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Fukaya-Seidel category and gauge theory

Andriy Haydys

A new construction of the Fukaya-Seidel category associated with a
symplectic Lefschetz fibration is outlined. Applying this construc-
tion in an infinite dimensional case, a Fukaya-Seidel-type category
is associated with a smooth three-manifold. In this case the con-
struction is based on a five-dimensional gauge theory.
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1. Introduction

This paper consists of two major parts. In the first part, based on the idea
of Seidel [24] we outline a construction of the Fukaya-Seidel category, which
is associated with a symplectic manifold M equipped with the structure
of a symplectic Lefschetz fibration. By this we mean, roughly speaking, a
choice of an almost complex structure J and a J-holomorphic Morse function
f . This construction does not rely on the notion of vanishing cycle but
emphasizes instead the role of the antigradient flow lines of Re (eiθf). In
the second part, this construction is applied in the infinite dimensional case
of the complex Chern-Simons functional. The corresponding construction
conjecturally associates a Fukaya-Seidel-type category to a smooth three-
manifold.

Our motivation originated from the suggestion to use higher dimensional
gauge theory in studies of low dimensional manifolds as outlined in [14].
Namely, suppose we are given a construction that associates a higher dimen-
sional manifold WX to each lower dimensional manifold X from a suitable
subclass and possibly equipped with an additional structure. The manifold
WX is assumed to be of dimension 6, 7 or 8 and endowed with an SU(3), G2

or Spin(7) structure, respectively. Then, by counting higher dimensional
instantons on WX we should obtain an invariant of X. The construction
studied in [14] in detail associates to each smooth spin four-manifold the
total space of its spinor bundle.

Another construction of a similar nature associates to X4 the total space
of the “twisted spinor bundle” R⊕ Λ2

+T
∗X. Then Spin(7)-instantons invari-

ant along each fibre are solutions of the Vafa-Witten equations [27], while
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Spin(7)-instantons invariant only along the fibres of Λ2
+T
∗X can be inter-

preted as antigradient flow lines of a function, whose critical points are
solutions of the Vafa-Witten equations. It turns out that these flow lines
can be obtained from certain elliptic equations on a general five-manifold
W 5 equipped with a nonvanishing vector field by specializing to the case
W = X4 × R just like flow lines of the real Chern-Simons functional are
obtained from the anti-self-duality equations on X4 = Y 3 × R. Specializing
further to W = Y 3 × R2 we obtain a construction of a Fukaya-type A∞-
category (this requires some extra choices) just like specialization of the
anti-self-duality equations to Σ2 × R2 leads to the construction of the Fukaya
A∞-category associated with Σ. At this point an important distinction from
the case of Riemann surfaces emerges. Namely, the construction involves a
natural holomorphic function, the complex Chern-Simons functional, and
this has significant implications for the flavour of the construction.

Having said this though, we do not appeal in this paper to higher dimen-
sional anti-self-duality equations but rather begin directly with the formu-
lation of the five-dimensional gauge theory. From this perspective the most
interesting theory is obtained via reduction to three-manifolds, where the
construction of the A∞-category admits a finite-dimensional interpretation
in the framework of symplectic geometry.

This paper is organized as follows. In Section 2 we describe the con-
struction of the Fukaya-Seidel category in the finite-dimensional case. From
one point of view, this construction is a generalization of a Floer theory,
where generators of the homology groups are antigradient flow lines of
the real part of a holomorphic Morse function connecting a pair of criti-
cal points. Then the Floer differential is obtained from pseudoholomorphic
planes with a Hamiltonian perturbation satisfying certain asymptotic con-
ditions (see (2.7)– (2.9) for more details).

Sections 3 and 4 are devoted to the formulation of the five-dimensional
gauge theory and its various dimensional reductions. In Section 5 we describe
applications of the equations obtained in the previous sections to low dimen-
sional topology. In particular, one can (conjecturally) associate an integer
to a five-manifold, Floer-type homology groups to a four-manifold and a
Fukaya-Seidel-type category to a three-manifold. In dimension three, criti-
cal points correspond to flat Gc-connections on Y , flow lines correspond to
Vafa-Witten-type instantons on Y × R and pseudoholomorphic planes cor-
respond to “five-dimensional instantons” on Y × R2. This should be a part
of a multi-tier (extended) quantum field theory [12] but we do not study
this aspect in the current paper.



i
i

“7-347” — 2015/2/2 — 11:51 — page 154 — #4 i
i

i
i

i
i

154 Andriy Haydys

The constructions described in this paper may also be useful in other set-
tings, for instance in the context of Calabi-Yau threefolds. Here the critical
points of the holomorphic Chern-Simons functional correspond to holomor-
phic vector bundles over a Calabi-Yau threefold Z, flow lines correspond
to G2-instantons on Z × R and pseudoholomorphic planes correspond to
Spin(7)-instantons on Z × R2.

Many aspects of this paper are related to ideas of various authors. As
it has been already mentioned above, our construction of the Fukaya-Seidel
category in the finite dimensional case is a modification of Seidel’s idea. The
equation we utilize for the definition of the structure maps in the Fukaya-
Seidel A∞-category was used in the context of mirror symmetry in [9] (“Wit-
ten equation”) in the case of quasi-homogeneous polynomials. The antigra-
dient flow lines of the real part of the holomorphic Chern-Simons functional
appeared in [16] for the first time and were further studied in [28, 29]. In [8]
antigradient flow lines of the real part of the holomorphic Chern-Simons
functional are used in the context of Calabi-Yau threefolds.

2. Fukaya-Seidel categories of symplectic
Lefschetz fibrations

In [24, 25] Seidel describes the construction of a Fukaya category associated
with a symplectic Lefschetz fibration in terms of vanishing cycles. In the
first part of this section we describe omitting (important) technical details
an alternative approach, which does not rely on the notion of vanishing
cycle. The rest of the section is devoted to basic analytic properties of the
objects involved in the construction.

2.1. Symplectic Lefschetz fibrations

Let (M2n, ω, λ), ω = dλ, be an exact symplectic manifold with boundary.
Choose an almost complex structure J such that g(·, ·) = ω(·, J ·) is a Rie-
mannian metric on M . It is also convenient to assume that J is orthogonal
with respect to g. Let f : M → C be a J-holomorphic function. We assume
the following properties:

(P1) f is a proper map with finitely many non-degenerate critical points
lying in pairwise different fibres. Moreover, locally near each critical
point J is integrable.

(P2) The boundary of M is convex [17, Def. 9.2.5].
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(P3) Let M0 = f−1(z0) be a regular fiber. Then there exist compact sub-
sets K ⊂M \ ∂M , K ′ ⊂M0 × C \ ∂M0 × C, and a positive number
r with the following significance. Denote V = M \K, V ′ = M0 × C \
K ′. Then for each z ∈ C there exists a small neighbourhood Bδ(z) and
a fiber preserving diffeomorphism ψz such that the following holds:
The diagram

V ∩
(
M0 ×Bδ(z)

) ψz
> V ′ ∩ f−1

(
Bδ(z)

)

Bδ(z)

f

<

pr2

>

commutes, ψz is the identity on (M0 × {z0}) ∩ V whenever z0 ∈
Bδ(z), and the pull-back of (λ, J) is (λM0

+ rλ0, JMz
× I0). Here λ0 =

Re (izdz̄) is the primitive of the standard symplectic form ω0 and I0

is the standard complex structure on C.

It is worth pointing out that properties (P1) and (P3) imply that there
exists R > 0 such that the preimage of Bc

R(0) is contained in V , where Bc
R(0)

denotes the complement of the ball BR(0) of radius R. In other words, for
any z ∈ Bc

R(0) there exists a neighbourhood Bδ(z) ⊂ Bc
R(0), and fiber pre-

serving diffeomorphism ψz : M0 ×Bδ(z)→ f−1(Bδ(z)) with the properties
as in (P3). Similarly, there exists a neighbourhood W of ∂M , a neighbour-
hood W ′ of ∂(M0 × C) = ∂M0 × C, and a diffeomorphism ψ : W ′ →W such
that the pull-back of (λ, J) is (λM0

+ rλ0, JM0
× I0). Here M0 is some fiber.

Conversely, these two properties imply (P3).
Denote

f = f0 + if1, ρ = {f0, f1}.
Another consequence of (P3) is that ρ = r−1 on V . In particular, this implies
that ρ is bounded on M .

The following interpretation of ρ will be useful in the sequel. Denote

v0 = grad f0 and v1 = grad f1.

The holomorphicity of f implies Jv0 = v1. Then the Hamiltonian vector field
of f0 is Xf0 = −Jv0 = −v1. This yields

(2.1) ρ(m) = |v0(m)|2 = |v1(m)|2 for m ∈M.

Remark 2.1. It is interesting to notice that property (P3) is in fact equiv-
alent to ρ being constant on a complement of a compact subset. Indeed,
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assume ρ is constant on V = M \K. Then the identity [v0, v1] = −[Xf1 , Xf0 ]
= X{f0,f1} implies that v0 and v1 commute on V . The subset M \ Crit(f)
is equipped with the connection, which is induced by the symplectic form.
Then ρ−1v0 and ρ−1v1 are the horizontal lifts of ∂

∂s and ∂
∂t , respectively,

where (s, t) be coordinates on C ∼= R2. Hence, the connection is flat over
V . It follows that in a flat trivialization in a neighbourhood of some z ∈ C
the symplectic form can be written as ωMz

+ rω0, where r is some function.
Then r is constant, since r−1 = ρ.

Examples of the fibrations with properties (P1)–(P3) can be found in [25,
(19b)] (it is only needed to drop the restriction to the preimage of a large
disc).

Other examples can be constructed starting from symplectic Lefschetz
fibrations over the disc π : E → D = B1(0) as in [25, (15a)] assuming trivi-
ality near the horizontal boundary [25, Remark 15.2]. Indeed, first of all on
an open neighbourhood of ∂hE diffeomorphic to an open neighbourhood of
the horizontal boundary of the trivial fibration Ept ×D with the help of a
suitable cut-off function we can deform the symplectic form to ωEpt . This is
clearly no longer symplectic form on the horizontal subbundle but later on
we will add some multiple of the standard symplectic form on D so that the
resulting 2-form will be symplectic on the total space.

To extend E to a fibration over the whole complex plane proceed as
follows. Choose δ > 0 such that all critical values of π are contained in
B1−δ(0). With the help of the parallel transport along radial lines we obtain

(2.2) E
∣∣
Z
∼= pr∗E

∣∣
S1

1−δ
,

where pr : Z = {1− δ ≤ |z| ≤ 1} ∼= S1
1−δ × [1− δ, 1]→ [1− δ, 1]. Denote by

(%, ϕ) the polar coordinates and by E1−δ,0 the fiber over the point (%, ϕ) =
(1− δ, 0). Then we can write [25, (15a)] the symplectic 2-form on pr∗E

∣∣
S1

1−δ
in the form

ω = ωE1−δ,0 + dκ,

where κ = κ1(%, ϕ)d%+ κ2(%, ϕ)dϕ+ dR for some functions κ1, κ2, R ∈
C∞([1− δ, 1]× S1 × E1−δ,0) (the notation does not reflect the dependence
on all variables). Choose smooth cut-off functions α, β : [1− δ,+∞]→ [0, 1]
such that

α(%) =

{
% % ∈ [1− δ, 1− 2δ

3 ],

1 % ≥ 1− δ
3 ,

β(%) =

{
1 % ∈ [1− δ, 1− 2δ

3 ],

0 % ≥ 1− δ
3 ,
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and denote κ′ = κ1(α(%), ϕ) d%+ κ2(α(%), ϕ) dϕ+ d(βR). This defines a con-
nection 1-form on

(2.3) E
∣∣
S1

1−δ
× [1− δ,+∞)

p−−−−→
{
|z| > 1− δ

}
.

Then for sufficiently large r > 0 the 2-form ωr = ωE1−δ,0 + dκ′ + rp∗ω0 is
symplectic and equals to ωE + rπ∗ω0 over {1− δ < |z| < 1− 2δ

3 }. Hence,
E
∣∣
B1−δ(0)

can be glued with (2.3) to obtain a fibration over the whole complex

plane. By construction, this has properties (P1)–(P3).

2.2. Outline of the construction

The purpose of this subsection is to outline the main points of the alternative
construction of the Fukaya-Seidel A∞-category. The discussion of technical
details is postponed to the proceeding subsections.

Let us briefly recall the basic ingredients of the Fukaya-Seidel A∞-
category (see [24, 25] for details). For the sake of simplicity we consider
the ungraded version with coefficients in Z/2Z (“preliminary version” in
the terminology of [25]). It is convenient to choose a basepoint z0, which
does not lie on any straight line determined by a pair of critical values (in
particular, z0 is distinct from critical values). Denote by m1, . . . ,mk critical
points of f and put zj = f(mj). The indexing can be chosen such that the
sequence arg(zj − z0) ∈ (−π, π] is decreasing in j and this defines a linear
order on the set of critical points.

Choose a collection of paths connecting z0 with each zj missing the
remaining critical values. Let Lj ⊂ f−1(z0) be the vanishing cycle of mj

associated with the path connecting z0 and zj . Denote by Γ the ordered
collection (L1, . . . , Lk). Seidel associates to Γ a directed Fukaya A∞-category
Lag→(Γ), whose objects are vanishing cycles Lj and morphisms are Floer
chain complexes as follows. First recall that an A∞-structure is a collection
of maps

µd : hom(Ljd , Ljd+1
)⊗ · · · ⊗ hom(Lj1 , Lj2) −→ hom(Lj1 , Ljd+1

),

d = 1, 2, 3, . . .

satisfying certain quadratic relations [25, (1.2)] and by the directedness we
have

hom(Lj , Lk) =


CF (Lj , Lk) j < k,

Z/2 · id j = k,

0 j > k.
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The Floer complex CF (Lj , Lk) is generated by the points of Lj ∩ Lk and the
map µ1 is the Floer differential, which counts pseudoholomorphic strips such
that one boundary component is mapped to Lj and the other component is
mapped to Lk. The maps µd for d ≥ 2 are defined similarly by counting pseu-
doholomorphic discs with d+ 1 punctures on the boundary. The resulting
A∞-category Lag→(Γ) depends on the choices made but Seidel shows that
the derived category Db(Lag→(Γ)) is an invariant of the Lefschetz fibration.

With this understood we now give another construction of the Fukaya-
Seidel A∞-category. Pick a pair of critical points (m−,m+) and denote θ± =
arg(z± − z0) ∈ (−π, π]. Let γ±m be the solution of the Cauchy problem

γ̇±m + cos θ± v0 + sin θ± v1 = 0, γ±m(0) = m ∈ f−1(z0).

Notice that the image of f ◦ γ±m : R→ C is contained in a straight line passing
through z0 and z±. Then the vanishing cycle L± of m± associated with the
segment z0z± can be conveniently described as

L± =
{
m ∈ f−1(z0)

∣∣ lim
t→+∞

γ±m(t) = m±
}
.

Then, if we denote

(2.4) θ0(t) =

{
θ+ t ≤ 0,

arg i(z− − z0) = θ− ± π t > 0,

the set L+ ∩ L− can be identified with the space of solutions of the problem

(2.5) γ̇ + cos θ0(t) v0 + sin θ0(t) v1 = 0, lim
t→±∞

γ(t) = m∓.

Here solutions are understood to be smooth on R \ {0} and continuous at
t = 0. We call solutions of (2.5) broken flow lines of f connecting m− and
m+ and denote by Γ0(m−;m+) the space of all solutions. Notice that for
each broken antigradient flow line γ the image of f ◦ γ lies on the curve
z−z0z+ and f ◦ γ(0) = z0.

It will be convenient in the sequel to replace θ0 by a smooth function θν ,
where ν is a real parameter. The choice of the function θν , which is described
in Subsection 2.3 in details, turns out to be quite important, but what we
need to know at this point is that θν is close to θ0 for ν small enough.

Denote by Γν = Γν(m−,m+) the space of solutions of the problem

(2.6) γ̇ + cos θν(t) v0 + sin θν(t) v1 = 0, lim
t→±∞

γ(t) = m∓.
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We also call solutions of Equations (2.6) broken flow lines.

Remark 2.2. We assume that for ν small enough there exists a corre-
spondence between solutions of (2.6) and (2.5). This is discussed in detail
in Appendix B. The advantage of Problem (2.6) is that its solutions are
smooth everywhere on R.

Furthermore, notice that the Floer differential µ1 should take broken
flow lines as input and should return formal linear combinations of broken
flow lines as output. With m± as above, pick additionally two solutions γ±
of Equations (2.6). Then the role of holomorphic strips with boundary on
L± in our framework is played by solutions of the problem

∂su+ J
(
∂tu+ cos θν v0 + sin θν v1

)
= 0, u : R2

s,t →M,(2.7)

lim
t→±∞

u(s, t) = m∓, lim
t→±∞

+∞∫
−∞

|∂su(s, t)| ds = 0,(2.8)

lim
s→±∞

u(s, t) = γ∓(t), lim
s→±∞

∫ b

a
|∂su(s, t)| dt = 0.(2.9)

Here the limits appearing on the left hand side of (2.8) and (2.9) are under-
stood in the C0(R)-topology and a ≤ b are arbitrary. Notice that (2.7) is the
pseudoholomorphic map equation with a Hamiltonian perturbation. Namely,
the time-dependent Hamiltonian function here is Im (e−iθν(t)f).

Notice also that it is assumed that the integral in (2.8) is convergent
for all t ∈ R. For instance, this is the case if ∂su ∈W k,p(R2;u∗TM) with
k > max{1

p ,
2
p − 1}. In this case, for any fixed τ we have

‖∂su(·, τ)‖L1(R) ≤ Ck,p‖∂su‖W k,p(Hτ ),

where Hτ = {t ≥ τ} ⊂ R2. In particular,
∫ +∞
−∞ |∂su(s, t)| ds tends to zero as

t→ +∞ and similarly for t→ −∞.
It is very instructive to see a relation between solutions of (2.7)–(2.9)

and pseudoholomorphic strips as in Seidel’s approach. This is outlined in
Appendix A. However, instead of proving that such a connection indeed
holds, we study Equations (2.7)–(2.9) directly, since in view of the intended
applications it is important to have direct proofs of the basic properties
(compactness, Fredholm property, transversality etc.). In this paper we prove
compactness and Fredholm property for solutions of (2.7)–(2.9).

Next we show how to define the map µ2 in our framework. Let Ω be a
(non-compact) Riemann surface containing three “long necks”. By this we
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mean a triple of holomorphic embeddings

ı1, ı2 : {z | Re z < 0} → Ω, and ı3 : {z | Re z > 0} → Ω

with disjoint images. To be more explicit, we choose the complex plane C as a
model for Ω (see Fig. 1), where the embedding ı1 is given in polar coordinates
by (%, ϕ) 7→ (%2/3, 2

3(ϕ+ π)), π
2 < ϕ < 3π

2 and the other two embeddings are
defined similarly. The curves shown on the figure are of the form t 7→ ıj(s, t).
This is our analogue of the “pair of pants” surface.

1

2

3

Figure 1: The domain Ω with three long necks.

Remark 2.3. For technical reasons (e.g., to define the Sobolev spaces), it
is convenient to endow Ω with a Riemannian metric compatible with the
complex structure. Moreover, it is assumed that this metric is the standard
flat metric on each of the “long necks” outside a compact subset.

Furthermore, pick any three critical points, say m1,m2,m3 and a pair
(γ1, γ2) of broken flow lines. More precisely, γ1 and γ2 are solutions of the
equations

γ̇j + cos θj,ν(t) v0 + sin θj,ν(t) v1 = 0,

lim
t→+∞

γj(t) = mj , lim
t→−∞

γj(t) = mj+1.

Here θj,ν(t) is a perturbation of the function obtained from θ0(t) by putting
(θ−, θ+) = (arg(zj − z0), arg(zj+1 − z0)). Then µ2(γ1, γ2) should be a formal
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linear combination of broken flow lines connectingm1 withm3. Pick any such
flow line, i.e., a solution of the problem1

γ̇3 + cos θ3,ν(t) v0 + sin θ3,ν(t) v1 = 0,

lim
t→+∞

γ3(t) = m1, lim
t→−∞

γ3(t) = m3,

and also choose η ∈ Ω0,1(Ω) such that for j = 1, 2, 3 we have ı∗jη = 1
2e
iθj,ν(t)dz̄

provided
∣∣Re z

∣∣ ≥ 1. Then the multiplicity of γ3 can conjecturally be defined
by counting solutions of the equations

∂̄u+ η ⊗ v0(u) = 0, u : Ω→M,(2.10)

lim
t→±∞

u ◦ ıj(s, t) = mσ±(j), lim
t→±∞

∫ ∞
0

∣∣∂s(u ◦ ıj(s, t))∣∣ ds = 0,(2.11)

lim
s→∞

u ◦ ıj(s, t) = γj(t) lim
s→∞

∫ b

a

∣∣∂s(u ◦ ıj(s, t))∣∣ dt = 0.(2.12)

Here η ⊗ v0(u) ∈ Ω0,1(Ω;u∗TM), j = 1, 2, 3, σ+(1, 2, 3) = (1, 2, 1), σ−(1,
2, 3) = (2, 3, 3). Moreover, in (2.12) “s→∞” means s→ −∞ for j = 1, 2
and s→ +∞ for j = 3; The meaning of “∞” in (2.11) is similar.

Notice that over the long necks the above equations and Eqs. (2.7)–(2.9)
are of a similar form.

The analogue of holomorphic discs with d+ 1 punctures on the boundary
involved in the definition of µd are defined in a similar manner.

Remark 2.4. Let (w1, . . . , wd+1) be a tuple of points on the boundary of
the unit disc centered at the origin. The indexing is assumed to respect the
cyclic ordering, which is obtained by traveling along the circle counterclock-
wise. Then one can construct a Riemann surface with (d+ 1) long necks just
like Ω (the j’s long neck correspond to the sector bounded by lj and lj+1,
where lj is the ray from the origin containing wj). Given a (d+ 1)-leafed
tree, one can construct another Riemann surface with d+ 1 long necks by
gluing the basic ones along long necks. This is similar to [25, 9e]. By stretch-
ing interior edges to infinity one obtains the boundary of the moduli space
of the Riemann surfaces used in the definition of µd.

Let us briefly summarize. We can conjecturally associate with (f, J) a
directed A∞-category A(f, J) as follows. The objects of A(f, J) are critical

1Our convention is that for m− < m+ a broken flow line goes from m+ to m− as
t varies between −∞ and +∞ and therefore the asymmetry between γ3 and γ1, γ2.
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points of f . For any pair (m−,m+) of critical points, denote by CF (m−,m+)
the vector space generated by Γν(m−;m+) and put

homA(f,J)(m−,m+) =


CF (m−,m+) m− < m+,

Z/2 · id m− = m+,

0 m− > m+.

For γ± ∈ Γν(m−;m+) denote by M0
ν(γ−, γ+) the zero-dimensional com-

ponent of the space {u | u solves (2.7)–(2.9)}/R. Assuming #M0
ν(γ−, γ+)

makes sense, we can define µ1 by declaring

µ1(γ−) =
∑
γ+

(
#M0

ν(γ−, γ+) mod 2
)
γ+.

The maps µd for d ≥ 2 are defined in a similar manner and together with
µ1 (conjecturally) combine to an A∞-structure. Clearly, A(f, J) depends
on the various choices involved in the construction. However, as explained
in [24] the derived category Db(A(f, J)) should not depend on these choices.
Moreover, assume (fτ , Jτ ), τ ∈ [0, 1] is a continuous family such that fτ is a
Jτ -holomorphic function, whose critical points lie in pairwise different fibres
for all τ . Then Db(A(f0, J0)) is equivalent to Db(A(f1, J1)).

Remark 2.5. Our main example is the complex Chern-Simons functional,
which takes values in C/Z rather than in C. In this case, the construction
outlined above does not immediately apply. However, we may proceed as
follows. Assume that each line `r = {z | Re z = r mod Z} contains at most
one critical value of f (possibly after a perturbation). Pick r such that the
line `r does not contain any critical value of f and “cut” the cylinder C/Z
along `r to obtain a holomorphic function fr with values in (0, 1)× R. In
other words, consider only those flow lines γ of f for which the image of
f ◦ γ does not intersect the line `r. Then Db(A(fr)) does not depend on r as
long as r varies in a connected interval I such that I × R does not contain
any critical value of f . In this way we obtain a collection of k triangulated

categories
(
Db(A(frj ))

)k
j=1

, which is well-defined up to a cyclic permutation.
Here k is the number of critical values of f .

2.3. A priori C0-estimates

Since M is not compact, we need to show that solutions of (2.7)–(2.9) do
not leave a fixed compact subset of M . This is proved in this subsection
under an additional assumption.
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The proof of Theorem 2.7, which is the main result of this subsection,
crucially depends on the choice of the perturbation θν of the function (2.4).
So we take a moment to describe the missing details.

Just like in the beginning of the previous subsection fix a pair of critical
points (m−,m+) and put z± = f(m±). Up to a translation and a rotation
we can assume that

(2.13) z0 = 0, θ± ∈ (0, π), Im z− = Im z+ = ζ > 0.

For ν ∈ (0, 1) consider a smooth function θν : R→ R, which satisfies

θν(t) =


0 |t| ≥ ν−1 + 1,

θ+ t ∈ [−ν−1,−ν]

θ− − π t ∈ [ν, ν−1]

and is monotone on the intervals (−ν−1 − 1,−ν−1), (−ν, ν), and (ν−1, ν−1 +
1). We also assume that θν(t) ≥ 0 for t ≤ 0 and that θν(t) ≤ 0 for t ≥ 0. The
graph of θν is shown on Fig. 2.

qn
(t)

n

q+

q - p-

-n n-1 n-1
+1-n-1

-1 -n-1

Figure 2: Graph of θν .

Proposition 2.6. Suppose the closed domain G bounded by the trian-
gle z−z0z+ contains no critical values of f other than z±. Let νj ∈ (0, 1)
and γj ∈ Γνj (m−,m+) be arbitrary sequences such that νj → 0. Then there
exists a subsequence jk →∞ such that γjk converges in C0(R;M) and γ0 =
lim
k→∞

γjk is a solution of (2.5).

The proof of Proposition 2.6 is given in Appendix B. The assumption
that G contains no critical values of f other than z± is essential. If this
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assumption does not hold, we may have solutions of (2.6), such that the
curve f ◦ γν is not even homotopic (relative endpoints) to ` = z+z0 ∪ z0z−
in C \ {z1, . . . , zm} (see also Lemma B.1). In particular, the conclusion of
Proposition 2.6 is false in this case. To exclude such phenomena, we make
the following additional assumption.

(H1) Convex position of critical values. The critical values of f are in convex
position, i.e., none of the critical values of f is contained in the convex
hull of the other critical values. The base point z0 lies in the interior
of the convex hull of the critical values.

Theorem 2.7. There exists a compact subset K̂ ⊂M \ ∂M such that the
image of any solution u of (2.7) satisfying

(2.14) lim
t→±∞

u(s, t) = m∓, lim
s→±∞

u(s, t) = γ∓(t)

is contained in K̂.

Proof. The proof consists of the following two steps.

Step 1. There exists a constant R̂ > 0 such that for any solution u ∈
C2(R2) of (2.7) and (2.14) we have∣∣f ◦ u(s, t)

∣∣ ≤ R̂ for all (s, t) ∈ R2.

Denote f ◦ u = ϕ+ iψ and observe that Floer’s equation for u implies
the equations

(2.15) ∂sϕ− ∂tψ = sin θν(t) ρ ◦ u, ∂sψ + ∂tϕ = − cos θν(t) ρ ◦ u.

Denote

Θ1(t) =
1

r

(∫ t

0
cos θν(τ) dτ − t

)
, Θ2(t) =

1

r

∫ t

0
sin θν(τ) dτ

and notice that Θ1 and Θ2 are bounded both from above and below (in
fact, Θi(t) is locally constant for |t| ≥ ν−1 + 1). This crucial property is a
corollary of our particular choice of θν .

Put Θj = supR Θj(t), Θj = infR Θj(t), j = 1, 2. Furthermore, chooseR >
0 so large that f(K) ⊂ BR(0), where K is the compact subset in (P3). We
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claim that the following inequality

(2.16) sup
R2

(
ϕ(s, t) + Θ1(t)

)
≤ R+ Θ1

holds for all (s, t) ∈ R2. We argue by contradiction. Indeed, assume ϕ(s0, t0)
+ Θ1(t0) = sup

(
ϕ(s, t) + Θ1(t)

)
> R+ Θ1 for some (s0, t0) ∈ R2 (the bound-

ary conditions for u imply that the supremum must be attained at some
point in R2). Then ϕ(s0, t0) > R so that (ϕ,ψ) ∈ Bc

R(0) for all (s, t) lying
in some small ball Bδ centered at (s0, t0). Since ρ = r−1 everywhere on
f−1(Bc

R(0)), from (2.15) we obtain

∆ϕ = r−1θ′ν(t) sin θν(t), (s, t) ∈ Bδ.

Hence, the function ϕ+ Θ1 is harmonic in Bδ and achieves its maximum at
an interior point. This contradiction proves (2.16).

Inequality (2.16) implies in turn the estimate

sup
R2

ϕ(s, t) ≤ R+ (Θ1 −Θ1).

Arguing along similar lines one also obtains

inf
R2
ϕ(s, t) ≥ −R− (Θ1 −Θ1),

sup
R2

ψ(s, t) ≤ R+ (Θ2 −Θ2), inf
R2
ψ(s, t) ≥ −R− (Θ2 −Θ2).

This finishes the proof of Step 1.

Step 2. We prove the theorem.

Let W ⊃ ∂M, W ′ ⊃ ∂M0 × C, and ψ : W ′ →W be as in the paragraph
following (P3). Observe that property (P2) implies that the boundary of
M0 is JM0

-convex, i.e., there exists a function h : M0 → (−∞, 0], which is
plurisubharmonic in a neighbourhood of the boundary and ∂M0 = h−1(0).
Choose ε > 0 so small that h is subharmonic on h−1(−ε, 0) and U ′ = h−1(−ε,
0)×BR(0) is contained in W ′. Denote U = ψ(U ′).

We claim that for any solution u of (2.7) and (2.14) we have u(R2) ∩
U = ∅. Indeed, assuming the converse, there exists z0 = (s0, t0) such that
h ◦ u(z0) = sup{h ◦ u(z) | u(z) ∈ U}. Then for sufficiently small δ > 0 we can
think of u as a map Bδ(z0)→M0 × C. If π1 denotes the projection to the
first components, the map π1 ◦ u is pseudoholomorphic. Moreover, h ◦ π1 ◦

u = h ◦ u has a local maximum at z0, which is a contradiction.
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Thus the image of u is contained in K̂ = f−1(BR(0)) \ U . It remains to
notice that K̂ is compact. �

Remark 2.8. We would like to stress that other results in this paper
(except those in Appendix B) depend on hypothesis (H1) only through The-
orem 2.7. It is quite possible that an a priori C0-bound can still be proved
for a different choice of the perturbation θν , which does not require convex
position of the critical values. However at present it is not quite clear how
to obtain such an estimate without (H1).

2.4. The action functional and the energy identity

Denote

W 2,2
m−,m+

=
{
γ ∈W 2,2

loc (R;M) | ∃T > 0 and ξ± ∈W 2,2
(
(T,∞);Tm±M

)
s.t. γ(±t) = expm± ξ±(t) for t > T

}
.

Then the action functional

(2.17) F(γ) =

∫
R

γ∗λ+

∫
R

Im
(
e−iθ(t)f ◦ γ(t)

)
dt

is well-defined as a map F : W 2,2
m−,m+ → R. Indeed the first integral is conver-

gent, since γ∗λ ∈W 1,2(R) ↪→ L1(R). As for the second integral, the conver-
gence follows from the fact that f is a quadratic function in an appropriate
coordinate chart at m±. Observe also, that F is essentailly the standard
symplectic action functional with a Hamiltonian perturbation.

Consider the time-dependent vector field

vt = grad Re
(
e−iθν(t)f

)
= cos θν(t) v0 + sin θν(t) v1.

A standard computation shows that dF(ξ) = −
∫
R ω(ξ, γ̇ + vt) dt, where ξ is

a vector field along γ. Here we used the fact, that the symplectic gradient of
f0 is v1 = grad f1. Therefore with respect to the L2-metric we have gradF =
J(γ̇ + vt). Hence, the critical points of the functional F are broken flow lines
of f connecting m+ and m−. Similarly, the antigradient flow lines of F can
be interpreted as solutions of Equation (2.7).

Define the energy of a solution u of (2.7) by

E(u) =
1

2

∫
R2

(
|∂su|2 + |∂tu+ vt|2

)
ds ∧ dt =

∫
R2

|∂su|2 ds ∧ dt.
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Theorem 2.9 (Energy identity). Let u ∈ C1(R2;M) be a solution of
Equations (2.7)–(2.9). Then

E(u) = F(γ+)− F(γ−).

In particular, E(u) <∞.

Proof. It is convenient to denote βt(s) = u(s, t) = γs(t). Pick arbitrary pos-
itive numbers σ and τ . Using Stokes’ theorem and the identity

ω(vt, ∂su) =
∂

∂s
Im
(
e−iθ(t)f ◦ u(s, t)

)
a standard computation yields

τ∫
−τ

σ∫
−σ

|∂su|2 ds ∧ dt =

τ∫
−τ

σ∫
−σ

ω
(
∂su, ∂tu+ vt

)
ds ∧ dt

=

τ∫
−τ

γ∗−σλ−
τ∫
−τ

γ∗σλ+

σ∫
−σ

β∗τλ−
σ∫
−σ

β∗−τλ

−
τ∫
−τ

Im e−iθ(t)f ◦ γσ(t) dt+

τ∫
−τ

Im e−iθ(t)f ◦ γ−σ(t) dt.(2.18)

With the help of Equation (2.7) we obtain

λ(∂tu)− λ(γ̇±) = λ(J∂su) + λ
(
vt(γ±)

)
− λ
(
vt(u)

)
.

This in turn implies by (2.9) that∫ τ

−τ
γ∗±σλ −→

∫ τ

−τ
γ∗∓λ as σ → +∞.

Similarly, by (2.8) we also have∫ +∞

−∞
β∗±τλ −→ 0, as τ → +∞.

Hence, passing in (2.18) first to the limit as σ → +∞ and then to the limit
as τ → +∞ we obtain the statement of the theorem. �
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2.5. A priory C∞-estimates

It is convenient to introduce the Lp-version of the energy of a map u:

Ep(u) =
1

2

∫
R2

(
|∂su|p + |∂tu+ vt|p

)
ds ∧ dt.

In particular, E(u) = E2(u).

Proposition 2.10. Let u be a solution of (2.7) with Ep(u) <∞ for some
p ∈ [2,∞). Then the following holds:

lim
s→±∞

∂su(s, t) = 0 and lim
t→±∞

∂su(s, t) = 0;(2.19)

sup
R2

|∂su| <∞ and sup
R2

|∂tu| <∞.(2.20)

Here both limits in (2.19) are understood in the C0(R)-topology.

Proof. The proof is based on the following fact [22, p.12]. There exist con-
stants h, c > 0 depending on M,J, ω, and f but not on u such that the
following implication holds:

(2.21)

∫
Br(s,t)

|∂su|2 < h =⇒ |∂su(s, t)|2 ≤ 8

πr2

∫
Br(s,t)

|∂su|2 + cr2.

Pick an arbitrary ε ∈ (0, ε0), where ε0 will be chosen below. By the
assumption of this proposition there existsRε > 0 such that for all (s, t) ∈ R2

with max{|s|, |t|} > Rε we have ‖∂su‖2Lp(B1(s,t)) < ε1+ 2

p . Apply the inequality

(2.22) ‖∂su‖L2(Br(s,t)) ≤
(
vol(Br(s, t))

) 1

2
− 1

p ‖∂su‖Lp(Br(s,t))

to obtain ‖∂su‖2L2(Br(s,t))
≤ π

1

2
− 1

p ε1+ 2

p whenever r ≤ 1 and max{|s|, |t|}
> Rε.

Choose ε0 ∈ (0, 1) such that π
1

2
− 1

p ε
1+ 2

p

0 < h. Then (2.21) and (2.22) with

r =
√
ε yield |∂su(s, t)|2 ≤ (8π−

2

p + c)ε, which proves (2.19).
Furthermore, the first inequality in (2.20) follows immediately from (2.19).

The second inequality in (2.20) is obtained from the first one using Equa-
tion (2.7) and the fact that |vt|2 = ρ is bounded. �

Corollary 2.11. Let u be a solution of (2.7) with Ep(u) <∞ for some
p ∈ [2,∞). Then the convergence in (2.14) in the C0-topology implies the
convergence in the C1-topology.
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Lemma 2.12. Let Ω be a bounded domain in R2. For any integer k ≥ 2
and any c1 > 0 there exists ck = ck(c1,Ω) with the following significance. For
any solution u of (2.7) the following implication holds:

sup
R2

|∂su| ≤ c1 =⇒ ‖u‖Ck(Ω) ≤ ck.

The proof of this lemma relies on the local properties of solutions of
Floer’s equation and can be obtained along the same lines as the proof of
Lemma C.3 in [21] (in fact the argument simplifies as we do not need to
consider charts with Lagrangian boundary conditions). We omit the details.

Proposition 2.13. For any integer k ≥ 2 and any c1 > 0 there exists ck =
ck(c1) with the following significance. For any solution u of (2.7) the follow-
ing implication holds:

sup
R2

|∂su| ≤ c1 =⇒ ‖u‖Ck(R2) ≤ ck.

Proof. From Lemma 2.12 we obtain that there exists a constant ck such that

(2.23) ‖u‖Ck(Ω̄) ≤ ck,

where Ω = (0, 1)× (−ν − 2, ν + 2). This implies that estimate (2.23) is valid
for Ω = R× (−ν − 2, ν + 2) since Equation (2.7) is invariant with respect to
shifts in the s-variable. Applying Lemma 2.12 to Ω = (0, 1)× (ν + 1, ν + 2)
and observing that both J and vt depend neither on s nor on t provided
t ≥ ν + 1 we obtain that estimate (2.23) also holds for Ω = R× (ν + 1,+∞).
Similarly, estimate (2.23) is valid for Ω = R× (−ν − 1,−∞) as well. This
clearly implies the statement of the proposition. �

Theorem 2.14. Let u be a solution of (2.7),(2.14). Assume that for some
p ∈ [2,∞) there exists a constant Ēp such that Ep(u) ≤ Ēp. Then for any
integer k ≥ 0 there exists a constant ck > 0 such that

‖u‖Ck(R2) < ck.

Here constants ck depend on M,J, f, and Ēp but not on u.
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Proof. It follows from Proposition 2.10 that for any solution u of (2.7) with
Ep(u) <∞ we have

‖∇u‖L∞ = max
{

sup
R2

|∂su|, sup
R2

|∂tu|
}
<∞.

By the inequality (2.22) we obtain a uniform bound on ‖∂su‖L2(B1(s,t)), where
(s, t) ∈ R2 is arbitrary. This in turn implies that

c1 = sup
{
‖∇u‖L∞ | u solves (2.7),(2.14) and Ep(u) ≤ Ēp

}
<∞.

Indeed, assuming c1 =∞ a standard argument [22, p.135] shows that there
must be a non-constant holomorphic sphere in M with bounded energy. This
is impossible due to the exactness of ω.

The rest follows immediately from Proposition 2.13. �

Recalling Theorem 2.9 we obtain the following result.

Corollary 2.15. For any integer k ≥ 0 there exists a constant ck > 0 such
that for any solution u of (2.7)–(2.9) we have

‖u‖Ck(R2) < ck.

2.6. Asymptotic behaviour

Pick any smooth curve γ : R→M such that γ(t)→ m± as t→ ∓∞ and
denote

(2.24) σ(γ) = σν(γ) = γ̇ + vt(γ) ∈ Γ(γ∗TM).

Obviously, σ(γ) = 0 if and only if γ is a broken flow line of f . Consider the
linearisation of σ at the point γ:

Dγσ(η) = ∇t η +∇ηvt, η ∈ Γ(γ∗TM).

From now on we assume that all broken flow lines of f are generic. To
be more precise, we assume that the following hypothesis holds.

(H2) Nondegeneracy of broken flow lines. All solutions of (2.6) are nonde-
generate in the following sense: The operator

(2.25) Dγσ : W 1,2(γ∗TM) −→ L2(γ∗TM)

is an isomorphism.
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Remark 2.16. It is proved in Appendix B that hypothesis (H2) holds
provided the vanishing cycles corresponding to the segments z0z± intersect
transversely in M0.

Similarly, pick a smooth map u : R2 →M satisfying boundary condi-
tions (2.14) and denote Σ(u) = ∂su+ J

(
∂tu+ vt(u)

)
∈ Γ(u∗TM). Consider

the linearisation of Σ at the point u:

(2.26)
DuΣ(ξ) = ∇s ξ + J

(
∇t ξ +∇ξ vt

)
+∇ξJ(∂tu+ vt),

= ∇s ξ + J∇t ξ + cos θν∇ξ v1 − sin θν∇ξ v0 +∇ξJ(∂tu),

where ξ ∈ Γ(R2;u∗TM).

Remark 2.17. The maps σ and Σ can be viewed as sections of certain
Banach bundles (see pp.203 and 186 for details). However this is not needed
for the purposes of this subsection.

It is convenient to choose a unitary trivialization Ψ of u∗TM . Recall that
for each (s, t) ∈ R2 the map Ψ(s, t) : R2n → Tu(s,t)M is a linear isomorphism
of complex Hermitian vector spaces, where R2n is considered to be equipped
with the standard complex structure and the standard symplectic form:

J0 =

(
0 −1
1 0

)
, ω0(ξ, η) = ξtJ0η, ξ, η ∈ R2n.

Also denote by ψ± the restriction of Ψ to γ±.

Remark 2.18. One such trivialization Ψ can be constructed as follows.
Choose a basis of Tm−M and trivialise γ∗−TM with the help of the parallel
transport along γ−. Then trivialise u∗TM by doing parallel transport along
the curves βt(·) = u(·, t).

With the help of the trivialisations chosen above we can think of the
operators Dγ±σ and DuΣ as acting on vector-valued functions. More pre-
cisely, there exist matrix-valued functions S(s, t) and S±(t) such that

Ψ(s, t)
(
∂sξ + J0∂tξ + S(s, t)ξ

)
= DuΣ

(
Ψ(s, t)ξ

)
, ∀ξ ∈ C∞(R2;R2n);

ψ±(t)
(
η̇ − J0S±(t)η

)
= Dγ±σ

(
ψ±(t)η

)
, ∀η ∈ C∞(R;R2n).

Explicitly, matrices S and S± are given by the relations

Ψ(s, t)S(s, t) = ∇sΨ + J
(
∇tΨ +∇Ψv

t
)

+∇ΨJ(∂tu+ vt),(2.27)

ψ±(t)S±(t) = J
(
∇tψ± +∇ψ±vt

)
.(2.28)
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To simplify the notations, denote also by L and l± the operators representing
DuΣ and Dγ±σ with respect to the chosen trivialisation:

(2.29) L = ∂s + J0∂t + S(s, t), l± =
d

dt
− J0S±(t).

Lemma 2.19. Assume the following holds:

(i) S : R2 →M2n(R) is C∞-bounded2;

(ii) S(s, t) converges to S±(t) in the C0(R)-topology as s→ ∓∞;

(iii) The operators l± : W 1,2(R;R2n)→ L2(R;R2n) are invertible;

(iv) lim
s→±∞

sup
t
‖∂sS(s, t)‖ = 0.

Let ξ be a solution of the equation Lξ = 0. If ξ ∈ Lp(R2;R2n) for some p ∈
(1,+∞), then there exist positive constants C and δ such that

|ξ(s, t)| ≤ Ce−δ|s| for all (s, t) ∈ R2.

Proof. Let ξ ∈ Lp(R2;R2n) be a solution of the equation Lξ = 0. Since L is
C∞-bounded and uniformly elliptic, ξ belongs to W k,p̂(R2;R2n) for all k and
p̂ ∈ (1,+∞) [26]. In particular, ξ is smooth and for any s ∈ R the function
ξ(s, ·) belongs to W k,2(R;R2n) for all k. The rest of the proof is obtained by
applying similar arguments to those used in the proof of Lemma 2.11 in [23].
For the reader’s convenience we repeat the main steps here.

Define

χ(s) =
1

2

+∞∫
−∞

|ξ(s, t)|2dt.

Then there exists s0 � 1 such that for all s with |s| ≥ s0 we have

χ′′(s) =

+∞∫
−∞

(
|∂sξ|2 + 〈ξ, ∂2

ssξ〉
)
dt = 2

+∞∫
−∞

|∂sξ|2dt+

+∞∫
−∞

〈ξ, (∂sS)ξ〉 dt

≥ 2

+∞∫
−∞

|J0∂tξ + Sξ|2dt− ε
+∞∫
−∞

|ξ|2dt ≥ δ2

+∞∫
−∞

|ξ|2dt = δ2χ(s).

2this means that for any integers α, β ≥ 0 there exists Cα,β <∞ such that

supR2 |∂αs ∂
β
t S| ≤ Cα,β
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Here we have used the fact that the operator J0∂t + S(s, t) is invertible for
|s| ≥ s0 and also the following equality:

+∞∫
−∞

〈ξ, ∂t(J0∂sξ)〉 dt =

+∞∫
−∞

∂t〈ξ, J0∂sξ〉 dt−
+∞∫
−∞

〈∂tξ, J0∂sξ〉 dt

= 0−
+∞∫
−∞

〈J0∂sξ + J0Sξ, J0∂sξ〉 dt

= −
+∞∫
−∞

|∂sξ|2dt−
+∞∫
−∞

〈Sξ, ∂sξ〉 dt.

The inequality χ′′(s) ≥ δ2χ(s) implies χ(s) ≤ C1e
−δ|s|. On the other hand,

there exists a constant C2 such that for all solutions of the equation Lξ = 0
we have [23] the estimate

∆|ξ|2 ≥ −C2|ξ|2.

This implies the mean value inequality

|ξ(s, t)|2 ≤ C3

r2

∫
Br(s,t)

|ξ|2dsdt.

Taking into account the exponential decay of χ we obtain the statement of
this lemma from the last inequality. �

Lemma 2.20. Assume u is a solution of (2.7),(2.14). Then there exist
positive constants C± such that the estimates

‖S(s, t)− S±(t)‖ ≤ C±max
{
|∂su(s, t)|, d

(
u(s, t), γ±(t)

)}
(2.30)

hold for all t and all s such that ∓s ≥ 0.

Proof. With the help of Equations (2.5) and (2.7) we obtain∣∣Ψ(s, t)−1∂tu(s, t)− ψ−1
± (t)γ̇±(t)

∣∣
≤
∣∣Ψ(s, t)−1(∂tu(s, t) + vt(u(s, t))

∣∣+
∣∣Ψ(s, t)−1vt(u(s, t))− ψ−1

± (t)vt(γ±(t))
∣∣

≤ C̃±max
{
|∂su(s, t)|, d

(
u(s, t), γ±(t)

)}
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for some positive constants C̃± and for all t, s as in the statement of the
Lemma. Estimate (2.30) then follows from Formulae (2.27),(2.28), and the
above inequality. �

Theorem 2.21 (Exponential decay). Let u be a solution of (2.7),(2.14)
with Ep(u) <∞ for some p ∈ [2,∞). Then the following holds:

(i) ∂su ∈W k,p̂(R2;u∗TM) for all k and all p̂ ∈ (1,∞). In particular,
Ep̂(u) <∞ for all p̂ ∈ (1,∞).

(ii) There exist positive constants C, δ such that the inequality

|∂su(s, t)| ≤ Ce−δ|s|

holds for any (s, t) ∈ R2.

Proof. First observe that ∂su satisfies DuΣ(∂su) = 0 since Equation (2.7) is
translation-invariant with respect to the s-variable. Furthermore, we claim
that the operator L representing DuΣ in the trivialization Ψ is C∞-bounded.
Indeed, since u is C∞-bounded, so is S(s, t). Obviuosly, L is also uniformly
elliptic and therefore statement (i) follows by [26].

To prove (ii) it is enough to prove that the matrix-valued function S(s, t)
defined by (2.27) satisfies the hypotheses of Lemma 2.19. We have already
showed that S(s, t) is C∞-bounded. From Lemma 2.20 and Proposition 2.10
we obtain that hypothesis (ii) of Lemma 2.19 is satisfied. Furthermore,
hypothesis (iii) is satisfied, since l± represents Dγ±σ in the chosen trivi-
alization. Finally, by (i) and the Sobolev embedding theorems any solution
u of (2.7) with Ep(u) <∞ satisfies

lim
s→±∞

sup
t

(
|∇s ∂su|+ |∇t ∂su|

)
= 0 and sup

R2

|∇t ∂tu| <∞,

which implies that hypothesis (iv) of Lemma 2.19 is also satisfied. This
finishes the proof. �

Corollary 2.22. Let u be a solution of (2.7),(2.14) with Ep(u) <∞ for
some p ∈ [2,∞). Then

lim
t→±∞

∫ +∞

−∞
|∂su(s, t)| ds = 0, lim

s→±∞

∫ b

a
|∂su(s, t)| dt = 0,

i.e., u is a solution of (2.7)–(2.9).
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Proof. The statement follows from the Sobolev embedding theorems as ex-
plained on p. 159.

�

Corollary 2.23. For any solution u of (2.7)–(2.9) ∂su ∈W k,p(R2;u∗TM)
for all k and all p ∈ [1,∞). Moreover, for each k ≥ 0 and p ≥ 1 there exists
a constant Ck,p independent of u such that

‖∂su‖W k,p ≤ Ck,p.

Proof. First observe that by Theorem 2.9 ∂su belongs to L2(R2;u∗TM) and
‖∂su‖L2 is bounded by a constant independent of u.

As already mentioned in the proof of Theorem 2.21 the matrix-valued
function S(s, t) is C∞-bounded. Moreover, it follows from Corollary 2.15 that
the corresponding bounds can be chosen to be independent of u. Further-
more, the operator L is uniformly elliptic with the corresponding constant
also independent of u. For such an operator of order 1 we have the a priori
estimate

(2.31) ‖ξ‖W k,2 ≤ Ck
(
‖Lξ‖W k−1,2 + ‖ξ‖L2

)
, k ≥ 1,

where the constant Ck does not depend on u (this is seen by examining
explicit formulae for a parametrix of L).

Let ξ represent ∂su with respect to the trivialization Ψ. As explained
in the proof of Theorem 2.21, Lξ = 0. Combining this with (2.31) we obtain
the statement of the corollary for all k ≥ 1 and p = 2. This special case
implies in turn the statement of the corollary in general by the Sobolev
embedding theorems. �

2.7. Compactness

Proposition 2.24. Let u be a solution of (2.7) and (2.8) with Ep(u) <∞
for some p ∈ [2,∞). Then there exist solutions γ± of problem (2.5) such that

lim
s→±∞

u(s, t) = γ∓(t) and lim
s→±∞

∫ b

a
|∂su(s, t)| dt = 0,

where the limits on the left hand side are understood in the C0(R)-topology
and a ≤ b are arbitrary.

Proof. The proof consists of the following three steps.
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Step 1. Let βn ∈ C1(R;M) be an arbitrary sequence of curves such that
the following holds:

(i) There exists a compact subset K̂ ⊂M containing the images of all
curves βn;

(ii) lim
n→∞

sup
t∈R

∣∣β̇n + vt
∣∣ = 0;

(iii) βn(t)→ m∓ as t→ ±∞ uniformly with respect to n.

Then there exists a subsequence βnk converging in C0(R;M) to a solution
of (2.5).

Recall that the function ρ = |v0|2 = |vt|2 is bounded. Hence, it follows
from (ii) that the sequence βn is equicontinuous. By the Arzela-Ascoli theo-
rem there exists a subsequence βnk convergent on any finite interval to some
γ ∈ C0(R;M). Then γ ∈ C1(R;M) and γ̇ + vt = 0.

Furthermore, by (iii) for any ε > 0 there exits Tε > 0 such that for
all t ≥ Tε and all nk we have d(βnk(t),m−) ≤ ε. Then d(γ(t),m−) =
limk→∞ d(βnk(t),m−) ≤ ε provided t ≥ Tε. Hence limt→+∞ γ(t) = m− and
similarly limt→−∞ γ(t) = m+, i.e., γ is a solution of (2.5). Then

sup
t∈R

d(βnk(t), γ(t)) ≤ max

{
sup

t∈[−Tε,Tε]
d(βnk(t), γ(t)), 2ε

}
≤ 2ε

provided nk is large enough. This finishes the proof of Step 1.

Step 2. Let u be a solution of (2.7) and (2.8) with Ep(u) <∞ for some
p ∈ [2,∞). Then for any ε > 0 there exists σε > 0 such that

inf
γ∈Γ(m−;m+)

sup
t∈R

d
(
u(s, t), γ(t)

)
≤ ε provided |s| ≥ σε.

Assume the converse. Then there exists a sequence sn → +∞ such that
for βn(t) = u(sn, t) we have

(2.32) sup
t∈R

d
(
βn(t), γ(t)

)
≥ ε0 for all γ ∈ Γ(m−;m+).

By Theorem 2.7 and Proposition 2.10 the sequence βn satisfies the hypoth-
esis of Step 1 and hence has a convergent subsequence. But this contradicts
inequality (2.32).

Step 3. We prove the proposition.
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Let u satisfy the hypotheses of the Proposition. Since Γ(m−;m+) is
discrete, by Step 2 the family u(s, ·) converges to some γ± ∈ Γ(m−;m+) in
C0(R) as s→ ∓∞. The rest follows immediately from Proposition 2.10. �

Proposition 2.25. For any ε > 0 there exists T > 0 such that for all solu-
tions u of (2.7)–(2.9) the following holds:

(i)

∫
R×[T,+∞)

|∂su|2 dsdt < ε; (ii)

∫
R

|∂su(s, t)| ds < ε for all t ≥ T ;

(iii)

∫
R×[−∞,−T ]

|∂su|2 dsdt < ε; (iv)

∫
R

|∂su(s, t)| ds < ε for all t ≤ −T.

Proof. By Corollary 2.23 we have the inequality∫
R2

|∂su(s, t)| dsdt < C0,1.

This implies that for any ε > 0 and any T > 0 there exists τ ∈ [T, T +
ε−1C0,1] such that the estimate holds:

(2.33)

∫
R
|∂su(s, τ)| ds < ε.

Arguing like in the proof of the energy identity we obtain the equality∫
R×[τ,+∞)

|∂su|2 ds dt = I(τ)−
∫
R

λ
(
∂su(s, τ)

)
ds,

I(τ) =

+∞∫
τ

(
λ(γ̇+)− λ(γ̇−) + Im e−iθ(t)

(
f ◦ γ+ − f ◦ γ−

))
dt.

Pick any ε > 0 and choose T0 > 0 so large that |I(τ)| < ε for all τ ≥
T0. Then, as we have shown above, there exists τ ∈ [T0, T ] such that esti-
mate (2.33) holds, where T = T0 + ε−1C0,1. Hence, we obtain∫

R×[T,+∞)

|∂su|2 dsdt ≤
∫

R×[τ,+∞)

|∂su|2 dsdt

≤ |I(τ)|+ Λ

∫
R
|∂s(s, τ)| ds ≤ ε+ Λε,

where the constant Λ depends on λ only. This proves estimate (i).
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Let us prove (ii). We choose T > 0 so that (i) holds. Arguing like in the
proof of Corollary 2.23 for T ′ > T we obtain the inequality

‖∂su‖W k,p(R×[T ′,+∞)) ≤ C̃k,p ε,

where the constant C̃k,p does not depend on u. This in turn implies that there
exists a constant C̃ independent of u such that the inequality

∫
R |∂su(s, t)| ds

< C̃ε holds for all t ≥ T . This finishes the proof of (ii).
The remaining inequalities are proved in a similar manner. �

Theorem 2.26. Let uk ∈M(γ−; γ+) be any sequence. Then there exists a
subsequence (still denoted by uk) and subsequences sjk, j = 1, . . . , l, such that

uk(s+ sjk, t) converges with its derivatives uniformly on compact subsets of
R2 to uj ∈M(γj−1; γj), where γ0 = γ−, γ

l = γ+.

Proof. We follow the line of argument in [22, p.136]. Denote

d0 =
1

3
inf
{
d
(
γ(0), δ(0)

)
| γ, δ ∈M(m−;m+), γ 6= δ

}
.

For an arbitrary sequence uk ∈M(γ−; γ+) put

s1
k = sup{s ∈ R | d

(
uk(s, 0), γ−(0)

)
> d0 }.

Notice that by the definition of s1
k we have

(2.34) d
(
uk(s

1
k, 0), γ−(0)

)
= d0 and d

(
uk(s+ s1

k, 0), γ−(0)
)
≤ d0

for all s ≥ 0.
Since the sequence supR2{|∂suk|, |∂tuk|} is bounded, by [22, Lemma 5.2]

we obtain that the sequence uk(s+ s1
k, t) has a subsequence (still denoted by

the same letter) uniformly converging with its derivatives to a map u1 : R2 →
M on compact subsets of R2. Clearly, u1 is a solution of (2.7) with E2(u1) ≤
F(γ+)− F(γ−). Moreover, by Proposition 2.25 (ii) for any ε > 0 there exists
T > 0 such that for any a, b ∈ R, a < b we have

b∫
a

|∂su1(s, t)| ds = lim
k→∞

b∫
a

|∂suk(s+ s1
k, t)| ds ≤ ε =⇒

+∞∫
−∞

|∂su1(s, t)| ds ≤ ε
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provided t > T . This implies that condition (2.8) holds for u = u1. Then, by
Proposition 2.24 we obtain that there exist γ0, γ1 ∈M(m−;m+) such that

lim
s→+∞

u1(s, t) = γ0(t), lim
s→+∞

∫ b

a
|∂su1(s, t)| dt = 0,

lim
s→−∞

u1(s, t) = γ1(t), lim
s→−∞

∫ b

a
|∂su1(s, t)| dt = 0.

On the other hand, from (2.34) we obtain that d
(
u1(s, 0), γ−(0)

)
≤ d0 for

all s ≥ 0. Hence γ0 = γ−.
We are done if γ1 = γ+. If this is not the case we proceed by induction.

Having established the existence of the sequences sjk such that uk(s+ sjk, t)
converges to uj ∈M(γj−1, γj) for j = 1, . . . , q we choose s∗ < 0 such that
d
(
uq(s∗, 0), γq(0)

)
< d0. For k sufficiently large we then have d

(
uk(s

q
k +

s∗, 0), γq(0)
)
< d0. Define

sq+1
k = inf

{
s ≤ sqk + s∗ | d

(
uk(σ, 0), γq(0)

)
≤ d0 for s ≤ σ ≤ sqk + s∗

}
.

Passing to a subsequence if necessary we may assume that uk(s+ sq+1
k , t)

converges to uq+1 ∈M(γq, γq+1) with γq+1 6= γq. This finishes the induction
step. Finally, the process is finite, since for all q = 1, . . . , l we must have
F(γq−1) < F(γq). �

Corollary 2.27. The space

M̌(m−;m+) =
⋃

γ±∈M(m−;m+)

M(γ−; γ+)

is compact.

2.8. Fredholm property

Let

A =
∑
|α|≤m

aα(x)
∂

∂xα
, x ∈ Rn

be a uniformly elliptic C∞-bounded differential operator of order m, where
aα takes values in the space of l × l-matrices. Following [19] we say that
Ag =

∑
|α|≤m a

g
α(x) ∂

∂xα is a limit operator of A if for some sequence g : N→
Rn such that gj →∞ we have aα(x+ gj)→ agα(x) uniformly on all compact
subsets of Rn.
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The following result, which simplifies the arguments used in earlier ver-
sions of this paper, has been communicated to the author by V. Rabinovich.

Lemma 2.28. If A viewed as a map Wm,2(Rn;Rl)→ L2(Rn;Rl) is Fred-
holm, then A : W k+m,p(Rn;Rl)→W k,p(Rn;Rl) is Fredholm for all k ∈ R,
p > 1 and its index depends neither on k nor on p.

Proof. Let Ag be any limit operator of A. Then by Theorem 5.6 of [18]
(see also Theorem 2 of [19]) Ag : Wm,2(Rn;Rl)→ L2(Rn;Rl) is invertible.
Observe that Ag is a (pseudo)differential operator with the symbol from
Hörmander’s class Sm1,0. By [3, Theorem 3.2] the inverse (Ag)−1 is a pseudod-

ifferential operator with the symbol from S−m1,0 . Hence, (Ag)−1 : W k−m,2(Rn;

Rl)→W k,2(Rn;Rl) is bounded for any k ∈ R. Applying [18, Theorem 5.6]
again we obtain that A : W k+m,2(Rn;Rl)→W k,2(Rn;Rl) is Fredholm for
any k ∈ R.

For arbitrary k and p > 1 put k′ = min{k − 1, k − n
p + n

2 } to obtain the

embeddingsW k,p(Rn;Rl) ↪→W k′,2(Rn;Rl),W k+m,p(Rn;Rl) ↪→W k′+m,2(Rn;
Rl). We claim that A : W k+m,p(Rn;Rl)→W k,p(Rn;Rl) has a closed range.
Indeed, let ζn be any sequence from A

(
W k+m,p(Rn;Rl)

)
converging to ζ0 in

W k,p(Rn;Rl). Then ζn ∈ A
(
W k′+m,2(Rn;Rl)

)
converges to ζ0 in W k′,2(Rn;

Rl). Hence ζ0 = Aξ0 for some ξ0 ∈W k′+m,2(Rn;Rl). Since A is C∞-bounded
uniformly elliptic operator, ζ0 ∈W k,p(Rn;Rl) implies that ξ0 ∈W k+m,p(Rn;
Rl). This proves that A

(
W k+m,p(Rn;Rl)

)
is closed in W k,p(Rn;Rl).

Furthermore, C∞-boundedness and uniform ellipticity imply that if ξ ∈
W k,p(Rn;Rl) is in the kernel of A for some k and p, then ξ ∈W k,p(Rn;Rl) for
all k and p. In particular, for any k and p the dimension of ker

(
A : W k+m,p(Rn;

Rl)→W k,p(Rn;Rl)
)

is finite and depends neither on k nor on p. More-
over, applying similar arguments to the formal adjoint operator of A we
obtain that the dimension of coker

(
A : W k+m,p(Rn;Rl)→W k,p(Rn;Rl)

)
is

also finite and depends neither on k nor on p. �

In the lemma below we use the same notations as in Lemma 2.19.

Lemma 2.29. Assume that hypotheses (i)–(iii) of Lemma 2.19 as well as
the following holds:

(a) For each t ∈ R the matrix J0S±(t) is symmetric;

(b) S(s, t) converges to constant matrices H± in the C0-topology as t→
∓∞. Moreover,

H+ = lim
t→−∞

S+(t) = lim
t→−∞

S−(t), H− = lim
t→+∞

S+(t) = lim
t→+∞

S−(t)
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are symmetric matrices.

Then L : W k+1,p(R2;R2n)→W k,p(R2;R2n) is Fredholm for any k ∈ R, p >
1 and its index depends neither on k nor on p.

Proof. The proof consists of the following three steps.

Step 1. Consider the s-independent operators

L± = ∂s + J0∂t + S±(t).

Then L± : W 1,2(R2;R2n)→ L2(R2;R2n) are invertible.

First observe that since l± : W 1,2(R;R2n)→ L2(R;R2n) are isomorphisms
we have the estimates

(2.35) ‖η‖W 1,2 ≤ C±‖l±η‖L2 , for all η ∈W 1,2(R;R2n).

Let χ̂(σ) denote the Fourier transform of a function χ(s). Pick any ζ ∈
C∞(R2;R2n) with compact support and for any fixed t apply the Fourier
transform in the variable s to the equation L±(η) = ζ to obtain

iσ η̂(σ, t) + J0l±η̂(σ, t) = ζ̂(σ, t).

Observe that J0l± is a symmetric operator such that 0 does not belong to
the spectrum of J0l±. Hence, the above equation is solvable for any real σ.
Applying the inverse Fourier transform we obtain a solution η of the initial
equation L±(η) = ζ. Moreover, with the help of (2.35) an easy computation
yields the estimate ‖η‖W 1,2 ≤ C̃±‖ζ‖L2

. This implies that L± are isomor-
phisms.

Step 2. Consider the operators

K± = ∂s + J0∂t +H±

with constant coefficients. Then K± : W 1,2(R2;R2n)→ L2(R2;R2n) are invert-
ible.

Write J0K± = −∂t + J0∂s + J0H± and observe that the operators

k± = d
ds +H± : W 1,2(R;R2n)→ L2(R;R2n)

are isomorphisms. Indeed, any function satisfying k±η = 0 can be expressed
through exponential functions and therefore does not belong toW 1,2(R;R2n).
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Similarly, the cokernel of k± is also trivial. The rest of the proof of this step
is analogous to the proof of Step 1.

Step 3. We prove the lemma.

Clearly, any limit operator3 L0 = ∂s + J0∂t + S0(s, t) of L must be K±
or

Lτ± = ∂s + J0∂t + S±(t+ τ) = VτL±V−τ ,

where Vτ denotes the shift operator ξ(t) 7→ ξ(t+ τ). Since Vτ acts as an
isomorphism on W k,2(R2,R2n) for any k, the operator Lτ± : W 1,2(R2,R2n)→
L2(R2,R2n) is also an isomorphism. Hence, by [18, Theorem 5.6] we obtain
that L : W 1,2(R2,R2n)→ L2(R2,R2n) is Fredholm. Then the statement of
the lemma follows from Lemma 2.28. �

Theorem 2.30. For each solution u of (2.7)–(2.9) the map

DuΣ: W k+1,p(R2;u∗TM)→W k,p(R2;u∗TM)

is Fredholm for any k ∈ R, p > 1 and its index depends neither on k nor on
p.

Proof. Clearly, it is enough to check that the matrix-valued function S(s, t)
given by (2.27) satisfies the hypotheses of Lemma 2.29. The fact that (a)
holds can be checked by direct computation using (2.28) and is well known
[23]. To see that (b) holds, observe that vt = v0 for |t| large enough. It
follows that H± represents J∇v0 = ∇v1 at m±. Here we used the fact, that
J is integrable in a neighbourhood of m±. It remains to notice that ∇v1 is
the Hessian of f1 = Im f at m± and therefore is symmetric. �

To compute the index ofDuΣ we need some preparation. Since Ind (DuΣ)
depends neither on k nor on p, we can put k = 1, p = 2. With an arbitrary
C1-curve γ : R→M satisfying

(2.36) lim
t→±∞

γ(t) = m∓ and lim
t→±∞

γ̇(t) = 0

we associate a pair of Lagrangian subspaces in Tγ(0)M as follows. Consider
the operator

A : C∞(γ∗TM)→ C∞(γ∗TM), Aξ = J∇t ξ + S̃ξ,

3in the sense explained in the beginning of this subsection
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where S̃ is a zero-order operator, namely S̃ξ = ∇ξ ṽt + (∇ξJ)γ̇, ṽt = Jvt =
cos θν(t)v1 − sin θν(t)v0 (compare with (2.26)). Notice that lim

t→∓∞
S̃ = S̃± ∈

End(Tm±M) is the Hessian of ±Im (e−iθ±f) at m±. As we already observed
in the proof of Theorem 2.30 JS̃± is then the Hessian of ±Re (e−iθ±f) and
therefore is a non-degenerate self-adjoint endomorphism with vanishing sig-
nature (i.e., JS̃± has n positive and n negative eigenvalues).

Denote by ξv, v ∈ Tγ(0)M, a solution of the Cauchy problem Aξv =
0, ξv(0) = v and put

(2.37) Λ± = { v ∈ Tγ(0)M | lim
t→∓∞

ξv(t) = 0}.

Then Λ± are Lagrangian subspaces. Indeed, a straightforward computa-
tion shows that ω(ξv(t), ξw(t)) does not depend on t for any v,w ∈ Tγ(0)M.
Therefore, if v,w ∈ Λ+, then ω(v,w) = 0 since ω(ξv(t), ξw(t)) vanishes at
−∞. Besides, dim Λ+ = n since the signature of JS̃+ vanishes.

Remark 2.31. If v ∈ Λ±, then ξv decays exponentially fast at ∓∞ since
JŜ± is nondegenerate and self-adjoint. Hence, the kernel of the operator
A : W 1,2(γ∗TM)→ L2(γ∗TM) can be identified with Λ+ ∩ Λ−. In particu-
lar, kerA is nontrivial if and only if Λ+ ∩ Λ− 6= {0}.

Furthermore, pick any two curves γ± satisfying (2.36) such that the
associated pairs of Lagrangian subspaces are transverse. Let u : R2 →M
be any C1-map such that each curve γs(t) = u(s, t) also satisfies (2.36) and
γs → γ± as s→ ∓∞ in the C1-topology. With the help of the relative Maslov
index for Lagrangian pairs [20] we associate with the triple (γ+, γ−;u) an
integer µ(γ+, γ−;u), which is referred to as the relative Maslov index. To
define µ(γ+, γ−;u) for any fixed s denote by (Λ+(s),Λ−(s)) the pair of
Lagrangian subspaces of Tγs(0)M as in (2.37) with γ(t) = γs(t). Furthermore,
denote by L(TM) the Lagrangian Grassmannian bundle and put β0(s) =
γs(0) = u(s, 0). Then (Λ+,Λ−) can be viewed as a pair of sections of the
bundle β∗0L(TM) such that the subspaces Λ+(s) and Λ−(s) are transverse
for s = ±∞. Choose a unitary trivialization of β∗0TM and represent Λ± by
a pair of curves Λ±0 : R→ L(R2n). It is said that a crossing, i.e., a point s0

such that Λ+(s0) ∩ Λ−(s0) 6= 0, is regular if the associated (relative) crossing
form [20, p.834] Γ(Λ+,Λ−, s0) : Λ+(s0) ∩ Λ−(s0)→ R is nondegenerate. If all
crossings are regular, then the number

µ(γ+, γ−;u) = µ(Λ+
0 ,Λ

−
0 ) =

∑
s0 is crossing

sign Γ(Λ+,Λ−, s0) ∈ Z
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does not depend on the choice of the unitary trivialization, i.e. the relative
Maslov index is well-defined.

Proposition 2.32. With the same notations as in Theorem 2.30, the index
of DuΣ is given by

Ind(DuΣ) = µ(γ+, γ−;u).

Proof. We follow the line of argument in [23].
Choose a C1-small perturbation û of the map u with the following prop-

erties: DûΣ is Fredholm, Ind(DûΣ) = Ind(DuΣ), the Lagrangian pairs asso-
ciated with the curves û(±∞, t) are transverse, and there exists T > 0 such
that û(s,±t) = m∓ for all t ≥ T . Construct also a unitary trivialization of
û∗TM as described in Remark 2.18. Write DûΣ in the form

L(ξ) = ∂sξ +A(s)ξ, ξ : R2 → R2n,

where A(s)ξ = J0∂tξ + Ŝ(s, t)ξ. Since the limits of the matrix S(s, t) asso-
ciated with u are symmetric, up to a compact perturbation we can also
assume that matrix Ŝ(s, t) is symmetric for all (s, t). By the choice of û we
also have Ŝ(s,±t) = H∓ for t ≥ T , where H∓ represents the Hessian of Im f
at m∓.

Furthermore, denote µ0 = min{|µ| : ker(J0H± − µ) 6= 0 } > 0 and con-
sider A(s) as an unbounded operator in L2(R;R2n) with the domain W 1,2(R;
R2n). Then for all s ∈ R any point of the spectrum of A(s) from the inter-
val (−µ0, µ0) is an eigenvalue. Indeed, for any (s, µ) ∈ R× (−µ0, µ0) the
operator A(s)− µ : W 1,2(R;R2n)→ L2(R;R2n) is Fredholm, since J0H± − µ
is nondegenerate. Moreover, Ind(A(s)− µ) = IndA(s) = Ind(−J0A(s)) = 0
since the indices of −J0A(+∞) and Dγ−σ coincide. Hence, if µ is not an
eigenvalue of A(s), then A(s)− µ : W 1,2(R;R2n)→ L2(R;R2n) is bijective
and therefore µ belongs to the resolvent set of A(s).

From the above observation follows [1] that the index of L can be com-
puted with the help of the spectral flow of A(s). Namely, a point s0 is said
to be a regular crossing of the family A(s) if kerA(s0) 6= 0 and the crossing
form

Γ(A, s0)ξ = 〈ξ, (∂sA)ξ〉L2 = 〈ξ, ∂sS(s0, ·)ξ〉L2 , ξ ∈ kerA(s0)

is nondegenerate. Then, if A(s) has only regular intersection points, we have:
IndL =

∑
s0

sign Γ(A, s0), where the summation runs over all crossings s0.

It follows from Remark 2.31 that crossings of (Λ+
0 ,Λ

−
0 ) and A(·) coin-

cide. Therefore to complete the proof it suffices to show that under the
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natural identification Λ+
0 (s0) ∩ Λ−0 (s0) ∼= kerA(s0) the associated crossing

forms coincide at each crossing s0 (we can assume that only regular cross-
ings occur).

Let Ξ(s, t) be the solution operator of A(s), i.e., Ξ(s, t) is a square matrix
of dimension 2n satisfying

J0∂tΞ + S(s, t)Ξ = 0, Ξ(s, 0) = 1.

Since S(s, t) is symmetric, Ξ(s, t) ∈ Sp(2n;R) for all (s, t). From the equality

∂t(Ξ
TJ0∂sΞ) = −(ΞTSJ0)J0∂sΞ + ΞTJ0∂s(J0SΞ) = −ΞT∂sS Ξ

we obtain
〈
Ξξ0, ∂sSΞξ0

〉
= −∂t

〈
Ξξ0, J0∂sΞξ0

〉
= ∂t ω0

(
Ξξ0, ∂sΞξ0

)
, where

ξ0 ∈ R2n. Hence, for any crossing s0 and any ξ0 ∈ Λ+
0 (s0) ∩ Λ−0 (s0) we have:

Γ(A, s0)ξ0 =

∫ +∞

−∞

〈
Ξ(s0, t)ξ0, ∂sS(s0, t)Ξ(s0, t)ξ0

〉
dt(2.38)

= lim
t→+∞

ω0

(
Ξ(s0, t)ξ0, ∂sΞ(s0, t)ξ0

)
− lim
t→−∞

ω0

(
Ξ(s0, t)ξ0, ∂sΞ(s0, t)ξ0

)
.

On the other hand, for ξ0 as above and for all s from a sufficiently small
neighbourhood of s0 there exists ξ−(s) ∈ Λ−(s0) such that ξ0 + ξ−(s) ∈
Λ+(s), i.e.,

lim
t→+∞

Ξ(s0, t)ξ
−(s) = 0 and lim

t→−∞
Ξ(s, t)(ξ0 + ξ−(s)) = 0.

For t ≤ −T we must have Ξ(s, t)(ξ0 + ξ−(s)) =
∑n

j=1 cj(s)e
λjt, where λ1, . . . ,

λn are positive eigenvalues of the matrix J0H+. Hence,

∂sΞ(s0, t)ξ0 + Ξ(s0, t)∂sξ
−(s0)→ 0

as t→ −∞ and this in turn implies

ω0

(
ξ0, ∂sξ

−(s0)
)

= ω0

(
Ξ(s0, t)ξ0,Ξ(s0, t)∂sξ

−(s0)
)

(2.39)

= − lim
t→−∞

ω0

(
Ξ(s0, t)ξ0, ∂sΞ(s0, t)ξ0

)
.

Similarly, there also exists ξ+(s) ∈ Λ+(s0) for all s sufficiently close to s0

such that ξ0 + ξ+(s) ∈ Λ−(s). Arguing as above, wee see that

(2.40) ω0

(
ξ0, ∂sξ

+(s0)
)

= − lim
t→+∞

ω0

(
Ξ(s0, t)ξ0, ∂sΞ(s0, t)ξ0

)
.
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Recalling the definition of the crossing form and Theorem 1.1 of [20], we
obtain Γ(Λ+,Λ−, s0)ξ0 = ω0

(
ξ0, ∂sξ

−(s0)
)
− ω0

(
ξ0, ∂sξ

+(s0)
)
. Combining

this with (2.38)-(2.40) we finally obtain Γ(Λ+,Λ−, s0)ξ0 = Γ(A, s0)ξ0. This
finishes the proof. �

For any p > 2 consider the space

B =
{
u ∈W 1,p

loc (R2;M) | ∃ R > 0, ξ± ∈W 1,p(γ∗±TM) and

η± ∈W 1,p(R2;Tm±M) s.t. u = expγ± ξ±

for ∓ s > R and u = expm± η± for ∓ t > R
}
.

One can construct an atlas on B similarly to [11, Theorem 3]. Thus B is a
Banach manifold. Observe that for u ∈ B we have TuB = W 1,p(R2;u∗TM).

Let F → B be the vector bundle with the fiber Fu = Lp(R2;u∗TM).
Then the map Σ can be interpreted as a section of F . Clearly, any solution
of Σ(u) = 0 is a smooth map. By Corollary 2.22 the zero locus of Σ coincides
with M(γ−; γ+). Notice also that the covariant derivative of Σ at the point
u can be identified with the map

DuΣ: W 1,p(R2;u∗TM)→ Lp(R2;u∗TM),

which is Fredholm. We summarise these observations in the following propo-
sition.

Proposition 2.33. The zero locus of Σ ∈ Γ(B;F) is the space of solutions
of (2.7)–(2.9). Moreover, for each zero u the covariant derivative DuΣ is
Fredholm.

3. A gauge theory on 5-manifolds

Let E be a five-dimensional oriented Euclidean vector space with a preferred
vector v ∈ E of unit norm. Let η(·) = 〈v, ·〉 denote the corresponding 1-form
and ∗ the Hodge operator. Then the linear map

Tη : Λ2E∗ −→ Λ2E∗, ω 7→ ∗(ω ∧ η)

has three eigenvalues {−1, 0,+1} and the space Λ2E∗ decomposes as the
direct sum of the corresponding eigenspaces:

Λ2E∗ ∼= Λ2
−E
∗ ⊕ Λ2

0E
∗ ⊕ Λ2

+E
∗.
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Indeed, denote by H the orthogonal complement of v. Then Λ2E∗ ∼= Λ2H∗ ⊕
H∗ and one easily checks that the following subspaces Λ2

±H
∗ and H∗ are

eigenspaces of Tη, where Λ2
±H

∗ denote the eigenspaces of the 4-dimensional
Hodge star operator. In other words, Λ2

±E
∗ ∼= Λ2

±H
∗ and Λ2

0E
∗ ∼= H∗.

Identify the Clifford algebra of E with ΛE and recall the following
description of the Clifford multiplication

Cl : E∗ ⊗ ΛE∗ −→ ΛE∗, Cl = Cl′ + Cl′′,

Cl′ : E∗ ⊗ ΛpE∗ ∼= E ⊗ ΛpE∗
c−−→ Λp−1E∗, c(e⊗ ω) = −ıeω,

Cl′′ : E∗ ⊗ ΛpE∗
· ∧ ·−−−→ Λp+1E∗.

In particular, by restriction we get a map Cl′ : E∗ ⊗ Λ2
+E
∗ −→ E∗, which is

essentially the four-dimensional homomorphism H∗ ⊗ Λ2
+H

∗ −→ H∗.
Observe that Λ2

+H
∗ has a natural structure of a Lie algebra as a three-

dimensional oriented Euclidean vector space. For an arbitrary Lie alge-
bra g denote V = Λ2

+H
∗ ⊗ g and consider the map σ : V ⊗ V → V, σ =

1
2 [· , ·]Λ2

+H
∗ ⊗ [· , ·]g. Choosing a Lie algebra isomorphism Λ2

+H
∗ ∼= R3, for

ξ = e1 ⊗ ξ1 + e2 ⊗ ξ2 + e3 ⊗ ξ3 ∈ V ∼= R3 ⊗ g we obtain

σ(ξ, ξ) = e1 ⊗ [ξ2, ξ3] + e2 ⊗ [ξ3, ξ1] + e3 ⊗ [ξ1, ξ2].

Let (W 5, g) be an arbitrary oriented Riemannian five-manifold with
a preferred vector field v of pointwise unit norm. Denote η(·) = g(v, ·) ∈
Ω1(W ) and H = ker η ⊂ TW . As described above, we have the following
splittings:

Ω1(W ) = Ω1
h(W )⊕ Ω0(W )η, Ω1

h(W ) = Γ(H∗),
Ω2(W ) = Ω2

−(W )⊕ Ω2
0(W )⊕ Ω2

+(W ),

where Γ(H∗) is the space of sections of H∗. Let P →W be a principal
G-bundle, where G is a compact Lie group. Denote by A(P ) the space of
connections on P and by adP the adjoint bundle of Lie algebras. Consider
the following equations for a pair (A,B) ∈ A(P )× Ω2

+(adP ) = B:

(3.1) ıvFA − δ+
A B = 0, F+

A −∇
A
v B − σ(B,B) = 0,

where the operator δ+
A : Ω2

+(adP )→ Ω1
h(adP ) is defined by the composition

δ+
A : Γ(Λ2

+H∗ ⊗ adP )
∇LC,A−−−−−→ Γ(T ∗W ⊗ Λ2

+H∗ ⊗ adP )

Cl′⊗ id−−−−−→ Γ(H∗ ⊗ adP ).
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Here ∇LC,A denotes the tensor product of A and the connection on Λ2
+H∗

induced by the Levi-Civita connection (we do not assume that Λ2
+H∗ is

preserved by the Levi-Civita connection). It is convenient to define a map
Φ: B → Ω1

h(adP )× Ω2
+(adP ) by the left hand side of Equations (3.1).

Remark 3.1. Equations (3.1) were independently discovered by Witten [30]
from a different perspective. A partial case with B ≡ 0 has been studied by
Fan [10].

Remark 3.2. The total space of Λ2
+H →W is an eight-manifold equipped

with a natural Spin(7)-structure, which is induced by the Riemannian metric
and orientation on W . This Spin(7)-structure can be constructed using the
technique of [4]. Then, following the line of argument in [14], one can show
that solutions of Equations (3.1) correspond to Spin(7)-instantons on Λ2

+H
invariant along each fibre.

The gauge group G(P ) acts on the configuration space B on the right

(A,B) · g = (A · g, adg−1 B), g ∈ G(P ),

where g acts on the first component by the usual gauge transformation. The
infinitesimal action at a point (A,B) is given by the map

K : Ω0(adP ) −→ Ω1(adP )⊕ Ω2
+(adP ), ξ 7→

(
dAξ, [B, ξ]

)
.

Notice also that the map Φ is G(P )-equivariant.
A standard computation yields

δΦ(A,B)

(
α
β

)
=

(
ıv(dAα)− δ+

A β + α ·B
d+
Aα−∇Av β − [α(v), B]− 2σ(B, β)

)
, (α, β) ∈ T(A,B)B,

where the term α ·B ∈ Ω1
h(adP ) is constructed algebraically from α and B,

namely α ·B = Cl′ ⊗ [· , ·]g(α⊗B). Thus we get the deformation complex
at the point (A,B):

0→ Ω0(adP )
K−−→ Ω1(adP )⊕ Ω2

+(adP )(3.2)

δΦ−−−→ Ω1
h(adP )⊕ Ω2

+(adP )→ 0.

Lemma 3.3. Deformation complex (3.2) is elliptic.

The statement of this Lemma follows immediately from Remark 3.2.
Alternatively, one can consider Equations (3.1) on R5 and show that the
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symbol of K∗ + δΦ is modelled on the octonionic multiplication. We omit
the details.

4. Dimensional reductions

Before turning our attention to the dimensional reductions of Equations (3.1)
a little digression is in place. Suppose a Lie group G acts freely and iso-
metrically on a Riemannian manifold M . Identify a G-invariant function
f : M → R with a function f̂ : M/G → R. Then critical points of f̂ corre-
spond to orbits of solutions of the equation grad f = Kξ, where ξ ∈ Lie(G)
and Kξ is the Killing vector field corresponding to ξ. But the invariance of
f implies 〈grad f,Kξ′〉 = 0 for any ξ′ ∈ Lie(G) so that we necessarily have

grad f = 0 for any point on M projecting to a critical point of f̂ .
Similarly, a curve m : R→M projects to an antigradient flow of f̂ if and

only if there exists ξ : R→ Lie(G) such that

(4.1) ṁ = −grad f +Kξ.

The Lie group {g : R→ G} acts on solutions of Equation (4.1) and the orbits
are in bijective correspondence with the antigradient flow lines of f̂ . Fur-
thermore, we may consider only those solutions, which are horizontal with
respect to the natural connection. This gives a bijection between ordinary
flow lines of f modulo G and flow lines of f̂ .

The upshot is that G-invariance of f implies that Equation (4.1) is equiv-
alent to the ordinary antigradient flow equation of f . It will be important to
switch freely between these two approaches in an infinite-dimensional setup.
The reasons will be clear below.

4.1. Dimension four

Let X be a closed oriented Riemannian four-manifold. Below we consider
Equations (3.1) on (W, v) = (X × Rt, ∂∂t) endowed with the product metric.

Denote by pr : X × R→ X the canonical projection and set P = pr∗PX ,
where PX → X is a principal G-bundle. Think of B ∈ Ω2

+(X × R; pr∗adPX)
as a map b : R→ Ω2

+(X; adPX). Similarly A ∈ A(pr∗PX) can be seen as
a map (a, c) : R→ A(PX)× Ω0(adPX), where c is the Higgs field. Then
Equations (3.1) are easily seen to become

(4.2)
ȧ = δ+

a b+ dac,

ḃ = F+
a − σ(b, b)− [c, b],
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where δ+
a = (d+

a )∗. These equations turn out to be the antigradient flow
equations of some function. Indeed, consider the function

(4.3) h : Λ2
+H

∗ ⊗ g→ R, h(w) =
1

3
〈w, σ(w)〉.

Choose an isomorphism Λ2
+H

∗ ∼= R3 and write w =
∑3

i=1 ei ⊗ ξi. Then we
have h(w) = 〈ξ1, [ξ2, ξ3]〉 and therefore gradh(w) = σ(w). Since h is equiv-
ariant with respect to both SO(3) and G, we obtain a well-defined map
Ω2

+(adPX)→ C∞(X) denoted by the same letter.
Denote B = A(P )× Ω2

+(adP )/G(P ). As usual, B∗ ⊂ B denotes the quo-
tient space of irreducible points. The negative L2-gradient of the function

U : B → R, U(a, b) = −〈F+
a , b〉L2 +

∫
X
h(b) volX

is (δ+
a b, F

+
a − σ(b, b)). Hence, assuming there are no reducible solutions,

Equations (4.2) represent the antigradient flow equations of the function
Û : B∗ → R.

We summarize our computations in the following proposition.

Proposition 4.1. If there are no reducible solutions, Equations (4.2) rep-
resent antigradient flow equations of the function Û : B∗ → R. �

The critical points of the function U are solutions of the Vafa-Witten
equations [27]:

δ+
a b+ dac = 0,

F+
a − σ(b, b) + [b, c] = 0.

These equations are elliptic and the expected dimension of the moduli space
is zero.

As we have seen, the G(P )-invariance of U implies that for each irre-
ducible solution of the Vafa-Witten equations we have (dac, [b, c]) = 0, i.e.
in the absence of reducible solutions the above equations are equivalent to

(4.4)
δ+
a b = 0,

F+
a − σ(b, b) = 0.

Denote by W+ and s the self-dual Weyl tensor and scalar curvature of
X respectively. Then the Weitzenböck formula

2d+
a δ

+
a = (∇a)∗∇a − 2W+ +

s

3
+ σ(F+

a , ·),
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yields

4‖δ+
a b‖2 + ‖F+

a − σ(b, b)‖2 = 2‖∇ab‖2 + ‖F+
a ‖2 + ‖σ(b, b)‖2

− 4〈W+(b), b〉+
2

3
〈sb, b〉.

Proposition 4.2 ([27]). If the operator −W+ + 1
6s is pointwise non-

negative definite on Λ2
+T
∗X, then for any irreducible solution (a, b) of the

Vafa-Witten equations the following holds: F+
a = 0, ∇ab = 0. �

4.2. Dimension three

In this section various forms of Equations (3.1) are studied on Y 3 × R2,
where Y is a closed oriented Riemannian three-manifold.

Just like in the instanton Floer theory, consider solutions of (4.4) on
X = Y × R. Assuming a is in a temporal gauge, we obtain the following
system of equations

(4.5)

ȧ = −∗(Fa − 1
2 [b ∧ b]),

ḃ = ∗dab,
0 = δab,

where (a, b) is interpreted as a curve in A(P )× Ω1(adP ) ∼= T ∗A(P ), ∗ stays
for the Hodge operator on Y , and [· ∧ ·] is a combination of wedging and
Lie brackets. Here we have also used the isomorphism Γ(π∗T ∗Y ) ∼= Ω2

+(Y ×
R), ω 7→ 1

2(∗ω + ds ∧ ω), where π : Y × R→ Y is the projection.
Observe that T ∗A(P ) ∼= Ω1(adP )⊗ C is a Hermitian affine space, hence

a (flat) Kähler manifold. The action of the gauge group is Hamiltonian and
the momentum map is given by

(4.6) µ : T ∗A(P )→ Ω0(adP ), µ(a, b) = δab.

Denote N = µ−1(0) = {(a, b) | δab = 0} ⊂ T ∗A(P ). It follows from the very
definition of the momentum map that dµ is surjective at (a, b) if and only
if the gauge group acts locally freely at (a, b). Therefore, the subset N∗

consisting of all irreducible points of N is a submanifold. Hence, N∗/G(P )
is a Kähler manifold.

Consider the map

f0 : A(P )× Ω1(adP )→ R/Z, f0(a, b) = 8π2ϑ(a)− 1
2〈b, ∗dab〉L2 ,
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where ϑ is the Chern-Simons function. It is easy to check that the vector field
grad f0 =

(
∗(Fa − 1

2 [b ∧ b]
)
, − ∗ dab) is tangent to N∗ at each point. There-

fore critical points of the restriction of f0 to N∗ are solutions of Hitchin’s
equations4 [15]:

(4.7)

Fa − 1
2 [b ∧ b] = 0,

dab = 0,

δab = 0.

More accurately, in the same manner as described at the beginning of this
section, orbits of irreducible solutions to (4.7) correspond to critical points
of f̂0 : N∗/G(P )→ R. Similarly, orbits of (4.5) correspond to the flow lines
of f̂0.

Remark 4.3. Denote by Gc the complexified Lie group and by P = P ×G
Gc the principal Gc-bundle associated with P . Any connection on P can be
written in the form A = a+ ib, where (a, b) ∈ A(P )× Ω1(adP ). Conversely,
any pair (a, b) combines to a Gc connection A. Then A is flat if and only
if the first two equations of (4.7) are satisfied. The last equation, i.e. the
vanishing of the moment map, has been analyzed in [6, 7].

Remark 4.4. Hitchin’s equations can be obtained from SU(3) anti-self-
duality equations along similar lines to those outlined in Remark 3.2. Namely,
the total space of T ∗Y is equipped with an SU(3)-structure. Then SU(3)-
instantons invariant along each fiber are solutions of Hitchin’s equations.

We can also consider Equations (3.1) on W = Rt × Y × Rs with v =
− ∂
∂s . Write A = a+ e ds+ c dt, where a is a family of connections on P → Y .

Consider first only t-invariant solutions with c = e = 0. A computation yields
the following system:

(4.8)

ȧ = − ∗dab,
ḃ = − ∗(Fa − 1

2 [b ∧ b]),
0 = δab,

where the dots denote the derivative with respect to the variable s. Equa-
tions (4.8) and (4.5) appeared in [16] for the first time and were further
studied in [28, 29].

4Hitchin studied these equations in the case of two-dimensional base manifolds.
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Consider the function

f1 : T ∗A(P )→ R, f1(a, b) = 〈Fa, ∗b〉L2 −
∫
Y
h(b) volY ,

where h : T ∗Y ⊗ adP → R is defined just like (4.3). Since grad f1 = (∗dab,
∗(Fa − 1

2 [b ∧ b])) is tangent to N∗ at each point we conclude that the mod-
uli of solutions to Equations (4.8) correspond to antigradient flow lines of
f̂1 : N∗/G(P )→ R.

Let us examine the functions f0 and f1 more closely. Since grad f1 =
Jgrad f0, where J is the constant complex structure on T ∗A(P ) ∼= Ω1(adP )
⊗ C, we obtain that the function f = f0 + if1 is J-holomorphic. Writing
(a, b) as a Gc-connection A as in Remark 4.3 it is easy to check that f is the
complex Chern-Simons functional

CS(A) =
1

2

∫
Y

(
〈A ∧ dA〉+ 1

3〈A ∧ [A ∧A]〉
)
.

Here we interpret A as a gC-valued 1-form on Y , and 〈·, ·〉 : gC ⊗ gC → C
denotes the C-linear extension of the scalar product on g.

Furthermore, let us consider Equations (3.1) on (W, v) = (Y × R2
s,t ,

∂
∂t ).

The standard reduction procedure yields the following system

(4.9)

∂sa− ∂tb+ [b, c]− dae+ ∗
(
Fa − 1

2 [b ∧ b]
)

= 0,

∂ta+ ∂sb− [b, e]− dac− ∗dab = 0,

∂te− ∂sc+ [c, e] + δab = 0.

Here a is a connection on the pull-back of P = PY to Y × R2, b is a 1-
form and c, e are 0-forms with values in the adjoint bundle of Lie alge-
bras. It is easy to check that these equations are symplectic vortex equa-
tions [5] with a Hamiltonian perturbation for the following data: The target
space is T ∗A(P ) equipped with the Hamiltonian action of the gauge group
G(P ), u = (a, b) : R2 → T ∗A(P ), A = e ds+ c dt, and the perturbation is
σ = 1

2 Im (fdz) = 1
2(f0 dt+ f1 ds).

Notice also that we are free to rotate the coordinates s and t or, equiv-
alently, to rotate the initial vector field v = ∂t. This is in turn equivalent
to the choice of the Hamiltonian perturbation σ = 1

2 Im (eiθfdz) and the
resulting equations are

(4.10)

∂sa− ∂tb+ [b, c]− dae− sin θ ∗dab+ cos θ ∗
(
Fa − 1

2 [b ∧ b]
)

= 0,

∂ta+ ∂sb− [b, e]− dac− cos θ ∗dab− sin θ ∗
(
Fa − 1

2 [b ∧ b]
)

= 0,

∂te− ∂sc+ [c, e] + δab = 0.
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Remark 4.5. The above description of Equations (4.10) is analogous to
the interpretation of the anti-self-duality equations on C× Σ as symplec-
tic vortex equations [5]. A new phenomenon here is the appearance of the
Hamiltonian perturbation. Notice also that the adiabatic limit procedure as
in [5, 13] for Equations (4.10) yields (at least formally) holomorphic planes
to T ∗A(P )//G(P ) with a Hamiltonian perturbation.

For solutions of Equations (4.10) invariant with respect to s we obtain
the following system

(4.11)

ȧ = cos θ ∗dab+ sin θ ∗
(
Fa − 1

2 [b ∧ b]
)

+ dac+ [b, e],

ḃ = − sin θ ∗dab+ cos θ ∗
(
Fa − 1

2 [b ∧ b]
)
− dae+ [b, c],

ė = −δab+ [e, c].

Notice that if c = e = 0 we obtain Equations (4.5) and (4.8) for θ = −π/2
and θ = π, respectively.

It will be helpful in the sequel to consider Equations (4.11) from a more
abstract point of view. Namely, let (M,ω) be a symplectic manifold. Assume
a Lie group G acts on M in a Hamiltonian manner. Denote by µ : M → G =
Lie(G) the corresponding moment map. Let f : M → C be a G-invariant J-
holomorphic function, where J is a G-invariant almost complex structure on
M . Consider the following equations for a curve (γ, ξ, η) in M ×G×G:

(4.12)
γ̇ = sin θ grad f0(γ) + cos θ grad f1(γ) +Kξ(γ)− JKη(γ),

η̇ = −µ(γ)− [ξ, η],

where K is the Killing vector field. Clearly, we obtain Equations (4.11)
from (4.12) putting M = T ∗A(P ), γ = (a, b), η = e, and ξ = c.

Notice that as explained in the beginning of Section 4 the G-invariance
of f implies that for any ξ ∈ G we have 〈grad fi,Kξ〉 = 0, i = 0, 1. Then,
using the definition of the moment map, for any solution of (4.12) we obtain

(4.13)

d

dt
〈µ(γ), η〉 = ω(Kη, γ̇) + 〈µ, η̇〉

= g(JKη,Kξ)− g(JKη, JKη)− 〈µ, µ〉 − 〈µ, [ξ, η]〉.

Furthermore, observe that for any ζ, ρ ∈ G the following equalities hold:

d
(
ω(Kζ ,Kρ)

)
= d ıKρ(ıKζω) = LKρ(ıKζω)− ıKρd(ıKζω) = ıK[ρ,ζ]

ω

= −d 〈µ, [ζ, ρ]〉.
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Here the second equality follows from Cartan’s equation. Hence, 〈µ, [ζ, ρ]〉 =
−ω(Kζ ,Kρ) = g(Kζ , JKρ). Therefore, by (4.13) we have

(4.14)
d

dt
〈µ(γ), η〉 = −g(Kη,Kη)− 〈µ, µ〉 ≤ 0.

Hence, for any solution of Equations (4.12) the function 〈µ(γ), η〉 is non-
increasing.

We will be interested below in solutions (γ, ξ, η) of (4.12) satisfying the
condition

(4.15) (γ, ξ, η) −→ (m±, 0, 0) as t→ ∓∞,

where m± are critical points of f . For any such solution 〈µ(γ), η〉 vanishes
at ±∞ and hence vanishes everywhere. Then from (4.14) we conclude that
η and µ ◦ γ vanish everywhere, i.e. under condition (4.15) Equations (4.12)
reduce to

γ̇ = sin θ grad f0 + cos θ grad f1 +Kξ, µ(γ) = 0.

From the discussion at the beginning of Section 4 we obtain that these
equations are equivalent to

(4.16) γ̇ = sin θ grad f0 + cos θ grad f1, µ(γ) = 0.

Summing up, we have that under condition (4.15) systems (4.12) and (4.16)
are equivalent. Applying this conclusion in the case M = T ∗A(P ) we obtain
that for θ = −π/2 Equations (4.11) together with the condition

(a, b, c, e) −→ (a±, b±, 0, 0) as t→ ±∞,

where (a±, b±) are solutions of Hitchin’s equations, are equivalent to Equa-
tions (4.5) together with (a, b)→ (a±, b±) as t→ ∓∞. The upshot is that
while Equations (4.5) and (4.11) with θ = −π/2 are essentially equivalent,
only the latter are elliptic (this is similar to the fact that on compact three-
manifolds the equation FA = 0 (flat SU(2)-connections) is essentially equiv-
alent to the Bogomolny equations, however only the Bogomolny equations
are elliptic).

Remark 4.6. One obtains an elliptic form of Hitchin’s equations on a three
manifold by considering solutions of Equations (3.1) on (Y × R2, ∂t) invari-
ant along R2. The corresponding equations are easily obtained from (4.9).
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5. Invariants

In this section we outline constructions of invariants assigned to five-, four-,
and three- manifolds arising from gauge theories described in the preceding
sections. It is clear that the constructions described below need an appropri-
ate analytic justification. We postpone this to subsequent papers and restrict
ourselves to some examples. Throughout this section the coefficient ring is
Z/2Z in all constructions for the sake of simplicity.

The expected dimension of the moduli space of solutions of Eqs. (3.1)
for closed five-manifolds is zero. Therefore, assuming compactness and trans-
versality, an algebraic count associates a number to closed five-manifolds.
More accurately, this number depends on the isomorphism class of P and
on the class of the vector field v in π0(X0(W )), where X0(W ) denotes the
space of all vector fields on W without zeros.

Let us now consider the dimension four. The corresponding construc-
tion is very similar to the instanton Floer theory, so we are very brief here.
Assume the moduli space of solutions to the Vafa-Witten equations MVW

is compact and zero-dimensional (for the case dimMVW > 0 see example
below). The index of the Hessian of U on X4 × S1 vanishes and therefore the
relative Morse index of a pair of critical points is an integer.5 The Floer dif-
ferential counts the moduli space of finite-energy solutions of Equations (3.1)
on X × R converging to solutions of the Vafa-Witten equations at ±∞. As
a result, for a smooth four-manifold equipped with a principal G-bundle
Floer-type homology groups can conjecturally be constructed.

Example 5.1. Let X be a Kähler surface with a non-negative scalar curva-
ture. Then Proposition 4.2 applies and, therefore, MVW =Masd assuming
all asd connections are irreducible and non-degenerate. If dimMasd > 0 the
function U is not Morse but rather Morse-Bott. Then choosing a suitable
perturbation, which is essentially a Morse function ϕ on Masd, one obtains
the Morse-Witten complex of ϕ. The details can be found for instance in [2].
In other words, the corresponding Floer homology groups are homology
groups ofMasd. Notice that this agrees perfectly with the Vafa-Witten the-
ory: The Vafa-Witten invariant, which counts solutions of the Vafa-Witten
equations, is the Euler characteristic ofMasd provided the only solutions of
the Vafa-Witten equations are anti-self-dual instantons.

5In general, there is no a distinguished critical point as in the SU(2)-instanton
Floer theory, so that we are left with the relative grading only.
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It is worth pointing out that the above reasoning is valid ifMasd admits
a compactification, which is a manifold. Notice that the Euler character-
istic of Masd in [27] is taken as the Euler characteristic of the Gieseker
compactification.

Furthermore, let us consider dimension three. Let (Y, g) be a closed
oriented Riemannian three-manifold. Pick a nontrivial principal G-bundle
P → Y and assume that all solutions of Hitchin’s equations are irreducible
(thus we exclude the case G = SU(2)) and the moduli space is finite, say
{A1, . . . ,Ak}. Recall that this is the critical set of the complex Chern-Simons
functional and therefore we can conjecturally construct a corresponding col-
lection of k Fukaya-Seidel A∞-categories6 Aj(Y ) as described in Section 2.2.

Thus, the objects of Aj(Y ) are classes of solutions Al of Hitchin’s equa-
tions. For ease of exposition we assume that Re CS(A1) < · · · < Re CS(Ak),
where Re CS(Al) is understood to take values in [0, 1). Recall that for any
pair A± ∈ {A1, . . . ,Ak}, A− < A+, the space hom(A−,A+) is generated by
the broken flow lines of the complex Chern-Simons functional connecting
A− with A+. More precisely, as described in Remark 2.5, we consider only
those broken flow lines γ for which the image of CS ◦ γ does not intersect
the set

(
Re CS(Aj),Re CS(Aj+1)

)
× R. Recall also that the flow lines of the

complex Chern-Simons functional can conveniently be described as moduli
of solutions of Equations (4.11) satisfying the asymptotic conditions

(5.1) (a, b, c, e) −→ (a0
±, b

0
±, 0, 0) as t→ ∓∞,

where (a0
±, b

0
±) are solutions of Hitchin’s equations representing A±.

Furthermore, the Floer differential µ1 : hom(A−,A+)→ hom(A−,A+)
is obtained by counting moduli of finite-energy pseudoholomorphic planes
with a Hamiltonian perturbation satisfying suitable conditions at infinity. In
our case, by Remark 4.5 these pseudoholomorphic planes can (formally) be
interpreted as solutions of Equations (4.10), which are in turn interpreted
as solutions of Equations (3.1) on W = Y × R2.

Summing up, choose any admissible pair B± of gauge equivalence classes
of finite-energy solutions of Equations (4.11) and (5.1). Then define the
map µ1 by counting moduli of solutions to Equations (3.1) on (W, v) =
(Y × R2, cos θ ∂t + sin θ ∂s) with the following boundary conditions

(a, b, c, e)→ (a±(t), b±(t), 0, 0) as s→ ∓∞,
(a, b, c, e)→ (a0

±, b
0
±, 0, 0) as t→ ∓∞,

6Aj(Y ) will also depend on the metric as well as on the choice of P .



i
i

“7-347” — 2015/2/2 — 11:51 — page 198 — #48 i
i

i
i

i
i

198 Andriy Haydys

where (a±(t), b±(t)) represents the class B±.
To define the map µ2, one considers finite-energy solutions of Equa-

tions (3.1) onW = Y × Ω satisfying appropriate boundary conditions, where
Ω is as shown in Fig.1. The maps µd for d ≥ 3 are defined similarly and con-
jecturally the whole collection {µd} combines to an A∞-structure.

Notice that the change of orientation on Y is equivalent to multiplication
of f by −1 and hence does not affect Aj(Y ). On the other hand, Aj(Y )
depends on the Riemannian metric g. However, as explained in [24] the
derived category Db(Aj(Y )) should be independent of g.

Appendix A. Pseudoholomorphic strips and
pseudoholomorphic planes

In this appendix we outline (without proof) a connection between pseudo-
holomorphic planes with a Hamiltonian perturbation and pseudoholomor-
phic strips with Lagrangian boundary conditions. To do so, pick a pair
(m−,m+) of critical points of f and assume that the interval z−z+ does
not contain any other critical point, where z± = f(m±). It is convenient to
choose the midpoint of z−z+ as the basepoint. We deviate here from our
convention on the choice of the basepoint for the convenience of exposition
only, namely to avoid differential equations with non-smooth coefficients.

Replacing f with e−iθ±(f − z0) if necessary we may assume that z± =
±T, T > 0 and hence z0 = 0, θ0(t) ≡ 0. We establish a relation between solu-
tions of the equations

(A.1)
∂su+ J(∂tu+ v0) = 0, u : R2

s,t →M,

lim
t→±∞

u(s, t) = m∓, lim
s→±∞

u(s, t) = γ∓(t)

and pseudoholomorphic strips in two steps. In the first step we relate solu-
tions of Equations (A.1) to solutions of the problem

(A.2)
∂su0 + J

(
∂τu0 +

1

‖v0‖2
v0

)
= 0, (s, τ) ∈ R× (−T, T ),

u0(s,±T ) = m∓, lim
s→±∞

u0(s, τ) = γ0,±(τ),

where γ0,± satisfies the equations

(A.3)

d

dτ
γ0 +

1

‖v0‖2
v0 = 0, τ ∈ (−T, T ),

γ0(±T ) = m∓.
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In the second step we show how to relate solutions of (A.2) to pseudoholo-
morphic strips.

Step 1. It is an elementary fact that Equations (A.3) are equivalent to the
antigradient flow equations for f0. Nevertheless it is instructive to examine
this equivalence more closely. Consider the family of equations

(A.4)
γ̇λ +

1

λ+ (1− λ)‖v0‖2
v0 = 0, γλ : R→M,

lim
t→±∞

γλ(t) = m∓,

where λ ∈ (0, 1], and fix a parametrization by the condition f0 ◦ γλ(0) = 0.
Pick any solution γ1 of Equations (A.4) for λ = 1, i.e. an antigradient flow
line of f0, and consider the following family of diffeomorphisms

τλ : R→ R, τλ(t) = λt+ (1− λ)f0 ◦ γ1(t), λ ∈ (0, 1].

It is straightforward to check that γλ = γ1 ◦ τ
−1
λ is a solution of (A.4), and

this establishes a bijection between antigradient flow lines of f0 and solutions
of (A.4). This correspondence is also valid for λ = 0, but in this case τ0 maps
R bijectively onto the interval (−T, T ). If we extend γ0 by the constant values
outside (−T, T ), then γλ converges to γ0 in C0(R;M) as λ→ 0 (in fact, in
any reasonable topology).

With this understood, consider the family of equations

(A.5)
∂suλ + J

(
∂tuλ +

1

λ+ (1− λ)‖v0‖2
v0

)
= 0, (s, t) ∈ R2

lim
t→±∞

uλ(s, t) = m∓, lim
s→±∞

uλ(s, t) = γλ,±(t).

For these equations explicit correspondence between solutions for different
values of λ is not available anymore, but it is reasonable to expect that uλ
converges to a solution of (A.2) as λ→ 0.

Step 2. Let L±(τ) ⊂ f−1(τ), τ ∈ (−T, T ), denote the vanishing cycle of
m± associated with the segment [τ,±T ]. Consider the family of equations

∂suµ + J
(
∂tuµ +

1− µ
‖v0‖2

v0

)
= 0, (s, τ) ∈ R× (−T, T )

uµ(s,±T ) ∈ L±(±(1− µ)T ), lim
s→±∞

uµ(s, τ) = γ0,±((1− µ)τ)

with µ ∈ [0, 1]. Clearly, for µ = 0 we obtain Equations (A.2), whereas for
µ = 1 we have holomorphic strips as in the classical definition of the Floer
differential. Notice that the images of such holomorphic strips lie in the fiber
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of f . This follows from the J-holomorphic property of f and the maximum
principle (see also Remark A.1 for more details).

Remark A.1. Pick a solution u0 of Equations (A.2) and denote f ◦ u0 =
ϕ+ iψ. It follows from the holomorphicity of f that ϕ and ψ satisfy the
inhomogeneous Cauchy-Riemann equations

∂sϕ− ∂τψ = 0, ∂sψ + ∂τϕ+ 1 = 0

and therefore both functions are harmonic. Moreover, the holomorphicity
of f also implies that f1 ◦ γ0,±(τ) is constant it τ . Since f1 ◦ γ±(±T ) =
f1(m±) = 0, f1 ◦ γ0,± vanishes everywhere. We conclude that ψ vanishes as
τ → ±T and as s→ ±∞ and thus vanishes everywhere. Therefore ϕ(s, τ) =
−τ . We see that unlike pseudoholomorphic strips, images of solutions of (A.2)
do not lie in a fixed fiber of f , but rather we have u0(s, τ) ∈ f−1(−τ).

Notice also that at the first glance Equation (A.2) has singularities.
Namely, if a solution u0 hits a critical point of f at a single point (s0, τ0),
then ϕ and ψ are harmonic in R× (−T, T ) \ {(s0, τ0)} and continuous at
(s0, τ0). Hence the singularity is removable and the above argument shows
that the image of f ◦ u0 is the segment (−T, T ). Since by assumption the
segment (−T, T ) does not contain any critical values, we conclude that a
priori a solution of (A.2) cannot hit a critical point of f in an interior point.

Appendix B. On broken flow lines

In this appendix missing details on broken flow lines are provided. We use
notations introduced in Subsections 2.2 and 2.3.

Lemma B.1. Suppose the closed domain G bounded by the triangle z−z0z+

contains no critical values of f other than z±. Denote by ` the curve z−z0 ∪
z0z+. Then for any ε > 0 there exists ν0 > 0 such that for all broken flow
lines γν of f connecting m− and m+ and all t ∈ R we have

(B.1) d
(
f ◦ γν(t), `

)
< ε provided ν ≤ ν0.

Proof. The lemma is proved in three steps.

Step 1. For any broken flow line γν the image of the curve f ◦ γν : R→ C
is contained in G.

From (2.6) we have d
dt Im f ◦ γν(t) = − sin θν(t)ρ ◦ γν ≤ 0 for t ≤ 0. Since

limt→−∞ f ◦ γν(t) = z+ we conclude that Im f ◦ γν(t) ≤ Im z+ = ζ for all
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t ≤ 0. Similarly, recalling (2.13) we obtain Im f ◦ γν(t) ≤ Im z− = ζ for all
t ≥ 0. Hence, the image of the curve f ◦ γν lies in the half-plane, which is
bounded by the straight line through z− and z+ and contains z0. Arguing
along similar lines, one also obtains that the image of f ◦ γν is contained in
the half-plane bounded by the straight line through z± and z0 and containing
z∓.

Step 2. For any ε > 0 there exist Tε > 0 and ν0 = ν0(ε) > 0 such that
f ◦ γν(±t) ∈ Bε(z∓) for all t ≥ Tε and all ν ≤ ν0.

We prove that f ◦ γν(t) ∈ Bε(z−) for all t ≥ Tε and all ν ≤ ν0. The rest
can be proved similarly.

For an arbitrary ε > 0 denote

ρε = inf
{
ρ(m) | f(m) ∈ G, Im f(m) ≤ ζ − ε

}
> 0,

Tε = 1 +
1 + ζ

ρε sin θ−
, ν0 = T−1

ε .

We claim that Im f ◦ γν(Tε) > ζ − ε for any ν ≤ ν0. Indeed, assume this is
not the case, i.e. there exists ν ≤ ν0 such that Im f ◦ γν(Tε) ≤ ζ − ε. Then
for any t ∈ [1, Tε] we have Im f ◦ γν(t) ≤ ζ − ε since the function Im f ◦ γν(t)
is monotone for t ≥ 0 as indicated in the proof of Step 1. Hence,

ζ ≥ Im
(
f ◦ γν(Tε)− f ◦ γν(1)

)
= sin θ−

∫ Tε

1
ρ ◦ γν(t) dt

≥ sin θ−ρε(Tε − 1) ≥ 1 + ζ.

This contradiction proves the inequality Im f ◦ γν(Tε) > ζ − ε, which in turn
implies that Im f ◦ γν(t) > ζ − ε for all t ≥ Tε and all ν ≤ ν0. Arguing along
similar lines and redenoting Tε, ν0 if necessary one also obtains that the
inequality Im

(
e−iθ+f ◦ γν(t)

)
≥ Re (e−iθ+z−)− ε holds for all t ≥ Tε and all

ν ≤ ν0. This implies Step 2.

Step 3. We prove the lemma.

Pick any ε > 0. Then by Step 2 there exist Tε > 0 and ν0 ≤ T−1
ε such that∣∣f ◦ γν(t)− z−

∣∣< ε holds for all t ≥ Tε provided ν ≤ ν0. Since for t ∈ [ν, ν−1]
we have that f ◦ γν(t) lies on a straight line parallel to the straight line
through z0 and z−, we obtain that inequality (B.1) holds for all t ≥ ν. Using
similar arguments one shows that inequality (B.1) also holds for t ≤ −ν.
Furthermore, the length of the curve f ◦ γν(t), t ∈ [−ν, ν], is bounded by
2
√
ρ̄ν, where ρ̄ = sup{ρ(m) | m ∈M}. Redenoting ν0 if necessary we obtain

that inequality (B.1) holds for t ∈ [−ν, ν] as well. �
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Proof of Proposition 2.6. The proof consists of the following four steps

Step 1. For any ε > 0 there exists ν0 > 0 such that d(γν(t),m−) < ε for
all ν ≤ ν0, t ≥ ν−1 + 1, and γν ∈ Γν(m−,m+).

From the equality d
dtRe (f ◦ γν(t)) = −|γ̇ν(t)|2, which is valid for all t ≥

ν−1 + 1, we obtain

(B.2)

∫ ∞
ν−1+1

|γ̇ν(t)|2 dt = Re (f ◦ γν(ν−1 + 1))− Re z−

Hence, the map βν(t) = γν(ν−1 + 1 + t) belongs to W 1,2(R+;M). Moreover,
by Step 2 in the proof of Lemma B.1 there exists ν0 = ν0(ε) such that
‖βν‖W 1,2 < ε for all ν ≤ ν0. Hence, Step 1 follows from the Sobolev embed-
ding W 1,2(R+;M) ↪→ C0(R+;M).

Step 2. For any ε > 0 there exists ν0 = ν0(ε) > 0 such that |γ̇ν(t)| < ε
for all ν ≤ ν0, t ∈ [ν−1, ν−1 + 1], and γν ∈ Γν(m−,m+).

By choosing local coordinates we can identify a neighbourhood of m−
with R2n. Since m− is a nondegenerate critical point of f0 = Re f , we can
assume that f0 is a quadratic function in the local representation. Hence
there exist positive constants C and δ such that the inequality ρ(x) ≤ C2|x|2
holds whenever |x| ≤ δ. Here | · | is the standard Euclidean norm on R2n.
Hence,

(B.3) |γ̇ν |2 = ρ(γν) ≤ C2|γν |2

provided |γν | ≤ δ. Therefore, for any τ ≥ 0 we have

|γν(ν−1 + τ)| =
∣∣γν(ν−1 + 1)−

∫ ν−1+1

ν−1+τ
γ̇ν(t) dt

∣∣(B.4)

≤ |γν(ν−1 + 1)|+ C

∫ ν−1+1

ν−1+τ
|γν(t)| dt

provided |γν(t)| < δ for all t ∈ [ν−1 + τ, ν−1 + 1].
For any ε > 0 such that ε/C < δ by Step 1 we can choose ν0 > 0 so small

that the inequality

|γν(ν−1 + 1)| < e−Cε

C
< δ

holds for all ν ≤ ν0 and γν ∈ Γν(m−,m+). In particular, (B.4) holds for all
τ sufficiently close to 1. By the Gronwall-Bellman inequality we obtain

(B.5) |γν(ν−1 + τ)| ≤ |γν(ν−1 + τ)|eC(1−τ) < ε/C



i
i

“7-347” — 2015/2/2 — 11:51 — page 203 — #53 i
i

i
i

i
i

Fukaya-Seidel category and gauge theory 203

for all τ ∈ [0, 1] sufficiently close to 1. This implies in fact that (B.5) holds
for all τ ∈ [0, 1]. Then Step 2 follows by (B.3).

Step 3. For any ε > 0 there exists Tε > 0 and ν0 ≤ T−1
ε such that d(γν(t),

m−) < ε for all ν ≤ ν0, t ≥ Tε, and γν ∈ Γν(m−,m+).

Let Tε be as in Step 2 in the proof of Lemma B.1. From the equality
d
dtRe

(
e−iθ−f ◦ γν(t)

)
= |γ̇ν(t)|2, which is valid for all t ∈ [ν, ν−1], we obtain∫ ν−1

Tε

|γ̇ν(t)|2 dt =
∣∣∣Re

(
eiθ−f ◦ γν(ν−1)

)
− Re

(
eiθ−f ◦ γν(Tε)

)∣∣∣ ≤ 2ε

By (B.2) and Step 2 we obtain∫ ∞
Tε

|γ̇ν |2 dt =

∫ ν−1

Tε

|γ̇ν |2 dt+

∫ ν−1+1

ν−1

|γ̇ν |2 dt+

∫ ∞
ν−1+1

|γ̇ν |2 dt

≤ 2ε+ ε2 + ε.

Step 3 follows from the embedding W 1,2(R+;M) ↪→ C0(R+;M).

Step 4. We prove the proposition.

Since ρ is bounded on M , we obtain that |γ̇j |2 ≤ sup ρ <∞. Then with
the help of the Ascoli-Arzela theorem we can find a subsequence γjk , which
converges to some γ0 ∈ C0(R;M) on each compact interval. Then γ0 ∈
C1(R \ {0};M) and satisfies γ̇0 + cos θ0 v0 + sin θ0 v1 = 0. By Lemma B.1
the image of f ◦ γ0 is contained in ` = z−z0z+. Hence, limt→±∞ γ0(t) must be
a critical point of the vector field cos θ∓v0 + sin θ∓v1. Hence, limt→±∞ γ0(t) =
m∓, i.e. γ0 is a solution of (2.5).

Choose any ε > 0 sufficiently small. By Step 3 there exist Tε > 0 and
Nε > 0 such that

(B.6) d(γjk(t), γ0(t)) < ε

provided t ≥ Tε and k ≥ Nε. Arguing similarly, we also obtain that (B.6)
holds for t ≤ −Tε (possibly after increasing Tε). Since γjk converges on
[−Tε, Tε] we can find N ′ε ≥ Nε such that (B.6) also holds for t ∈ [−Tε, Tε]
provided jk ≥ N ′ε. This finishes the proof. �

Introduce the Banach manifold

W 1,2
m−;m+

= { γ ∈W 1,2(R;M) | lim
t→±∞

γ(t) = m∓}
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and the vector bundle E →W 1,2
m−;m+ , whose fiber at γ is the Hilbert space

L2(γ∗TM). The map σν given by (2.24) can be interpreted as a section of
E . Similarly, the map (2.25) can be interpreted as the covariant derivative
of σν . Then σν is a Fredholm section [22] with vanishing index, since the
Morse indices of m+ and m− are equal. Here m± is regarded as a critical
point of Re f . Clearly, σ−1

ν (0) = Γν(m−;m+).

Lemma B.2. Let L± be the vanishing cycle corresponding to the segment
z±z0. If L+ and L− intersect transversely in f−1(0), then there exists ν0 > 0
such that σν intersects the zero section transversely for all ν ∈ (0, ν0). More-
over there exists a natural bijective correspondence between Γν(m−;m+) and
Γ0(m−;m+) provided ν ∈ (0, ν0).

Proof. Let U+ denote the unstable manifold of m+ regarded as a critical
point of Re (e−iθ+f). Similarly, let S− denote the stable manifold of m−
regarded as a critical point of Re (e−iθ−f).

Pick a point m ∈ L− ∩ L+
∼= S− ∩ U+ and observe that S− and U+ are

the Lagrangian thimbles of m− and m+ associated with the segments z0z−
and z0z+, respectively. Here z0 is the origin. Then the hypothesis of the
lemma implies that S− and U+ intersect transversally at m.

Let γ0 be the solution of (2.5) corresponding to m. Denote by Dγ0σ0

the linearization of σ0 at γ0. As we have already remarked above, Dγ0σ0 :
W 1,2(γ∗0TM)→ L2(γ∗0TM) is a Fredholm operator of index 0. Moreover, it
can be shown in the similar manner as in the proof of Theorem 3.3 in [22] that
dim cokerDγ0σ0 = codim(TmS− + TmU+). Therefore dim cokerDγ0σ0 = 0
and hence dim kerDγ0σ0 = 0. Thus we conclude that σ0 intersects the zero-
section transversely.

It follows from Proposition 2.6 that there exists ν0 > 0 such that
each solution of the equation σν(γν) = 0, ν ∈ (0, ν0) is contained in a C0-
neighbourhood U(γ0) of some γ0 ∈ σ−1

0 (0). Notice that the linearization of
σν at γν can be written in the form

Dγνσν(ξ) = ∇γ̇νξ + cos θν∇ξv0 + sin θν∇ξv1

= cos θν
(
∇ξv0 −∇v0ξ

)
+ sin θν

(
∇ξv1 −∇v1ξ

)
.

where ξ ∈W 1,2(γ∗νTM). Hence, redenoting ν0 if necessary, we can assume
that the linearization of σν is non-degenerate at each γν ∈ Γν(m−;m+) con-
tained in

⋃
γ0
U(γ0) for ν ∈ (0, ν0), since #σ−1

0 (0) = #L− ∩ L+ <∞. Thus
σν intersects the zero-section transversely provided ν ≤ ν0.

Consider σν as a section of π∗E , where π : W 1,2
m−;m+ × Rν → Rν is the

canonical projection. Then σν is continuous and satisfies the hypothesis of



i
i

“7-347” — 2015/2/2 — 11:51 — page 205 — #55 i
i

i
i

i
i

Fukaya-Seidel category and gauge theory 205

the implicit function theorem. Therefore, {(γ, ν) | σν(γ) = 0, ν ∈ [0, ν0)} is
homeomorphic to σ−1

0 (0)× [0, ν0). This establishes the bijective correspon-
dence between Γ0(m−;m+) and Γν(m−;m+). �

Corollary B.3. If L+ and L− intersect transversely in f−1(0), then there
exists ν0 > 0 such that hypothesis (H2) holds provided ν ≤ ν0.
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1 (Nantes, 1991).

[27] C. Vafa and E. Witten, A strong coupling test of S-duality. Nuclear
Phys. B, 431(1-2):3–77, 1994.

[28] E. Witten, Analytic continuation of Chern-Simons theory. In Chern-
Simons gauge theory: 20 years after, volume 50 of AMS/IP Stud. Adv.
Math., pages 347–446. Amer. Math. Soc., Providence, RI, 2011.

[29] E. Witten, A new look at the path integral of quantum mechanics. In
Surveys in differential geometry. Volume XV. Perspectives in mathe-
matics and physics, volume 15 of Surv. Differ. Geom., pages 345–419.
Int. Press, Somerville, MA, 2011.

[30] E. Witten, Fivebranes and knots. Quantum Topology, 3(1):1–137, 2012.

Department of Mathematics, University Of Bielefeld

Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: haydys@math.uni-bielefeld.de

Received October 9, 2012

Accepted August 23, 2013



i
i

“7-347” — 2015/2/2 — 11:51 — page 208 — #58 i
i

i
i

i
i


	Introduction
	Fukaya-Seidel categories of symplectic Lefschetz fibrations
	Symplectic Lefschetz fibrations
	Outline of the construction
	A priori C0-estimates
	The action functional and the energy identity
	A priory C-estimates
	Asymptotic behaviour
	Compactness
	Fredholm property

	A gauge theory on 5-manifolds
	Dimensional reductions
	Dimension four
	Dimension three

	Invariants
	Appendix Pseudoholomorphic strips and pseudoholomorphic planes
	Appendix On broken flow lines
	Acknowledgements
	References

