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GENERALIZED COMPLEX STRUCTURES ON
NILMANIFOLDS

Gil R. Cavalcanti and Marco Gualtieri

We show that all 6-dimensional nilmanifolds admit general-
ized complex structures. This includes the five classes of nil-
manifold which admit no known complex or symplectic struc-
ture. Furthermore, we classify all 6-dimensional nilmanifolds
according to which of the four types of left-invariant general-
ized complex structure they admit. We also show that the two
components of the left-invariant complex moduli space for the
Iwasawa manifold are no longer disjoint when they are viewed
in the generalized complex moduli space. Finally, we provide
an 8-dimensional nilmanifold which admits no left-invariant
generalized complex structure.

Introduction

Ever since Thurston [10] presented a nilmanifold as the first instance of a
symplectic but non-Kähler manifold in 1976, the study of invariant geome-
tries on nilmanifolds has been an interesting source of examples in differential
geometry.
A nilmanifold is a homogeneous space M = Γ\G, where G is a simply

connected nilpotent real Lie group and Γ is a lattice of maximal rank in G.
Such groups G of dimension ≤ 7 have been classified, and 6 is the highest
dimension where there are finitely many. According to [5, 7] there are 34
isomorphism classes of connected, simply-connected 6-dimensional nilpotent
Lie groups. This means that, with respect to invariant geometry, there are
essentially 34 separate cases to investigate.
The question of which 6-dimensional nilmanifolds admit symplectic struc-

ture was settled by Goze and Khakimdjanov [1]: exactly 26 of the 34 classes
admit symplectic forms. Subsequently, the question of left-invariant com-
plex geometry was solved by Salamon [9]: he proved that exactly 18 of
the 34 classes admit invariant complex structure. While the torus is the
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only nilmanifold admitting Kähler structure, 15 of the 34 nilmanifolds ad-
mit both complex and symplectic structures. This leaves us with 5 classes of
6-dimensional nilmanifolds admitting neither complex nor symplectic left-
invariant geometry. See Figure 1 for illustration.
It was this result of Salamon which inspired us to ask whether the 5

outlying classes might admit generalized complex structure, a geometry re-
cently introduced by Hitchin [3] and developed by the second author [2].
Generalized complex geometry contains complex and symplectic geometry
as extremal special cases and shares important properties with them, such
as an elliptic deformation theory as well as a local normal form (in regular
neighbourhoods). The main result of this paper is to answer this question
in the affirmative: all 6-dimensional nilmanifolds admit generalized complex
structures.

Symplectic

113 15

5

Complex

Generalized complex

Figure 1. Left-invariant structures on the 34 six-dimensional nilpotent
Lie groups.

We begin in Section 1 with a review of generalized complex geometry. A
brief introduction to nilmanifolds follows in Section 2. Some results about
generalized complex structures on nilmanifolds in arbitrary dimension ap-
pear in Section 3. Section 4 contains our main result: the classification of
left-invariant generalized complex structures on 6-dimensional nilmanifolds.
In Section 5 we show that while the moduli space of left-invariant complex
structures on the Iwasawa nilmanifold is disconnected (as shown in [4]), its
components can be joined using generalized complex structures. In the final
section, we provide an 8-dimensional nilmanifold which does not admit a
left-invariant generalized complex structure, thus precluding the possibility
that all nilmanifolds admit left-invariant generalized complex geometry.
The authors wish to thank Nigel Hitchin and Simon Salamon for helpful

discussions. The first author was supported by CAPES grant 1326/99-6,
and the second by an NSERC fellowship.
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1. Generalized complex structures

We briefly review the theory of generalized complex structures; see [2] for
details. A generalized complex structure on a smooth manifoldM is defined
to be a complex structure J , not on the tangent bundle T , but on the
sum T ⊕ T ∗ of the tangent and cotangent bundles. This complex structure
is required to be orthogonal with respect to the natural inner product on
sections X + ξ, Y + η ∈ C∞(T ⊕ T ∗) defined by

〈X + ξ, Y + η〉 = 1
2(ξ(Y ) + η(X)).

This is only possible if the manifold has even dimension, so we suppose
dimRM = 2n. In addition, the +i-eigenbundle

L < (T ⊕ T ∗)⊗ C

of J is required to be involutive with respect to the Courant bracket, a skew
bracket operation on smooth sections of T ⊕ T ∗ defined by

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ),

where LX and iX denote the Lie derivative and interior product operations
on forms.
Since J is orthogonal with respect to 〈·, ·〉, the +i-eigenbundle L is a

maximal isotropic sub-bundle of (T ⊕T ∗)⊗C, and as such can be expressed
as the Clifford annihilator of a unique line sub-bundle UL of the complex
spinors for the metric bundle T ⊕ T ∗. Since its annihilator is maximal
isotropic, UL is by definition a pure spinor line, and we call it the canonical
line bundle of J .
The bundle ∧•T ∗ of differential forms can in fact be viewed as a spinor

bundle for T ⊕ T ∗, where the Clifford action of an element X + ξ ∈ T ⊕ T ∗
on a differential form ρ is given by

(X + ξ) · ρ = iXρ+ ξ ∧ ρ.
Note that (X + ξ)2 · ρ = 〈X + ξ,X + ξ〉ρ, as required. Therefore, the
canonical bundle UL may be viewed as a smooth line sub-bundle of the
complex differential forms according to the relation

(1.1) L = {X + ξ ∈ (T ⊕ T ∗)⊗ C : (X + ξ) · UL = 0} .
At every point, the line UL is generated by a complex differential form of

special algebraic type: purity is equivalent to the fact that it has the form

(1.2) ρ = eB+iωΩ,

where B,ω are real 2-forms and Ω = θ1∧· · ·∧θk is a complex decomposable
k-form. The number k is called the type of the generalized complex structure,
and it is not required to be constant along the manifold. Points where the
type is locally constant are called regular. Since L is the +i-eigenbundle
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of a complex structure, we see that L ∩ L = {0}. This is equivalent to an
additional constraint on ρ:

(1.3) ω2n−2k ∧ Ω ∧ Ω 
= 0.

Hence we see that on a 2n-manifold the type may take values from k = 0 to
k = n. Finally, as is proven in [2], the involutivity of L under the Courant
bracket is equivalent to the condition, on any local trivialization ρ of UL,
that there exist a section X + ξ ∈ C∞(T ⊕ T ∗) such that
(1.4) dρ = (X + ξ) · ρ.
Near any regular point, this condition implies that the distribution deter-
mined by Ω∧Ω integrates to a foliation, and with (1.3), also implies that ω
is a leafwise symplectic form.
In the special case that UL is a trivial bundle admitting a nowhere-

vanishing closed section ρ, the structure is said to be a generalized Calabi-
Yau structure, as in [3].

1.1. Examples. So far, we have explained how a generalized complex struc-
ture is equivalent to the specification of a pure line sub-bundle of the com-
plex differential forms, satisfying the non-degeneracy condition (1.3) and
the integrability condition (1.4). Now let us provide some examples of such
structures.

Example 1 (Complex geometry (type n)). Let J ∈ End(T ) be a usual
complex structure on a 2n-manifold. The generalized complex structure
corresponding to J is

JJ =
(−J 0
0 J∗

)
,

where the matrix is written in the natural splitting T⊕T ∗. Clearly J 2
J = −1,

and orthogonality is easily verified. The +i-eigenbundle of JJ is the maximal
isotropic

L = T0,1 ⊕ T ∗1,0,
where T1,0 = T0,1 is the +i-eigenbundle of J in the usual way. The bundle
L is the Clifford annihilator of the line bundle

UL = ∧n(T ∗1,0),
the canonical bundle associated to J . We see that JJ is of type n at all
points in the manifold. The Courant involutivity of L is equivalent to the
Lie involutivity of T0,1, which is the usual integrability condition for complex
structures. To be generalized Calabi-Yau, there must be a closed trivializa-
tion Ω ∈ C∞(UL), which is the usual Calabi-Yau condition.

Example 2 (Symplectic geometry (type k = 0)). Let ω ∈ Ω2(M) be a usual
symplectic structure, viewed as a skew-symmetric isomorphism ω : T → T ∗
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via the interior product X �→ iXω. The generalized complex structure
corresponding to ω is

Jω =
(
0 −ω−1

ω 0

)
,

where the matrix is written in the natural splitting T⊕T ∗. Clearly J 2
ω = −1,

and orthogonality is easily verified. The +i-eigenbundle of Jω is the maximal
isotropic

L = {X − iω(X) : X ∈ T ⊗ C} ,
which is the Clifford annihilator of the line bundle UL with trivialization
given by

ρ = eiω.

We see that Jω is of type 0 at all points in the manifold. The Courant
involutivity of L is equivalent to the constraint dρ = 0, itself equivalent to
the usual integrability condition dω = 0 for symplectic structures. Note that
symplectic structures are always generalized Calabi-Yau.

The preceding examples demonstrate how complex and symplectic geom-
etry appear as extremal cases of generalized complex geometry. We will now
explain how one may deform these examples into new ones.

1.2. B-fields and β-fields. Unlike the Lie bracket, whose only symme-
tries are diffeomorphims, the Courant bracket is preserved by an additional
group of symmetries of T ⊕T ∗, consisting of closed 2-forms B acting via the
orthogonal shear transformation

X + ξ �→ X + ξ − iXB.
Such automorphisms are called B-field transformations, and their associated
spinorial action on differential forms is via the exponential:

ρ �→ eB ∧ ρ.
In this way, we see that B-field transformations do not have any effect on the
type of a generalized complex structure. Nevertheless, using B-fields and
diffeomorphisms, one may choose canonical coordinates for a generalized
complex structure, near any regular point:

Theorem 1.1 ([2], Theorem 4.35). Any regular point of type k in a gen-
eralized complex 2n-manifold has a neighbourhood which is equivalent, via a
diffeomorphism and a B-field transformation, to the product of an open set
in C

k with an open set in the standard symplectic space R
2n−2k.

Although automorphisms of the Courant bracket do not affect the type
of a generalized complex structure, there may be non-automorphisms which
nevertheless transform a given generalized complex structure into another
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one, of modified type. For example, consider the action of a bivector β ∈
C∞(∧2T ) on T ⊕ T ∗ via the orthogonal shear transformation

X + ξ �→ X + ξ + iξβ.

The spinorial action of such β-field transformations on differential forms is
also via the exponential

ρ �→ eβρ = (1 + iβ + 1
2 i

2
β + · · · )ρ.

The following proposition describes the conditions on β which ensure that it
takes a complex structure into a generalized complex structure of different
type.

Proposition 1.1 ([2], Section 5.3). Let J be a complex structure on a com-
pact 2n-manifold, viewed as a generalized complex structure of type n. Let
β be a smooth bivector of type (2, 0) with respect to J . Then by the above
action, β deforms J into another generalized complex structure if and only
if it is sufficiently small and

∂β + 1
2 [β, β] = 0,

which holds if and only if each summand vanishes separately, i.e., β is a
holomorphic Poisson structure. The resulting generalized complex structure
has type n− k at points where the bivector β has rank k.

For example, any holomorphic bivector β on CP 2 is Poisson, and there-
fore is an integrable deformation of the standard complex structure into a
generalized complex structure. Since β vanishes on a cubic and is of rank 2
elsewhere, the resulting generalized complex structure has type 2 along the
cubic and is of type 0 elsewhere. Our purpose in introducing β-transforms
is that we will use them to produce some examples of generalized complex
structures on nilmanifolds.

2. Nilmanifolds

A nilmanifold is the quotient M = Γ\G of a connected, simply-connected
nilpotent real Lie group G by the left action of a maximal lattice Γ, i.e.,
a discrete cocompact subgroup. By results of Malcev [6], a nilpotent Lie
group admits such a lattice if and only if its Lie algebra has rational struc-
ture constants in some basis. Moreover, any two nilmanifolds of G can be
expressed as finite covers of a third one.
A connected, simply-connected nilpotent Lie group is diffeomorphic to its

Lie algebra via the exponential map and so is contractible. For this reason,
the homotopy groups πk of nilmanifolds vanish for k > 1, i.e., nilmanifolds
are Eilenberg-MacLane spaces K(Γ, 1). In fact, their diffeomorphism type
is determined by their fundamental group. Malcev showed that this fun-
damental group is a finitely generated nilpotent group with no element of
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finite order. Such groups can be expressed as central Z extensions of groups
of the same type, which implies that any nilmanifold can be expressed as
a circle bundle over a nilmanifold of lower dimension. Because of this, one
may easily use Gysin sequences to compute the cohomology ring of any nil-
manifold. Nomizu used this fact to show that the rational cohomology of a
nilmanifold is captured by the subcomplex of the de Rham complex Ω•(M)
consisting of forms descending from left-invariant forms on G:

Theorem 2.1 (Nomizu [8]). The de Rham complex Ω•(M) of a nilmanifold
M = Γ\G is quasi-isomorphic to the complex ∧•g∗ of left-invariant forms
on G, and hence the de Rham cohomology of M is isomorphic to the Lie
algebra cohomology of g.

In this paper we will search for generalized complex structures on Γ\G
which descend from left-invariant ones on G, which we will call left-invariant
generalized complex structures. This will require detailed knowledge of the
structure of the Lie algebra g, and so we outline its main properties in the
remainder of this section.
Nilpotency implies that the central descending series of ideals defined by

g0 = g, gk = [gk−1, g] reaches gs = 0 in a finite number s of steps, called the
nilpotency index, nil(g) (also called the nilpotency index of any nilmanifold
associated to g). Dualizing, we obtain a filtration of g∗ by the annihilators
Vi of gi, which can also be expressed as

Vi = {v ∈ g∗ : dv ∈ Vi−1} ,
where V0 = {0}. Choosing a basis for V1 and extending successively to a
basis for each Vk, we obtain a Malcev basis {e1, . . . , en} for g∗. This basis
satisfies the property

(2.1) dei ∈ ∧2 〈e1, . . . , ei−1〉 ∀i.
The filtration of g∗ induces a filtration of its exterior algebra, and leads to
the following useful definition:

Definition 2.1. With Vi as above, the nilpotent degree of a p-form α, which
we denote by nil(α), is the smallest i such that α ∈ ∧pVi.
Remark. If α is a 1-form of nilpotent degree i then nil(dα) = i− 1.

In this paper, we specify the structure of a particular nilpotent Lie algebra
by listing the exterior derivatives of the elements of a Malcev basis as an
n-tuple of 2-forms (dek =

∑
cijk ei ∧ ej)mk=1. In low dimensions we use the

shortened notation ij for the 2-form ei∧ej , as in the following 6-dimensional
example: the 6-tuple (0, 0, 0, 12, 13, 14+35) describes a nilpotent Lie algebra
with dual g∗ generated by 1-forms e1, . . . , e6 and such that de1 = de2 =
de3 = 0, while de4 = e1 ∧ e2, de5 = e1 ∧ e3, and de6 = e1 ∧ e4 + e3 ∧ e5.
We see clearly that V1 = 〈e1, e2, e3〉, V2 = 〈e1, e2, e3, e4, e5〉, and V3 = g∗,
showing that the nilpotency index of g is 3.
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3. Generalized complex structures on nilmanifolds

In this section, we present two results concerning generalized complex struc-
tures on nilmanifolds of arbitrary dimension. In Theorem 3.1, we prove that
any left-invariant generalized complex structure on a nilmanifold must be
generalized Calabi-Yau, i.e., the canonical bundle UL has a closed trivializa-
tion. In Theorem 3.2 we prove an upper bound for the type of a left-invariant
generalized complex structure, depending only on crude information con-
cerning the nilpotent structure.
We begin by observing that a left-invariant generalized complex structure

must have constant type k throughout the nilmanifold M2n, and its canon-
ical bundle UL must be trivial. Hence, by (1.2),(1.3), and (1.4) we may
choose a global trivialization of the form

ρ = eB+iωΩ,

where B,ω are real left-invariant 2-forms and Ω is a globally decomposable
complex k-form, i.e.,

Ω = θ1 ∧ · · · ∧ θk,
with each θi left-invariant. These data satisfy the nondegeneracy condition
ω2n−2k ∧ Ω ∧ Ω 
= 0 as well as the integrability condition dρ = (X + ξ) · ρ
for some section X + ξ ∈ C∞(T ⊕ T ∗). Since ρ and dρ are left-invariant, we
can choose X + ξ to be left-invariant as well.
It is useful to order {θ1, . . . , θk} according to nilpotent degree, and also

to choose them in such a way that {θj : nil(θj) > i} is linearly independent
modulo Vi; this is possible according to the following lemma.

Lemma 3.1. It is possible to choose a left-invariant decomposition Ω = θ1∧
· · ·∧θk such that nil(θi) ≤ nil(θj) for i < j, and such that {θj : nil(θj) > i}
is linearly independent modulo Vi for each i.

Proof. Choose any left-invariant decomposition Ω = θ1 ∧ · · · ∧ θk ordered
according to nilpotent degree, i.e., nil(θi) ≤ nil(θj) for i < j. Certainly
{θ1, . . . , θk} is linearly independent modulo V0 = {0}. Now let πi : g∗ →
g∗/Vi be the natural projection, and suppose {πi(θj) : nil(θj) > i} is linearly
independent for all i < m. Consider X = {πm(θj) : nil(θj) > m}. If there
is a linear relation πm(θp) =

∑
l �=p αlπm(θl) among these elements, then we

may replace θp with θ̃p = θp −
∑
l �=p αlθl, which does not change Ω or affect

linear independence modulo Vi, i < m. However, note that nil(θ̃p) ≤ m, i.e.,
we have removed an element from X. Reordering by degree and repeating
the argument, we may remove any linear relation modulo Vm in this way,
proving the induction step. �

We require a simple linear algebra fact before moving on to the theorem.
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Lemma 3.2. Let V be a subspace of a vector space W , let α ∈ ∧pV , and
suppose {θ1, . . . , θm} ⊂W is linearly independent modulo V . Then α∧ θ1 ∧
· · · ∧ θm = 0 if and only if α = 0.

Proof. Let π : W → W/V be the projection and choose a splitting W ∼=
V ⊕W/V ; α ∧ θ1 ∧ · · · ∧ θm has a component in ∧pV ⊗ ∧m(W/V ) equal to
α⊗ π(θ1) ∧ · · · ∧ π(θm), which vanishes if and only if α = 0. �

Theorem 3.1. Any left-invariant generalized complex structure on a nil-
manifold must be generalized Calabi-Yau. That is, any left-invariant global
trivialization ρ of the canonical bundle must be a closed differential form. In
particular, any left-invariant complex structure has holomorphically trivial
canonical bundle.

Proof. Let ρ = eB+iωΩ be a left-invariant trivialization of the canonical
bundle such that Ω = θ1 ∧ · · · ∧ θk, with {θ1, . . . , θk} ordered according to
Lemma 3.1. Then the integrability condition dρ = (X + ξ) · ρ is equivalent
to the condition

(3.1) d(B + iω) ∧ Ω+ dΩ = (iX(B + iω)) ∧ Ω+ iXΩ+ ξ ∧ Ω.
The degree k + 1 part of (3.1) states that

(3.2) dΩ = iX(B + iω) ∧ Ω+ ξ ∧ Ω.
Taking wedge of (3.2) with θi we get

dθi ∧ θ1 ∧ · · · ∧ θk = 0, ∀i.
Now, let {θ1, . . . , θj} be the subset with nilpotent degree ≤ nil(dθi). Note
that j < i since nil(θi) = nil(dθi) + 1. Then since

(dθi ∧ θ1 ∧ · · · ∧ θj) ∧ θj+1 ∧ · · · ∧ θk = 0,

we conclude from Lemma 3.2 that

(3.3) dθi ∧ θ1 ∧ · · · ∧ θj = 0, with j < i.

Since this argument holds for all i, we conclude that dΩ = 0. The degree
k + 3 part of (3.1) states that d(B + iω) ∧ Ω = 0, and so we obtain that
dρ = eB+iωdΩ = 0, as required. �

Equation (3.3) shows that the integrability condition satisfied by ρ leads
to constraints on {θ1, . . . , θk}. Since these will be used frequently in the
search for generalized complex structures, we single them out as follows.

Corollary 1. Assume {θ1, . . . , θk} are chosen according to Lemma 3.1.
Then

(3.4) dθi ∈ I({θj : nil(θj) < nil(θi)}),
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where I( ) denotes the ideal generated by its arguments. Since nil(θi) is
weakly increasing, we have, in particular,

dθi ∈ I(θ1, . . . , θi−1).

Example 3. Since dθ1 ∈ I(0), we see that θ1 is always closed, and therefore
it lies on V1 or, equivalently, nil(θ1) = 1.

So far, we have described constraints deriving from the integrability con-
dition on ρ. However, nondegeneracy (in particular, Ω ∧ Ω 
= 0) also places
constraints on the θi appearing in the decomposition of Ω. The following
example illustrates this.

Example 4. If θ1, . . . , θj ∈ Vi, then nondegeneracy implies that dimVi ≥ 2j.
For a fixed nilpotent algebra, this places an upper bound on the number of
θj which can be chosen from each Vi.

In the next lemma we prove a similar, but more subtle constraint on the
1-forms θi.

Lemma 3.3. Assume that {θ1, . . . , θk} are chosen according to Lemma 3.1.
Suppose that no θi satisfies nil(θi) = j, but that there exists θl with nil(θl) =
j + 1. Then θl ∧ θl 
= 0 modulo Vj (i.e., in ∧2(Vj+1/Vj)), and in particular
Vj+1/Vj must have dimension 2 or greater.

Proof. Assume that the hypotheses hold but θl∧θl = 0 modulo Vj . Because
of this, it is possible to decompose θl = v + α, where nil(α) < j + 1, and
such that v ∧ v = 0. Therefore, up to multiplication of θl (and therefore Ω)
by a constant, v is real.
By Corollary 1, dθl ∈ I({θi : nil(θi) < j + 1}). By hypothesis, there is no

θi with nilpotent degree j, therefore we obtain

dv + dα =
∑

nil(θi)<j

ξi ∧ θi,

where ξi ∈ g∗. Since nil(dv) = j, there is an element w ∈ gj−1 such that
iwdv 
= 0. On the other hand, the nilpotent degrees of dα and the {θi} in
the sum above are less than j, hence interior product with w annihilates all
these forms. In particular,

0 
= iwdv =
∑

nil(θi)<j

(iwξi)θi.

Therefore, iwξi is nonzero for some i. But, the left hand side is real, thus

0 = iwdv ∧ iwdv =
⎛
⎝ ∑

nil(θi)<j

(iwξi)θi

⎞
⎠ ∧

⎛
⎝ ∑

nil(θi)<j

(iwξi)θi

⎞
⎠ .

By the nondegeneracy condition, the right hand side is nonzero, which is a
contradiction. Hence θl ∧ θl 
= 0 modulo Vj . �
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From this lemma, we see that if dimVj+1/Vj = 1 occurs in a nilpotent Lie
algebra, then it must be the case, either that some θi has nilpotent degree
j, or that no θi has nilpotent degree j + 1. In this way, we see that the
size of the nilpotent steps dimVj+1/Vj may constrain the possible types of
left-invariant generalized complex structures, as we now make precise.

Theorem 3.2. Let M2n be a nilmanifold with associated Lie algebra g.
Suppose there exists a j > 0 such that, for all i ≥ j,
(3.5) dim (Vi+1/Vi) = 1.

Then M cannot admit left-invariant generalized complex structures of type
k for k ≥ 2n− nil(g) + j.

In particular, if M has maximal nilpotency index (i.e., dimV1 = 2,
dim Vi/Vi−1 = 1 ∀i > 1), then it does not admit generalized complex struc-
tures of type k for k ≥ 2.

Proof. First observe that for any nilpotent Lie algebra nil(g) ≤ 2n − 1, so
the theorem only restricts the existence of structures of type k > 1.
According to Lemma 3.3, if none of the θi have nilpotent degree j, then

there can be none with nilpotent degree j+1, j+2, . . . by the condition (3.5).
Hence we obtain upper bounds for the nilpotent degrees of {θ1, . . . , θk}, as
follows. First, θ1 has nilpotent degree 1 (by Example 3). Then, if nil(θ2) ≥
j + 2, this would imply that no θi had nilpotent degree j + 1, which is a
contradiction by the previous paragraph. Hence nil(θ2) < j + 2. In general,
nil(θi) < j + i. Suppose that M admits a generalized complex structure of
type k > 1. Then we see that nil(θk) < j + k. By Example 4, we see this
means that dimVj+k−1 ≥ 2k.
On the other hand, dimVj+k−1 = 2n − dim g∗/Vj+k−1, and since g∗ =

Vnil(g), we have

g∗/Vj+k−1 = Vnil(g)/Vj+k−1
∼= Vnil(g)/Vnil(g)−1 ⊕ · · · ⊕ Vj+k/Vj+k−1,

and the nil(g) − j − k + 1 summands on the right have dimension 1, by
hypothesis. Hence dimVj+k−1 = 2n−nil(g)+ j+k−1, and combining with
the previous inequality, we obtain

k < 2n− nil(g) + j,

as required. For the last claim, observe that M2n has maximal nilpotency
index when nil(M) = 2n− 1, in which case (3.5) holds for j = 1. �

Constraints beyond those mentioned here may be obtained if one considers
the fact that Ω ∧ Ω defines a foliation and that ω restricts to a symplectic
form on each leaf. Both the leafwise nondegeneracy of ω and the requirement
of being closed on the leaves lead to useful constraints on what types of
generalized complex structure may exist, as we shall see in the following
sections.
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4. Generalized complex structures on 6-nilmanifolds

In this section, we turn to the particular case of 6-dimensional nilmanifolds.
The problem of classifying those which admit left-invariant complex (type
3) and symplectic (type 0) structures has already been solved [9, 1], so
we are left with the task of determining which 6-nilmanifolds admit left-
invariant generalized complex structures of types 1 and 2. The result of
our classification is presented in Table 1, where explicit examples of all
types of left-invariant generalized complex structures are given, whenever
they exist. The main results establishing this classification are Theorems
4.1 and 4.2. Throughout this section we often require the use of a Malcev
basis {e1, . . . , e6} as well as its dual basis {∂1, . . . , ∂6}. We use ei1···ip as an
abbreviation for ei1 ∧ · · · ∧ eip .
4.1. Generalized complex structures of type 2. By the results of the
last section, a left-invariant structure of type 2 is given by a closed form
ρ = exp(B+ iω)θ1θ2, where ω∧θ1θ2θ1θ2 
= 0. As a consequence of Theorem
3.2, any 6-nilmanifold with maximal nilpotence step cannot admit this kind
of structure. We now rule out some additional nilmanifolds, using Lemma
3.3.

Lemma 4.1. If a 6-nilmanifold M has nilpotent Lie algebra given by (0, 0,
0, 12, 14,−), and has nilpotency index 4, then M does not admit left-invar-
iant generalized complex structures of type 2.

Proof. Suppose that M admits a structure ρ of type 2. Since M has nilpo-
tency index 4, Vi+1/Vi is 1-dimensional for i ≥ 1. From dθ1 = 0 and
Lemma 3.3, we see that θ1 = z1e1 + z2e2 + z3e3 and nil(θ2) ≤ 2, thus
θ2 = w1e1+w2e2+w3e3+w4e4. The conditions d(θ1θ2) = 0 and θ1θ2θ1θ2 
= 0
together imply z3 = 0. Further, the annihilator of θ1θ2θ1θ2 is generated by
{∂5, ∂6}. Hence, the nondegeneracy condition ω2 ∧ Ω ∧ Ω 
= 0 implies that

B + iω = (k1e1 + . . . k4e4 + k5e5)e6 + α,

where k5 
= 0 and α ∈ ∧2 〈e1, · · · , e5〉. But, using the structure constants,
we see that dρ must contain a nonzero multiple of e6, and so cannot be
closed. �
Lemma 4.2. Nilmanifolds associated to the algebras defined by

(0, 0, 0, 12, 14, 13− 24),

(0, 0, 0, 12, 14, 23 + 24)

do not admit left-invariant generalized complex structures of type 2.

Proof. Each of these nilmanifolds has nil(g) = 3, with dimV1 = 3 and
dimV2/V1 = 1. Suppose either nilmanifold admitted a structure ρ of type
2. If nil(θ2) = 2, we could use the argument of the previous lemma to
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obtain a contradiction. Hence, suppose nil(θ2) = 3. Lemma 3.3 then implies
that θ2 ∧ θ2 
= 0 (mod V2), which means it must have nonzero e5 and e6
components.
Now, if θ1 had a nonzero e3 component, then dθ2∧θ1 would have nonzero

e234 component, contradicting (3.4). Hence

(4.1) θ1 = z1e1 + z2e2 θ2 =
6∑
i=1

wiei.

But for these, the coefficient of e123 in dθ2∧θ1 would be −z2w6 (for the first
nilmanifold) or z1w6 (for the second), in each case implying θ1 ∧ θ1 = 0, a
contradiction. �

Lemma 4.3. Nilmanifolds associated to the algebras defined by

(0, 0, 12, 13, 23, 14),

(0, 0, 12, 13, 23, 14− 25)

do not admit left-invariant generalized complex structures of type 2.

Proof. Each of these nilmanifolds have nil(g) = 4, with dimV1 = 2, dimV2 =
3, and dimV3 = 5. Suppose either nilmanifold admitted a structure ρ of type
2. V4/V3 is 1-dimensional and so Lemma 3.3 implies that nil(θ2) 
= 4. Since
θ1 is closed and satisfies θ1θ1 
= 0, we may rescale it to obtain θ1 = e1+z2e2.
The condition dθ2 ∈ I(θ1) implies we can write θ2 = w2e2+w3e3+w4(e4+
z2e5). Now let

B + iω =
∑
i<j

kijeij

and differentiate ρ using the structure constants. In both cases, dρ = 0
implies B+ iω = ξ1θ1+ξ2θ2 for 1-forms ξi. Therefore ω is degenerate on the
leaves defined by Ann(θ1θ2θ1θ2), contradicting the requirement ω2∧Ω∧Ω 
=
0. �

Theorem 4.1. The only 6-dimensional nilmanifolds not admitting left-
invariant generalized complex structures of type 2 are those with maximal
nilpotency index and those excluded by Lemmas 4.1, 4.2, and 4.3.

Proof. In Table 1 (see Appendix), we provide explicit left-invariant general-
ized complex structures of type 2 for all those not excluded by the preceding
lemmas and Theorem 3.2. �

4.2. Generalized complex structures of type 1. A left-invariant gen-
eralized complex structure of type 1 is given by ρ = exp(B + iω)θ1, where
ω2 ∧ θ1θ1 
= 0. Note that this implies that ω is a symplectic form on the
4-dimensional leaves of the foliation determined by θ1 ∧ θ1.
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Theorem 4.2. The only 6-nilmanifolds which do not admit left-invariant
generalized complex structures of type 1 are those associated to the algebras
defined by (0, 0, 12, 13, 23, 14) and (0, 0, 12, 13, 23, 14− 25).

Proof. In Table 1 (see Appendix), we provide explicit forms defining type 1
structures for all 6-nilmanifolds except the two mentioned above.
Suppose the nilmanifold is associated to the Lie algebra (0, 0, 12, 13, 23,

14). Then up to a choice of Malcev basis, a generalized complex structure
of type 1 can be written

ρ = exp(B + iω)(e1 + z2e2), B + iω =
∑
i<j

kijeij .

The condition dρ = 0 implies that

(−k36e314 + k45e135 − k45e423 + k46e136 + k56e236 − k56e514)(e1 + z2e2) = 0.

The vanishing of the e1245, e1236, e1235, and e1234 components imply succes-
sively that k56, k46, k45, and k36 all vanish.
The leaves of the distribution Ann(θ1θ1) are the tori generated by ∂3, ∂4,

∂5, ∂6, and the previous conditions on B + iω imply that on these leaves,
ω restricts to Im(k34)e34 + Im(k35)e35 which is degenerate, contradicting
ω2 ∧ θ1θ1 
= 0. An identical argument holds for the nilpotent algebra
(0, 0, 12, 13, 23, 14− 25). �

5. β-transforms of generalized complex structures

In this section, we will use Proposition 1.1 to show that any left-invariant
complex structure on a nilmanifold may be deformed into a left-invariant
generalized complex structure of type 1. By connecting the type 3 and type
1 structures in this way, we go on to show that the two disconnected com-
ponents of the left-invariant complex moduli space on the Iwasawa manifold
may be joined by paths of generalized complex structures.

Theorem 5.1. Every left-invariant complex structure 2n-dimensional nil-
manifold can be deformed, via a β-field, into a left-invariant generalized
complex structure of type n− 2.

Proof. According to Proposition 1.1, such a deformation can be obtained if
we find a holomorphic Poisson structure. Let us construct such a bivector
β.
By Theorem 3.1, a left-invariant complex structure on a nilmanifold has

a holomorphically trivial canonical bundle. Let Ω = θ1 ∧ · · · ∧ θn be a
holomorphic volume form, and choose the θi according to Lemma 3.1, so
that, by Corollary 1, the differential forms θ1, θ1 ∧ θ2, . . . , θ1 ∧ · · · ∧ θn are
all holomorphic. Now let {x1, . . . , xn} be a dual basis for the holomorphic
tangent bundle. By interior product with Ω, we see that the multivectors
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xn, xn−1 ∧ xn, . . . , x1 ∧ · · · ∧ xn are all holomorphic as well. In particular,
we have a holomorphic bivector β = xn−1 ∧ xn. Calculating the Schouten
bracket of this bivector with itself, we obtain

[β, β] = [xn−1 ∧ xn, xn−1 ∧ xn] = 2[xn−1, xn] ∧ xn−1 ∧ xn = 0,

where the last equality follows from the fact that [xn−1, xn] ∈ 〈xn−1, xn〉,
since θi([xn−1, xn]) = −dθi(xn−1, xn) = 0 for i < n− 1, by Corollary 1.
Hence β gives rise to a deformation of the generalized complex structure.

The resulting structure ρ̃ is given by the following differential form:

ρ̃ = eiβρ = ρ+ iβρ = eθn−1∧θnθ1 ∧ · · · ∧ θn−2,

and we see immediately that it is a left-invariant generalized complex struc-
ture of type n− 2. �
In [4], Ketsetzis and Salamon study the space of left-invariant complex

structures on the Iwasawa nilmanifold. This manifold is the quotient of
the complex 3-dimensional Heisenberg group of unipotent matrices by the
lattice of unipotent matrices with Gaussian integer entries. As a nilmanifold,
it has structure (0, 0, 0, 0, 13− 24, 14 + 23). Ketsetzis and Salamon observe
that the space of left-invariant complex structures with fixed orientation has
two connected components which are distinguished by the orientation they
induce on the complex subspace 〈∂1, ∂2, ∂3, ∂4〉.

Connecting the two components. Consider the left-invariant complex
structures defined by the closed differential forms ρ1 = (e1 + ie2)(e3 +
ie4)(e5+ie6) and ρ2 = (e1+ie2)(e3−ie4)(e5−ie6). These complex structures
clearly induce opposite orientations on the space 〈∂1, . . . , ∂4〉, so lie in dif-
ferent connected components of the moduli space of left-invariant complex
structures.
By Theorem 5.1, the first complex structure can be deformed, by the

β-field β1 = −1
4 (∂3 − i∂4)(∂5 − i∂6) into the generalized complex structure

eβρ1 = e−(e35−e46)−i(e45+e36)(e1 + ie2),

and then, by the action of the closed B-field B1 = e35 − e46, into

ρ = e−i(e45+e36)(e1 + ie2).

On the other hand, the second complex structure can be deformed, via
the β-field β2 = 1

4(∂3 + i∂4)(∂5 + i∂6), into the type 1 generalized complex
structure

eβρ2 = e(e35−e46)−i(e45+e36)(e1 + ie2),
and then by the B-field B2 = −(e35 − e46) into

ρ = e−i(e45+e36)(e1 + ie2),

which is the same generalized complex structure obtained from ρ1.
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Therefore, by deforming by β- and B-fields, the two disconnected compo-
nents of the moduli space of left-invariant complex structures can be con-
nected, through generalized complex structures.

6. An 8-dimensional nilmanifold

We have established that all 6-dimensional nilmanifolds admit generalized
complex structures. One might ask whether every even-dimensional nilman-
ifold admits left-invariant generalized complex geometry. In this section, we
answer this question in the negative, by presenting an 8-dimensional nilman-
ifold which does not admit any type of left-invariant generalized complex
structure.

Example 5. Consider a nilmanifold M associated to the 8-dimensional
nilpotent Lie algebra defined by

(0, 0, 12, 13, 14, 15, 16, 36− 45− 27).

Since it has maximal nilpotency index, Theorem 3.2 implies that it may
only admit left-invariant generalized complex structures of types 1 and 0.
We exclude each case in turn:

• Type 1: Suppose there is a type 1 structure, defined by the left-
invariant form ρ = eB+iωθ1. Then dθ1 =0 and θ1θ1 
= 0 imply that θ1θ1
is a multiple of e12 and therefore ω must be symplectic along the leaves
defined by 〈∂3, . . . , ∂8〉. These leaves are actually nilmanifolds associ-
ated to the nilpotent algebra defined by (0, 0, 0, 0, 0, 12 + 34), which
admits no symplectic structure, and so we obtain a contradiction.

• Type 0: The real second cohomology of M is given by

H2(M,R) = 〈e23, e34 − e25, e17〉,
and since e8 does not appear in any of its generators, it is clear that
any element in H2(M,R) has vanishing fourth power, hence excluding
the existence of a symplectic structure.

In this way, we see that the 8-dimensional nilmanifoldM given above admits
no left-invariant generalized complex structures at all.
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Vysš. Učebn. Zaved. Matematika 4(5) (1958), 161–171.

[8] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie
groups, Ann. of Math. (2) 59 (1954), 531–538.

[9] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157
(2001), 311–333.

[10] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc.
55 (1976), 467–468.

Mathematical Institute

Oxford University

England

E-mail address: gilrc@maths.ox.ac.uk

Fields Institute

Toronto, Canada

E-mail address: mgualtie@fields.utoronto.ca


