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THE CALABI INVARIANT FOR SOME GROUPS
OF HOMEOMORPHISMS

Vincent Humilière

We show that the Calabi homomorphism extends to some groups of
homeomorphisms on exact symplectic manifolds. The proof is based on
the uniqueness of the generating Hamiltonian (proved by Viterbo) of
continuous Hamiltonian isotopies (introduced by Oh and Muller).

1. Introduction

1.1. The Calabi homomorphism. Let (M,ω) be a symplectic manifold,
supposed to be exact, that is ω = dλ for some one-form λ called Liouville
form. Equivalently, this also means that there exists a vector field X such
that the Lie derivative satisfies: LXω = ω. The vector field X is called
the Liouville vector field and is related to the one-form λ by the relation
ιXω = λ. For instance, cotangent bundles are exact symplectic manifolds.

Thanks to the work of Banyaga [1, 2], the algebraic structure of the group
Hamc(M,ω) of smooth compactly supported Hamiltonian diffeomorphisms
of (M,ω) is quite well understood: there exists a group homomorphism,
defined by Calabi [3]

Cal : Hamc(M,ω) → R,

whose kernel ker(Cal) is a simple group.
The Calabi homomorphism is defined as follows. Let φ ∈ Hamc(M,ω) and

let H be a compactly supported Hamiltonian function generating φ, i.e., a
smooth function [0, 1] ×M → R such that:

• φ is the time one map of the flow (φt
H)t∈[0,1] of the only time-dependent

vector field XH satisfying at any time t ∈ [0, 1],

ιXH(t,·)ω = dH(t, ·),
• there exists a compact set in M that contains all the supports of the

functions Ht = H(t, ·), for t ∈ [0, 1].
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Then, by definition,

(1.1) Cal(φ) =
∫ 1

0

∫
M
H(t, x)ωddt,

where d is half the dimension of M . This expression does not depend on the
choice of the generating function H, and gives a group homomorphism.

1.2. Question and results. We consider the following question.

Question 1.1. To which groups of homeomorphisms does the Calabi homo-
morphism extend?

Note that it is known (see, e.g., [5]) that the Calabi homomorphism does
not behave continuously with respect to the C0-topology. For instance, one
can consider the following example.

Example 1.1. Let φ ∈ Hamc(R2, rdr∧dθ), and consider the sequence (φn)
in Hamc(R2, rdr ∧ dθ) given by

φn(r, θ) =
1
n
φn4

(nr, θ).

This sequence converges in the C0-sense to Id, but one can easily check that
its Calabi invariant remains constant.

Let us consider the group G of all homeomorphisms φ such that (on some
interval where it is well-defined) the isotopy t �→ [μt, φ] is a C0-Hamiltonian
isotopy (in the sense of [11], see Section 2.1 for the precise definition of G).
Here, μt denotes the flow generated by the Liouville vector field X, and
[μt, φ] = μt ◦ φ ◦ μ−1

t ◦ φ−1. We will prove the following extension result for
the Calabi invariant.

Theorem 1.1. The Calabi homomorphism extends to a group homomor-
phism G→ R.

Let us now consider the special case where (M,ω) is the standard
symplectic vector space (R2d, ω0 =

∑d
i=1 dpi ∧ dqi), where we denote by

(q1, . . . , qd, p1, . . . , pd) the coordinates in R
2d. In this case, we can show that

G has an interesting subgroup.

Definition 1.1. We denote by Bilip(R2d, ω0) the identity component of the
group of compactly supported bilipschitz symplectic homeomorphisms.

Remark 1.1. Since Lipschitz maps are almost everywhere differentiable,
the pull-back of a differential form by a bilipschitz map is well defined as a
differential form with L∞ coefficients. Therefore, as in the smooth case, a
bilipschitz homeomorphism φ of M is symplectic if φ∗ω = ω.

Note that a bilipschitz homeomorphism which is the C0-limit of smooth
symplectomorphisms is symplectic in this sense. This follows from the
Gromov–Eliashberg rigidity theorem (see, e.g., [9, p. 59]).
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Our result is then the following.

Theorem 1.2. The following inclusions hold:

Ham(R2d, ω0) ⊂ Bilip(R2d, ω0) ⊂ G.

The inclusion Ham(R2d, ω0) ⊂ Bilip(R2d, ω0) is obvious. The proof of the
other inclusion will be made in two steps. First, we will show that elements of
Bilip(R2d, ω0) close to the identity admit generating functions of class C1.
Second, we will remark that such generating functions allow to construct
C0-Hamiltonian isotopies, which will imply that those elements are in G.

We believe that Theorem 1.2 and its proof can be adapted to general exact
symplectic manifolds. For the sake of simplicity we state it only in R

2d.

Remark 1.2. In the special case of the (two-dimensional) open disk, the
fact that the Calabi homomorphism extends to Bilip(R2d, ω0) was already
proved by Häıssinsky [6].1 His methods are completely different.

Let us also mention that Gambaudo and Ghys have proved that two dif-
feomorphisms of the disk that are conjugated by an area preserving home-
omorphism have the same Calabi invariant [5].

1.3. Motivation. Our motivation for this work comes from two distinct
problems. The first one is the following:

Question 1.2 (Fathi [4]). Is the group Homeoc(D2, area) of compactly sup-
ported area preserving homeomorphisms of the disk a simple group?

Several non-trivial normal subgroups of Homeoc(D2, area) have been
defined by Ghys [2], Oh–Muller [12] and recently by Le Roux [8]. But so
far, no one has been able to prove that any of them is a proper subgroup.

Our study is inspired by the work of Muller and Oh. They introduced on
any symplectic manifold (M,ω) a group denoted Hameo(M,ω), whose ele-
ments are homeomorphisms called hameomorphisms (as the contraction of
“Hamiltonian homeomorphisms”). This group contains all compactly sup-
ported Hamiltonian diffeomorphisms and, in the case of the disk, forms
a normal subgroup of Homeoc(D2, area). Fathi noticed that if one could
extend the Calabi homomorphism to the group of hameomorphisms, then
it would be necessarily a proper subgroup, and Homeoc(D2, area) would not
be simple.

In the present paper, we propose a different approach: instead of con-
structing a group which is known to be normal but on which it is unknown

1Area preserving quasiconformal maps of the plane are bilipschitz. Therefore,
Häıssinsky’s result is precisely the fact that the Calabi homomorphism extends to
Bilip(R2d, ω0).
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whether the Calabi homomorphism extends, we construct a group (namely
G) to which the Calabi invariant extends but for which it is unknown
whether it is normal.

Another motivation is a very natural general problem: how can one
generalize Hamiltonian dynamics in a non-smooth context? or (less opti-
mistic) which properties of Hamiltonian maps can be extended? The present
paper concentrates on a particular aspect: the Calabi homomorphism.

Our interest in the group Bilip(R2d, ω0) comes from the fact that it gives
a large family of examples of elements of G, but also from the fact that it
is a quite natural generalization of the Hamiltonian group, which could be
considered to study the extension of other aspects of Hamiltonian dynamics.

Several other possible groups generalizing the Hamiltonian group have
already been considered in literature. The group Hameo(M,ω) mentioned
above is one of them, another has been studied by Humiliere [7]. But this
direction of research is still to be developed.

2. The group G and the Calabi invariant

2.1. The group G. To define the group G we first need the following
notion.

Definition 2.1 (Oh–Muller [12]). A C0-Hamiltonian isotopy is a path
(φt)t∈[0,δ] of homeomorphisms of M for which there exist a compact set K
and a sequence of smooth Hamiltonian functions Hn on M with support in
K, such that

• (Hn) converges to some continuous function H : [0, δ] ×M → R in
the C0-sense,

• (φt
Hn

) converges to φt in the C0-sense, uniformly in t ∈ [0, δ].

The function H is called a C0-Hamiltonian function generating (φt).

Remark 2.1. The elements of C0-Hamiltonian isotopies are symplectic
homeomorphisms, i.e., homeomorphisms which are the C0 limit of a sequence
of symplectic diffeomorphisms supported in a common compact set.

It is not difficult to check that if (φt) and (ψt) are two C0-Hamiltonian iso-
topies generated by F and G, then ((φt)−1) and (φt◦ψt) are C0-Hamiltonian
isotopies generated by −F (t, (φt)−1(x)) and F (t, x) +G(t, φt(x)), and that
if f is any symplectic homeomorphism, (f−1 ◦ φt ◦ f) is a C0-Hamiltonian
isotopy generated by F (t, f(x)). This means that the computations are the
same as in the smooth case.

The main result concerning C0-Hamiltonian isotopies is:

Theorem 2.1 (Viterbo [13]). A given C0-Hamiltonian isotopy is generated
by a unique C0-Hamiltonian function.
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This theorem is the only non-trivial result needed in this paper. Its proof
needs at some point a (hard!) rigidity result in symplectic topology due to
Gromov.

Definition 2.2. We denote by G the set of all compactly supported
symplectic homeomorphisms φ for which there exists some δ > 0 small
enough, such that the isotopy ([μt, φ])t∈[0,δ] is a C0-Hamiltonian isotopy.

Remark 2.2. As in the introduction, μt(x) denotes the flow (when it is
defined) of the Liouville vector field X, at time t and point x ∈ M . Note
that it satisfies μ∗tω = etω.

Let φ be a compactly supported homeomorphism of M . Then there exists
a real number δ > 0, such that for any t ∈ [0, δ], μt and (μt)−1 are well
defined on the support of φ. Thus, the conjugation μt◦φ◦μ−1

t is well defined
on μt(Supp(φ)). In the complement of this set, it is the identity where it is
defined. Therefore, we can extend it to a well-defined homeomorphism still
denoted μt ◦ φ ◦ μ−1

t just by setting it to equal the identity where it is
not defined.

Clearly, G contains Hamc(M,ω).

Proposition 2.1. The set G is a group. Moreover, if the first cohomology
group H1(M,R) vanishes, G does not depend on the choice of the Liouville
vector field.

Proof. Let φ, ψ ∈ G. For δ small enough ([μt, φ])t∈[0,δ] and ([μt, ψ])t∈[0,δ] are
C0-Hamiltonian isotopies. Then, note that

[μt, φ ◦ ψ] = [μt, φ] ◦ (φ ◦ [μt, ψ] ◦ φ−1),

and

[μt, φ
−1] = φ−1 ◦ [μt, φ]−1 ◦ φ.

We conclude with Remark 2.1 that G is a group.
Suppose now that H1(M,R) = 0, and that μ′t is the flow of another

Liouville vector field. Then, ηt = μ′t ◦ μ−1
t is a smooth symplectic isotopy

which is Hamiltonian since H1(M,R) = 0. The Hamiltonian generating (ηt)
is not compactly supported but Remark 2.1 still applies to the identity

(2.1) [μ′t, φ] = ηt ◦ [μt, φ] ◦ (φ ◦ η−1
t ◦ φ−1),

showing that G would be the same if it was defined with another Liouville
vector field. �

2.2. Examples: fibered rotation in R
2. In this section, we give a suffi-

cient condition for a fibered rotation of R
2 to be in G.
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By definition, a fibered rotation is an homeomorphism φ of R
2 described

in polar coordinates (r, θ) by the formula

φ(r, θ) = (r, θ + ρ(r)),

for some continuous angular function ρ : (0,+∞) → R with bounded sup-
port. It is easily checked that any fibered rotation lies in the identity compo-
nent of the group of compactly supported area preserving homeomorphism
of R

2.
We consider μt the Liouville flow given by μt(r, θ) = (et/2r, θ). Its com-

mutator with a fibered rotation is given by

[μt, φ](r, θ) = (r, θ − ρ(r) + ρ(e−t/2r)).

If φ is moreover a diffeomorphism, the generating Hamiltonian of the isotopy
t �→ [μt, φ] is

H(t, r, θ) =
1
2
rρ(e−t/2r) − 1

2

∫ r

0
ρ(e−t/2s) ds.

Now suppose that ρ is a continuous and integrable angular function, such
that rρ(r) converges to 0 when r tends to 0. Suppose also that ρk is a
sequence of smooth angular functions with bounded support and satisfying
ρk(r) = ρ(1/k) for r � 1/k and |ρk(r) − ρ(r)| � 1/k for r > 1/k. Then, the
associated sequence of fibered rotations (φk) converges in the C0-sense to φ,
and the sequence of Hamiltonians (Hk) generating the isotopies t �→ [μt, φk]
also C0-converges.

As a consequence, any fibered rotation associated to an integrable angular
function ρ such that rρ(r) r→0−→ 0, belongs to G.

2.3. Extension of the Calabi homomorphism. In this section, we prove
that the Calabi homomorphism extends to G. Let us first give a new formula
for the Calabi invariant, for which we need to choose a Liouville form instead
of choosing an isotopy.

Lemma 2.1. Let φ ∈ Hamc(M,ω) and let Hλ,φ be the generating Hamil-
tonian function of the smooth Hamiltonian isotopy ([μt, φ]). Then,

Cal(φ) =
1

d+ 1

∫
M
Hλ,φ(0, x)ωd.

Proof. First note that if φ is the time one map of some Hamiltonian function
H, and if we suppose μδ ◦φ◦μ−1

δ to be well defined, then it can be generated
by the Hamiltonian function eδH ◦μ−1

δ . After an easy change of variables in
equation (1.1), one obtain

Cal(μδ ◦ φ ◦ μ−1
δ ) = e(d+1)δCal(φ),

where d is half the dimension of M . Thus,

Cal([μδ, φ]) = (e(d+1)δ − 1)Cal(φ).
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Hence, applying formula (1.1) to Hλ,φ,

Cal(φ) =
1

e(d+1)δ − 1

∫ δ

0

∫
M
Hλ,φ(t, x)ωddt.

Now, letting δ converge to 0, we obtain the desired formula. �
Once this formula obtained, extending the Calabi homomorphism to G is

very easy, even though it relies on the “hard symplectic topology” uniqueness
Theorem 2.1.

Proof. Let φ ∈ G and let H be the unique C0-Hamiltonian function gener-
ating ([μt, φ])t∈[0,δ] for some small δ. We set

C̃al(φ) =
1

d+ 1

∫
M
H(0, x)ωn.

By Lemma 2.1, C̃al coincide with Cal on Hamc(M,ω). Moreover using
Remark 2.1 and the formulas in the proof of Proposition 2.1, one checks
easily that C̃al : G→ R is a group homomorphism. �
Remark 2.3. If H1(M,R) = 0, then C̃al does not depend on the choice of
the Liouville vector field. This is an immediate consequence of equation (2.1).

3. The inclusion Bilip(R2d, ω0) ⊂ G

The space of bilipschitz compactly supported maps of R
2d carries the struc-

ture of a topological group induced by the distance defined as follows. Let
f, g be two such maps. We endow R

2d with the standard euclidean norm ‖·‖
and we denote dC0(f, g) = supx∈R2d ‖f(x) − g(x)‖ and

dil(f, g) = sup
x �=y∈R2d

‖(f(x) − g(x)) − (f(y) − g(y))‖
‖x− y‖ .

Then, the bilipschitz distance between f and g is given by

D(f, g) = dC0(f, g) + dC0(f−1, g−1) + dil(f, g) + dil(f−1, g−1).

As mentioned in the introduction, the proof will use the notion of gener-
ating function.

Lemma 3.1. For some neighborhood of the identity V in Bilip(R2d, ω0) such
that for any homeomorphism f ∈ V, there is a unique (up to constant shift)
C1,1 function S : R

2d → R such that for any x, y, η, ξ ∈ R
d,

(3.1) f(x, y) = (ξ, η) ⇐⇒

⎧⎪⎨
⎪⎩
ξ = x+

∂S

∂η
(x, η),

y = η +
∂S

∂x
(x, η).

The map S is called the generating function associated to f .
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The map Ψ : V → C1,1(R2d,R) which associates to f its generating func-
tion Ψ(f) = S is a homeomorphism onto a neighborhood of 0 in C1,1(R2d,R)
endowed with its natural topology.

Remark 3.1. Relation (3.1) means that under the symplectic identification
j : R

2n × R
2n → T ∗

R
2n = R

2n × R
2n, (x, y; ξ, η) �→ (x, η; y − η, ξ − x), one

has j(graph(f)) = graph(dS).

Proof of Lemma 3.1. We only give the proof of the first part and let the
second to the reader. It is completely analogous to what happens in the
smooth case which is well known.

Let f ⊂ Bilip(R2d, ω0) be close to the identity. Then, if we denote
q : R

2d → R
d, (x, y) �→ x and p : R

2d → R
d, (x, y) �→ y the canonical

projections, the maps

y �→ p ◦ f(x, y) and ξ �→ q ◦ f−1(ξ, η)

are Lipschitz-close to the identity and thus (by standard arguments) are
bilipschitz homeomorphisms of R

2d, close to the identity, in any given points
x,η. Now let α(x, ·) be the inverse of p ◦ f(x, ·) and β(·, η) be the inverse of
q ◦ f−1(·, η) which are again close to the identity in the Lipschitz sense. It
is not difficult to check that the maps α and β are Lipschitz.

For i ∈ {1, . . . , n}, we denote by αi, βi the ith components of α and β
with respect to the canonical basis. Let us now check that the Lipschitz
one-form

∑
i(αidxi + βidηi) is closed (i.e., its differential vanishes whenever

it is defined). Let (x, y) be a point where f admits a differential, and let
(ξ, η) = f(x, y). Then, at the point (x, η),

d

(∑
i

(αidxi + βidηi)

)
=
∑
i,j

(
∂αi

∂ηj
− ∂βi

∂xj

)
dηj ∧ dxi

+
∑
i,j

(
∂αi

∂xj

)
dxj ∧ dxi +

∑
i,j

(
∂βi

∂ηj

)
dηj ∧ dηi.(3.2)

Let us denote D =
∂(p ◦ f)
∂y

and C =
∂(p ◦ f)
∂x

. Since df is symplectic,

∂(q ◦ f−1)
∂ξ

is the transpose DT of D. Moreover, differentiating α(x, p ◦
f(x, y)) = y and β(q ◦ f−1(ξ, η), η) = ξ, we obtain

∂α

∂η
= D−1 and

∂β

∂x
= (DT)−1 = (D−1)T.

This implies that the first term on the right-hand side of (3.2) vanishes.

From α(x, p ◦ f(x, y)) = y, we also get
∂α

∂x
+
∂α

∂η
C = 0, hence

∂α

∂x
=

−D−1C. But since df−1 is symplectic, we have DCT −CDT =0, hence
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(D−1C)T −D−1C = 0. It follows that
∂α

∂x
is symmetric and therefore that

the second term on the right-hand side of (3.2) vanishes. The third term
also vanishes for similar reasons and the form

∑
i(αidxi + βidηi) is closed.

As a consequence (of the Poincaré lemma for currents, for example),∑
i(αidxi + βidηi) is exact. Since it is a Lipschitz one-form, it has to be

the differential of a C1,1 function σ. Now, since f is compactly supported,
α(x, η) = x and β(x, η) = η out of a compact set, thus, up to a constant
shift, σ(η, ξ) = 〈x, η〉 out of a compact set. Then, it is easily checked that the
function S : R

2d → R, (x, η) �→ σ(x, η)−〈x, η〉 satisfies the relation (3.1). �

The next step of the proof of the inclusion Bilip(R2d, ω0) ⊂ G is to use the
generating functions to show that any element f ∈ V belongs to G where V
is a neighborhood like in the previous lemma.

Let f ∈ V and S = Ψ(f) its generating function. Let us approximate S
by convolution as follows. Let χ be a smooth non-negative function, defined
on R

2d, whose support is contained in a disk centered in 0 and with integral
equal to 1. For any positive integer k, we set χk = k2dχ( ·

k ). Then, it is well
known that the sequence of smooth functions (Sk) defined by

Sk(x, η) = χk ∗ S(x, η) =
∫

R2d

S(x− u, η − v)χk(u, v) du dv,

converges in the C1,1 sense to S as k goes to infinity. Moreover, there exists
a compact set that contains the supports of every Sk.

For k large enough, Sk belongs to the open set Ψ(V) so that we can
set fk = Ψ−1(Sk). Now remark that for t small enough, the conjugation
μt ◦f ◦μ−1

t of f by the Liouville flow μt : x �→ et/2x is in V and is associated
to the generating function St(x, η) = etS(e−t/2x, e−t/2η). Let us denote f t

k =
μt ◦ fk ◦ μ−1

t and St
k(x, η) = etSk(e−t/2x, e−t/2η) = Ψ(f t

k).
The path t �→ St

k is a smooth path of smooth generating functions. There-
fore, t �→ f t

k is a smooth Hamiltonian isotopy (starting at f). By Lemma 3.1,
since St

k converges C1,1 to St, f t
k converges in the Lipschitz sense hence C0

to μt ◦ f ◦μ−1
t . Now, let Ht

k denote the Hamiltonian function generating the
isotopy f t

k. According to the classical Hamilton–Jacobi equation (see, e.g.,
[10, p. 283]) for any time t and any point x, y ∈ R

2d,

Ht
k(x, y) =

∂St
k

∂t
(x, p ◦ Ψ−1(St

k)(x, y)).

This implies that Ht
k also converges uniformly. As a consequence, the isotopy

t �→ μt ◦ f ◦ μ−1
t is a C0-Hamiltonian isotopy starting at f , and t �→ [μt, f ]

is a C0-Hamiltonian isotopy, starting at Id.
We have proved V ⊂ G. Let us now finish the proof of the inclusion

Bilip(R2d, ω0) ⊂ G. One consequence of Lemma 3.1 is that Bilip(R2d, ω0) is
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locally arcwise connected. Since it is connected, it is also arcwise connected.
As a consequence, any element f in Bilip(R2d, ω0) can be linked to the
identity by a continuous path. Cutting this path into sufficiently small pieces,
f can be written as a composition of elements in a neighborhood of the
identity. It follows that any element in Bilip(R2d, ω0) is a product of elements
in G. Thus, any element in Bilip(R2d, ω0) is in G.
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compact manifold, Ann. Sci. École Norm. Sup. (4) 13(1) (1980), 45–93.

[5] J.-M. Gambaudo and E. Ghys, Enlacements assymptotiques, Topology 36(6) (1997),
1355–1379.
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[10] D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Mathematical
Monographs, 2nd ed., The Clarendon Press Oxford University Press, New York, 1998.

[11] Y.-G. Oh, The group of Hamiltonian homeomorphisms and continuous Hamilton-
ian flows, Symplectic topology and measure preserving dynamical systems, 149–177,
Contemp. Math. 512, Amer. Math. Soc., Providence, RI, 2010.

[12] Y.-G. Oh and S. Muller, The group of Hamiltonian homeomorphisms and C0 sym-
plectic topology, 2004.

[13] C. Viterbo, Erratum to: “On the uniqueness of generating Hamiltonian for continuous
limits of Hamiltonians flows” [Int. Math. Res. Not. 2006, Art. ID 34028, 9 pp.;
mr2233715]. Int. Math. Res. Not., pages Art. ID 38784, 4, 2006.
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