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SIMPLICITY OF Homeo(D2, ∂D
2, Area) AND

FRAGMENTATION OF SYMPLECTIC
DIFFEOMORPHISMS

Frédéric Le Roux

In 1980, Albert Fathi asked whether the group of area-preserving
homeomorphisms of the 2-disc that are the identity near the boundary
is a simple group. In this paper, we show that the simplicity of this
group is equivalent to the following fragmentation property in the group
of compactly supported, area preserving diffeomorphisms of the plane:
there exists a constant m such that every element supported on a disc
D is the product of at most m elements supported on topological discs
whose area are half the area of D.

En 1980, Albert Fathi pose la question de la simplicité du groupe
des homéomorphismes du disque qui préservent l’aire et sont l’identité
près du bord. Dans cet article, nous montrons que la simplicité de ce
groupe est équivalente à une propriété de fragmentation dans le groupe
des difféomorphismes du plan, préservant l’aire et à support compact,
à savoir : il existe une constante m telle que tout élément à support
dans un disque D est le produit d’au plus m éléments dont les supports
sont inclus dans des disques topologiques dont l’aire est la moitié de
celle de D.

0. Introduction

This paper is concerned with the algebraic study of the group

G = Homeo(D2, ∂D
2, Area)

of area-preserving homeomorphisms of the 2-disc that are the identity near
the boundary. The central open question is the following.

Question 0.1 ([Fa80]). Is G a simple group?

The study of the simplicity of groups of homeomorphisms goes back as far
as 1935. Indeed in the famous Scottish Book [SB57], Ulam asked if the iden-
tity component in the group of homeomorphisms of the n-sphere is a simple
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group. This question was answered in the affirmative by Anderson and Fisher
in the late 1950s [An58, Fi60]. In the 1970s lots of (smooth) transformation
groups were studied by Epstein, Herman, Thurston, Mather, Banyaga, and
proved to be simple (see the books [Ba97] or [Bo08]). Let us give some
details on the group Gdiff = Diffeo(D2, ∂D

2, Area), which is the smooth ana-
log of our group G. This group is not simple, since there exists a morphism
from Gdiff to R, called the Calabi invariant. But Banyaga proved that the
kernel of the Calabi invariant coincides with the subgroup [Gdiff , Gdiff ] gener-
ated by commutators, and is a simple group. Thus the normal subgroups of
Gdiff are exactly the inverse images of the subgroups of R under the Calabi
morphism. The analog of Question 0.1 is also solved in higher dimensions.
Indeed Fathi proved the simplicity of the group of volume-preserving home-
omorphisms of the n-ball which are the identity near the boundary, when
n ≥ 3. However Question 0.1 remains unsolved so far.

Actually, some normal subgroups of G have been defined by Ghys
([Gh07], see [Bo08]), and by Oh and Müller [MO07]. But so far no one has
been able to prove that these are proper subgroups: they might turn out to
be equal to G. In this text, I propose to define still another family of normal
subgroups {Nϕ} of G. I have not been able to prove that these subgroups
are proper either, but we can prove that they are good candidates.

Theorem 0.1. If some normal subgroup of the family {Nϕ} is equal to G,
then G is simple.

The present work has its origin in Fathi’s proof of the simplicity in higher
dimensions. Fathi’s argument has two steps. The first step is a fragmenta-
tion result: any element of the group can be written as a product of two
elements, each of which is supported on a topological ball whose volume is
3
4 of the total volume. The second step shows how this fragmentation prop-
erty, let us call it (P1), implies the perfectness (and simplicity) of the group.
While the second step is still valid in dimension 2, the first one fails. In the
sequel we propose to generalize the fragmentation property (P1) by consid-
ering a family of fragmentation properties (Pρ) depending on the parameter
ρ ∈ (0, 1] (a precise definition is provided in Section 1). A straightforward
generalization of Fathi’s second step will prove that if property (Pρ) holds
for some ρ, then G is simple (Lemma 3.1 below). On the other hand, we
notice that if none of properties (Pρ) holds, then the subgroups Nϕ are
proper, and thus G is not simple (Lemma 2.1). Thus we see firstly that
Theorem 0.1 holds, and secondly that Question 0.1 is translated into a frag-
mentation problem, namely the existence of some ρ such that property (Pρ)
holds. Christian Bonatti drew my attention to the possibility of formulat-
ing this fragmentation problem in terms of a single property (P0). This
property, which may be seen as the limit of properties (Pρ) as ρ tends to
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zero, is the following: there exists a constant m such that any homeomor-
phism of the plane, supported on a disc having area equal to one, is the
composition of m homeomorphisms supported on some topological discs hav-
ing area equal to one half. This discussion is summarized by the following
statement.

Theorem 0.2. The following properties are equivalent:
(1) the group G is simple,
(2) there exists some ρ ∈ (0, 1] such that property (Pρ) holds,
(3) property (P0) holds.

Furthermore, we will prove that the simplicity of G is also equivalent to the
similar fragmentation property on the smooth subgroup Gdiff (see Lemma 4.1
and Theorem 4.1 in Section 4 below). We will see in Section 6 that Entov–
Polterovich quasi-morphisms, coming from Floer homology, implies that the
fragmentation property (Pρ) do not hold for ρ ∈ (1

2 , 1]. Whether it holds or
not for ρ ∈ [0, 1

2 ] remains an open question.
The definitions and precise statements are given in Section 1, as well as

the links between properties (P0) and (Pρ) for ρ > 0. The proofs of The-
orem 0.1 and 0.2 are given in Sections 2 and 3. Sections 4 and 5 provide
the link with diffeomorphisms. Some more remarks, in particular the con-
nection with other surfaces, are mentioned in Section 7. Sections 5–7 are
independent.

1. The fragmentation norms

In the whole text, the disc D
2 is endowed with the normalized Lebesgue

measure, denoted by Area, so that Area(D2) = 1. The group G is endowed
with the topology of uniform convergence (also called the C0 topology),
that turns it into a topological group. We recall that G is arcwise con-
nected: an elementary proof is provided by the famous Alexander trick
[Al23]. We will use the term topological disc to denote any image of a
euclidean closed disc under an element of the group G. As a consequence
of the classical theorems by Schönflies and Oxtoby–Ulam, any Jordan curve
of null area bounds a topological disc (see [OU41]). Remember that the
support of some g ∈ G is the closure of the set of non-fixed points. For
any topological disc D, denote by GD the subgroup of G consisting of
the elements whose support is included in the interior of D. Then each
group GD is isomorphic to G, as shown by the following “re-scaling” pro-
cess. Let Φ ∈ G be such that D = Φ−1(D0) where D0 is a euclidean disc.
Then the map g �→ ΦgΦ−1 provides an isomorphism between the groups
GD0 and GD. We may now choose a homothecy Ψ that sends the whole
disc D

2 onto D0, and similarly get an isomorphism g �→ ΨgΨ−1 between
G and GD0 .
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1.1. Definition of the fragmentation metrics. Let g be any element of
G. We define the size of g as follows:

Size(g) = inf{Area(D), D is a topological disc that contains

the support of g}.

Let us emphasize the importance of the word disc: an element g which is
supported on an annulus of small area surrounding a disc of large area has
a large size. Also note that if g has size less than the area of some disc D,
then g is conjugate to an element supported in D.

The following proposition says that the group G is generated by ele-
ments of arbitrarily small size. It is an immediate consequence of Lemma
6.5 in [Fa80] (where the size is replaced by the diameter).

Proposition 1.1 (Fathi). Let g ∈ G, and ρ ∈ (0, 1]. Then there exists
some positive integer m, and elements g1, . . . gm ∈ G of size less than ρ,
such that

g = gm · · · g1.

We now define the family of “fragmentation norms.”1 For any element
g ∈ G and any ρ ∈ (0, 1], we consider the least integer m such that g
is equal to the product of m elements of size less than ρ. This number is
called the ρ-norm of g and is denoted by ||g||ρ. The following properties are
obvious.

Proposition 1.2.

||hgh−1||ρ = ||g||ρ, ||g−1||ρ = ||g||ρ, ||g1g2||ρ ≤ ||g1||ρ + ||g2||ρ.

As a consequence, the formula

dρ(g1, g2) = ||g1g
−1
2 ||ρ

defines a bi-invariant metric on G.

1.2. The normal subgroups Nϕ. Given some element g ∈ G, we consider
the ρ-norm of g as a function of the size ρ:

ρ �→ ||g||ρ,

and call it the complexity profile of g. Let ϕ : (0, 1] → R
+ be any non-

increasing function. We define the subset Nϕ containing those elements of
G whose complexity profile is essentially bounded by ϕ:

Nϕ = {g ∈ G, ||g||ρ = O(ϕ(ρ))},

1The definition of the fragmentation norm is not new, see Example 1.24 in [BIP07].
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where the notation ψ(ρ) = O(ϕ(ρ)) means that there exists some K > 0 such
that ψ(ρ) < Kϕ(ρ) for every small enough ρ. The following is an immediate
consequence of Proposition 1.2.

Proposition 1.3. For any non-increasing function ϕ : (0, 1] → R
+, the set

Nϕ is a normal subgroup of G.

The reader who wants some examples where we can estimate the com-
plexity profile may jump to Section 5, where we will see that commutators
of diffeomorphisms have a profile equivalent to the function ϕ0 : ρ �→ ρ−1.
This will imply that Nϕ0 is the smallest non-trivial subgroup of our family
{Nϕ}.

1.3. The fragmentation properties (Pρ). Let ρ ∈ (0, 1]. We now define
our fragmentation property (Pρ) by asking for a uniform bound in the frag-
mentation of elements of size less than ρ into elements of a smaller given
size.

(Pρ) There exists some number s ∈ (0, ρ), and some positive integer m,
such that any g ∈ G of size less than ρ satisfies ||g||s ≤ m.

Here are some easy remarks. Let us denote by P (ρ, s) the property that
there exists a bound m with ||g||s ≤ m for every element g of size less than
ρ. Fix some ρ ∈ (0, 1] and some ratio k ∈ (0, 1). Assume that property
P (ρ, kρ) holds. Then by re-scaling we get that property P (ρ′, kρ′) also holds
for any ρ′ < ρ (with the same bound m). In particular, we can iterate
the fragmentation to get, for every positive n, property P (ρ, knρ) (with the
bound mn). This shows that property P (ρ, s) implies property P (ρ, s′) for
every s′ < s. The converse is clearly true, so that property P (ρ, s) depends
only on ρ and not on s. In particular, we see that property (Pρ) is equivalent
to the existence of a number m such that every g of size less than ρ satisfies

||g|| ρ
2

≤ m.

Also note that property (Pρ0) implies property (Pρ1) if ρ1 < ρ0 (again by re-
scaling). Thus property (Pρ) is more and more likely to hold as ρ decreases
from 1 to 0.

1.4. The fragmentation property (P0). In this paragraph we introduce
the fragmentation property (P0), and prove that it is equivalent to the exis-
tence of some ρ > 0 such that property (Pρ) holds. Consider, just for the
duration of this section, the group

Homeoc(R2, Area)

of compactly supported, area-preserving homeomorphisms of the plane. Any
image of a euclidean closed disc under some element of this bigger group will
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again be called a topological disc. We also define the size of an element of
the group as in G. Property (P0) is as follows.2

(P0) There exists some positive integer m such that any g ∈ Homeoc
(R2, Area) of size less than 1 is the composition of at most m ele-
ments of Homeoc(R2, Area) of size less than 1

2 .
Since each piece of the fragmentation provided by property (P0) is supported
on a disc with area 1

2 , the union of the supports has area at most m
2 , but

this gives no bound on the area of a topological disc containing this union.
However, if the union of the supports surround a region with big area, then
we may find a new fragmentation by “bursting the bubble,” i.e., conjugating
the situation by a map that contracts the areas of the surrounded regions
and preserves the area everywhere else. This is the key observation, due to
Christian Bonatti, to the following lemma.

Lemma 1.4. Property (P0) holds if and only if there exists some ρ ∈ (0, 1]
such that property (Pρ) holds.

Proof. Let us prove the easy part. Suppose (Pρ) holds for some ρ > 0,
let m be a bound for ||g|| ρ

2
for those g ∈ G of size less than ρ. Let g ∈

Homeoc(R2, Area) of size less than 1. Choose some element of the group
that sends the support of g into the euclidean unit disc D

2, and compose
it with the homothecy that sends D

2 onto a disc of area ρ included in D
2;

we denote by Ψ the resulting map. Then ΨgΨ−1 is an element of G of size
less than ρ. According to hypothesis (Pρ), we may write this element as a
composition of m elements of G of size less than ρ

2 . We may conjugate these
elements by Ψ−1 and take the composition to get a fragmentation of g into
m elements of size 1

2 . Thus (P0) holds.
Now assume that (P0) holds, and let m ≥ 2 be given by this property.

We will prove that property (Pρ) holds for ρ = 2
m . Consider, in the plane, a

euclidean disc D of area 1
ρ . By the same re-scaling trick as before, it suffices

to prove that any g ∈ Homeoc(R2, Area) with size less than 1 and supported
in the interior of D may be fragmented as a product of m elements of
Homeoc(R2, Area) with size less than one half and supported in the interior
of D. Property (P0) provides us with a fragmentation g = g′

m ◦ · · · ◦ g′
1 by

elements of size less than one half, but maybe not supported in D. Now
comes the “bursting the bubbles” trick. Let D′ be a topological disc whose

2Note that this property can be expressed in terms of another fragmentation norm.
Namely, we can identify the disc D

2 with a euclidean disc in the plane of area 1, in such a
way that the Lebesgue measures correspond. Thus the group G is identified to a subgroup
of Homeoc(R2, Area). For any element g ∈ G, denote by ||g||∞1/2 the smallest number N

such that there exist elements g1, . . . , gN of the group Homeoc(R2, Area) of size less than
1/2, such that g = gN · · · g1. Then property (P0) says that the group G, equipped with
this norm, is bounded.
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interior contains all the supports of the g′
i’s. The union of the supports

has area less than 1
ρ . Thus we may find some topological discs K ′

1, . . . K
′
�,

included in the interior of D′, that are pairwise disjoint and disjoint from
the supports of the g′

i’s, such that

Area

⎛
⎝D′ \

�⋃
j=1

K ′
j

⎞
⎠ <

1
ρ
.

Denote by D0 the support of our original map g. Note that D0 is included in
the union of the supports of the g′

i’s, thus it is disjoint from the K ′
j ’s. Since

D has area 1
ρ , the previous inequality ensures the existence of some pairwise

disjoint discs K1, . . . K� in the interior of D, disjoint from D0, such that

Area

⎛
⎝D \

�⋃
j=1

Kj

⎞
⎠ = Area

⎛
⎝D′ \

�⋃
j=1

K ′
j

⎞
⎠ .

Using Schönflies and Oxtoby–Ulam theorems, we can construct a homeo-
morphism Ψ of the plane satisfying the following properties:

(1) Ψ is the identity on D0,
(2) Ψ(D′) = D, Ψ(K ′

j) = Kj for each j, and
(3) the restriction of Ψ to the set D′ \ ∪�

j=1K
′
j preserves the area.3

The first item shows that ΨgΨ−1 = g. Now for each i we define gi =
Ψg′

iΨ
−1. Then the second item guarantees that the gi’s are supported in D,

and the third item entails that they preserve area and have size less than
one half. The product of the gi’s is equal to g, which provides the desired
fragmentation. �

2. Simplicity implies fragmentation

Lemma 2.1. Assume that none of the properties (Pρ), ρ ∈ (0, 1] holds. Let
ϕ : (0, 1] → R

+ be any function. Then the normal subgroup Nϕ is proper,
i.e., it is not equal to G. In this case the group G is not simple.

If we consider any element f 	= Id in G, and the function ϕf : ρ �→ ||f ||ρ,
then the normal subgroup Nϕf

contains f and thus is not equal to {Id}.
Hence the non-simplicity of G will be a consequence of the non-triviality of
the subgroups Nϕ.

3 Having in mind the smooth case (Lemma 4.1 below), we notice that we may further
demand that the map Ψ is a C∞-diffeomorphism on the interior of D′ \∪�

j=1K
′
j . Actually,

we may even choose the sets D′, Kj and K′
j to be smooth discs, and then the map Ψ may

be chosen to be a C∞-diffeomorphism of the plane.
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Proof of Lemma 2.1. According to the easy remarks following the definition
of property (Pρ), the hypothesis of the lemma reads the following way:

(�) for every ρ ∈ (0, 1] and every positive integer m there exists some
element g of size less than ρ such that ||g|| ρ

2
> m.

We fix any function ϕ : (0, 1] → R
+, and we will construct some element

g in G that does not belong to Nϕ. Let us define D0 = D
2. We pick two

sequences of discs (Ci)i≥1 and (Di)i≥1 converging to a point, such that for
every i (see Figure 1),

• Ci and Di are disjoint and included in Di−1, and
• the area of Di is less than half the area of Ci.

We denote the area of Ci by ρi. We will construct a sequence (gi)i≥1,
with each gi supported in the interior of Ci, and then g will be defined as
the (infinite) product of the gi’s. Note that since the discs Ci’s are pairwise
disjoint this product has a meaning, and since the sequence (Ci) converges
to a point it actually defines an element of G. Since all the gj ’s with j > i
will be supported in the interior of the disc Di whose area is less than ρi/2
we will get

(2.1) ||g|| ρi
2

≥ ||gi . . . g1|| ρi
2

− 1.

The sequence (gi) is constructed by induction. Assume g1, . . . , gi−1 have
been constructed. Using hypothesis (�), we may choose gi supported on Ci

such that ||gi|| ρi
2

is arbitrarily high, more precisely we demand the following
inequality:

(2.2) ||gi|| ρi
2

≥ 1
ρi

ϕ
(ρi

2

)
+ ||gi−1 . . . g1|| ρi

2
+ 1.

Figure 1. Construction of g.
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Using inequality (2.1), the triangular inequality and inequality (2.2) we get

||g|| ρi
2

≥ ||gi . . . g1|| ρi
2

− 1

≥ ||gi|| ρi
2

− ||gi−1 . . . g1|| ρi
2

− 1

≥ 1
ρi

ϕ
(ρi

2

)
.

This proves that the complexity profile of g is not equal to O(ϕ). In other
words g does not belong to Nϕ. �

3. Fragmentation implies simplicity

Lemma 3.1. Assume that property (Pρ) holds for some ρ ∈ (0, 1]. Then G
is simple.

This lemma is just a slight generalization of Fathi’s argument showing
that, under property (P1), the group G is perfect: any element decomposes
as a product of commutators. Then perfectness implies simplicity: this is
due to “Thurston’s trick,” for completeness the argument is included in the
proof below.

Proof. We assume that there exists a number ρ ∈ (0, 1] and a positive integer
m such that any element of size less than ρ may be written as the product
of m elements of size less than ρ

2 .
Let C1 be a small disc. By usual fragmentation (Proposition 1.1), any

element of G is a product of elements supported in a disc of area less than
that of C1, and any such element is conjugate to an element supported in
the interior of C1. Thus to prove perfectness it is enough to consider some
element g supported in the interior of C1 and to prove that g is a product
of commutators.

Let us first prove that such a g is a product of two commutators when
considered in the group Homeo(D2, ∂D

2), that is, let us forget for a while
about the area (this is a “pedagogical” step). Choose two sequences of discs
(Ci)i≥1 and (Di)i≥1 converging to a point, such that (see Figure 2)

• the interior of Di contains both Ci and Ci+1,
• the Ci’s are pairwise disjoint, and
• the D2i’s (resp. the D2i+1’s) are pairwise disjoint.

For any i ≥ 1 choose some hi ∈ Homeo(D2, ∂D
2), supported on Di, that

sends Ci onto Ci+1. We let g1 := g, thus g1 is supported on C1, and define
inductively gi+1 := higih

−1
i ; thus gi is a “copy” of g, supported on Ci, and

the gi’s are pairwise commuting. Let

K := g2g
−1
3 g4g

−1
5 · · · , K ′ := g1g

−1
2 g3g

−1
4 · · ·
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Figure 2. The sequences (Ci)i≥1 and (Di)i≥1.

so that KK ′ = K ′K = g. The map K = [g2, h2][g4, h4] · · · may be seen as an
infinite product of commutators, but we need a finite product. Now define

G := g2g4 . . . , H := h2h4 · · · , G′ := g1g3 · · · , H ′ := h1h3 · · ·
and observe that K = [G, H] and K ′ = [G′, H ′]: indeed these equalities
may be checked independently on each disc Di. Thus g = [G, H][G′, H ′] is
a product of two commutators in Homeo(D2, ∂D

2).
Now let us take care of the area. We will use sequences (Ci) and (Di) as

before, and we will get around the impossibility of shrinking Ci onto Ci+1
inside the group G by using the fragmentation hypothesis. We may assume,
for every i, the equality

Area(Ci+1) = 1
2Area(Ci).

Moreover, by fragmentation, we may assume this time that g is supported in
the interior of a disc C ′

1 ⊂ C1 of area ρ Area(C1). We use the fragmentation
hypothesis re-scaled on C1 to write

g = f1,1 . . . f1,m

(see Figure 3) with each f1,j supported in the interior of a topological disc
included in C1 and whose area is

ρ

2
Area(C1) = ρ Area(C2).

We choose a disc C ′
2 ⊂ C2 whose area also equals ρ Area(C2) and, for each

j = 1, . . . , m, some h1,j ∈ G supported on D1 and sending the support of
f1,j inside C ′

2. We define

g2 :=
∏

j=1,...,m

h1,jf1,jh
−1
1,j

which is supported on C ′
2 (see Figure 3). We apply recursively the (re-scaled)

fragmentation hypothesis to get a sequence (gi)i≥1 with each gi supported
in the interior of a disc C ′

i ⊂ Ci having area ρ Area(Ci) and sequences
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Figure 3. Fragment and push every piece inside the small disc....

(fi,j)i≥1,j=1,...,m and (hi,j)i≥1,j=1,...,m with fi,j supported on Ci and hi,j sup-
ported on Di, such that

gi =
∏

j=1,...,m

fi,j and gi+1 =
∏

j=1,...,m

hi,jfi,jh
−1
i,j .

Obviously gi and gi+1 are equal up to a product of commutators whose
number of terms depends only on m. More precisely, we have

gig
−1
i+1 =

∏
j=1,...,m

fi,j

∏
j=m,...,1

hi,jf
−1
i,j h−1

i,j

= [fi,1, P ]

⎛
⎝ ∏

j=2,...,m

fi,j

∏
j=m,...,2

hi,jf
−1
i,j h−1

i,j

⎞
⎠ [fi,1, hi,1] ,

where P is equal to the term between parentheses, and we see recursively
that gig

−1
i+1 is a product of 2m commutators of elements supported in Di;

we write
gig

−1
i+1 =

∏
j=1,...,2m

[si,j , ti,j ].

It remains to define the infinite commutative products

K := g2g
−1
3 g4g

−1
5 . . . , K ′ := g1g

−1
2 g3g

−1
4 . . . ,

Sj := s2,js4,j . . . , Tj := t2,jt4,j . . . , S′
j := s1,js3,j . . . , T ′

j := t1,jt3,j . . .

and to check that

K =
∏

j=1,...2m

[Sj , Tj ], K ′ =
∏

j=1,...2m

[S′
j , T

′
j ], and g = KK ′

is a product of 4m commutators. This proves that G is perfect.
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Let us recall briefly, according to Thurston, how perfectness implies sim-
plicity. Let D be a disc and g, h ∈ G be such that the discs D, g(D), h(D)
are pairwise disjoint. Let u, v ∈ G be supported in D. In this situation the
identity

[u, v] = [[u, g], [v, h]]

may easily be checked, and shows that [u, v] belongs to the normal subgroup
generated by g. Now given any g 	= Id in G, one can find an h ∈ G and a
disc D such that the above situation takes place. If G is perfect then so is
the isomorphic group GD, hence every f supported in D is a product of
commutators supported in D, and by the above equality such an f belongs
to the normal subgroup generated by g. By fragmentation this subgroup is
thus equal to G. This proves that G is simple, and completes the proof of
the lemma. �

4. Fragmentation of diffeomorphisms

Here we further translate Question 0.1 into the diffeomorphisms subgroup
Gdiff .

Let Gdiff = Diffeo(D2, ∂D
2, Area) be the group of elements of G that are

C∞-diffeomorphisms. Note that for every topological disc D the group of
elements supported in the interior of D,

Gdiff
D := Gdiff ∩ GD,

is isomorphic to Gdiff , even when D is not smooth: indeed we may use Rie-
mann conformal mapping theorem and Moser’s lemma to find a smooth
diffeomorphism Φ between the interiors of D

2 and D with constant Jaco-
bian, and the conjugacy by Φ provides an isomorphism (see [GS79] for the
non-compact version of Moser’s lemma). As in the continuous case, we define
the ρ-norm ||g||diff

ρ of any element g ∈ Gdiff as the minimum number m of ele-
ments g1, . . . , gm of Gdiff , having size less than ρ, whose composition is equal
to g. The fragmentation properties (P diff

ρ ) are defined as in the continuous
setting.

(Pdiff
ρ ) (for ρ ∈ (0, 1]) There exists some number s ∈ (0, ρ), and some positive

integer m, such that any g ∈ Gdiff of size less than ρ satisfies ||g||diff
s ≤

m.
(Pdiff

0 ) There exists some positive integer m such that any g ∈ Diffeoc(R2, Area)
of size less than 1 is the composition of at most m elements of Diffeoc
(R2, Area) of size less than 1

2 .

Here Diffeoc(R2, Area) is the group of C∞-diffeomorphisms of the plane
that are compactly supported and preserve the area. The smooth version of
Lemma 1.4 holds, with the same proof (using footnote 3).
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Lemma 4.1. Property (P diff
0 ) holds if and only if there exists some ρ ∈ (0, 1]

such that property (P diff
ρ ) holds.

We now turn to the equivalence between fragmentation properties for
homeomorphisms and diffeomorphisms.

Theorem 4.1. For any ρ ∈ (0, 1], properties (Pρ) and (P diff
ρ ) are equivalent.

The proof of this equivalence requires two ingredients. The first one is
the density of Gdiff in G; this is a classical result, see for example [Si]. The
second one is the uniformity of the fragmentation in G, and in Gdiff , inside
some C0-neighborhood of the identity. This is provided by the following
proposition, which is proved below.

Proposition 4.2. For any ρ ∈ (0, 1), there exists a neighborhood Vρ of the
identity in G with the following properties.

• any g in Vρ satisfies ||g||ρ ≤ 2
ρ ; and

• any g in Vρ ∩ Gdiff satisfies ||g||diff
ρ ≤ 2

ρ .

As a consequence of this proposition we get the following comparison
between the norms ||.||diff

ρ and ||.||ρ on Gdiff .

Corollary 4.3. Any g ∈ Gdiff satisfies

||g||ρ ≤ ||g||diff
ρ ≤ ||g||ρ +

2
ρ
.

Proof. The first inequality is clear. To prove the second one consider some
g ∈ Gdiff , and let m = ||g||ρ. By definition there exists some elements
g1, . . . , gm in G of size less than ρ such that g = gm · · · g1. Since Gdiff is
C0-dense in G, for any topological disc D the subgroup Gdiff

D is also C0-
dense in GD. Thus we can find elements g′

1, . . . , g
′
m in Gdiff , still having size

less than ρ, whose product g′ = g′
m · · · g′

1 is a diffeomorphism arbitrarily
C0-close to g. According to the second item in Proposition 4.2 we get

||g′g−1||diff
ρ ≤ 2

ρ
.

Since ||g′||diff
ρ ≤ m the triangular inequality gives ||g||diff

ρ ≤ m+ 2
ρ , as wanted.

�

Proof of Theorem 4.1. Let us fix ρ ∈ (0, 1]. The fact that (Pρ) implies (P diff
ρ )

immediately follows from the corollary. We prove the converse implication.
Assume that (P diff

ρ ) holds: there exists some s ∈ (0, ρ) and m > 0 such that
the quantity ||g′||diff

s is bounded by m on the elements g′ of Gdiff of size less
than ρ. Choose any g ∈ G of size less than ρ. According to the first item in
Proposition 4.2, and using the density of Gdiff in G, we get some g′ ∈ Gdiff

having size less than ρ, and sufficiently close to g so that ||g′g−1||s ≤ 2
s . Since
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(P diff
ρ ) holds we also have ||g′||diff

s ≤ m, and thus ||g′||s ≤ m, from which we
get ||g||s ≤ m + 2

s . Thus (Pρ) also holds. �
We now turn to the proof of Proposition 4.2. The classical proof of

fragmentation for diffeomorphisms relies on the inverse mapping theorem
and would only gives uniformity in a C1-neighborhood of the identity
(see [Ba97, Bo08]). Thus we will rather try to mimic the proof of the
fragmentation for homeomorphisms.

Proof of Proposition 4.2. The proof of both items (uniformity of local frag-
mentation for homeomorphisms and diffeomorphisms) are very similar; we
will only provide details for the diffeomorphisms case.

We choose an integer m bigger than 2
ρ , and we cut the disc into m strips of

area less than ρ
2 : more precisely, we choose m topological discs D1, . . . , Dm

such that (see Figure 4)
(1) Area(Di) ≤ ρ

2 ,
(2) D

2 = D1 ∪ · · · ∪ Dm,
(3) Di ∩ Dj = ∅ if |j − i| > 1, and
(4) Di ∪ Di+1 ∪ · · · ∪ Dj is a topological disc for every i ≤ j, and the

intersection of D1 ∪ · · · ∪ Di and Di ∪ · · · ∪ Dm with the boundary of
D

2 is non-empty and connected for every i.
Now we define the following set Vρ:

Vρ = {g ∈ G such that g(Di) ∩ Dj = ∅ for every i, j with |j − i| > 1} .

Note that, due to item 3, Vρ is a C0-neighborhood of the identity in G.
We will prove that each element of Vρ ∩ Gdiff can be written as a product of
m − 1 elements of Gdiff

ρ .
Let g ∈ Vρ ∩Gdiff . By hypothesis D1 and g(D1) are both disjoint from the

topological disc D3 ∪ · · · ∪ Dm. By the classical Lemma 4.4 below, we can
find Ψ1 ∈ Gdiff such that

• Ψ1 = g on some neighborhood of D1, and

Figure 4. The discs Di and the action of some g in Vρ.



SIMPLICITY AND FRAGMENTATION 87

• Ψ1 is the identity on some neighborhood of D3 ∪ · · · ∪ Dm.
The diffeomorphism Ψ1 is supported in the interior of the topological disc
D1 ∪ D2 whose area is less than or equal to ρ. Let g1 := Ψ−1

1 g, thus g1 is
supported in the interior of D2 ∪ · · · ∪ Dm, and we easily check that this
diffeomorphism is still in Vρ. In particular, D1 ∪ D2 and its image under g1
are both disjoint from D4 ∪· · ·∪Dm. We apply again the lemma to get some
Ψ2 ∈ G such that

• Ψ2 = g1 on some neighborhood of D1 ∪ D2, and
• Ψ2 is the identity on some neighborhood of D4 ∪ · · · ∪ Dm.

Thus Ψ2 is supported in the interior of D2 ∪ D3. Let g2 := Ψ−1
2 g1; this

diffeomorphism is in Vρ and is supported in the interior of D3 ∪ · · · ∪Dm. In
the same way we construct diffeomorphisms Ψ1, . . . ,Ψm−1, such that each
Ψi is supported in the interior of Di∪Di+1, and such that g = Ψ1◦· · ·◦Ψm−1.
This completes the proof for the diffeomorphisms case. �
Lemma 4.4. Let D′

1, D
′
2 be two disjoint topological discs in D

2, and assume
that the intersection of D′

1 (resp. D′
2) with the boundary of ∂D

2 is non-empty
and connected (and thus D

2 \ Int(D′
1 ∪ D′

2) is again a topological disc). Let
Φ ∈ Gdiff, and suppose that Φ(D′

1) is disjoint from D′
2. Then there exists

Ψ ∈ Gdiff such that Ψ = Φ on some neighborhood of D′
1 and Ψ = Id on some

neighborhood of D′
2.

Proof. By Smale’s [Sm59] theorem and Moser’s lemma (see, e.g., [Ba97]
or [Bo08]), the group G is arcwise connected. Let (Φt)t∈[0,1] be a smooth
isotopy from the identity to Φ in G. It is easy to find another smooth isotopy
(gt)t∈[0,1] (that does not preserve area), supported in the interior of D

2, such
that

• for every t, gt(Φt(D′
1)) is disjoint from D′

2, and
• g0 = g1 = Id.

The isotopy (Φ′
t) = (gtΦt) still goes from the identity to Φ. Consider the

vector field tangent to this isotopy, and multiply it by some smooth function
that is equal to 1 on some neighborhood of ∪tΦ′

t(D
′
1) and vanishes on D′

2.
By integrating this truncated vector field we get another isotopy (Ψt) such
that

• on some neighborhood of D′
1 we have Ψt = gtΦt for every t, and in

particular Ψ1 = Φ, and
• the support of Ψ1 is disjoint from D′

2.
Thus Ψ1 satisfies the conclusion of the lemma, except that it does not pre-
serve the area. Let ω0 be the Area form on D

2, and ω1 be the pre-image of
ω0 under Ψ1. Then ω1 = ω0 on some neighborhood of ∂D

2 ∪ D′
1 ∪ D′

2. By
Moser’s lemma we may find some Ψ2 ∈ G, whose support is disjoint from
D′

1 and D′
2, and that sends ω1 to ω0. The diffeomorphism Ψ = Ψ1Ψ−1

2 suits
our needs. �
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Note that this lemma has a C0-version, which is proved by replacing
Smale’s theorem by Alexander’s trick, the truncation of vector fields by
Schönflies’s theorem, and Moser’s lemma by Oxtoby–Ulam’s theorem.

5. Profiles of diffeomorphisms

One can wonder what the complexity profile looks like for a diffeomorphism,
both inside the group Gdiff and inside the group G. The following proposition
only partially solves this problem.

Proposition 5.1.
• For any g ∈ Gdiff we have ||g||diff

ρ = O( 1
ρ2 ), and

• For any g in the commutator subgroup [Gdiff , Gdiff ] we have ||g||diff
ρ =

O(1
ρ).

If the support of g ∈ G has area A, then clearly for any ρ we need at least
A
ρ elements of Gρ or Gdiff

ρ to get g. Thus, according to the second point, the
profile of any g in [Gdiff , Gdiff ] is bounded from above and below by multiples
of the function ϕ0 : ρ �→ 1

ρ ; and this holds both in G and Gdiff . In particular,
we see that Nϕ0 is the smallest non-trivial subgroup of our family {Nϕ}. I
have not been able to decide whether the first point is optimal, nor whether
Gdiff ⊂ Nϕ0 or not (if not, of course, then G is not simple). It might also hap-
pens that Gdiff is included in Nϕ0 but not in the analog smooth group Ndiff

ϕ0
.

We also notice that every non-trivial normal subgroup of G contains the
commutator subgroup [Gdiff , Gdiff ], and thus the normal subgroup of G gen-
erated by [Gdiff , Gdiff ] is the only minimal non-trivial normal subgroup of G.
This fact is an immediate consequence of Thurston’s trick (see the last para-
graph of Section 3) and Banyaga’s theorem. Indeed let g be a non-trivial ele-
ment in G, choose h ∈ G and a disc D such that D, g(D), h(D) are pairwise
disjoint. Thurston’s trick shows that the normal subgroup N(g) generated
by g in G contains some non-trivial commutator of diffeomorphisms, let us
denote it by Φ. By Banyaga’s theorem any element of [Gdiff , Gdiff ] is a prod-
uct of conjugates (in Gdiff) of Φ and Φ−1, and thus [Gdiff , Gdiff ] is included
in N(g).

Proof of Proposition 5.1. Let g ∈ Gdiff , and fix some smooth isotopy
(gt)t∈[0,1] from the identity to g in Gdiff . Let M > 0 be such that every
trajectory of the isotopy has speed bounded from above by M .

We now fix some ρ > 0, and let m be the smallest integer such that m ≥ 2
ρ .

We consider some discs D1, . . . Dm as in the proof of Proposition 4.2; if we
choose the Di’s to be horizontal slices, then for every i, j with |i− j| > 1 we
get

d(Di, Dj) >
C

m
,
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where d is the euclidean metric of the unit disc and C is some constant
(maybe C = π

2 ). Due to the definition of M , within any interval of time less
than C

mM , no point moves a distance more than C
m : for every t, t′ ∈ [0, 1], for

every x ∈ D
2,

|t − t′| <
C

mM
=⇒ d(gt(x), gt′(x)) <

C

m
.

In particular, the topological disc gt′g
−1
t (Di) remains disjoint from Dj for

every |i − j| > 1; that is, the diffeomorphism gt′g
−1
t belongs to the neigh-

borhood Vρ defined in the proof of Proposition 4.2. Thus we can write g as
the product of at most mM

C + 1 elements of Vρ,

g = g1 =
(

g1g
−1
1− 1

k

) (
g1− 1

k
g−1
1− 2

k

)
· · ·

(
g 1

k
g−1
0

)

(where k is the integer part of mM
C +1). Each element in Vρ is the product of

at most m−1 elements whose sizes are less than ρ, thus we get the estimate

||g||diff
ρ ≤ (m − 1)

(
mM

C
+ 1

)
.

When ρ tends to 0, the right-hand side quantity is equivalent to 4M
C

1
ρ2 , which

proves the first point of the proposition.
We turn to the second point. We first prove the result for some special

commutator. Let D be any displaceable disc, say of area 1
3 , and let Φ be

any non-trivial element of Gdiff supported in the interior of D. Choose some
Ψ ∈ Gdiff such that Ψ(D) is disjoint from D. Let us define g := [Φ, Ψ]. We
claim that for any ρ we have

||g||diff
ρ ≤ 4

3ρ
.

To prove the claim fix some positive ρ. It is easy to find, almost explicitly,
some Ψρ ∈ Gdiff which is a product of less than 2

3ρ elements of size less than
ρ and that moves D disjoint from itself (see Figure 5). Then

|| [Φ, Ψρ] ||diff
ρ ≤ ||ΦΨρΦ−1||diff

ρ + ||Ψ−1
ρ ||diff

ρ = 2||Ψρ||diff
ρ ≤ 4

3ρ
.

We now notice that the map g = [Φ, Ψ] is conjugate to [Φ, Ψρ]: indeed we
may find some Θ ∈ Gdiff that is the identity on D and equals ΨρΨ−1 on Ψ(D)
(this uses a variation on Lemma 4.4), and such a Θ provides the conjugacy.
Since the fragmentation norm is a conjugacy invariant, this proves the claim.

We end the proof of the proposition by using Banyaga’s theorem. Since
the commutator subgroup [Gdiff , Gdiff ] is simple, the normal subgroup of Gdiff

generated by g in Gdiff is equal to [Gdiff , Gdiff ]. As in the C0 case the set of
elements g′ ∈ Gdiff satisfying ||g′||diff

ρ = O(1
ρ) is a normal subgroup, since it
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Figure 5. How to move a disc disjoint from itself within 2
3ρ

modifications of size less than ρ: after each modification, the
area of the intersection of D with its image has decreased by
almost ρ

2 .

contains g it has to contain [Gdiff , Gdiff ]. This proves the second point of the
proposition. �

6. Solution of the fragmentation problem for ρ > 1
2

In [EPP] the authors describe some quasi-morphisms on the group of sym-
plectic diffeomorphisms on various surfaces that are continuous with respect
to the C0-topology and, as a consequence, extend continuously to the group
of area-preserving homeomorphisms. It turns out that their family of quasi-
morphisms on the disc provides a solution to the easiest half of our frag-
mentation problems: properties (Pρ) and (P diff

ρ ) do not hold when ρ > 1
2 .

We discuss this briefly.
Remember that a map φ : Gdiff → R is a quasi-morphism if the function

|φ(gh) − φ(g) − φ(h)|
is bounded on Gdiff × Gdiff by some quantity Δ(φ) called the defect of φ. A
quasi-morphism is called homogeneous if it satisfies φ(gn) = nφ(g) for every
g and every integer n. The construction of the continuous quasi-morphisms
uses the quasi-morphisms of Entov and Polterovich on the 2-sphere [EP03].
This quasi-morphism is a Calabi quasi-morphism, that is, it coincides with
the Calabi morphism when restricted to those diffeomorphims supported
on any displaceable disc. By embedding D

2 inside the two-sphere as a non-
displaceable4 disc ([EP03], Theorem 1.11 and Section 5.6), and subtracting
the Calabi morphism ([EPP]), one can get a family (φρ′)ρ′∈( 1

2 ,1] of homo-
geneous quasi-morphisms on Gdiff . (As these quasi-morphisms extend to G,

4Note that when the area of the disc tends to the total area of the sphere, the parameter
ρ′ below tends to 1

2 ; the bigger the disc, the more useful the quasi-morphism, as far as our
problem is concerned.
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see [EPP], we could alternatively choose to work with G and (Pρ) instead
of Gdiff and (P diff

ρ ).) They satisfy the following properties:

(1) φρ′(g′) = 0 for any g′ ∈ Gdiff whose size is less than ρ′, and
(2) for every ρ > ρ′ there exists some g ∈ Gdiff of size less than ρ with

φρ′(g) 	= 0.

This entails that for every ρ ∈ (1
2 , 1], property (P diff

ρ ) do not hold. To see
this, given some ρ ∈ (1

2 , 1], we fix some ρ′ ∈ (1
2 , ρ), and we search for some

g ∈ Gdiff having size less than ρ and whose ρ′-norm is arbitrarily large (see
the easy remarks at the end of Section 1). The first property of φρ′ entails,
for every g ∈ Gdiff ,

φρ′(g) ≤ (||g||diff
ρ′ − 1)Δ(φρ′).

On the other hand the second property provides some g with size less
than ρ and such that φρ′(g) 	= 0. Since φρ′ is homogeneous, the sequence
(φρ′(gn))n≥0 is unbounded. Thus the sequence (||gn||diff

ρ′ )n≥0 is also
unbounded, which proves that (P diff

ρ ) do not hold.
We are naturally led to the following question.

Question 6.1. Does there exist, for every ρ′ ∈ (0, 1
2 ], some homogeneous

quasi-morphism φρ′ satisfying properties (1) and (2) as expressed above?

A positive answer would imply a negative answer to Question 0.1.

7. Some more remarks

7.1. “Lots of” normal subgroups (if any!) The proof of Lemma 2.1
can easily be modified to show that, if none of the properties (Pρ) holds,
then there exists an uncountable family F of functions ϕ such that the
corresponding family of normal subgroups (Nϕ)ϕ∈F is totally ordered by
inclusion. The following is another attempt to express that if G is not simple,
then it has to contain “lots of” normal subgroups.

Corollary 7.1. Assume G is not simple. Then every compact subset K of
G is included in a proper normal subgroup of G.

Note that the situation is radically different for the diffeomorphisms group
Gdiff , since (by Banyaga’s theorem [Ba97], and since the centralizer of Gdiff is
trivial) any one-parameter subgroup of diffeomorphisms that is not included
in the commutator subgroup [Gdiff , Gdiff ] normally generates Gdiff . However
these are not purely algebraic statements since they involve the topology of
the groups G and Gdiff .

Proof of Corollary 7.1. Consider some ρ ∈ (0, 1]. Let Vρ be the neighbor-
hood of the identity given by Proposition 4.2: we have ||g||ρ < 2

ρ for every
g ∈ Vρ. By compactness we may find a finite family g1, . . . , gk such that the
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sets gi.Vρ cover K. Thus the fragmentation is also uniform on K, in other
words the set K is bounded with respect to the norm ||g||ρ. Define

ϕK(ρ) := sup {||g||ρ, g ∈ K} .

This defines a non-increasing function, and clearly K is included in the
normal subgroup NϕK . According to Theorem 0.1, if G is not simple then
NϕK is a proper subgroup of G, which completes the proof of the corollary.

�

7.2. Other surfaces. Let S be any compact surface equipped with an area
form. Consider the group of homeomorphisms that preserves the measure
associated to the area form, and denote by G0(S) the (normal) subgroup
generated by the homeomorphisms that are supported inside a topological
disc. For example, G0(S2) is just the group of orientation and area preserv-
ing homeomorphisms of the sphere, and G0(T2) is the group of orientation
and area preserving homeomorphisms of the torus with zero mean rotation
vector. The group G0(S) may also be seen as the closure of the group of
hamiltonian diffeomorphisms of S inside the group of homeomorphisms. For
every surface S, it is an open question whether the group G0(S) is simple
or not.

Exactly as before, on G0(S) we may define the size of an element sup-
ported in a topological disc, the family of fragmentation norms ||.||Sρ , the
family of normal subgroups NS

ϕ , and the fragmentation properties (PS
ρ ).

Then Lemma 2.1 still holds, with the same proof: the failure of all proper-
ties (PS

ρ ) would entail that every normal subgroup NS
ϕ is proper, and that

G0(S) is not simple. On the other hand, the proof of Lemma 3.1 shows that
each property (P D

2

ρ ) forces the simplicity of G0(S) (alternatively, we could
use the original Lemma 3.1 and Thurston trick to see that the simplicity of
G = G0(D2) implies that of G0(S)). But property (PS

ρ ) is a priori weaker
than (P D

2

ρ ), because on a general surface one has more space than in the
disc to perform the fragmentation. This prevents us from fully translating
the simplicity question into a fragmentation problem on the other surfaces.

Using a different approach, one might hope to recover this equivalence by
adapting to the C0 context the homology machinery introduced by Thurston
in the smooth category (see [Ba97] or [Bo08], Section 2.2).
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