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ALMOST TORIC SYMPLECTIC FOUR-MANIFOLDS

NAICHUNG CONAN LEUNG AND MARGARET SYMINGTON

Almost toric manifolds form a class of singular Lagrangian fibered
symplectic manifolds that include both toric manifolds and the K3
surface. We classify closed almost toric four-manifolds up to diffeomor-
phism and indicate precisely the structure of all almost toric fibrations
of closed symplectic four-manifolds. A key step in the proof is a geo-
metric classification of the singular integral affine structures that can
occur on the base of an almost toric fibration of a closed four-manifold.
As a byproduct we provide a geometric explanation for why a generic
Lagrangian fibration over the two-sphere must have 24 singular fibers.

1. Introduction

Almost toric manifolds, introduced by the second author in [39], are sym-
plectic manifolds equipped with a fibration structure that generalizes toric
manifolds while retaining some of their geometric features and rigidity.
Accordingly, almost toric manifolds lie at the interface of symplectic topol-
ogy, toric geometry, integrable systems and, in dimension four, mirror
symmetry. They enjoy the property (similar to toric manifolds) that much
symplectic and topological information is encoded in the base of the fibra-
tion; they, like toric fibrations, can be used to efficiently describe certain
symplectic surgeries such as symplectic sums [28, 36] and rational blow-
downs [37, 38]; they accommodate singularities that are typical in an
integrable system (focus—focus and elliptic singularities) [3, 10, 33]; and fur-
thermore, generic special Lagrangian fibrations of K3 surfaces — of interest
in mirror symmetry (cf. [18, 20, 31, 35]) — are almost toric fibrations.
The main result of this paper is summarized in Table 1, which includes a
list of all closed four-manifolds that admit an almost toric fibration (the con-
tent of Theorem 2.1). An informal definition of a generic almost toric fibra-
tion in dimension four (made precise in Definition 2.2) is a surjective map
m: (M,w)— B that gives the symplectic four-manifold (M, w) the structure
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144 N.C. LEUNG AND M. SYMINGTON

Table 1. Closed almost toric four-manifolds

Base # Of nodes # Of vertices Total space
D? n>0 k > max(0,3 —n) CP?*#(n+k — 3)@7132 or
S2x S? (ifn+k=4)
Stx T n>0 0 52 x T? or
(S2XT2) #nCP"
Mobius band n>0 0 S2 x T2 or
(S2XT2?) #nCP"
S? 24 0 K3 surface
RP? 12 0 Enriques surface
T? 0 0 T2 bundles
MA(59). (1) sminj,
k,m,n € Z
Klein bottle 0 0 T2 bundles

N{(6 %), (8F)ael,
0,e € {0,1} and k,a € Z

S2%T? denotes the non-trivial sphere bundle over the torus.

In the expressions M (A, B;m,n) and N (A, B;a,e¢), the matrices A and B
are the monodromy matrices along generators of the fundamental group
(where AB = B~'A when the base is a Klein bottle) and (m,n) and (a, €)
are the Euler classes of the bundles (see Section 6.4).

of a Lagrangian fibration in which each fiber has a neighborhood that is fiber
preserving diffeomorphic to a neighborhood of a fiber in a toric manifold or
a genus one Lefschetz fibration.

Because the fibration is Lagrangian, the base B inherits an integral affine
structure (Definition 2.4) with isolated singularities on the interior of B,
namely modes, which are the images of isolated two-dimensional singular
fibers. As for the moment map image of a toric manifold, the boundary
of B is piecewise linear with respect to the integral affine structure. The
restrictions on the base B imposed by its integral affine geometry yield
Theorem 5.2, which classifies the integral affine bases. Theorems 5.2 and
6.1, which implies that the only almost toric manifolds that fiber over the
disk are rational surfaces, together account for the fact that the list of almost
toric manifolds in Table 1 is complete. The proof of Theorem 5.2 includes
a proof that an integral affine structure on S? must have 24 nodes, a point
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of interest in mirror symmetry as it implies a generic Lagrangian fibration
over S? must have 24 singular fibers.!

Except for the Enriques surface, it is not a surprise that each of the
total spaces in Table 1 admits an almost toric fibration. The presence of
the Enriques surface is interesting because the fibration is over RP?, rather
than over CP! as it is for a holomorphically fibered Enriques surface. The
contribution of this paper concerning fibrations over the Klein bottle is the
determination of which torus bundles over the Klein bottle admit a symplec-
tic structure with respect to which the fibration is Lagrangian. The existence
of almost toric fibrations on the other manifolds listed in Table 1 is drawn
from known results, as detailed in Section 6.

The paper is structured as follows. After motivating and defining the
necessary terms and stating the main results in Section 2, we explain in
Section 3 how the total space of a toric or almost toric fibration is determined
by the base equipped with its integral affine structure. In Section 4 we
describe two surgeries, one that changes the fibration but not the manifold,
and another that shows how blowing up can introduce a node in the base
of the fibration. Section 5 is devoted to the classification of integral affine
manifolds that can appear as the base of a closed almost toric manifold. This
classification is critical to showing the completeness of the list of manifolds
in Table 1. To prove that the base of an almost toric fibration must have
non-negative Euler characteristic, we make precise the heuristic that nodes
contribute non-negative curvature to the base. (Note that the non-trivial
monodromy around a node precludes the existence of a metric compatible
with the integral affine structure.) A key lemma states that any collection of
12 nodes around which the monodromy is trivial contributes 27 to the total
curvature of the base (Lemma 5.4), thereby explaining the need for 24 nodes
in an integral affine structure on the two-sphere. We also prove Theorem 6.1,
which asserts that rational surfaces are the only closed manifolds that admit
an almost toric fibration over the disk. In Section 7 we establish the existence
and completeness of our list of the manifolds fibering over each base and
address any diffeomorphism equivalences. In the last section we comment
on other classifications one might try to make.

2. Background and results

A symplectic manifold of dimension 2n is toric if it is equipped with an
effective Hamiltonian 7™ action. Toric manifolds are well studied for their
beautiful geometric properties (e.g., [2, 12]) and their relevance to mirror
symmetry (cf. [4]). Delzant’s Theorem [8] asserts a fundamental property of
closed toric manifolds: the manifold, symplectic structure and torus action

!This fact was also proved by Kontsevich and Soibelman [24].
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are completely determined by a polytope in R™, the image of the moment
map p: (M,w)—R™.

A toric manifold is an example of a (completely) integrable system, namely
a symplectic 2n-manifold (M, w) equipped with a collection of n functionally
independent Poisson commuting functions F;: (M,w) — R. The compo-
nents of the moment map Poisson commute because the induced Hamilton-
ian vector fields commute. Consequently, the map F := (Fy, ..., F,) induces
a foliation of the total space such that w vanishes along leaves, which are
thereby Lagrangian.

In keeping with holomorphic fibrations, whose fibers can have varying
topology, when F' is a proper map we regard the induced foliation as a
fibration. Accordingly, we make the following definitions.

Definition 2.1. Consider a symplectic 2n-manifold (M,w) and a proper
surjective map 7: (M,w) — B to a topological space of half the dimension.
Assume the preimages of m are connected. If B can be covered by open
sets U, such that for each o there is a map ¢,: U, — R" such that ¢, o
T|x-1(,) defines a completely integrable system Fy: 7 1(U,) — R, then
m: (M,w)— Bis a Lagrangian fibration. If 7 defines a locally trivial fibration
over B then we call 7: (M,w)— B a regular Lagrangian fibration.

Throughout this paper we use By to denote the set of regular values of
m, i.e., the portion of B over which 7 defines a regular Lagrangian fibration.
Note that because the fibers of m are compact, the Arnold-Liouville theorem
(cf. [1]) implies that the regular fibers are tori.

The moment map of a toric manifold is a Lagrangian fibration whose
singular fibers are points and circles. To generalize to almost toric mani-
folds we allow one other type of singularity — the isolated singularity that
appears in Lefschetz fibrations. Recall that a Lefschetz fibration is a map
from an oriented four-manifold to the oriented two-sphere such that the
map is a submersion except at a finite set of points where the singularity
is modeled by (z1,22) — 2z} + 25. The importance of Lefschetz fibrations in
symplectic topology emerged after Donaldson [9] showed that, after blow-
ing up a sufficient number of points, any closed symplectic four-manifold
admits a Lefschetz fibration and Gompf [14] showed how to put a sym-
plectic structure on any four-manifold equipped with a Lefschetz fibration.
In those constructions the fibration is symplectic whereas in our setting it
is Lagrangian, thereby forcing the fibers to have genus one. An important
example of a Lagrangian Lefschetz fibration is a generic elliptic fibration
of a K3 surface; while the fibration is holomorphic with respect to the
Kéhler form on the K3, the symplectic form can be modified (by perform-
ing a hyperkaher rotation) so that the fibers of the given fibration become
Lagrangian. (See Section 6.3.) We refer to the singular fibers of a genus
one Lefschetz fibration as nodal fibers in accordance with the terminology
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of elliptic fibrations. Meanwhile, the singularity in a Lagrangian Lefschetz
fibration is known as a focus—focus singularity in the integrable systems
literature.

We now give the precise definition of an almost toric manifold:

Definition 2.2. An almost toric fibration of a symplectic four-manifold
(M,w) is a Lagrangian fibration 7: (M,w)— B such that any point of
(M,w) has a Darboux neighborhood (with symplectic form dx; A dy; +
dxo A dys) in which the map 7 has one of the following forms:

m(x,y) = (x1,22), regular point,
(z,9)
(2,9)
(m1,m2)(2,y)

with respect to some choice of coordinates near the image point in B. An
almost toric manifold is a symplectic manifold equipped with an almost toric
fibration. A toric fibration is a Lagrangian fibration induced by an effective
Hamiltonian torus action.

0 = (z1,25 4+ y3), elliptic, corank one,
™ = (23 +yi, 23 +y3), elliptic, corank two  or
= (

r1Y1 + Toy2, T1y2 — T2y1) nodal or focus-focus

If a fiber contains k& nodal singularities with k > 2, then the fibration
can be perturbed (locally) so that the fiber is replaced by k fibers, each
with one nodal singular point. Therefore, for ease of exposition, we assume
throughout this paper that a fiber has at most one nodal singular point and
call the fiber a nodal fiber.

Remark 2.1. The transverse self-intersection that appears in a nodal fiber
is always positive [44]. While Lagrangian planes are not by themselves ori-
ented, any orientation of the base orients these planes (via the Hamiltonian
vector fields induced by a basis in the cotangent bundle of the base) thereby
giving a well-defined sign to the intersection.

While almost toric fibrations were first defined by Symington [39], inter-
esting examples already existed in the literature on physical integrable sys-
tems with two degrees of freedom. In particular, the phase space of the
spherical pendulum (cf. [6]) is an almost toric manifold, albeit non-compact
and hence outside of the focus of this paper.

We now turn our attention to the geometry that is induced on the base
of an almost toric fibration. The rigidity of this geometry and its relation
with the topology of the total space yields the primary constraint on almost
toric manifolds.

Definition 2.3. The standard integral affine structure Ay on R™ with coor-
dinates (z1,...,xy) is the lattice Ag in TR™ spanned generated by the vector
fields 8%1-’ i=1,...,n.



148 N.C. LEUNG AND M. SYMINGTON

Definition 2.4. An integral affine structure A on a manifold B is a lattice A
in its tangent bundle that is locally isomorphic to the standard lattice Ag in
R™. In other words, the manifold can be covered with charts ®,: U, — R"
such that ®, 4 = Ay and @, o ¢51|UQQU5 € Aff(n,Z) = GL(n,Z) x R™. A
manifold equipped with such a structure is an integral affine manifold.

A regular Lagrangian fibration induces an integral affine structure on
the base via a natural action of the cotangent bundle of the base on the
total space. Any point in the base B of a toric fibered four-manifold has a
neighborhood that is isomorphic to a neighborhood of a point in the first
quadrant (Q, Ag) C (R% Ag) as illustrated by the following example. (In
higher dimensions an analogous statement holds.) We call the points in 0B
that correspond to the origin in (Q, .Ap) a vertex and each linear segment on
OB an edge.

Example 2.1. The base of the local model for a corank two elliptic sin-
gularity is (Q, Ag). Indeed, m: (R*, dx A dy) — (Q, Ag) is found by choosing
coordinates (p1, p2) on R? such that p; = m(2?+y?2). This is then the moment
map for the standard torus action on R%. Note that the preimage of a point
on the coordinate axes, other than the origin, is a circle of elliptic corank
one singular points.

Now consider an almost toric fibration. The image of each nodal fiber is
an isolated point on the interior of B which we call a node and view as a
singularity in the integral affine structure. Therefore, if 7: (M,w) — (B, .A)
is an almost toric fibration then we understand A to be the induced structure
on all of B, namely an integral affine structure with nodes on a manifold
with boundary.

If an integral affine structure A is induced from a toric or almost toric
fibration, we call the pair (B, .A) a toric base or an almost toric base respec-
tively. In both cases (B, .A) is a strong invariant that in dimension four often
determines the total space (Corollary 3.1).

With these definitions and observations in mind, we now state the theo-
rems that comprise the diffeomorphism classification.

Theorem 2.1. A closed four-manifold M admits an almost toric fibration
with respect to some symplectic structure if and only if M is diffeomorphic
to one of the following:
(i) S% x S2% or CP?# nCP> with n > 0,
(i) S2 x T2 or S2XT24#nCP° with n > 0,
(iii) the K3 surface,
(iv) the Enriques surface,
(V) a torus bundle over the torus

M(k;m,n) :z{(é (1]>,<(1) T);m,n}, k,m,n € Z, or
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(vi) a torus bundle over the Klein bottle

N(é,k;a,e):z{(é _51>,<(1) I;);a,e}, d,e€{0,1} and k,a € Z.

Furthermore, Table 1 documents which closed manifolds fiber over which
integral affine bases.

The proof of this theorem follows immediately from a collection of results
throughout the paper: Theorem 5.2 that specifies the integral affine bases
that can occur, Lemmas 6.1 and 6.1 that concern rational surfaces and fibra-
tions over the disk, Lemmas 6.4 and 6.5 that treat the case of sphere bundles
over tori and fibrations over the cylinder and Mébius band, Lemmas 6.6-6.8
about K3 and Enriques surfaces and fibrations over $? and RP?, and finally
Proposition 6.1 and Theorem 6.4 that cover the cases of torus bundles over
the torus and Klein bottle. The manifolds listed in (i)—(iv) of Theorem 2.1
are all easily distinguished by their homology and intersection forms, which
also reveal that they are not torus bundles.

In Section 6.4 we prove the following theorem about diffeomorphism
equivalences among Lagrangian torus bundles over tori.

Proposition 2.1. Two torus bundles over the torus, M(k;m,n) and
M(K';m/;n') with k, k' > 0, are diffeomorphic if and only if one of the
following holds:
(1) (ksm,n) = (K'ym',n’) = (0;0,0);
(2) kn = k'n' = 0, (k;m,n), (K';m/,
ged(K',m’,n’); or
(3) k=K >0,n=-en'#0, and m = em’ (mod k,n) where e € {—1,1}.

n’) # (0;0,0) and ged(k,m,n) =

We refer the reader to Theorem 4(ii) in [41] for the many detailed condi-
tions that dictate which of the torus bundles N (4, k; a, €) are diffeomorphic.
However, it is interesting to note the following:

Proposition 2.2. No manifold admits a Lagrangian torus fibration over
both the Klein bottle and the torus.

Proof. Ue [41] showed that the total spaces of the torus bundles N (0, k; a, €)
are diffeomorphic to the total spaces of torus bundles over tori with mon-
odromy matrices (_01 fl) and ((1) ’f) where =,k € Z. Because b; = 2, the
diffeomorphism classification of these bundles over T2 agrees with the iso-
morphism classification as bundles over T2 (Theorem 2 in [34]). Finally,
applying the corollary just before Theorem 2 in [34], none of these bundles
can be isomorphic to a Lagrangian bundle over the torus. The obstruction
to the isomorphism is the fact that ( 01 r ) has trace —2 while the two
monodromy matrices for a Lagrangian bundle over 72 both have trace 2 —
and one of them is the identity. O
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3. Total space from the base

3.1. Toric bases. Delzant’s theorem asserts that for a closed toric manifold
of dimension 2n the image of the moment map, a polytope in R", determines
the total space, its symplectic structure and the torus action. The Hamil-
tonian torus action on a toric manifold determines a Lagrangian fibration
over an integral affine base that is isomorphic to the moment map image,
viewed as a subset of (R",.4p). Accordingly, the Hamiltonian torus action
that induces a toric fibration is unique up to reparametrization.

It is important to note that, in contrast to the closed manifold case, dif-
ferent non-compact manifolds can have the same moment map image. Two
types of ambiguities arise. First, if the moment map image is not simply
connected, then that image does not determine the number of components
of the preimage of a value of the moment map. Meanwhile, in dimensions
greater than four, having the same simply connected moment map image
does not even guarantee that two Lagrangian torus bundles have diffeomor-
phic total spaces.

Ambiguities concerning the connectedness of fibers and their dimension
can be addressed by using the integral affine base (B,.A) of a toric fibra-
tion rather than its moment map image. Because the set of regular values
By C B locally has the structure of the orbit space of a torus action, the
fibers are necessarily connected. Meanwhile, the dimension of a fiber can be
determined just as in the case of a closed manifold. Indeed, the base is a
manifold with corners whose boundary is piecewise linear with respect to the
integral affine structure A, and the dimension of a fiber equals the dimension
of the linear face that contains the image of the fiber on its interior (except
for a zero-dimensional fiber whose image is a point).

Toric bases are easy to recognize. For four-manifolds we have:

Proposition 3.1 ([39]). An integral affine two-manifold (B, .A), with pos-
sibly non-empty boundary, is a toric base if and only it has an integral affine
immersion into (R?, Ag) and each point in (B, A) has a neighborhood integral
affine isomorphic to a neighborhood of a point in (Q, Ao), the first quadrant

of (R?, Ap).

Note that this forces ®(9B) to be the union of linear segments that either
have rational slope or are vertical.

Remark 3.1. It is worth pointing out that the choice of an integral affine
immersion ®: (B, A) — (R?, Ag) determines the isotopy subgroups of the
Hamiltonian torus action on each submanifold that is the preimage of an
edge of (B, .A). The base together with these isotropy data is what Orlik and
Raymond call a weighted orbit space. The weighted orbit space determines
the four-manifold and the action as a smooth torus action [32]. Different
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choices of integral affine immersions, up to translation, correspond to differ-
ent parameterizations of the torus that is acting.

In the language of almost toric fibrations, we have the following general-
ization of Delzant’s theorem, in dimension four, to non-compact manifolds:

Proposition 3.2 ([25, 39]%). If (B, A) is a toric base of dimension 2 then
there is unique symplectic manifold (M,w) that admits a unique Lagrangian
fibration w: (M,w)— (B,.A). The Hamiltonian torus action that induces
this Lagrangian fibration is unique up to reparametrization.

To construct a toric fibered four-manifold from its base (B, .A), proceed as
follows. A choice of an integral affine immersion ®: (B,.A) — (R?, Ag) pro-
vides local coordinates p on any neighborhood of B that embeds in R? via
®. Consider a toric fibration 7’: (B x T?,dp A dq) — (B,.A) of a manifold
with boundary. The preimage in (B x T",dp A dq) of each linear compo-
nent L of ®(0B) is fibered by circles that are in the kernel of w|r. Col-
lapsing each of these circles to a point yields (M,w) and a toric fibration
m: (M,w)— (B, A). (The procedure has been called boundary reduction by
the second author [39].) The fact that each vertex of (B,.A4) is modeled
on a neighborhood of the vertex in (Q,.Ay) guarantees that the quotient of
B x T? under all the collapsing maps is a manifold. (Further details can be
found in [39] where manifolds with non-empty boundary were included in
the discussion. Therefore in [39] the stratification of the base according to
the dimension of the preimages was included as part of the data needed to
determine the total space.)

Note that there is a symplectic projection p: (B x T",dp Adq) — (M, w)
that is a diffeomorphism over the points x of M such that m(z) belongs
to the interior of (B,.A). Indeed, this presentation gives local action-angle
coordinates (p,q) on a dense subset of (M,w), with (8%1, . %) being a
basis for the lattice in the tangent space at any point of (B, .A). Furthermore,
on the preimage of regular values of m the map 7 is the moment map for
the free action ¢ - (p,q) = (p,q + t) which extends uniquely to all of M.
Different choices of integral affine immersion ®: (B, A)— (R?, Ag) differ
only by an element of Aff(2,7Z) and, up to translation, correspond to torus
actions differing by reparametrization of the torus.

In higher dimensions, the analogous procedure yields the unique
Lagrangian fibration over (B,.A) that has a Lagrangian section.

3.2. Integral affine monodromy. As we shall see in Section 3.5, while
Proposition 3.2 does not generalize completely to the almost toric case,

2For higher dimensions, to achieve uniqueness one must require that the induced fibra-
tion have a Lagrangian section. Accordingly, Theorem 3.19 of [39] should have included
a restriction to dimension four.
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it comes close. In many cases the base of an almost toric fibration does
determine the total space.

An essential way in which the base (B,.A) influences the topology of the
total space is by capturing the monodromy. Specifically, the topological mon-
odromy of the torus fibration over the regular values By C B is determined
by monodromy in the lattice A C T By (or, dually, in A* C T*By) that
defines the integral affine structure A|p,.

The integral affine monodromy of an integral affine manifold B is defined
analogously to the monodromy of a torus fibration (cf. [15]). Specifically, if A
is the lattice in T'B, choose a point b € By, identify (T, B, Ay) with (R™, Z")
and for each element a € m(Bp,b) choose a representative v,: I — By.
The monodromy representation is Wp: m(B,b) — Aff(n,Z) where Vp(«)
is the automorphism of (R",Z™) such that v*(T'B, A) is isomorphic to I x
(R™,Z™)/(0,p) ~ (1,¥p(a)(p)), p € R™. The monodromy is the equivalence
class of monodromy representations relative to different points in B and
different choices of identification of T, B with (R™,Z").

The link between the topological and affine monodromies can be seen
most easily in local action-angle coordinates (p,q) on a neighborhood of a
regular fiber F, = 7—1(b). The vectors 8%1, e 8}% at b form a basis for
Ay and the homology classes of integral curves tangent to the vector fields
(8%17 e %) on 7~1(b) represent a basis for Hy(F}, Z). With respect to these
bases, if the topological monodromy of the Lagrangian fibration along a loop
~ based at b is given by A € GL(n,Z), then the affine monodromy along
7 is given by its inverse transpose (A~1)T. This follows immediately from
the requirement that the endomorphism of T, M, x € F}, determined by the
topological and affine monodromies be symplectic.

3.3. Neighborhood of a node. Henceforth, we restrict our attention to
dimension four. The goal of this section is to clarify the extent to which the
integral affine structure in a neighborhood of a node, containing just the one
singular point, determines the manifold fibering over it.

It is well known that the monodromy around a nodal fiber is, with respect
to some basis for the first homology of a regular fiber F, = 7—1(b),

11
(31) A(l,O) = (O 1) .

This has been calculated in the integrable systems setting (e.g. [6, 10]) but
is also understood to be a property of the underlying smooth torus fibration
(cf. [27] or [15]) where it is the monodromy around a singular fiber in a
positive Lefschetz fibration.

The reader should note that A(; ¢ is a parabolic matrix with eigenvector
(3). With respect to an arbitrary basis the monodromy matrix has the form

1—ab a?
(32) Afap) = ( -0 1 +ab>
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with eigenvector () for some relatively prime a,b € Z. Viewing the singular
fiber as a regular fiber with a circle pinched to a point, this circle (which
represents the vanishing cycle) represents the homology class (a,b).

Meanwhile, the discussion of Section 3.2 implies that the affine mon-
odromy around the image of the nodal fiber is A(_ ,). Therefore the vector
(—b,a) is tangent to the one well-defined line that passes through the node.
Accordingly we call this line the eigenline through the node.

Knowing the monodromy around an isolated singular point in an affine
surface does not completely determine the germ of its neighborhood. In par-
ticular, there is an infinite family of isolated singularities around which the
monodromy is parabolic. To distinguish between them, remove an eigenray
R based at the node from a regular neighborhood N of the node, choose an
integral affine immersion ®: (N — R, A) — (R?, A) and count the number
of preimages of a generic point in the image. The following lemma, together
with the fact that the monodromy around a node is parabolic, implies the
uniqueness of the germ of a neighborhood of a node.

Lemma 3.1. Let N be an integral affine open disk that contains exactly one
node. Suppose R is a properly embedded ray based at the node b. Then any
integral affine immersion ®: (N — R, A) — (R?, Ag) is an embedding.

A proof of this lemma can be found in [38] or Section 9.2 of [39]. It relies
on the fact, due to Gromov [17] and Eliashberg [11], that a fillable contact
three-manifold is tight. This lemma can also be deduced from the existence of
a circle action on a neighborhood of a nodal fiber [44]. Lemma 3.1 allows us
to talk about nodes as well-defined singularities in integral affine manifolds
without reference to almost toric fibrations.

While nodal fibers occur naturally in certain examples coming from alge-
braic geometry and integrable systems, these typically do not give a clear
picture of the local fibered structure. For an explicit local model consult
Section 4.4 of [39].

Given our interest in the symplectic and topological properties of the total
space of an almost toric four-manifolds, the following uniqueness properties
suffice.

Proposition 3.3. Consider symplectomorphic neighborhoods of a pair of
nodal fibers in an almost toric fibration. The symplectomorphism between
them can be chosen to be fiber-preserving on the complement of smaller

fibered neighborhoods.

The proof of this proposition given in [38] can easily be modified to accom-
modate multiple singularities on the nodal fiber.

It is important to note that while the germ of a neighborhood of a nodal
fiber with a fixed number of singular points is unique up to symplectomor-
phism, it is not unique up to fiber-preserving symplectomorphism. Indeed,
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Vu Ngoc [43] has identified a non-trivial invariant that classifies the germs
of such neighborhoods up to fiber-preserving symplectomorphism.

3.4. Almost toric bases. Recall that an almost toric base is an integral
affine manifold that is the base (B,.A) of an almost toric fibration of a
manifold (without boundary). The construction of toric manifolds given in
Section 3.1 and the normal form for elliptic singular points imply that the
image of any such point has a neighborhood that is integral affine isomor-
phic to a neighborhood of a point in the boundary of (Q,.Ay). Recall that
the images of nodal fibers are nodes on the interior of the base. Therefore,
since the condition for a fibration to be almost toric is a local one, we have
the following characterization of almost toric bases of dimension two:

Proposition 3.4. An integral affine two-manifold, with possibly non-empty
boundary, is an almost toric base if and only if each point has a neigh-
borhood that is integral affine isomorphic to a neighborhood of a node or a
neighborhood of a point in (Q,Ag) where Q is the first quadrant in R2.

Propositions 3.2 and 3.3 imply that the neighborhood of any fiber in
an almost toric fibration, singular or not, has a neighborhood that can be
recovered (up to a variation in the fibration near a nodal fiber) from the
base of the fibration. For a more global statement, we appeal to Zung’s
study of Lagrangian fibrations with topologically stable non-degenerate sin-
gularities [45]. An essential invariant therein is the Lagrangian Chern class,
an element of the first homology of the base with values in the sheaf of
closed basic one-forms (closed one-forms that vanish on vectors tangent to
fibers) modulo those forms that arise from contracting the vector fields for
a symplectic fiber-preserving circle actions with the symplectic form. (To be
precise, this Chern class is actually a relative class in the sense that it is
defined relative to a given reference fibration.) From Zung’s work we extract
the following:

Proposition 3.5 ([45]). In dimension four, an almost toric manifold is
determined, up to fiber-preserving symplectomorphism, by its base (B,A),
the Lagrangian Chern class and the local structure of the fibered neighbor-

hoods of its nodal fibers.

Note that if the base has the homotopy type of a zero- or one-dimensional
manifold, then the Lagrangian Chern class vanishes. Therefore Proposi-
tions 3.3 and 3.5 imply the following analog of Proposition 3.2:

Corollary 3.1. If an almost toric base (B, A) of dimension two has the
homotopy type of a zero- or one-dimensional manifold, then (B, A) deter-
mines the total space of an almost toric fibration up to symplectomorphism.

Even if the base does not determine the total space, one can nonetheless
easily extract the Euler characteristic of the total space from the geometry
of the base.
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Lemma 3.2. The Fuler characteristic of the total space of an almost toric
fibration equals the sum of the number of nodes and the number of vertices
in the integral affine base.

Proof. The total space can be built up as follows. Start with the union of
regular fibers which is a torus bundle over a surface. The set of circle fibers
has a neighborhood that is a disjoint union of D3 x S'’s and disk bundles
over a torus (if OB contains a circle that is geodesic with respect to .A)
that is glued onto the initial manifold on a domain diffeomorphic to either
IxS%x 8" or an I x S bundle over the torus, respectively. At this stage one
has a manifold with zero Euler characteristic. The total space of the fibration
can be completed by gluing in an open ball neighborhood for each point fiber
(corank two elliptic singular point) along an I x S and a neighborhood of a
nodal fiber that deformation retracts to that fiber along a torus bundle over
an interval. Thus the Euler characteristic equals the sum of the number of
point singularities and the number of nodal fibers. O

3.5. Base diagrams and branch moves. In this section we introduce
diagrams in (R?, Ag) that allow for reconstruction of certain almost toric
bases. In light of Corollary 3.1, these can be viewed as a generalization of
moment maps.

Definition 3.1. Consider an integral affine surface (B,.A) with nodes
{b;}_ . A set of branch curves for (B,A) is a union of disjoint properly
embedded curves, R = U{Ri}le, such that each R; has one endpoint at b;
and R; N OB is one point (so B cannot be a closed manifold).

Note that since B is locally modeled on R? on the complement of the
nodes, B is well defined. An essential feature of branch curves is that
whenever B is a disk, there is an immersion of (B — R, .A) into (R?, Ap).
Consequently, whenever the universal cover of B embeds smoothly in R?,
there exists an affine immersion into (R?, Ap) of a fundamental domain of

(B—R,A).

Definition 3.2. Suppose (B,.A) is an almost toric base that contains a
union of branch curves R C B such that there exists an integral affine
embedding ®: (B—R, A) — (R?, Ag). A base diagram of (B, A) with respect
to R and ® is the image ®(B — R) with the following additional data:
(1) an asterisk indicating the location of a node and
(2) heavy dashed lines indicating the portion of 0®(B — R) that corre-
sponds to R, i.e., is comprised of points that would map to R under
continuous extensions of (®|y)~! where U is any neighborhood on
which ® is an embedding.

We call a base diagram of a fundamental domain of (B,.A) a base dia-
gram for (B, .A) if it is adorned with the usual notations indicating how to
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reconstruct B (arrows along edges that should be identified) as in Figure 7.
We distinguish 0B by using a heavy line.

Example 3.1. Let U be any neighborhood of the origin in R? and let R be
a ray with rational slope g based at the origin. (Assume a,b are relatively
prime integers.) Then U — R C R? with an asterisk at the origin is a base
diagram for a regular neighborhood of a nodal fiber 7: (N,w)— (B, .A).
Furthermore, with respect to coordinates (on the complement of a ray in
(B,.A)) induced from the base diagram, the affine monodromy around the
node is Agp).-

The next example shows how a base diagram varies depending on the
choice of ray that is removed.

Example 3.2. Suppose 7: (N,w)— (B,.A) is an almost toric fibration of a
regular neighborhood of a nodal fiber. Choose a ray R based at the node and
integral affine coordinates on the complement of R such that the affine mon-
odromy is A(; o). If the ray R belongs to a line with slope g then there is a
projection ®: (N — R, A) — (R? — S, Ag) where S is the sector bounded by
the vectors (a,b) and (a+ b, b). This projection will be surjective onto U — S
where U is a neighborhood of the origin.

Varying the choice of branch curve constitutes a branch move. Thus there
are two ways to vary a base diagram when B is a two-disk: via branch
moves and by changing the projection by composing with an element of
Aff(2,Z). (Of course, if B is not a two-disk, then we can also vary the choice
of fundamental domain.) While one base that immerses into R? has many
base diagrams, from any one of them one can reconstruct the integral affine
base.

4. Almost toric surgeries

4.1. Nodal trade. In this section, we describe a surgery operation that
changes an almost toric fibration of a symplectic four-manifold into another
almost toric fibration of the same symplectic manifold. The essential idea is
that one can trade a zero-dimensional singular fiber for a nodal fiber (and
vice versa under the appropriate conditions).

We start with an even simpler way to modify almost toric fibrations:

Definition 4.1. Two almost toric bases (B, A;), i = 1,2, are related by a
nodal slide if there is a curve v C B such that (B —~,.4;) and (B — 7, As)
are isomorphic and, for each 4, 7y contains one node of (B, .A;) and 7 belongs
to the eigenline through that node.

A nodal slide should be thought of as a one-parameter family of almost
toric bases in which a node moves in the base along its eigenline. Of course,
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it corresponds to a one-parameter family of almost toric fibrations of one
manifold. Exactness of the symplectic structures on the preimage of a neigh-
borhood of v allows us to use Moser’s argument to confirm that the symplec-
tic manifolds that fiber over (B, A4;), i = 1,2, are symplectomorphic. This
perspective on nodal slides makes it easy to find a one-parameter family of
almost toric fibrations connecting a fibration with a singular fiber having k
nodes to a fibration in which each fiber has only one singular point. In the
base, at one extreme one would have a node of multiplicity £ and at the
other one would have k nodes that live on one line, the eigenline.

If the eigenline through a node intersects the interior of an edge in the
base then the limit of nodal slides as the node approaches the edge will
result either in changing the topology of the total space to form an orb-
ifold, or else merely a change in the fibration that replaces the nodal fiber
with an elliptic singular point of corank two. We call this operation a nodal
trade. Zung [45] had observed that this operation could be performed on
Lagrangian fibrations and that the one-parameter family connecting the
initial and final fibrations appears frequently in integrable systems: it is a
Hamiltonian—Hopf bifurcation [42].

As an example of a pair of bases related by a nodal trade, consider the
base diagrams shown in Figures 1(a) and (b). These base diagrams define
symplectomorphic manifolds.

Indeed, Figure 1(a) is a base diagram corresponding to a toric fibration of
the standard symplectic four-ball. Meanwhile, Figure 1(b) is a base diagram
for an almost toric four-ball: the preimage of a sufficiently small collar neigh-
borhood of the boundary of the base is an S x D3, or D* with a one-handle
attached; the preimage of the whole base differs by attaching a —1-framed
two-handle that is a thickening of the vanishing disk of the nodal fiber, but
this two-handle cancels the one-handle yielding D*.

Since the base diagram in Figure 1(a) is the limit of a nodal slides of the
node in Figure 1(b), we can again invoke Moser’s argument to establish that
the total spaces fibering over the two bases are symplectomorphic.

Figure 1. Symplectomorphic four-balls.
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Here is a precise definition:

Definition 4.2. Two almost toric bases (B;, A4;), i = 1,2, differ by a nodal
trade if each contains an arc v; such that (B; — 7, A;), i = 1,2, are isomor-
phic, and (Bj,.41) has one less vertex than (Bsg, A2) does.

The argument that the base diagrams in Figure 1 define symplectomor-
phic manifolds generalizes in the obvious way to hold for any nodal trade.
Therefore,

Theorem 4.1. Two almost toric bases that are related by a nodal trade are
symplectomorphic.

4.2. Almost toric blow-up. Blowing up is the simplest way to create a
new symplectic manifold from a given one. In dimension four it amounts to
removing a symplectic ball and collapsing the circles of the Hopf fibration
on the boundary to yield a symplectic sphere of self-intersection —1. Given
a toric manifold, choosing a sufficiently small four-ball to remove, one can
blow up so that the resulting manifold is again toric. The effect on a toric
base is to cut off a vertex, replacing the vertex by an edge with a vertex
at each end. In this case the blow-up point (center of the four-ball to be
removed) is the preimage of the vertex.

Within the category of almost toric manifolds 7: (M,w)— (B,.A) one can
also blow-up at points that belong to the preimage of the interior of an edge
in (B, A), rather than the preimage of a vertex. This fact was first observed
by Zung [45] in the context of Lagrangian fibrations with non-degenerate
singularities.

Indeed, consider the base diagrams shown in Figures 2(a) and (b). The
first defines a toric fibration of S' x D? and the second represents the base
of an almost toric fibration of (S x D3)#@2. The —1-sphere that is
introduced in the blow-up can be found in the preimage of an arc connecting
the node and the interior of an edge. See Section 5.4 of [39] for more details.

Theorem 3.5 then implies that up to scaling, the action of Aff(2,7Z), or
a branch move, Figures 2(a) and (b) completely describe an almost toric
surgery that amounts to blowing up the total space. Generalizing in an
obvious way, we define:

(a) (b)

N

*
|
S

Figure 2. S! x D3 and (S x D3) #CP".
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Definition 4.3. An almost toric blow-up of an almost toric manifold
m: (M,w)— (B, A) is an almost toric fibration 7’: (M #TP’, W')— (B, A)
such that there is an arc 7/ C B’ based at a node and an integral affine
embedding of (B —+/, A’) into (B, A).

5. Possible bases

Our goal in this section is to determine what integral affine surfaces with
nodes can be the base of a closed almost toric manifold. Theorem 5.2 asserts
that the bases are precisely those that appear in Table 1 with the given
number of nodes and vertices, and that if the base is a cylinder or Md&bius
band then the eigenlines of any nodes must be parallel to the boundary.

The first step in proving Theorem 5.2 is to determine that the base B
must have non-negative Euler characteristic (Lemma 5.3). The essence of
the argument is as follows: on simply connected domains, there are metrics
that are compatible in the sense that integral affine lines are geodesic. Then,
in a rough sense, by comparison, domains with nodes have non-negative
curvature. The curvature contributions cannot be measured using a com-
patible metric as the presence of non-trivial affine monodromy obstructs the
existence of such a metric. However, on disks with nodes we can construct
metrics that are inspired by base diagrams, so-called boundary compatible
metrics (Definition 5.1). These metrics allow us to bound the total turning
angle as the boundary of a disk base is traversed counter-clockwise. The
Gauss—Bonnet theorem thereby provides a lower bound on the total cur-
vature of the disk (Lemma 5.2). To rule out surfaces with higher genus or
more boundary components occurring as a base, we apply Lemma 5.2 to a
fundamental domain in the universal cover.

Definition 5.1. Let gy be the standard metric on R? compatible with Ag. A
metric g on an integral affine disk with nodes (D, A) is boundary compatible
(with A) if a collar neighborhood of the boundary can be covered by a pair
of open sets {U, V'} such that

(1) U is non-empty and simply connected,

(2) gly = ®*go for some integral affine map ®: (U,.A) — (R?, Ap) and

(3) 9D NV is geodesic with respect to both g and A whenever V is

non-empty.

Lemma 5.1. If an integral affine disk with nodes (D, A) has a boundary
that contains a segment that is linear (geodesic with respect to A) then the
disk admits a boundary compatible metric.

Proof. Let {b;}¥_, be the nodes. Choose a set of branch curves R whose
endpoints on the boundary all belong to the interior of one linear segment.
Let V be a simply connected open subset of D that contains R and such
that V' NOD is a linear segment. Let U be an open simply connected subset
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of D — R that covers 9D — V. The simple connectedness of U guarantees
the existence of an integral affine immersion ®: (U, A) — (R?, Ag). Let gy =
®*gp and let gy be a metric defined on V such that 9D NV is geodesic with
respect to gy. Then construct a metric g on U UV from gy and gy using a
partition of unity subordinate to {U, V'}. Extending g arbitrarily to the rest
of the disk, one obtains a boundary compatible metric. O

If the boundary of (D, .A) admits a boundary compatible metric but con-
tains no linear segments (with respect to .4), then Definition 5.1 implies U
covers D, in which case there could not be any nodes in (D, A). Requiring
the existence of a linear segment when the monodromy is non-trivial facili-
tates our upcoming curvature calculations. Note that in all our arguments
that involve boundary compatible metrics, there is no loss of generality to
assume that 0D contains a linear segment.

Definition 5.2. Given an integral affine disk with nodes (D, .A) consider an
integral affine immersion ®: (D — R, A) — (R?, Ap) for some set of branch
curves R. A flat model for (D A) with respect to R and @ is the closed flat
disk (D, §) such that (Int D, §) and (Int D — R, ®*gq) are isometric.

Note that if one extends an isometry of (Int D, §) onto (Int D — R, ®*go)
to the boundary of D, then the map is a surjection onto D such that points
in R other than the nodes each have two preimages.

Lemma 5.2. Let (D, .A) be an integral affine disk with nodes equipped with
a boundary compatible metric g. Then fD Ky,dA > 0, where K, is the Gauss
curvature.

Proof. Since g is boundary compatible, there is a pair of sets {U,V} and
an immersion ® as in Definition 5.1 with g|y = ®*go. If V' is empty then
i) p KydA =0, so we may assume that V' is non-empty. Because U is sim-
ply connected we can find a set of branch curves R = {R; }f’ | emanating
from the nodes {b;}¥_, that are disjoint from U, and hence have their other
endpoints on 9D N V. (Of course, if there are no nodes, then R is empty.)
Replace the affine immersion @, defined on U, by its extension to all of
D —R. Let (f),g) be the flat model for (D, .A) with respect to R and ®. The
Gauss—Bonnet Theorem implies

(5.3) /KgdA:27r—/ kgds — 3, and O:27r—/ kg ds — B,
D oD oD
where kg, kg are the geodesic curvatures along the smooth parts of 0D, oD

and 3, 35 are the sums of the turning angles at the vertices of 9D, oD. By
construction we have

k
(5.4) /Angds—kﬁg:/ ngds+5g+29i,
oD oD =
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Av

Figure 3. Turning of tangent vectors to the boundary near a node.

where each 6; is the contribution to the total turning angle along the portion
of &D introduced by the node b;. For instance, Figure 3 shows a base diagram
with a branch cut emanating from a node with affine monodromy A =
A1,—1)- In this case the node would contribute 6 = /4 to the total turning
angle.

The essential fact is that 8; > 0 for each 7. Because these contributions are
local, we can assume without loss of generality that there is only one node,
which introduces turning 6 as the CCW rotation from Av to v. Lemma 3.1
then implies that —7m < 0 < w. Meanwhile, by direct calculation Av x v > 0
for any A conjugate to A o) and any vector v € R2. Consequently, 0 < 0 <

pi, and in particular, § > 0. Therefore [, K, = Zle 0; > 0. O

Remark 5.1. To see that the weak inequality of Lemma 5.2 cannot be
replaced by a strict one, consider the base diagram shown in Figure 2(b). It
represents a disk with one node such that Av x v = 0.

Lemma 5.3. If (B,.A) is the base of an almost toric fibration of a closed
four-manifold then x(B) > 0.

Note that this lemma was observed by Zung [45] without proof.

Proof. Because the signs of the Euler characteristics of a surface and its
double cover are the same, it suffices to work with bases that are orientable.

Ignoring the case in which the base B is a sphere (and hence x(B) > 0),
we consider a fundamental domain (l~), .Z) in the universal cover (E , .Z) of
(B, A).

Since the only angles that are well defined with respect to an affine struc-
ture are multiples of m, we follow Benzecri [5] and choose the fundamental
domain so that the internal angle at any vertex introduced in the universal
cover is zero or £m. For instance, to form the fundamental domain for a
surface of genus zero with four boundary components, we can cut it open
along three curves 71, 72 and 3 as shown in Figure 4. Similarly, we can
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Figure 4. Fundamental domain for a genus zero surface with
four boundary components.

Figure 5. Fundamental domain for a genus two surface with
two boundary components.

form the fundamental domain for a surface of genus two with two boundary
components as suggested by Figure 5.

The constraints on the topology of B come from the geometry of (lND, ,Z)
Indeed, choosing a metric g on D that is boundary compatible with A
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(after having modified the boundary as needed), the Gauss-Bonnet The-
orem implies

(5.5) 2ﬂ—/~lﬁgd8—ﬁgzo
oD
since [ K3dA >0 by Lemma 5.2.

To estimate f ah g ds, note that because OB (if non-empty) is piecewise
linear, all contributions to the geodesic curvature along the smooth part
of D come from pairs of arcs that each project to one arc in B. Naming
such a pair 7;,7}, their images in R? under the developing map differ by
an element of Aff(2,Z). Specifically, for some orientation preserving element
U e Aff(2,Z), v/ = —U(v;). Since elements of Aff(2,Z) preserve the integer
part of g for any angle 0, we have

/K,gdS—f-/l-igdS
Vi ¥

/!
[

(5.6) <7

for each such pair.

Let d be the genus of the base B and let m be the number of boundary
components. We now consider two cases separately: 0B empty and 0B non-
empty. Recall that we have assumed either m > 1 or d > 2.

If OB is empty, we can choose a fundamental domain in which all but
two of the vertices contribute 7 to the total turning angle and two of them
contribute zero. (This satisfies the requirement that the sum of the internal
angles of the fundamental domain must equal 27.) Then

(5.7) B = (4d — 2)m

/~ kg ds
oD

in which case inequality (5.5) implies d = 1.

Suppose now that OB is non-empty. The local convexity of B implies
that the contributions to 85 at any vertices of the fundamental domain that
project to vertices of 0B are positive. Meanwhile, the contributions at the
other vertices can be calculated exactly — thanks to the turning angle at
each being a multiple of 7. Specifically, constructing the fundamental domain
in analogy with Figures 4 and 5, we calculate

(5.9) B > 2m(2d +m —1)

/~ Rg ds
oD

and

(5.8) < 2nd,

and

(5.10) <m(2d+m—1).
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Since the current assumptions is m > 0, these inequalities imply that d = 0
and m = 2.
In each of the above cases x(B) > 0. O

To get more detailed information about the integral affine structure on
the almost toric bases in question we need the following standard fact about
matrices that encode the monodromy around a node:

Theorem 5.1 ([30]). Suppose {A;}¥_, is a set of matrices in SL(2,Z), each
conjugate to (5 1). IfoZIAi = I then k = 12n and there is a finite sequence
of elementary transformations that yields the product HleAfL- = I such that
Al = (§1) ifiis even and A; = (1 9) if i is odd.

Note that an elementary transformation on a cyclicly ordered set of matri-
ces is either

(511) T’z {Aly---,AiflaAi,Ai+17Ai+2,---aAk:}
— {Al, c. 7Ai—17 AiAi-l—lAi_l; Ai, AZ‘+2, A ,Ak}

for some 1, or its inverse T;l. The relevance of the elementary transforms
and Theorem 5.1 follows from:

Observation 5.1. Given an integral affine disk with nodes (D, A), a choice
of branch curves R = U¥_| R; and an immersion ®: (D — R, A) — (R?, A)
determine a representation of the affine monodromy in SL(2,7Z). In particu-
lar; if the branch curves are indexed so that their intersections with the
boundary give an ordered set of points, say {z1,z2,... 2} agreeing with
the orientation of the boundary, then the monodromy along the boundary is
A1 A, ... A where A; is the monodromy around the node b;. The elementary
transformation 7; then corresponds to replacing the branch curve R; by a
branch curve from b; to 2, where 2 is between z;1; and x;42. Accordingly,
we call a change in branch curves corresponding to T; or Ti_1 an elementary
branch move.

Lemma 5.4. Let (D, A) be an affine disk. If the monodromy around the
boundary is trivial then there are 12n nodes on the interior of (D,.A). Fur-
thermore, for any boundary compatible metric g,

(5.12) / K, dA = 2mn.
D

Proof. Theorem 5.1 implies that the number of nodes must be a multiple
of 12. We proceed as in the proof of Lemma 5.2, choosing a set of branch
curves R = UY_| R; and flat model (13, g). However in this case, if there are
nodes, we appeal to Theorem 5.1, and choose the branch curves so that the
monodromy A; across each curve R; is (§1) if i is even and (1, {) if 7 is
odd. A direct calculation then shows 21?21 0; = 2m X = 2mn. (It is easiest to
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check this on the vector (1,0) but it is independent of the choice of vector
since the total monodromy is trivial.) As in the proof of Lemma 5.2 we have

that [, Ky = Zle 0; thereby proving the result. O

Theorem 5.2. Suppose (B, A) is the base of an almost toric fibration of a
closed four-manifold. Then (B, A) must be one of the following:

o q disk with any number of nodes and vertices;

e a cylinder or Mobius band with no vertices and any number of nodes,
all of whose eigenlines are parallel to OB which is linear; or

e a closed surface with 12x(B) nodes.

Proof. An easy way to construct an almost toric manifold whose base is a
disk with k£ nodes and v vertices is to start with the moment map image of
CP?# (k +v — 3)@2 (which is a polygon with k 4+ v vertices) and then
perform £ nodal trades.

Suppose that (B,.A) is a sphere. Cover (B,.A) with two disks, (D1,.A)
and (D3, A), such that D1 N Dy = 0D1 = dDy. Assume that Do contains
all of the nodes. Then (D1, .A) admits a flat metric compatible with A and
it extends across (D2,.4) as a boundary compatible metric g. The Gauss—
Bonnet Theorem then implies that the total curvature on Ds is 47, whereby
Lemma 5.4 forces there to be 24 nodes. (Consequently, if B = RP? then
(B,.A) must have 12 nodes.)

If B is a torus, a priori there could be non-trivial monodromy along gen-
erators of 71(B) that is balanced by monodromy around nodes U¥_,b;. This
possibility, however, is precluded by the Theorem 2 of [27]. Specifically, Mat-
sumoto proved that one can choose the generators of the fundamental group
of the base of an elliptic surface so the monodromy along each generator
is trivial. Since almost toric fibrations over closed bases are diffeomorphic
to elliptic surfaces, and the monodromy matrices of the elliptic surface are
the inverse transposes of the integral affine monodromy matrices of the cor-
responding almost toric fibration, Matsumoto’s theorem applies. Therefore
we can proceed as for a sphere, constructing a compatible flat metric on
the complement of the interior of a disk that contains all the nodes. Then
X(B) = 0 implies that the curvature on that disk is zero, and hence by
Lemma 5.4 the disk must contain no nodes.

Now assume that B is a cylinder and that there are no vertices on the
boundary, performing nodal trades if necessary. The monodromy around
the nodes is quite restricted: Lemma 5.5 below implies that we can choose
a monodromy representation in which the monodromy around all the nodes
the same, i.e., all the nodes belong to a disk in which there is a well-defined
line — the eigenline through the nodes. It remains to check that this line is
parallel to the components of 9B which in turn are parallel to each other.
(Recall that the boundary is geodesic because the total space of the fibration
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is a closed manifold.) With the eigenlines parallel to the boundary there is
no way to trade any of the nodes for a vertex on the boundary.

For the monodromy presentation choose a base point b € B — Ulebi, a
basis for T B and simple loops v;, 1 <1 < k, based at b such that

(1) each ~; winds around exactly one node b;, positively oriented as the
boundary of the disk it bounds and
(2) the affine monodromy along each +; is A g).

Now let 11, 2 be loops based at b that generate 71(B) and are such that

(5.13) nytm o=k ™

so that there are no nodes between 71 and one component of 9B and no nodes
between 75 and the other component of 0B. Since the affine monodromy
along each v; is A(y ), Equation (5.13) implies that the affine monodromy

along 772_1771 is A?l,o
monodromy along both 7, and 79 is a power of A ¢y whenever k # 0.
Geometrically, this means that the boundary components are parallel to the
common eigenline of the nodes. Note that it also implies 0B cannot have
any vertices.

If there are no nodes (the case k = 0) then the monodromy along 7 is
the same as along 72. Furthermore, this monodromy must be conjugate to a
power of A ) since a tangent vector to either linear boundary component
must be invariant under the monodromy. (This is most easily seen in a base
diagram of a fundamental domain.) Therefore the boundary components are
parallel to each other.

The corresponding statement for a Klein bottle base B follows because it
must be covered by an integral affine cylinder. Any vertices on (B, .A) would
lift to vertices in the cover, and any eigenlines not parallel to the boundary
would lift to eigenlines not parallel to the boundary of the cover. U

) It is easy to check that this can happen only if the

Lemma 5.5. Suppose (B, A) is a cylinder or Mobius band whose boundary
is linear with respect to A. Assume that there are nodes in the affine struc-
ture A. Then there is a presentation of the affine monodromy such that the
monodromy around each node is A ), i-¢., all the eigenlines are parallel.

Proof. Consider first the case of a cylinder base. Choose a fundamental
domain (D, A) C (B, A) and a boundary compatible metric §. Then Equa-
tions (5.9) and (5.10) imply, with d = 0 and m = 2, that §; > 27 and
|/ +Kg ds| < m. With these constraints the Gauss-Bonnet Theorem forces
I} 5 Kz dA < . Our proof by contradiction amounts to construction of a
boundary compatible metric that violates this bound.

If there is only one node, then the conclusion of the lemma is trivial.
Therefore, let {bi}le, k > 2, be the nodes indexed so that the monodromy
around bs is not the same as around b;. Assume, without loss of generality,
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that D contains at least four linear segments, one pair of which (say L1, Lo)
determines the other. Choose a set of branch curves R = UleRi such that
R;NdD € L; for i = 1,2 and an immersion ®: (D — R, A) — (R2, Ap)
such that the monodromy around by is A ). Then following the proof
of Lemma 5.1, we construct a boundary compatible metric § on (15,2)
whose total curvature is f K;dA = Z?Zl 0; where 0; measures the curvature
contribution of b; as in the proof of Lemma 5.2. Since 6; € [0, 7) for each
i (as shown in that proof), we only need to verify that we can choose the
fundamental domain so that 61 + 05 > .

Referring to Figure 3 and suppressing indices, we note that
Av X v
Av-v’
where A is the monodromy around a node. With A = A, ;) and v = (,y)
we calculate

(5.15) Av x v = (qz — py)?,
(5.16) Av-v=(1-pg)2® + (0* — ¢*)ay + (1 +pa)y®.

(5.14) tanf =

Allowing the affine lengths of L1, Lo to be sufficiently small, we can choose
the fundamental domain so that the vectors vi,vo have any direction we
want. Recalling that we have chosen A1 = A, ), Equations (5.15) and (5.16)
imply 6; is maximized by taking v; = (—1,2) in which case tan #; = 4/3. For
As = A(pq) we can assume g > 1 since ¢ = 0 would make the eigenvectors
parallel and the vector (p,q) is defined only up to sign. Furthermore, we
can choose (without loss of generality) p to be positive and arbitrarily large
since it is defined only mod ¢. (To change the value of p we can modify our
choice of affine immersion ® in a way that causes As to be conjugated by a
power of A o) — and therefore leaves A; unchanged.)

Having chosen v; = (—1,2) the bound 601 + 0 < 7 will violated if

(5.17) tanfy < 0
and
4
(5.18) [tan f2| < tanf, = 3
We do this by choosing vy = (p + 2, q) so that
(519) AQUQ X Vg = 4q2
and
(5.20) Aguy - vy = (1= 2¢)p* + 4(1 — @)p + (4+ ¢* — 2¢°).

Choosing p large enough we have that tan 6, is negative and as close to zero
as we like. O



168 N.C. LEUNG AND M. SYMINGTON

6. Classification

6.1. Rational surfaces.

6.1.1. Existence and equivalences. It is well known that a closed four-
manifold admits a toric fibration if and only if the manifold is diffeomor-
phic to a rational surface, i.e., Cl’ﬂ#m(cilD2 or (92 x 52)#71@2, and
that (5% x S2) #@2 is diffeomorphic to CP? #2@2 (cf. [2] or [12]). The
base of a toric fibration of a rational surface is integral affine isomorphic to
the moment map image in R? for a torus action inducing the fibration. Note
that the number of vertices in the integral affine base (B,.4) (or moment

map image) of a toric fibration of CP? #m(CiP2 or S x 8% is m+ 3 or 4,
respectively.

Since any vertex can be traded for a node by performing a nodal trade,
we have:

Lemma 6.1. CP? #m@2 and S? x S% admit almost toric fibrations over
integral affine disks with n nodes and k vertices provided n+k =m+ 3 or
n + k = 4, respectively.

Remark 6.1. One nice feature of almost toric fibrations of rational surfaces
is that they provide families of fibrations that interpolate between different
toric fibrations of a manifold while maintaining the cohomology class of the
symplectic form. (See [39] Section 6.2.) This is always true for Hirzebruch

surfaces which are diffeomorphic to either S? x S? or CP? #@2. We con-
jecture that such interpolating almost toric fibrations exist between toric
fibrations of any rational surface.

6.1.2. Completeness. The only manifolds that admit almost toric fibra-
tions over the disk are the rational surfaces. More specifically,

Theorem 6.1. Suppose w: (M,w) — (B, .A) is a closed almost toric mani-
fold whose base is a disk. Then there is a symplectic structure o', deformation
equivalent to w, such that (M,w") admits a toric fibration.

The essential idea of the proof of Theorem 6.1 is simple: just slide the
nodes on the interior of B along eigenrays until they hit the boundary,
thereby performing the inverse of a nodal trade. However, the almost toric
base in question may be such that:

(1) there is no set of disjoint eigenrays connecting the nodes to the bound-
ary (along which to slide the nodes) or
(2) sliding a node all the way to the boundary might produce a change
in topology by creating an orbifold singular point.
The first issue is addressed by Lemma 6.2 which allows us to assume that
all nodes are close enough to the boundary for there to be a “good” set of
branch curves. Specifically, the branch curves can be chosen so that each
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one belongs either to an eigenline or to a neighborhood of a boundary point
in which the eigenline through the node is parallel to the base. As explained
in Section 4.2, such a node is the result of an almost toric blow-up.

We resolve the second issue by providing (in the proof of Lemma 6.3)
an algorithm to appropriately modify an almost toric disk base without
changing the topology of the total space it defines.

For simplicity of exposition, we assume that there are no vertices on the
boundary. (If not, we start by trading all vertices for nodes.)

To begin, we indicate a set of data on a base diagram that defines the
topology of the total space.

Lemma 6.2. Suppose w: (M,w) — (D, A) is a closed almost toric man-
ifold whose base is a disk with no vertices on the boundary. Suppose V =
®(D — R) C (R%, Ag) is the domain of a base diagram, where R = U¥_| R;
is a set of branch curves. Let u;, i = 1,...,k be the inward-pointing primi-
tive integral vectors normal to the connected components of OV, indexed so
that they rotate non-negatively (counterclockwise). Then the set of vectors
{u1, ... ux}, up to cyclic permutation and the action of GL(n,Z), determines
the diffeomorphism type of M.

Note that ® is an embedding since 0D is locally convex. Also, each vector
u; really should be viewed as a covector defining the corresponding connected
component of V. We follow the convention that u; 1 and wu; are normal to
the connected components of 9V on either side of the cut created by R;.

Remark 6.2. For the reader familiar with complex algebraic toric varieties,
the vectors u; define a complete fan. The toric variety defined by the fan
will in general have orbifold singularities and hence not be diffeomorphic to
M. Tt will fail to be smooth precisely when u; x u;+1 > 1 for some i.

Proof. Because (D, .A) has no vertices its boundary is geodesic with respect
to A. Therefore M is the boundary reduction (along one line) of a symplectic
manifold (M’,w’) that is a smooth Lefschetz fibration over a disk. As such,
the diffeomorphism type of M’ are completely determined by the mono-
dromy. The only additional data needed to determine M are the homology
class of a regular fiber that gets collapsed during the boundary reduction
(the collapsing class). This homology class is well defined only with respect
to an arc in the base that runs from the image of a regular fiber to the
boundary.

The ordered set of vectors {uy,...,ux} defines the monodromy because
for each pair {u;,u;41} there is a unique matrix A; conjugate to A gy such
that A;u; = u;—1 (mod k). Furthermore, the collapsing class can be defined
by u; for any i as follows: choose an embedded arc + connecting a point
®(b) on the interior of V' and a point in the connected component of JV
defined by wu;. Viewing u; as a covector in T*R? and pulling back via ® we
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get a covector in Ty’ D. The collapsing class with respect to ®~1(7) is then
the element of Hj(Fp,Z) represented by integral curves of the vector field
X such that w(X,:) = ®*u;. (Here F} is the regular torus fiber over the
point b € D and w is the symplectic structure defined by the almost toric
fibration.)

Since cyclicly permuting the vectors u1, ..., u; has no effect on the mon-
odromy presentation or the collapsing class it also has no effect on the topo-
logy. Furthermore, changing the vectors by applying an element of GL(2,7Z)
amounts only to changing the isomorphism between Hy(F,,Z) and Z2. 0O

Remark 6.3. Unless the monodromy along the boundary of the base (with
no vertices) is trivial, the collapsing class is determined by the monodromy.
Indeed, A1As--- Agur, = wug and, unless A1 As--- A, = I, the primitive
integral vector uy is unique up to sign. In contrast, if A1 As--- Ay = I then
any vector could determine a collapsing class with respect to a fixed arc.
Theorem 6.1 implies the diffeomorphism type of the total space is inde-
pendent of this choice of vector. Since the boundary is geodesic, the proof
of Lemma 5.4 forces the number of nodes to be 12 and therefore the total
space is diffeomorphic to the elliptic surface E(1). Accordingly, the pos-
sibility of choosing any vector to determine the collapsing class whenever
A1Ag -+ A = I reflects the very large diffeomorphism group of E(1).

A natural question is what sequences of vectors {uq,...,ur} can be the
normal vectors to the connected components of OV where V = ®(D — R) as
above? The primary constraint is that

(6.21) Aju; = u;q

for each i (mod k) where A; is some matrix conjugate to A(; o). The action
of A; on any vector v can be rewritten in terms of its eigenvector e; as
(6.22) Aiv=v — (v X €)e;.

Therefore, the constraint can be rewritten as

(6.23) wi—1 = u; — (u; X e;)e;

for some primitive integral vector e;. The only other constraint on {u1, ... ux}
is that the vectors rotate exactly once around the origin. This motivates

Definition 6.1. An ordered set of primitive integral vectors (u1, ..., ug) is
a defining set for a closed almost toric manifold fibering over a disk if for
each i there is an integer n; and primitive integral vector e; such that
(1) U; X €; = Ny,
(2) w; — u;—1 = n;e; where the indices are understood mod k,
(3) uj # uq for some j # 1 and
(4) if uy, = uy for some m, then either u; = wu; for all i < m or else
u; = up for all ¢ > m.
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Note that u;—1 x u; = n? for each i (mod k). Furthermore, the definition
of e; is such that n; > 0 for all 7.

Recalling Remark 6.2 and the discussion after Theorem 6.1, for each ¢
we must have either n; = 1 (so we can slide node b; into the boundary) or
n; =0 (so b; is the result of blowing up).

Lemma 6.3. Suppose {ui,...,ur} is a defining set for a closed symplec-
tic four-manifold (M,w). There is a sequence of elementary branch moves
(defined in Observation 5.1) that yields a new defining set {u},...u}} such
that u_y x u} = (n})? € {0,1} for all i.

Proof. The defining set determines a corresponding set of monodromy matri-
ces {A1, Ay, ... Ar}. The elementary branch move corresponding to the ele-
mentary transformation 7} causes u; to be replaced by Aju;i1, leaving the
other vectors u;, i # j, unchanged.

Let 7; be the induced action on the integers {n1,ns,...nx}. Then

6.24) mi(ni) =mn; ifi#j,j+1,

(

(6.25) 7i(nj) = Vuj-1 X Ajujn

(626) = \/Aju]‘ X AjUj+1

(6.27) = AV Uj X Ujp1 = Nj41

and

(6.28) Tj(nj41) =V Ajujen X uj

(6.29) = \/(Uj+1 — (w1 X €j)€j) X ujp1
(6.30) =/ (wjt1 X €j)? = |uj+1 X ¢4,

where the second equality follows from Equation (6.22). Therefore, perform-
ing a sequence of elementary branch moves corresponding to T}y, - - - Tj417;
has the effect, via 7j4p, - - - Tj417}, of removing n; from the set and inserting
|tjrmt1 X €]

Assume, without loss of generality, that n; = N > n; for all . Also assume
that N > 2 (for otherwise our initial sequence would satisfy the conclusion
of the lemma).

If |u; x e1] < N for some i, then performing a branch move that cor-
responds to T;_p---T5T) removes n; = N and replaces it by a strictly
smaller non-negative integer. Redefining u; we could apply the same argu-
ment repeatedly. Therefore the only obstruction to achieving n; € {0,1} for
all 7 would be if at some stage |u; x e1| > N for all 7. Assume this is true.

Let f1 be a primitive integral vector such that e; x f; = 1. Then we can
write any vector v as a linear combination of ey, fi where e; X v gives the
f1 coefficient and v x f; gives the e; coefficient. Furthermore, the condition
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Figure 6. Vectors of a defining set.

that |u; x e;| > N for all 7 implies that the endpoints of all the vectors u;
based at the origin must fall outside the open domain between by the lines
parameterized by t € R as £N f; +te; in R2. (See Figure 6 in which u; fails
this condition.)

Since the equation e; X f; = 1 defines f; modulo an integer multiple of
e1, we can choose fi so that up x fi < 0 and u; x f; > 0. (See Figure 6.)
Furthermore, we can strengthen the last inequality to u; x f; > 0 because
u1 X f1 = 0 and the primitivity of w; would imply vy = &£ f1, which would
contradict the assumption that N = u; x e; > 2.

Because the angle between u;_1 and u; is less than « for any ¢, there must
be some minimal j such that e; x u; > N. Writing e; = xe; + y f1, we have
y > 0 because e; X e; > 0 by construction. (Again, see Figure 6.) Meanwhile,

(6.31) ng = uUj—1 X €
(6.32) = x(uj—1 X e1) +y(uj—1 x f1),

but uj_1 x e; > N and u;—1 X fi > 0 so the only way to have n; < N is if
x < 0. (Note that = and y are both integers.) Furthermore,

(633) ng = uj X €j
(6.34) = x(u; x e1) +y(u; x f1)
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where u; x e < —N. With y > 0 and z < 0, the constraint that n; < N
forces u; x fi < 0. Since u; x f1 = 0 would imply u; = f; and thereby
N =1, we find u; x f; <0, i.e., the e; component of u; must be negative.

By symmetry, the same argument for w;_1,w;, where [ is the maximal
index for which e; x w;_1 > N, would show that the e; component of u;_1
must be positive.

Since both of these conditions on the e; components of u; and u;_; cannot
be met, the assumption that N > 2 must have been false. O

Proof of Theorem 6.1. Assume, without loss of generality, that the almost
toric fibration is over a disk that has no vertices. Let {uy, ... ux} be a defining
set of vectors arising from a particular base diagram. Invoking Lemma 6.3
we can, by varying the base diagram without changing the fibration, find a
new defining set {uf,...,u}} such that n? = u}_; x u} € {0,1} for all 7. In
this base diagram the branch curves need not be linear.

Now, allowing the fibration and symplectic structure to vary, we construct
a new almost toric base (D, A’) that defines the same smooth four-manifold
but has a more amenable base diagram. Indeed, letting [ < k be the number
of distinct vectors in the defining set, we construct the base diagram as
follows:

(1) Choose a convex polygon such that {u},...,u,} is a set of inward
pointing normal vectors that rotate non-negatively counterclockwise.
This will be a polygon with [ sides.

(2) For each i such that u} # u,_; (mod k), place a dotted line segment
7. in the polygon so that it has one endpoint at the vertex between
the sides with normal vectors u;_;, u and has €} as a tangent vector.
Do this so that the n} are all disjoint. After placing an asterisk at
the interior endpoint of each 7/, this will be the base diagram for an
almost toric manifold.

(3) For each j such that u; = u;_l, perform an almost toric blow-up on

the edge defined by u;.

By construction we can now slide all nodes to the boundary, perform k —1
almost toric blowdowns, and then perform k — [ toric blow-ups. The result
will be a toric fibration of (M,w’) for some symplectic structure w’.

To see that ' and w must be deformation equivalent note that one could
interpolate between the initial base diagram and the final base diagram via
a one parameter family of base diagrams. Accordingly one can find a one
parameter family of fibrations interpolating between the initial and final
ones. Il

Lemma 3.2 then allows us to deduce the diffeomorphism type of the total
space of a toric fibration over the disk from the sum of the numbers of nodes
and vertices unless the sum equals four, in which case we only know that M
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(a) (b)

Figure 7. Sphere bundles over tori.

must be a sphere bundle over a sphere — either S? x S? or CP2#@2. The
two sphere bundles can be easily distinguished by the moment map image
(or base) of a toric fibration (cf. [39] or [2]). It would be interesting to know
if there is a quick way to distinguish these sphere bundles from the base of
an almost toric fibration, without carrying out the algorithm in the proof of
Theorem 6.1 that leads one to a toric fibration.

6.2. Sphere bundles over the torus.

6.2.1. Existence and equivalence. Up to diffeomorphism there are two
sphere bundles over the torus, S? x T2 and the non-trivial bundle S?xT?2.

We can construct almost toric fibrations of these manifolds over a cylinder
as follows. Start with a toric fibration of R x S x 2 over R x [—1, 1] given by
m(p,q,®,0) = (p,sin ¢) where p is a linear coordinate on R, ¢ is an angular
coordinate of period 1 on S', and -5 < ¢ < 3,0 <6 < 2 are angular
coordinates on S2. This is a toric fibration with respect to the symplectic
form w = dp A dq + d(sin ¢) A d(8/27).

To get T2 x S?, quotient by an action of Z whose generator is the sym-
plectomorphism that sends (p, ¢, ¢,0) to (p+a,q, ¢,0), a # 0, which induces
the integral affine transformation (I;(§)) on the base. To get a non-trivial
sphere bundle over the torus we can choose the generator of Z to be the
symplectomorphism that sends (p,q, ¢,6) to (p —sin¢ + a,q, ¢,q + 0/2m),
a # 0, which induces the integral affine transformation ((} 7');(§)). Base
diagrams for such almost toric fibrations are given in Figures 7(a) and (b),
respectively. The monodromy along a curve parallel to the boundary in the

base is given by

(6.35) ((1) ’f)

with £ = 0 and —1, respectively, if the curve is oriented to the right.

Similarly, one can construct fibrations in which the monodromy is k for
any k € Z, in which case the slope of the right-hand edge in the base
diagram is 1. Applying the methods in Section 7 of [39] one can determine
that the self-intersection of the preimage of the lower edge would then equal
k. Therefore, the bundle is trivial or non-trivial according to whether k is
even or odd, respectively.
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Sphere bundles over the torus also admit almost toric fibrations over a
Mobius band, again as quotients by Z of a toric fibration of R x S x §?
over R x [—1,1]. Indeed, precompose the aforementioned generators of the
Z action by the rotation (p,q, ¢,6) — (p,q, —¢, —6). Because a rotation is
isotopic to the identity this does not change the resulting total space. Pre-
composing by this rotation does, however, have the effect of changing the
integral affine transformations to ((§ % );(8)) and ((§ 1) ;(8)), respec-
tively. The corresponding base diagrams differ from those in Figure 7 only
by reversing the arrow on the right-hand edge.

Blow-ups of these sphere bundles also admit almost toric fibrations.
Indeed, one can perform an arbitrary number of (sufficiently small) almost-
toric blow-ups, each one introducing one node in the base.

Similar to sphere bundles over the sphere, blow-ups of the trivial and non-
trivial sphere bundles over the torus are diffeomorphic. This can be proved
in terms of base diagrams by making a branch move that changes which
component of the boundary is intersected by the branch curve emanating
from a given node.

Summarizing, we have proved:

Lemma 6.4. Blow-ups of the trivial and non-trivial sphere bundle over the
torus, (S? x T?) #n@Q and (S?xT?) #n@2, admit almost toric fibra-
tions over both integral affine cylinders and Mobius bands that have n nodes.
Among these manifolds, (S? x T?) # nCP" and (S2XT?) # nCP" are diffeo-

morphic for each n > 1.

6.2.2. Completeness. Suppose m: (M,w)— (B, A) is an almost toric
fibration in which the base B is homeomorphic to a cylinder or a Mdbius
band. Then Theorem 5.2 implies that, after blowing down, the integral affine
base must be isomorphic to a quotient of a strip {(z,y)|a < y < b} C
(R2, Ag) by an action of Z. The monodromy for such a quotient must be of
the form (6 ikl) for some k € Z in order to have the boundary invariant. By
Corollary 3.1 we know that these integral affine cylinders and Mobius bands
determine the total spaces uniquely. Noting that the preimage of a vertical
cross section of the base is a copy of S' x S2, we see that the total space
must be a sphere bundle over a torus. Thus,

Lemma 6.5. The only closed four-manifolds that admit an almost toric
fibration over a cylinder or Mdébius band are sphere bundles over tori and
blow-ups of these.

6.3. K3 and Enriques surface.

6.3.1. Existence and completeness. A complex surface is a K3 surface
if it is simply connected and it supports a non-vanishing holomorphic two-
form 2. Many K3 surfaces admit a holomorphic fibration with generic fibers
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being tori. Topologically, a generic holomorphic fibration of a K3 surface
is a genus one Lefschetz fibration with 24 singular fibers (cf. [15]). All K3
surfaces are diffeomorphic so in the smooth category we refer to “the K3
surface.”

The existence of almost toric fibrations of the K3 surface is well known in
mirror symmetry where such fibrations underly generic special Lagrangian
fibrations (cf. [20]). Any K3 surface, as a complex manifold, is hyperkdhler
and therefore equipped with a two-sphere of complex structures with corre-
sponding symplectic forms that are the Kéhler forms. (In complex dimension
two the only closed hyperkdhler manifolds are the K3 surfaces and com-
plex tori — T* equipped with differing complex structures.) A hyperkihler
rotation (cf. [22]) applied to a holomorphically fibered hyperké&hler manifold
transforms the holomorphic fibration into a special Lagrangian fibration, i.e.,
a Lagrangian fibration that is also adapted to the complex structure in the
sense that Im(£2) = 0 on the fibers for some choice of non-vanishing holo-
morphic two-form 2. Therefore, a hyperkéhler rotation of a generic holomor-
phically fibered K3 surface yields an almost toric fibered K3. These general
statements imply:

Lemma 6.6. The K38 surface admits an almost toric fibration over the
sphere with 24 nodes.

To get a better understanding of such fibrations, we detail a construction
of almost toric fibered K3 surfaces that are based on the well-known fact that
the K3 surface, or E(2), is the fiber sum of two copies of the elliptic surface

E(1) = CP?*# 9CP” which fibers over CP! with 12 nodal fibers (cf. [15]).

(1) Choose two toric fibrations of E(1) = CP%# 9CP".

(2) The base diagram of each has 12 vertices. Perform nodal trades at
all of the vertices. This yields two almost toric manifolds, each with
a smooth symplectic torus of self-intersection zero fibering over the
boundary of the base. This almost toric fibration has 12 singular fibers
that are Lagrangian and hence are not the singular fibers of a symplec-
tic or holomorphic fibration. However, the preimage of the boundary
is a symplectic torus that can be viewed as a regular fiber of a Lef-
schetz fibration with symplectic fibers.

(3) Symplectic sum the two almost toric copies of E(1) along these sym-
plectic tori. In the base this amounts to joining the two bases along
their boundaries. (The symplectic sum requires that the symplectic
tori along which one sums have the same area. This corresponds to
the boundaries of the integral affine bases of the almost toric fibered
E(1)’s being integral affine isomorphic. Both constraints are purely a
matter of scaling.)
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An Enriques surface is a complex manifold that is a Zs quotient of a K3
surface. In our construction of an almost toric fibered K3 surface there is no
obstruction to making the integral affine base have Zo symmetry. If the base
has such symmetry then one can take a fiber-preserving Zo quotient of the
K3 surface to get an almost toric manifold fibering over RP2. One might
expect that the quotient manifold is diffeomorphic to an Enriques surface
even though the base of the fibration is RP? rather than the usual CP! base
of a holomorphic fibration. However, have no way to ensure that the Zo
quotient in question supports a complex structure. Therefore, we describe
a construction of an almost toric fibration over RP? that allows us to see,
in the smooth category, that the total space is an Enriques surface. Because
all Enriques surfaces are diffeomorphic we refer to “the Enriques surface”
when discussing the underlying smooth manifold.

Lemma 6.7. The Enriques surface admits an almost toric fibration over

RP2.

Before proving this lemma we review some pertinent background. The
(smooth) log transform? is a surgery on a four-manifold in which one removes
a neighborhood of a regular torus fiber and glues it back in via a diffeomor-
phism of the boundary (cf. [15]). When performed on a genus one Lefschetz
fibration, the effect of the log transform on the total space depends only
on an integer, the multiplicity: it produces a multiple fiber of multiplicity
p, namely a fiber f, whose homology class satisfies p[f,] = [f] where f is a
regular fiber.

Crucial to our argument is the fact that E(1)22 is the Enriques sur-
face (cf. [15]). Here E(1)22 denotes the manifold obtained from E(1) =

CP2#9@2 by performing two smooth multiplicity two log transforms
along fibers of a genus one Lefschetz fibration, which is the smooth ana-
log of an elliptic fibration of the elliptic surface E(1).

Proof. Consider an almost toric fibration of the elliptic surface F(1) such
as used in constructing an almost toric fibered K3 surface, i.e., one whose
base B has 12 nodes and a boundary that is linear with respect to the inte-
gral affine structure. Now remove a neighborhood of 0B that is fibered
by geodesics parallel to the boundary (with respect to the affine struc-
ture) and replace it with a Mobius band also fibered by geodesics paral-
lel to the boundary. The result is an integral affine RP? with 12 nodes.
This integral affine surgery on the base corresponds to a surgery on the
total space in which we remove a neighborhood of the torus 7T that is
the preimage of 0B and then glue in an almost toric fibration over an
open Mébius band, i.e., the product of S' and a three-manifold that is

3The log transform is traditionally an operation on complex algebraic surfaces (ct. [16]).
The smooth log transform is the induced surgery on the underlying smooth manifold.
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the circle bundle over a Mébius band whose total space is orientable. This
latter three-manifold can be obtained from a solid torus by performing
two Dehn surgeries of multiplicity two along circles parallel to the core
(cf. [21]). Since the product of the identity map (on S!') and a Dehn
surgery of multiplicity k£ (on a solid torus) is a log transform of mul-
tiplicity k, we have that the surgery used to construct the total space
is equivalent to two log transforms of multiplicity two. Since the prod-
uct of the S factor and circles parallel to the core of the solid torus
correspond to fiber tori of a genus one Lefschetz fibration of E(1), we
have that the resulting manifold is indeed E(1)22, and hence the Enriques
surface. O

Lemma 6.8. The K3 surface and the Enriques surface are the only closed
manifolds that admit almost toric fibrations over the sphere and RP?, respec-
tively.

Proof. By Theorem 5.2 any integral affine structure on the sphere or RP?
must have 24 or 12 nodes, respectively. Therefore, as a smooth fibration, an
almost toric fibration over S? is equivalent to a genus one Lefschetz fibration
with 24 singular fibers, and hence diffeomorphic to a K3 surface (cf. [15]).
Similarly, the smooth fibration underlying any almost toric fibration over
RP? is a genus one Lefschetz fibration over RP2. Our proof of Lemma, 6.7 can
be carried out without modification in the smooth category — the integral
affine structure on the base was used merely as a guide — thereby implying
that any almost toric fibration over RP? has the Enriques surface as its total
space. Il

6.4. Torus bundles over the torus.

6.4.1. Existence and completeness. By Theorem 5.2, almost toric fibra-
tions over the torus have no singular fibers and hence are regular fibrations,
or Lagrangian torus bundles. The torus bundle M{A, B;m,n} can be con-
structed as follows. Let «, 3 be generators of the fundamental group of the
base and consider the unique torus bundle with section whose monodromy
representation maps « to A and 3 to B. Next, remove a product neighbor-
hood T2 x D? of a fiber. Let A1, Ao and p be curves on the boundary 73
whose homology classes generate H(T2,7Z) and such that u is a meridional
curve. Now glue the T2 x D? back in by a map that takes p to a curve in
the class [u] + m[A1] + n[Aa].

The integral affine structure on the base torus, arising because the fibers
of the bundle are Lagrangian, restricts the possibilities for monodromy.

Proposition 6.1 ([29]). A torus bundle over the torus admits a symplectic
structure with respect to which the bundle is Lagrangian if and only if, for



ALMOST TORIC SYMPLECTIC FOUR-MANIFOLDS 179

some choice of framing of the fiber, it has the form

(6.36) M(k:m,n) = M { <(1) (D , (é ’f) mn}

with k,m,n € Z and k > 0.

Note that Geiges [13] identified which torus bundles over tori admit
a symplectic structure with respect to which the underlying fibration is
Lagrangian. In particular, Geiges [13] observed that the torus bundles
M (k;m,n) fall into three classes depending on whether the first Betti num-
ber equals 4 (when k =m =n —0), 3 (when k =0 and (m,n) #0or k >0
and n = 0) or 2 (when k£ > 0 and n # 0). If by = 4 then the manifold is
T? x T? and admits a Kéhler structure. Those that have b; = 3 admit com-
plex structures but no Kéahler structures and are the Kodaira manifolds that
were among the first examples of non-Ké&hler symplectic manifolds [40]. The
Lagrangian torus bundles over tori that have b = 2 admit no complex struc-
tures. In particular, this implies that the hyperelliptic surfaces (the complex
torus bundles over tori that have b; = 2) do not admit regular Lagrangian
fibrations.

6.4.2. Equivalences. Sakamoto and Fukuhara have classified torus bun-
dles over tori up to bundle isomorphism and global diffeomorphism in [34].
For the convenience of the reader we summarize, in our notation, their results
that are relevant to Lagrangian torus bundles:

Proposition 6.2 ([34, p. 313]). Hy(M(k;m,n)) = Z? ® (Z*/K) where K
is the subgroup of Z? generated by (™) and (6‘)

Theorem 6.2 ([34, p. 318]). If by # 3 then the bundle isomorphism and
diffeomorphism classifications coincide.

Note that by = 3 if and only if either £ = 0 and (m,n) # (0,0) or £ # 0
and n = 0.

Theorem 6.3 ([34, p. 319]). The bundles M{A,I;m,n} and M{A", I;m/,
n'}, where I is the identity matriz, are isomorphic if an only if, for some

P e GL(2,7),

(6.37) PAP ' =Aor PAP 1 =471,
and
/
(6.38) <:’Z> - P (7:,) is in the span of the columns of A — I.

Proposition 6.3 ([34, p. 321]). M(k;m,0) with (k,m) # (0,0) is diffeo-
morphic to M(d;0,0) where d = ged(k, m).

Sakamoto and Fukuhara only claim homeomorphism equivalence, but the
maps used are all smooth.
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Proof of Proposition 2.1. The bundles M (k;m,n) with &k = m = n = 0,
kn = 0 and (k,m,n) # (0,0,0), and kn # 0 listed in Proposition 2.1
are mutually non-diffeomorphic as their first Betti numbers are 4, 3 and
2, respectively. After noting that the only bundle with £ = m = n = 0 has
total space T*, we consider the equivalences within each of the other types
separately.

If n =0 and (k,m) # (0,0) then Proposition 6.3 implies M (k;m,n) is
diffeomorphic to M(ged(k, m,n);0,0) since ged(k, m,n) = ged(k, m) when
n = 0. Suppose k = 0 and (m,n) # (0,0). Then, because A = I, the
matrix P in Theorem 6.3 can be chosen to satisfy (7)) = P ng(g”"") . Then
Proposition 6.3 implies M (k;m,n) is diffeomorphic to M (k;ged(m,n),0)
which in turn is diffeomorphic to M(ged(k,m,n);0,0) because k = 0.

Theorem 6.3 implies that |k| is a bundle isomorphism invariant of
M (k;m,n), so our assumption that k, k" > 0 implies k = k’. If kn # 0 then
the matrices that conjugate with A = ((1) ’f) are precisely those of the form
P=4+ ((1)’1’) for some p € Z. Applying Theorem 6.3 we find that M (k; m,n)
and M (k;m/,n') are isomorphic if and only if they satisfy the conditions
of Proposition 2.1(3). Theorem 6.2 then implies that these conditions also
specify the diffeomorphism equivalences. O

6.5. Torus bundles over the Klein bottle.

6.5.1. Existence and completeness. We denote a torus bundle over
the Klein bottle K by N{A, B;a,b} where A is the monodromy along
an orientation reversing loop « in K and B is the monodromy along an
orientation preserving, non-separating loop ( in K such that « and [
intersect once transversely. Consequently, a3a~!f3 is null homotopic in K
and AB = B7'A. The Euler class is defined just as for torus bundles
over tori.

Theorem 6.4. A torus bundle over the Klein bottle admits a symplectic
structure with respect to which the bundle is Lagrangian if and only if, for
some framing of the fiber, it has the form

(6.39) NG Aa,e) = N { <(1) _‘51> , <(1) ’;’) a, e}

for some choice of §,e € {0,1} and k,a € Z.

Proof. The fundamental group of a torus bundle over the Klein bottle has
a presentation with generators «, 3, [, h and relations
(6.40)

[1,h) =1, a(l,h)a™t = (I,h)A, B(I,h)B ' =(,h)B, afat3=1".
(See [41].) Abelianizing, one finds that by =3 —rk(A — I, B —I).
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Note that b; = 3 only if the 2 x 4 matrix (A — I, B—1I) is identically zero,
which is impossible because det A = —1 and hence A # I. Therefore, for
any torus bundle over the Klein bottle, by equals either 2 or 1. Furthermore,
for a Lagrangian torus bundle we have that b; # 1. Indeed, x = 0 because
it is a torus bundle. Therefore, 2 — 2b1 + b2 = 0, but for M to be symplectic
we must have by # 0.

According to Ue [41, p. 483], by applying bundle isomorphisms one can see
that any torus bundle over the Klein bottle having b1 = 2 must be equivalent
to one of

(6.41) = { (3 9) (5 7)ol

where ¢ = 0, 1,2,3 according to whether (4, €) equals (0,0), (1,0), (0,1) or
(1,1), respectively. One may assume A >0, a > 0and 0 <a < Aif A > 0.

To verify that these bundles admit symplectic structures with respect
to which the fibration is Lagrangian, it remains to construct an integral
affine structure on the Klein bottle K with monodromy {(_01 ‘15) , ((1] i‘)}
(The Euler class can be introduced at will using Luttinger surgery, as for
torus bundles over tori; cf. [29].) Since the monodromy matrices of the torus
bundle and the integral affine structure are inverse transposes of each other,
define C = A~T and D = B~ 7.

Mimicking part of Mishachev’s work on Lagrangian torus bundles over
tori [29], we note that the structure exists if and only if there are vectors
u, v such that the integral affine transformations (C,u) and (D, v) generate
a properly discontinuous action of 71 (K) on R?, where (C,u) -z := Cz +u
and, similarly, (D,v) - x := Dz +v.

In order for (C,u) and (D,v) to generate an action of 7;(K) we must
have

(6.42) (C,u)(D,v) = (D,v)"1(C,u).

The left-hand side is

(6.43) (CD,u+ Cv)

while the right-hand side is

(6.44) (D7, =D ') (C,u) = (D7'C, D™ (u —v)).

The requirement that CD = D~'C imposes no restriction on § and k.
However, equality of the vectors imposes

(6.45) (D7' = Du = (C + D,

ie.,

(6.46) <2 8) (Zi) - (kié g) @)
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Thus the only constraint imposed by the existence of an action is
(6.47) Aup = (A + )vr + 2vs.

The transformation (C,u) has x as a fixed point if and only if there is a
solution x to the equation (I — C)z = u. Since

(6.48) I—c-— (_25 8)

we merely need to assure that (u1,usg) is not proportional to (2, —4).
Meanwhile, to prevent (D,v) from having a fixed point we need that
(I — D)x = v have no solution. Since

(6.49) I-D= (2 8)

it suffices to have v; # 0.

Choosing u; =wv1 =1, we have an action provided we choose vy =
$(kuy — (k+8)vy) = —76

Then we can twist the bundle as described in Section 1 while maintain-
ing the fibers being Lagrangian, i.e., by performing Luttinger surgery [26],
to obtain N (4§, A;a,b) for any a,b € Z. Then, as pointed out by Ue [41,
p. 483], we can change the cross section to assure that, without changing
the monodromy matrices, we can arrange that b € {0,1}. O

6.5.2. Equivalences. There are numerous diffeomorphism equivalences
among the N(0, \; a, €); however, they are so tedious to detail we refer the
reader to Theorem 4(ii) in [41] for the exact conditions. However, if one
wants to check the equivalence of two particular bundles, it may suffice to
note the following two lemmas.

Lemma 6.9 ([41]). The group of bundle isomorphisms of a torus bundle
over the Klein bottle K is generated by isomorphisms that take {A, B; ()}

{ pP~tAp P'BP; P! <b>}
(e (i)
(6.52) {A,B L <Z>}
{
v

(6.50)

(6.51)

(6.53) BAB™' B:B (Z)}

A7'B,A7'BA; A2 <b>}

(6.54)
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and

(6.55)
{A, B; (Z) +B'A(B™ - B) (2) +(BT'A+ 1) (‘j) } p,q,8,t €.

Lemma 6.10 ([41, pp. 483-484]). The T? bundles over K having by = 2

are diffeomorphic and T? bundles over T? as follows:
(6.56)
-1 0 1 k -1 —a
GG )= { (5,
(6.57)

-1 0 1 k -1 2a
D)6 )= (6 5)

(6.58)

-1 1 1 k -1 —a

)G )= { (5,
(6.59)

-1 1 1 k). N -1 2a+1 1 kY.
GG )= () (o 1)
Because the diffeomorphism classification of torus bundles over tori with

b1 = 2 agrees with the isomorphism classification, this allows one to check
diffeomorphism equivalence of the torus bundles over the Klein bottle. For
simplicity, the presentations of the bundles in the above lemmas differ from
the presentations in [34] by invoking Theorem 6.3 and Equation (6.50) to
change the signs of various entries.

7. Other classifications

In this section we briefly discuss various other classifications of almost toric
manifolds that one might seek, indicating what is known and what remains
to be done to achieve such classifications.

7.1. Fiber-preserving symplectomorphism. The problem of determin-
ing the data required to specify a Lagrangian fibration up to fiber-preserving
symplectomorphism has been studied in several cases:

(1) Duistermaat [10] solved this problem for regular Lagrangian fibra-
tions of symplectic manifolds of any even dimension: one needs the
affine structure of the base and a Lagrangian Chern class that mea-
sures the obstruction to the existence of a Lagrangian section.
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(2)

3)
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In the toric case this was established by Delzant [8] for closed mani-
folds of any even dimension 2n. Here the moment map image modulo
equivalence under the action of Aff(n,Z) is a complete invariant.
Boucetta and Molino [7] solved this problem for locally toric fibrations
in any even dimension. The data consist, in our language, of the base
(B, .A) and a generalization of Duistermaat’s Lagrangian Chern class.
They also determined that any choice of Lagrangian Chern class and
locally toric base (B, .A) can be realized by such a fibration.

Zung [45] made a significant generalization to fibrations with a class
of singularities he calls “non-degenerate topologically stable.” In this
case, the data consist of the base (B, .A), the fiber-preserving sym-
plectomorphism type of the neighborhood of each singular fiber and
an appropriately generalized Lagrangian Chern class. The work of Vu
Ngoc S [43] shows that the structure of the fibration near a singular
fiber is delicate information already in dimension four where he found
a Fourier series type invariant for the neighborhood of a focus—focus
(nodal) singularity.

For closed four-manifolds one could hope for a complete classification
that specifies what fibrations can occur. (In higher dimensions one must
first surmount the difficulty of even specifying what bases can occur.)

(1)

(2)

For regular Lagrangian fibrations of four-manifolds over the torus
this problem was completely solved by Mishachev [29]. For reg-
ular Lagrangian fibrations over the Klein bottle one could follow
Mishachev’s approach.

For toric fibrations this amounts to Delzant’s theorem [8] and the
classification of polytopes satisfying the appropriate integrality con-
ditions at each vertex.

To extend to locally toric fibrations in dimension four one needs to
treat the cases when the base is a cylinder, Mobius band, torus or
Klein bottle. The first two cases amount to an easy exercise since
the Lagrangian Chern class vanishes and the possible bases (B, .A)
are easy to specify. Meanwhile, the second two cases coincide with
the classification of regular Lagrangian fibrations.

Extending to the almost toric case would require an understanding of
all the integral affine structures with nodes that can occur on S?. This
question is of independent interest in the context of mirror symmetry
(cf. [19, 24]).

7.2. Global symplectomorphism. If one has a classification up to
fiber-preserving symplectomorphism this problem amounts to deciding
which fibrations are equivalent via a global symplectomorphism. Even
in the case of closed toric manifolds this is a non-trivial problem being
studied by Yael Karshon, Liat Kessler and Martin Pinsonnault [23].
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Mishachev [29] conjectured that two Lagrangian torus bundles over a torus
are symplectomorphic if and only if they are fiber-preserving symplectomor-
phic; however, it is not clear how to prove such a conjecture. Meanwhile the
special case of the K3 surface is very interesting and unsolved.

7.3. Weak deformation. If two Lagrangian fibrations are known to have
diffeomorphic total spaces, one can ask whether the pull back (via some
diffeomorphism) of one symplectic structure can be connected to the other
symplectic structure via a path of symplectic structures, i.e., whether they
are weakly deformation equivalent. One way to verify such a relationship
is to connect the two fibrations by a path of fibrations. We conjecture, for
instance, that the symplectic structures on any pair of almost toric K3 sur-
faces are weakly deformation equivalent.
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