W be a symplectic manifold and N : W → [0, r) a proper
function. Let A1, A2 : [0, r)→ R be smooth functions such that the set

C := {x ∈ [0, r) | A1(x) ≥ 0 and A2(x) ≥ 0}

is compact. Let U be an open subset of C×W that contains the set

(7.2)
{

(z, w) | N(w) ∈ C and π|z|2 ≤ A1(N(w)) +A2(N(w))
}
.

Then there exists a symplectic isotopy, compactly supported in U , that dis-
joins the set {

(z, w) | π|z|2 ≤ A1(N(w))
}

from the set {
(z, w) | π|z|2 ≤ A2(N(w))

}
and that preserves the function (z, w) 7→ N(w).

Lemma 7.1 is, more or less, a parametrized version of the fact that a disc
of area A1 can be disjoined from a disc of area A2 inside any disc of area
greater than A1 +A2. The symplectic isotopy moves the w coordinate but
it does not change the value of N(w). For a fixed value of N(w), the effect
of the isotopy on the z coordinate is independent of the w coordinate.

Proof. The map (z, w) 7→
(
π|z|2, N(w)

)
from C×W to [0,∞)× [0, r) is

proper, hence closed. So the image of the complement of U under this map
is a closed subset of [0,∞)× [0, r). This image is disjoint from the compact
set

{(s, x) ∈ [0,∞)× [0, r) | x ∈ C and s ≤ A1(x) +A2(x)}

so it has a positive distance from this set. Let ε be a positive number that
is smaller than half of this distance and is smaller from the difference r −
maxC. Then V := (C + (−ε, ε)) ∩ [0, r) is an open neighbourhood of C in
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[0, r) whose closure in [0, r) is compact, and U contains the set

(7.3)
{

(z, w) | N(w) ∈ closure(V ) and π|z|2 ≤ A1(N(w)) +A2(N(w)) + ε
}
.

Let F
A1,A2

t : C→ R be a smooth family of functions, defined for t ∈ [0, 1]
and A1, A2 ∈ R, such that, when A1 ≥ 0 and A2 ≥ 0, the time-dependent

function z 7→ F
A1,A2

t (z) vanishes outside the set given by π|z|2 ≤ A1 +A2 +

ε and its Hamiltonian flow b
A1,A2

t , at time t = 1, carries the set {z | π|z|2 ≤
A1} into the set {z | A2 < π|z|2 ≤ A1 +A2 + ε}. For example, we may set

F
A1,A2

t (z) := cFA,εt (z/c)

where c =
√
A1 + ε/2, A = A2

A1+ε/2 , and ε = ε/2
A1+ε/2 , and where FA,εt is as in

Lemma 6.1. (The Hamiltonian flow b
A1,A2

t of F
A1,A2

t relates to the Hamilto-

nian flow bA,εt of FA,εt (z) by b
A1,A2

t (z) = cbA,εt (z/c).)
Let ρ : [0, r)→ R be a smooth function that vanishes outside V and such

that ρ|C ≡ 1. Let

Ht(z, w) = ρ(N(w))F
A1(N(w)),A2(N(w))
t (z).

This function vanishes outside the compact set (7.3). Its Hamiltonian flow
preserves the function N(w). We will show, for every N0, that this flow, at
time t = 1, disjoins

(7.4) {(z, w) | π|z|2 ≤ A1(N0) and N(w) = N0}

from

(7.5) {(z, w) | π|z|2 ≤ A2(N0) and N(w) = N0}.

When N0 ∈ C, the restriction of the Hamiltonian flow of Ht to the level
set {N(w) = N0} is

bt(z, w) =
(
b
A1,A2

t , bNT (z,w,t)(w)
)

where A1 = A1(N0), where A2 = A2(N0), where b
A1,A2

t is the Hamiltonian

flow of F
A1,A2

t on C, where bNT is the Hamiltonian flow of N on W (with time
parameter T ), and where T (z, w, t) is some real valued function of z, w, t.
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At t = 1, this flow carries the set{
(z, w) | π|z|2 ≤ A1(N0) and N(w) = N0

}
into the set{

(z, w) | A2(N0) < π|z|2 ≤ A1(N0) +A2(N0) + ε and N(w) = N0

}
,

so it disjoins (7.4) from (7.5).
When N0 6∈ C, one of the sets (7.4) and (7.5) is empty. So the flow

trivially disjoins the set (7.4) from the set (7.5). �

8. Shortening on a manifold with an isolated maximum

In this section we prove Theorem 3.1 and Remarks 3.2 and 3.4. We recall
the statement:

Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Suppose that the momentum
map attains its maximum at an isolated fixed point and that
at least one of the isotropy weights at that point has absolute
value greater than one. Let d be a positive number that is
smaller than the gap between the two largest critical values of
the momentum map. Then the circle action can be deformed
to a loop in Ham(M,ω) whose Hofer length is smaller than
that of the original circle action by 2d/9.

We can choose the deformation such that the positive
Hofer length never exceeds the initial one and the negative
Hofer length remains constant. Specifically, let H denote the
momentum map, let pmax denote the point where H attains
its maximum, let α denote the gap between the two largest
critical values of H, and consider the subset of M given by

(8.1) {m | H(m) > H(pmax)− α}.

We can choose the deformation such that the normalized
deformed Hamiltonians remain greater than H(pmax)− α on
the set (8.1) and coincide with H outside this set.

We actually obtain a better estimate than 2
9d. If one of

the isotropy weights is even then we can shorten by 1
4d.

Otherwise, let −k1 be the weight whose absolute value is
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largest; then we can shorten by 1
4(1− 1

k2
1
)d. When k1 = 3,

this becomes 2
9d.

Proof of Theorem 3.1 and Remarks 3.2 and 3.4. Let −k1, . . . ,−kn be the
isotropy weights at pmax. The equivariant Darboux theorem implies that
the integers kj are positive. We assume that at least one of them is greater
than one. Without loss of generality,

(8.2) k1 = a+ b

where a and b are positive integers.
The point pmax is the only critical point of H in the set (8.1), and the

momentum map H is proper as a map from this set to the ray (H(pmax)−
α,∞). There exists an equivariant symplectomorphism from the subset of
Cn given by

NH
α = {z | π(k1|z1|2 + · · ·+ kn|zn|2) < α},

with the circle action generated by the momentum map H(z1, . . . , zn) =
−k1π|z1|2 − · · · − kn|zn|2 to the subset (8.1) of M ; denote it

i : NH
α →M.

This follows from [9, Proposition 2.8] (which should have been stated with
|zj |2 instead of the typo |zj |).

Let

N(z2, . . . , zn) := π(k2|z2|2 + · · ·+ kn|zn|2).

We will apply Lemma 5.1 with U = NH
α ,

K(z1, . . . , zn) := H(pmax)− πb|z1|2,

and

F (z1, . . . , zn) := −πa|z1|2 −N(z2, . . . , zn).

Let 0 < d < α and let s = 2
9d. By Lemma 5.1, to shorten by amount s, it

is enough to disjoin the set NK
s = {z | πb|z1|2 < s} from the set NF

s = {z |
πa|z1|2 +N(z2, . . . , zn) < s} by a compactly supported symplectic isotopy
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of NH
α that preserves the function

N̂(z1, z2, . . . , zn) := N(z2, . . . , zn).

Write the sets NK
s and NF

s as

NK
s =

{
z
∣∣∣π|z1|2 <

s

b

}
and NF

s =

{
z
∣∣∣π|z1|2 <

s−N
a

}
.

By Lemma 7.1, with A1(N) = s/b and A2(N) = (s−N)/a, for any open
neighbourhood U of the set

(8.3)

{
z
∣∣∣π|z1|2 ≤

s

b
+
s−N
a

}
there exists a symplectic isotopy, compactly supported in U , that disjoins
NF
s from NK

s and that preserves the function N̂ . So it is enough to show
that the set (8.3) is contained in the set NH

α .
Because a+ b = k1, we can rewrite the set (8.3) as

(8.4)

{
z
∣∣∣ ab
sk1

π|z1|2 +
b

sk1
N ≤ 1

}
.

Also, we rewrite the set NH
α as

(8.5)

{
z
∣∣∣ k1

α
π|z1|2 +

1

α
N < 1

}
.

It remains to show that the set (8.4) is contained in the set (8.5). This is
equivalent to requiring that

ab

sk1
≥ k1

α
and

b

sk1
≥ 1

α
.

Because a ≤ k1, the first of these inequalities implies the second.
If k1 is even, write k1 = a+ b where b = a. Then ab/k2

1 = 1/4, which
is greater than 2/9. If k1 is odd, write k1 = a+ b where b = a+ 1. Then
ab/k2

1 = 1/4(1− 1/k2
1) which, because k1 ≥ 3, is greater than or equal to

1/4(1− 1/9) = 2/9. In either case, if s = 2/9d and d < α, then s < (ab/k2
1)α,

which is equivalent to the required inequality. �
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9. Symplectic vector bundles

In this section we apply the symplectic tubular neighbourhood theorem to
describe a neighbourhood of a fixed component in a manifold with Hamilto-
nian circle action in terms of a symplectic vector bundle, and we give some
results about symplectic vector bundles that we will use in the next section.

Lemma 9.1. Let

π : E → B

be a symplectic vector bundle, i.e., a vector bundle with a fibrewise symplec-
tic form. There exists on the total space E a closed two-form ωΘ with the
following properties.

1) The pullback of ωΘ to the fibres of E coincides with the fibrewise sym-
plectic forms.

2) The pullback of ωΘ by the zero section of E is zero.

3) At the points of the zero section, the fibres of E are ωΘ-orthogonal to
the zero section.

Moreover, if a compact Lie group K acts on E by bundle automorphisms,
then ωΘ can be chosen to be K invariant.

Proof. Let 2n = rankE, and let

G = Sp(R2n)

be the group of symplectic linear transformations of R2n. Let P → B be the
principal G bundle (with a right G action) whose fibre Eb over a point b of
B consists of the set of linear symplectic isomorphisms from R2n to Eb.

We identify E with the associated bundle

P ×G R2n,

in which [pa, z] = [p, az] for all p ∈ P , z ∈ R2n, and a ∈ G.
Let Θ ∈ Ω1(P, g) be a connection one-form; use the same symbol, Θ, to

denote its pullback to P × R2n. Let ω0 be the standard symplectic form on
R2n. Let ΦR2n : R2n → g∗ be the quadratic momentum map for the G-action
on R2n. Let 〈·, ·〉 denote the pairing between g∗ and g. Then 〈ΦR2n ,Θ〉 is a G-
invariant real valued one-form on P × R2n. The difference ω0 − d 〈ΦR2n ,Θ〉
descends to a closed two-form ωΘ on P ×G R2n with the desired properties.
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If a compact Lie group K acts on E by bundle automorphisms, then, by
averaging, we can choose the connection one-form Θ to be K-invariant. The
resulting two-form ωΘ is then K-invariant. �

Let (B,ωB) be a symplectic manifold, let π : E → B be a symplectic
vector bundle, and let a compact Lie group K act on E by bundle automor-
phisms that descend to symplectomorphisms of (B,ωB). Let ωΘ be a closed
two-form as in Lemma 9.1. The corresponding coupling form is

(9.2) ωE := π∗ωB + ωΘ.

It has the following properties.

1) Its pullback to the fibres coincides with the fibrewise symplectic forms.

2) Its pullback by the zero section coincides with ωB.

3) At the points of the zero section, the fibres of E are ωE-orthogonal to
the zero section.

Consequently, ωE is non-degenerate near the zero section, and the normal
bundle of the zero section in (E,ωE) is isomorphic to E → B as symplectic
vector bundles.

Remark 9.3. The construction that we just described is Shlomo Stern-
berg’s minimal coupling [23]. For more details, see chapter 1 of the book [4]
by Guillemin, Lerman, and Sternberg.

Lemma 9.4. Let π : E → B be a symplectic vector bundle, and let the circle
group act on E by fibrewise linear symplectic transformations. Let ωE be an
invariant closed two-form on the total space of E whose pullback to the fibres
coincides with the fibrewise symplectic form. Let H : E → R be the fibrewise
quadratic momentum map for the fibrewise circle action. Then H is also a
momentum map for the circle action on the total space (E,ωE).

Proof. Let ξ denote the vector field that generates the circle action. The
one-form ι(ξ)ωE is closed and vanishes on the zero section, so it is exact; so
there exists a momentum map

HE : E → R

for the circle action on (E,ωE). (ωE need not be nondegenerate.) Because
ξ = 0 along the zero section, HE is locally constant along the zero section.
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Adding a locally constant function, we may assume that HE vanishes along
the zero section. Because the pullback of ωE to the fibres coincides with
the fibrewise symplectic form, the restriction of HE to each fibre is also
a momentum map for the fibrewise circle action; because it vanishes on
the zero section, it must coincide with the fibrewise quadratic momentum
map, H. �

Now let B be a connected component of the fixed point set of a circle
action on a symplectic manifold (M,ω), and let E be the normal bundle
of B in M . Then B is a symplectic submanifold, and E can be identified
with the symplectic orthocomplement of TB in TM |B. Moreover, the circle
action on M induces a circle action on E by bundle automorphisms. Let ωE
be an invariant coupling form on E, as described above. In this setting, we
have the following symplectic tubular neighbourhood theorem.

(9.5)

There exists an invariant neighbourhood U of the zero sec-
tion in E and an equivariant symplectic open embedding
(U, ωE)→ (M,ω) whose restriction to the zero section is the
identity map on B and, under the natural identification of
TE|B with TM |B, whose differential is the identity map at
every point of B.

(This follows from the classical tubular neighbourhood theorem in dif-
ferential topology, combined with Theorem 4.1 of Alan Weinstein’s paper
[25], keeping track of a group action as explained in the last paragraph of
Section 3 of [25]. Also see [26].)

Lemma 9.6. Let E → B be a symplectic vector bundle with a fibrewise
circle action. Suppose that all the weights are negative; denote the weights
by −k1, . . . ,−ks and let

k = min{k1, . . . , ks} − 1.

Then there exist k + 1 commuting fibrewise circle actions on E, with fibre-
wise quadratic momentum maps

H(j) : E → R, 0 ≤ j ≤ k,

with the following properties.
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(i) The Hj are are negative outside the zero section, and their sum

H(0) +H(1) + · · ·+H(k)

is the fibrewise quadratic momentum map for the given circle action
on E.

(ii) There exist arbitrarily small neighbourhoods U of the zero section that
are invariant under the k + 1 commuting fibrewise circle actions, whose
intersections with the fibres of E are connected, and that satisfy

(9.7) inf
U

k∑
j=0

H(j) =

k∑
j=0

inf
U
H(j).

Remark 9.8. This lemma is about fibrewise structures. It does not require
a two-form on the total space of E.

Proof. Fix an invariant fibrewise compatible complex structure and Her-
mitian metric on E. (Because the weights are all negative, such a metric
is unique.) After eliminating repetitions, we may assume that the positive
numbers k1, . . . , ks are distinct. Let Ej denote the −kjth weight space for
the circle action on E, so that E decomposes as E1 ⊕ · · · ⊕ Es. The function

z 7→ π‖zj‖2,

for z = (z1, . . . , zs) ∈ E1 ⊕ · · · ⊕ Es, is a momentum map for the scalar mul-
tiplication circle action on the Ej factor. The quadratic fibrewise momentum
map for the given circle action on E is

(9.9) − k1π‖z1‖2 − · · · − ksπ‖zs‖2.

For each j, because kj ≥ k + 1, we can decompose kj as

kj = a0j + a1j + · · ·+ akj

where aij are positive integers. We get a decomposition of (9.9) into the sum

H(0) +H(1) + · · ·+H(k),

where

H(i)(z) = −ai1π‖z1‖2 − · · · − aisπ‖zs‖2
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generates the fibrewise circle action on E that rotates the jth coordinate
with speed −aij . Because the numbers aij are positive, the functions H(j)

are negative outside the zero section.
Finally, every neighbourhood of the zero section contains a neighbour-

hood of the form U =
⋂s
j=1{z | π‖zj‖2 < ε}, and such a U satisfies the

requirements of part (ii) of the lemma. �

Lemma 9.10. Let (B,ωB) be a symplectic manifold, let E → B be a sym-
plectic vector bundle, let ωE be a coupling form (see (9.2)), and let U be an
open subset of E where ωE is non-degenerate. Let k be a positive integer.
Suppose that there exist k sections of E that are nowhere all vanishing. Then
there exist smooth functions g1, . . . , gk : U → R whose Hamiltonian vector
fields are nowhere all tangent to the zero section of E.

Proof. Let ξ1, . . . , ξk be sections of E → B that are nowhere all vanishing.
Fix j ∈ {1, . . . , k}. Let gj : E → R be the function whose restriction to the
fibre over b is the linear functional ι(ξj(b))ωEb , where ωEb is the symplectic
form on the fibre over b. Identifying E with the vertical subbundle of TE|B,
the Hamiltonian vector field of gj |U is equal to ξj at the points of the zero
section. Because ξ1, . . . , ξk are vertical and nowhere all vanishing, they are
nowhere all tangent to the zero section. �

Remark 9.11. Each of the following assumptions on an oriented vector
bundle E → B implies that there exist k sections that are nowhere all van-
ishing. Let e(E) denote the Euler class of the bundle.

(a) dimB < k rankE.

(b) dimB = k rankE and e(E)k = 0.

(c) rankE = 2, e(E) = 0, and k ≥ 1.

Proof. If dimB < k rankE then, for any generic choice of k sections of E,
these sections are nowhere all vanishing. This gives (a). If the rank of a
bundle is equal to the dimension of its base, or if the rank of a bundle
is equal to 2, then the Euler class being zero implies the existence of a
non-vanishing section. Applying this to the bundle E ⊕ · · · ⊕ E︸ ︷︷ ︸

k times

gives (b);

applying it to E gives (c). �

In preparation for the proof of Theorem 3.9, which involves a subbun-
dle of the normal bundle, we now give a refinement of the minimal coupling
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construction. Let (B,ωB) be a symplectic manifold, let π : E → B be a sym-
plectic vector bundle, and let a compact Lie group K act on E by symplectic
bundle automorphisms. Let E′ be a K-invariant symplectic sub-bundle of
E.

Let E′′ be the symplectic orthocomplement of E′ in E. Then E = E′ ⊕
E′′, and we have a pullback diagram:

(9.12)

E
p′′−−−−→ E′′

p′
y π′′

y
E′

π′−−−−→ B.

Let ωΘ′ and ωΘ′′ denote K-invariant two-forms on E′ and E′′ with the
properties listed in Lemma 9.1. The corresponding coupling forms on E′

and on E are

ωE′ = π′
∗
ωB + ωΘ′

and

ωE = π∗ωB + p′
∗
ωΘ′ + p′′

∗
ωΘ′′(9.13)

= p′
∗
ωE′ + p′′

∗
ωΘ′′ .

The proof of Theorem 3.9 will use the following lemma. In it, we view
E′ as the subset of E consisting of the set of points whose fibrewise E′′

coordinate is zero, i.e., the preimage under p′′ of the zero section of E′′.

Lemma 9.14. Let (B,ωB) be a symplectic manifold, let E → B be a sym-
plectic vector bundle, and let E′ and E′′ be symplectic sub-bundles such that
E = E′ ⊕ E′′. Let ωE′ be a coupling form on E′ and let ωE be a coupling
form on E that is compatible with ωE′ in the sense of (9.13). Let U ′ be a
neighbourhood of the zero section in E′ where ωE′ is non-degenerate, and let
U be a neighbourhood of the zero section in E where ωE is non-degenerate
and that is contained in p′−1(U ′).

Let g′1, . . . , g
′
k : U ′ → R be smooth functions whose Hamiltonian vector

fields in U ′ are nowhere all tangent to the zero section of E′. Let g1, . . . , gk :
U → R be their pullbacks under p′|U : U → U ′. Then, at each point of the
zero section of E, the Hamiltonian vector fields of g1, . . . , gk are tangent to
E′ and are not all tangent to the zero section of E.
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Proof. Viewing E′ as a subset of E (namely, the p′′-preimage of the zero
section of E′′), for every point q ∈ E′ we have a natural decomposition

(9.15) TE|q = TE′|q ⊕ E′′|π(q).

Let ξ′1, . . . , ξ
′
k be the Hamiltonian vector fields of g′1, . . . , g

′
k in U ′. Let ξ̃′1, . . . ,

ξ̃′k be the corresponding sections of TE|E′∩U . That is, under the decompo-
sition (9.15), we have

ξ̃′j = ξ′j ⊕ 0.

In particular, ξ̃′j are tangent to the subset E′ of E, and they satisfy p′∗ξ̃
′
j =

ξ′j . The vectors p′′∗ξ̃
′
j are tangent to the zero section of E′′, so they are in the

null space of ωθ′′ . It is enough to show that, along E′ ∩ U , the Hamiltonian
vector fields of g1, . . . , gk are equal to ξ̃′1, . . . , ξ̃

′
k. Fix j ∈ {1, . . . , k}. We now

compute: along E′ ∩ U ,

dgj = p′
∗
dg′j by the definition of gj

= −p′∗ι(ξ′j)ωE′ by the definition of ξ′j

= −ι(ξ̃′j)p′
∗
ωE′ because p′∗ξ̃

′
j = ξ′j

= −ι(ξ̃′j)
(
ωE − p′′

∗
ωΘ′′

)
by (9.13)

= −ι(ξ̃′j)ωE because p′′∗ξ̃
′
j is in the null space of ωθ′′ .

So dgj = −ι(ξ̃′j)ωE , as required. �

We will also use the following variant of Lemma 9.6.

Lemma 9.16. Let E → B be a symplectic vector bundle with a fibrewise
circle action whose weights are all negative. Let

E = E′ ⊕ E′′

be a decomposition of E into two invariant symplectic subbundles that are
fibrewise symplectically orthogonal. Let −k1, . . . ,−ks be the distinct weights
for the circle action on E′. Let

k = min{k1, . . . , ks} − 1.

Then there exist k + 1 commuting fibrewise circle actions on E, with fibre-
wise quadratic momentum maps

H(j) : E → R, 0 ≤ j ≤ k,



i
i

“8-229” — 2015/2/12 — 10:15 — page 247 — #39 i
i

i
i

i
i

Shortening Hofer length of circle actions 247

that preserve the decomposition E = E′ ⊕ E′′, that commute with the given
circle action on each of E′ and E′′, and that have the following properties.

(i) The function H(0) vanishes on the zero section on E and is negative
outside it, the functions H(1), . . ., H(k) all vanish on E′′ and are neg-
ative outside it, and the sum

H(0) +H(1) + · · ·+H(k)

is the fibrewise quadratic momentum map for the given circle action
on E.

(ii) There exist arbitrarily small neighbourhoods U of the zero section in E
that are invariant under these k + 1 circle actions and under the given
circle actions on E′ and on E′′, whose intersections with the fibres of
E are connected, and that satisfy

(9.17) inf
U

k∑
j=0

H(j) =

k∑
j=0

inf
U
H(j).

Proof. Fix an invariant fibrewise compatible complex structure and Hermi-
tian metric on each of E′ and E′′. Let Ej denote the −kjth weight space for
the circle action on E′, so that E decomposes as E1 ⊕ · · · ⊕ Es ⊕ E′′. The
function

z 7→ π‖zj‖2,
for z = (z1, . . . , zs, z

′′) ∈ E1 ⊕ · · · ⊕ Es ⊕ E′′, is a momentum map for the
scalar multiplication circle action on the Ej factor. The quadratic fibrewise
momentum map for the given circle action on E is

−k1π‖z1‖2 − · · · − ksπ‖zs‖2 − N̂(z′′)

where N̂ : E′′ → R is the negative of the fibrewise quadratic momentum map
for the fibrewise circle action on E′′. Decompose each kj as

kj = a0j + a1j + · · ·+ akj

where aij are positive integers. The lemma then holds with

H(i)(z) = −ai1π‖z1‖2 − · · · − aisπ‖zs‖2

for 1 ≤ i ≤ k, with

H(0)(z) = −a01π‖z1‖2 − · · · − a0sπ‖zs‖2 − N̂(z′′),
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and with neighbourhoods of the zero section of the form

U = {z | π‖zj‖2 < ε for j = 1, . . . , s, and N̂(z′′) < ε}

for small ε > 0. �

10. Shortening on a manifold with an arbitrary maximum

In this section we prove Theorems 3.7 and 3.9, with Remarks 3.8 and 3.11.
We begin by recalling the statement of Theorem 3.7 and Remark 3.8:

Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Let Bmax be the set where the
momentum map is maximal. Let −k1, . . . ,−ks denote the
distinct weights for the circle action on the normal bundle of
Bmax, and let k := min{k1, . . . , ks} − 1. Suppose that Bmax is
symplectically k-displaceable in every neighbourhood. Then
the circle action can be deformed through loops in Ham(M,ω)
into a loop of smaller Hofer length.

We can choose the deformation such that the positive
Hofer length never exceeds the initial one and the negative
Hofer length remains constant. Specifically, let H denote the
momentum map. For every positive number α, we can choose
the deformation such that the normalized deformed Hamil-
tonians remain between than H(Bmax)− α and H(Bmax) on
the set {m ∈M | H(m) > H(Bmax)− α} and coincide withH
outside this set.

Proof of Theorem 3.7 and Remark 3.8. Let E denote the normal bundle of
Bmax in (M,ω); recall that its fibrewise symplectic structure and circle action
are induced from M . Apply Lemma 9.6 to obtain k + 1 commuting fibrewise
circle actions on E, with fibrewise quadratic momentum maps

H ′(j) : E → R, 0 ≤ j ≤ k

that are negative outside the zero section, whose sum

H ′(0) +H ′(1) + · · ·+H ′(k)

is the fibrewise quadratic momentum map for the given circle action on E
(the one induced from M), and such that part (ii) of Lemma 9.6 holds (with
“H(j)” replaced by “H ′(j)”).
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These circle actions fit together into a (not necessarily faithful) action of
the torus T := (S1)k+1, whose diagonal acts by the given circle action on E.
Apply Lemma 9.1 and Equation (9.2), with K = T , to obtain a T -invariant
coupling form ωE on E. Consider the given circle action on M and the
induced circle action on E, and apply the symplectic tubular neighbourhood
theorem (9.5), to obtain an invariant neighbourhood U of the zero section
in E on which ωE is nondegenerate and an equivariant open symplectic
embedding

i : (U, ωE)→ (M,ω)

whose restriction to the zero section is the identity map on Bmax and, under
the natural identification of TE|Bmax

with TM |Bmax
, whose differential is the

identity map at every point of Bmax.
Fix a positive number, α > 0. After possibly shrinking U , we may assume

that i(U) ⊂ {m ∈M | H(m) > H(Bmax)− α}, and that U satisfies the re-
quirements in part (ii) of Lemma 9.6: U is invariant under the entire T
action on E, the intersections of U with the fibres of E are connected, and

inf
U

k∑
j=0

H ′(j) =

k∑
j=0

inf
U
H ′(j).

Let H : M → R be the momentum map on M . We have

i∗H =
(
H(Bmax) +H ′(0) +H ′(1) + · · ·+H ′(k)

)∣∣∣
U

(10.1)

= H(0) +H(1) + · · ·+H(k),

where H(0) = H(Bmax) +H ′(0)|U and where H(j) = H ′(j)|U for each 1 ≤ j ≤
k. (The intersection with U of each fibre of E is an invariant connected open
neighbourhood of the origin in the fibre. In this neighbourhood, the left and
right hand sides of (10.1) are momentum maps for the same circle action
with the same value at the origin, so they are equal.)

Because the T action on E preserves ωE and by Lemma 9.4, the maps
H ′(0), H

′
(1), . . . ,H

′
(k) are momentum maps for the k + 1 commuting circle

actions on the total space (E,ωE) and not only fibrewise. So H(0), H(1), . . . ,
H(k) generate commuting circle actions on (U, ωE).

We are now in the setup of Lemma 5.10. The sets B
(j)
max where the func-

tions H(j) attain their maximum are all equal to the zero section of E. This
implies the condition (5.12) of Lemma 5.10. It also reduces the last condi-
tion of Lemma 5.10 to the condition that the zero section is symplectically
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k-displaceable in U . This condition then follows from that Bmax is sym-
plectically k-displaceable in i(U). Theorem 3.7 and Remark 3.8 then follows
from Lemma 5.10. �

Next, we prove Theorem 3.9 and Remark 3.11. We recall the statement:

Let (M,ω) be a compact connected symplectic manifold with
a Hamiltonian circle action. Let Bmax be the set where the
momentum map is maximal. Let E′ → Bmax be an S1-invariant
subbundle of the normal bundle toBmax inM , and let−k′1, . . . ,
−k′s′ be the distinct weights for the circle action on E′. Let

k′ = min{k′1, . . . , k′s′} − 1.

Suppose that

(10.2) E′ has k′ sections that are nowhere all vanishing.

Then the circle action can be deformed through loops in
Ham(M,ω) into a loop of smaller Hofer length.

We can choose the deformation such that the positive
Hofer length never exceeds the initial one and the negative
Hofer length remains constant. Specifically, let H denote the
momentum map. For every positive number α, we can choose
the deformation such that the normalized deformed Hamil-
tonians remain between H(Bmax)− α and H(Bmax) on the
set {m ∈M | H(m) > H(Bmax)− α} and coincide with H
outside this set.

Proof of Theorem 3.9 and Remark 3.11. Let E denote the normal bundle of
Bmax in (M,ω); recall that its fibrewise symplectic structure and circle action
are induced from M . Let E′′ be the fibrewise symplectic orthocomplement
of E′ in E, so E = E′ ⊕ E′′. Apply Lemma 9.16 to obtain k′ + 1 commuting
fibrewise circle actions on E, with fibrewise quadratic momentum maps

H ′(j) : E → R , 0 ≤ j ≤ k′

such that H ′(0) vanishes on the zero section of E and is negative outside it,

H ′(1), . . . ,H
′
(k′) vanish on E′′ and are negative outside it, the sum H ′(0) +

H ′(1) + · · ·+H ′(k′) is the fibrewise quadratic momentum map for the given

circle action on E, and part (ii) of Lemma 9.16 holds (with “k” and “H(j)”
replaced by “k′” and “H ′(j)”).
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These k′ + 1 circle actions, together with the given circle actions on E′

and on E′′, fit together into a fibrewise action of a torus T . Apply Lemma 9.1
and Equations (9.2) and (9.13) to obtain T invariant coupling forms ωE′ on
E′ and ωE on E. Consider the given circle action on M and the induced circle
action on E, and apply the symplectic tubular neighbourhood theorem (9.5)
to obtain an invariant neighbourhood U of the zero section in E on which
ωE is nondegenerate and an equivariant symplectic open embedding

i : (U, ωE)→ (M,ω)

whose restriction to the zero section is the identity map on Bmax and, under
the natural identification of TE|Bmax

with TM |Bmax
, whose differential is the

identity map at every point of Bmax.
Fix a positive number, α > 0. After possibly shrinking U , we may assume

that i(U) ⊂ {m ∈M | H(m) > H(Bmax)− α} and that U satisfies the re-
quirements in part (ii) of Lemma 9.16: U is T invariant, the intersections
of U with the fibres of E are connected, and

inf
U

k′∑
j=0

H ′(j) =

k′∑
j=0

inf
U
H ′(j).

Let H : M → R denote the momentum map on M . We have

i∗H =
(
H(Bmax) +H ′(0) + · · ·+H ′(k′)

)∣∣∣
U

(10.3)

= H(0) +H(1) + · · ·+H(k′),

where

H(0) =
(
H(Bmax) +H ′(0)

)∣∣∣
U

and where

H(j) =
(
H ′(j)

)∣∣∣
U

for each 1 ≤ j ≤ k′.

(The intersection of U with each fibre of E is an invariant connected open
neighbourhood of the origin in the fibre. In this neighbourhood, the left and
right hand sides of (10.3) are momentum maps for the same circle action
with the same value at the origin, so they are equal.)

Because the T action on E preserves ωE and by Lemma 9.4, the maps
H ′(0), H

′
(1), . . . ,H

′
(k′) are momentum maps for the k′ + 1 commuting circle

actions on the total space (E,ωE) and not only fibrewise. So H(0), H(1), . . . ,
H(k′) generate commuting circle actions on (U, ωE).
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We are now in the setup of Lemma 5.10. The set B
(0)
max where H(0)

attains its maximum is equal to the zero section, and, for 1 ≤ j ≤ k′, the

set B
(j)
max where H(j) attains its maximum is the intersection of U with the

image of E′′ in E. Slightly abusing notation, we write these sets as Bmax

and as E′′ ∩ U . To apply Lemma 5.10, we need to find symplectomorphisms
b1, . . . , bk′ of U , each connected to the identity through a path of compactly
supported symplectomorphisms of U , such that

(10.4) Bmax ∩ b1(E′′ ∩ U) ∩ · · · ∩ bk′(E′′ ∩ U) = ∅.

Let U ′ be a neighbourhood of the zero section in E′ where ωE′ is non-
degenerate. By Lemma 9.10, there exist functions g′1, . . . , g

′
k′ on U ′ whose

Hamiltonian vector fields are nowhere all tangent to the zero section of E′.
For j = 1, . . . , k′, let gj = ρ(g′j ◦ p′) where p′ : E → E′ is the projection map
and where ρ : U → R is a cutoff function that is equal to 1 near the zero
section of E and has compact support in U . Lemma 9.14 implies that, at
each point of Bmax, the Hamiltonian vector fields of g1, . . . , gk′ are tan-
gent to E′ and are not all tangent to Bmax. Let ψg1t , . . . , ψ

gk′
t be the cor-

responding flows. If t is a sufficiently small positive number, the intersec-
tion Bmax ∩ ψg1t (E′′ ∩ U) ∩ · · · ∩ ψgk′t (E′′ ∩ U) is empty. Lemma 5.10, with
b1, . . . , bk′ taken to be ψg1t , . . . , ψ

gk′
t , gives the result of Theorem 3.9 and

Remark 3.11. �

11. The index of the positive Hofer length functional

In this section we prove Theorem 3.17 and Remark 3.18. We recall the
statement, with slight change of notation (HM instead of H):

Let (M,ω) be a 2n dimensional compact connected manifold
with a Hamiltonian circle action. Suppose that the momen-
tum map attains its maximum at an isolated fixed point.
Let −k1, . . . ,−kn be the isotropy weights at the maximum,
with possible repetitions. Then there exists a neighbourhood
D of the origin in R

∑
2(kj−1), and, for each λ ∈ D, a loop

{ψ(λ)
t }0≤t≤1 in Ham(M,ω), such that the following proper-

ties hold. For λ = 0, the loop {ψ(0)
t }0≤t≤1 is the given circle

action. The function λ 7→ length({ψ(λ)
t }) is smooth, λ = 0 is

a critical point of this function, and the Hessian of this func-
tion at λ = 0 is negative definite.
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In fact, we can choose the deformation such that the neg-
ative Hofer length remains constant. Specifically, let HM

denote the momentum map, and let pmax denote the point
where HM attains its maximum. For every positive number
α, we can choose the deformation such that the normalized
deformed Hamiltonian remains between HM (pmax)− α and
HM (pmax) on the set {m ∈M | HM (m) > HM (pmax)− α}
and coincides with HM outside this set.

Proof of Theorem 3.17 and Remark 3.18. We set the following notation.

φt : C→ C, φt(z) = e−2πitz for t ∈ R.

βλ : C→ C, βλ(z) = z + λ for λ ∈ C.

Let pmax denote the point where the momentum map HM attains its
maximum. By the equivariant Darboux theorem, near pmax, we can identify
the manifold with Cn, the action with the product action

(11.1) (φk1t)× · · · × (φknt),

and the momentum map with the function

z 7→ HM (pmax)−N(z),

where

(11.2) N(z) = π
(
k1|z1|2 + · · ·+ kn|zn|2

)
.

(We will use variants of the symbol N to denote variations and combi-
nations of norm-square functions, and we will use variants of the symbol H
to denote momentum maps.)

If k is an integer greater than 1, the non-effective circle action φkt on C
has the deformation

(11.3) φ
(λ)
t := φt ◦ βλk−1

◦ φt ◦ · · · ◦ βλ2
◦ φt ◦ βλ1

◦ φt ◦ β−λ1−···−λk−1
,

parametrized by (λ) = (λ1, . . . , λk−1) ∈ Ck−1 and generated by

(11.4) H
(λ)
t := H +Hβ−1

λk−1
φ−1
t +Hβ−1

λk−2
φ−1
t β−1

λk−1
φ−1
t + · · ·

· · ·+Hβ−1
λ1
φ−1
t β−1

λ2
φ−1
t · · ·β

−1
λk−1

φ−1
t ,
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where H(z) = −π|z|2. (We will use the symbol (λ), with brackets, for a
parameter in Ck−1 or in C

∑
(ki−1) and the symbol λ, without brackets, for

a parameter in C.)
Applying such a deformation to each factor of (11.1), we get a family of

deformations of the product action. This family is parametrized by elements
of C

∑
(ki−1). When we view the parameter (λ) as an element ((λ)1, . . . , (λ)n)

of the n-fold product Ck1−1 × · · · × Ckn−1, the deformation is

(11.5) φ
(λ)1 × · · · × φ(λ)n

,

and it is generated by

(11.6) H
(λ)
t (z) := H

(λ)1
t (z1) + · · ·+H

(λ)n
t (zn).

With the help of cut-off functions, this deformation can be plugged into
the original manifold to obtain a family of deformations of the original circle
action, parametrized by λs in a neighbourhood D of the origin in C

∑
(ki−1),

and generated by a function that in a neighbourhood of p can be identi-

fied with z 7→ HM (pmax) +H
(λ)
t (z) and that attains its maximum in that

neighbourhood. We give the details later.
We now turn to the relevant computation on Cn. We consider the func-

tion

(λ) 7→
∫ 1

0

(
max
z∈Cn

H
(λ)
t (z)

)
dt

from C
∑

(ki−1) to R. By (11.4) and (11.6), this function is everywhere non-
positive and vanishes at the origin. We will show that this function is
quadratic in the real and imaginary parts of λ, and that it is strictly neg-
ative when λ 6= 0. This will imply that the function is smooth and that its
Hessian at the origin is negative definite, as required.

By (11.6), it is enough to consider separately each of the functions (λ)i 7→∫ 1
0 max

C
H

(λ)i
t dt. Omitting the index i, for each 0 ≤ t ≤ 1 we consider the

function

(11.7) (λ) 7→
∫ 1

0

(
max
z∈C

H
(λ)
t

)
dt

from Ck−1 to R. We claim that it is a quadratic function of the real and
imaginary parts of λ whose coefficients are trigonometric polynomials in
t, and that it is everywhere non-positive, vanishes at λ = 0, and strictly
negative for λ 6= 0 when t = 0.
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Expanding the expression (11.4), we get that H
(λ)
t (z) is equal to −π

times

|z|2 + |e2πitz − λk−1|2 + |e2πi·2tz − e2πi·tλk−1 − λk−2|2 + · · ·(11.8)

+ |e2πi(k−1)tz − e2πi(k−2)tλk−1 − · · · − e2πi·2tλ3 − e2πitλ2 − λ1|2.

Expanding further, this is equal to

|z|2 + |z|2 + |λk−1|2 − 2Re(e2πitz · λk−1)

+ |z|2 + |e2πitλk−1 + λk−2|2 − 2Re(e2πi·2tz · (e2πitλk−1 + λk−2))

+ · · ·+ |z|2 + |e2πi(k−2)tλk−1 + · · ·+ e2πi·2tλ3 + e2πitλ2 + λ1|2

− 2Re(e2πi(k−1)tz · (e2πi(k−2)tλk−1 + · · ·+ e2πi·2tλ3 + e2πitλ2 + λ1)).

Thus, H
(λ)
t (x+ iy) is equal to −π times kx2 + ky2 + ax+ by + c, where each

of a, b is a linear function of the real and imaginary parts of λ1, . . . , λk−1

whose coefficients are trigonometric polynomials in t and where c is a quad-
ratic function of the real and imaginary parts of λ1, . . . , λk−1 whose coeffi-
cients are trigonometric polynomials in t. Completing the square, this func-
tion attains its minimum when x = − a

2k and y = − b
2k , and its minimal value

is c− a2

4k −
b2

4k which, as required, is a quadratic function of the real and imag-
inary parts of λ1, . . . , λk−1 whose coefficients are trigonometric polynomials
in t.

Finally, if λ 6= 0, then at least one of the summands in (11.8) is strictly
positive when z = 0, whereas the first summand is strictly positive when
z 6= 0, so the minimal value of the function (11.8) is strictly positive.

This completes our computation in Cn. We now return to our manifold
M . Fix a symplectomorphism f : U →M from a neighbourhood U of the
origin in Cn onto a neighbourhood of pmax in M such that f(0) = pmax and
such that (f∗HM )(z) = HM (pmax)−N(z), where N(·) is given in (11.2).
Given a positive number α, we may choose U such that i(U) ⊂ {m ∈M |
HM (m) > HM (pmax)− α}.

Let ε be a positive number that is sufficiently small so that the set
{z ∈ Cn | N(z) ≤ ε} is contained in U . Then the subset of M where HM is
ε-close to its maximum HM (p) is contained in f(U). (See the facts about
Hamiltonian circle actions in §2.)

Let ρ : [0,∞)→ [0, 1] be a smooth function that is equal to one on [0, ε/2]
and is equal to zero outside [0, ε). Use the same symbol, ρ, to denote the

function z 7→ ρ(N(z)) on Cn. Then the function H
(ρ·λ)
t (z) is equal to H

(λ)
t (z)

when N(z) ≤ ε/2 and is equal to −N(z) when N(z) > ε.
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The function on M

(11.9) HM
(λ)
t :=


HM (pmax) +H

(ρ·λ)
t (·) ◦ f−1

when HM is ε-close to its maximum

HM elsewhere

is smooth and it generates a deformation of our loop.
If the original momentum map HM is normalized, so is the deformed

Hamiltonian (11.9). The argument is similar to (5.18).
Let D be a neighbourhood of the origin in C

∑
(ki−1) that is small enough

so that, for every λ ∈ D, the following facts are true.

- For every t, the function H
(λ)
t (z) attains its maximum at a unique

point of Cn, and this point lies in {z | N(z) ≤ ε/4}.

- This maximum is greater than −ε/4.

- For every ν and z such that 0 ≤ ν ≤ 1 and ε/2 ≤ N(z) ≤ ε, we have

H
(ν·λ)
t (z) ≤ −ε/4 for all t.

This is possible because H
(λ)
t (z) is smooth in the variables λ, z, and t, is

quadratic in z, and is equal to −N(z) when λ = 0.

Then, for every λ and t, the functions H
(ρ·λ)
t (z) and H

(λ)
t (z) have the

same maximal value, and they attain it at the same (unique) point z.

Denote by ψ
(λ)
t the family of loops in Ham(M,ω) that are generated by

the functions (11.9). By our choice of D, for every λ ∈ D, the positive Hofer
length of the corresponding loop is

`+({ψ(λ)
t }) = HM (pmax) +

∫ 1

0
max
z∈Cn

H
(λ)
t (z)dt.

By this and our computation in Cn, the function

λ 7→ `+({ψ(λ)
t })

from D to R takes its maximal value at the origin and its Hessian at the
origin is negative definite. This completes the proof of Theorem 3.17 and
Remark 3.18. �
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