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On the size of an r-wise fractional L-intersecting
family™

Taras KUMAR MiSHRAT

Let L = {Z—ll,...,‘;—:}, where for every i € [s], Z—L € [0,1) is an
irreducible fraction. Let F = {A;,..., A,,} be a family of sub-
sets of [n]. We say F is an r-wise fractional L-intersecting fam-
ily if for every distinct i1,142,...,4, € [m], there exists an ¢ € L
such that |A11 N Aig n...N A1T| S {%‘Ai1|, %|Ai2|7 ceey %‘A“H In
this paper, we introduce and study the notion of r-wise fractional
L-intersecting families. This is a generalization of notion of frac-
tional L-intersecting families studied in [Niranjan et.al, Fractional
L-intersecting families, The Electronic Journal of Combinatorics,
2019].

KEYWORDS AND PHRASES: Intersecting family, fractional L-intersecting
family.

1. Introduction

A family F of subsets of [n] = {1,...,n} is said to be L-intersecting if for
every A;, A; € F with A; # Aj, we have |A;NA;| € L. This problem has been
studied extensively in literature. One of the earliest results on the problem
is by Ray-Chaudhuri and Wilson [1] who proved that |F| < (%) provided F
is t-uniform. Frankl and Wilson [2] proved that |[F| < (%) + (,",) + -+ (3)
when the uniformity restriction on F is revoked. Alon, Babai and Suzuki
[3] proved the above result using an ingenious linear algebraic argument. In
the same paper, the authors generalized the notion of L-intersecting families
and obtained the following result.

Theorem 1. [3] Let L = {ly,...,ls} be a set of s non negetive integers, and
K ={ki,...,kq} be a set of integers satifying k; > s —q for each i. Suppose
A={A1,..., A} be a family of subsets of [n] such that |A;| € K for each
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1 <i<m and|A; N Aj| € L for each pair with i # j. Then,

<)o ()

This upper bound is tight as given by the family of all subsets of [n] of
size between s — g+ 1 and s. Gromuluz and Sudakov [4] extended the results
of Frankl-Wilson and Alon-Babai-Suzuki to r-wise L-intersecting families.

Definition 1. Let r > 2 and L = {l;,...,ls} be a set of s non-negative
integers. If A = {A;,...,A,,} be a family of subsets of [n] such that |A; N
...MNA,| € L for every collection of r elements in .4, then A is an r-wise
L-intersecting family.

Theorem 2. [/] Let A be an r-wise L-intersecting family with L = {ly, ...,
ls} where s > 1 and each | € L are non-negative integers. Then,

|A|§(r—1)<<z>+...—|—<g>>.

Moreover, if the sizes of every member of A lies in K = {k1,...,kq} where
each k; > s — q, then

\A\S(r—1)<<2)+...+<s_z+l>>.

Fiiredi and Sudakov [5] improved the above bound and showed that their
bound is asymptotically optimal.

Theorem 3. [5] Let L be a subset of non-negative integers of size s, r > 2
and A be an r-wise L-intersecting family of subsets of an n-element set.
Then there exists an integer ng = ng(r, s) such that for all n > ny,

r—s+1(n n
A= ()2 ()

An improvement to the above bound was provided by Kang et.al. [6]
who proved the following theorem.

Theorem 4. [6] Let L = {l1,...,ls} be a set of non-negative integers of
size s and A be an r-wise L-intersecting family of subsets of an n-element
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set. Then, if | Naca A| < l1, |A| = o(n®). Moreover, if | Naca Al > 11 and n
sufficiently large,

r—s+1/n-—10 n—I
A<t ()2 ()

1<S

Various researchers have worked on many variants of the L-intersecting
families, see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] for detail.

Let L = {g*,..., 3}, where for every i € [s], 7+ € [0,1) is an irreducible
fraction. Let F = {A;,..., A} be a family of subsets of [n]. We say F is
a fractional L-intersecting family if for every distinct ¢, j € [m], there exists
an § € L such that [4; N Aj| € {$|As, §|4;|}. Niranjan et.al. [17] intro-
duced the notion of fractional L-intersecting families and proved that m =

O ((Z) (Qg%igﬂ)). When L = {#}, the bound on m improves to O (nlogn).

In this paper, we generalize the notion of fractional L-intersecting family to

r-wise fractional L-intersecting family in the natural way.

Definition 2 (r-wise fractional L-intersecting family). Let L = {¢*,..., 3=},

where for every i € [s], 3¢ € [0,1) is an irreducible fraction. Let F =
{A1,..., A} be a family of subsets of [n]. We say F is a r-wise fractional
L-intersecting family if for every distinct i1, 49, ...,4, € [m], there exists an
% € L such that |1411 N Aig Nn...N AZT’ c {%‘Ail‘, %|Ai2|, Ce %|A2T’}

In Section 2, we prove the following theorem.

Theorem 5. Let n be a positive integer. Let L = {“—i, ooy 3=}, where for

every i € [s], © € [0,1) is an irreducible fraction. Let F be an r-wise

fractional L-intersecting family of subsets of [n]|, where r > 3. Then, |F| <
2111“1211’}1 (r—1) (X1 (})). Moreover, the bound improves to 21?;1’; (r—=1)(7),

ifs<n+1-—2lnn.

Consider the following examples for an r-wise fractional L-intersecting
family.
Example 3. Let L = {%,%,...,58;1}, where s (= |L|) is a constant. The
collection of all the s-sized subsets of [n] is an r-wise fractional L-intersecting
family of cardinality (7;’) In this case, the bound given by Theorem 5 is

asymptotically tight up to a factor of (r — 1) In®n_ e believe that if F is

Inlnn
an r-wise fractional L-intersecting family of maximum cardinality, where s

(=|L]) is a constant, then |F| € O(rn®).
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We note that the linear algebraic techniques which are useful to derive
the bounds on fractional L-intersecting families are no longer directly ap-
plicable in this case due to the requirements. In Section 2, we use a special
refinement trick to reduce it into a form such that linear algebraic methods
can be used.

Next, we turn our attention to the case when |L| = s = 1. In the context
of classical L intersecting families, when |L| = s = 1, the Fisher’s Inequality
(see Theorem 7.5 in [18]) yields |F| < n, where F is an L intersecting family.
Study of such intersecting families was initiated by Ronald Fisher in 1940
(see [19]) in the context of design theory. Analogously, consider the scenario
when L = {{} is a singleton set. Can we get a tighter bound (compared to
Theorem 5) in this case? We show in Theorem 6 that if b is a constant prime
we do have a tighter bound.

Theorem 6. Let n be a positive integer. Let G be an r-wise fractional L-
intersecting families of subsets of [n], where L = {%}, § €[0,1), and b is a
prime. Then, |G| < (b—1)(r — 1)(n + 1)[B2] 47 — 1.

Assuming L = {%}, Examples 5 in Section 3 give r-wise fractional L-
intersecting families on [n] of cardinality Q(nInr) thereby implying that the
bound obtained in Theorem 6 is asymptotically tight up to a factor of 7“111;1—?
when b is a constant prime. We believe that the cardinality of such families
is at most crn, where ¢ > 0 is a constant.

The rest of the paper is organized in the following way: in Section 2, we
give the proof of Theorem 5 after introducing some necessary lemmas in the
beginning. In Section 3, we consider the case when L is a singleton set and
give the proof of Theorem 6. Finally, we conclude with some remarks, some
open questions, and a conjecture.

Before moving on to the proof of Theorem 5, we state few key lemmas

that will be essential in the proof.

Lemma 7 (Lemma 13.11 in [18], Proposition 2.5 in [20]). Fori=1,...,m
let f; : Q@ — F be functions and v; € ) elements such that

(a) fi(vi) #0 foralll <i<m;

(b) fi(vj) =0 foralll <j<i<m.
Then fi,..., fm are linearly independent members of the space F<.
Lemma 8 (Lemma 5.38 in [20]). Let p be a prime; Q = {0,1}". Let f € Fg
be defined as f(x) => 1 x; — k. For any A C [n], let V4 € {0,1}" denote
its 0-1 incidence vector and let x4 = lljcax;. Assume 0 < s,k < p—1

and s +k < n. Then, the set of functions {zaf : |A| <s—1} is linearly
independent in the vector space IFI(,2 over [y,
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2. Proof of Theorem 5

Let F be an r-wise fractional L-intersecting family of subsets of [n], where
r > 3, L is as defined in the theorem. Let p be a prime. We partition F into
p parts, namely Fo, ..., Fp—1, where F; = {A € F : |A|=j (mod p)}.

Estimating |F;|, when j > 0 If for every pair of sets A,B € Fj,
AN Bl € {$Al,.... Al 3IB,.... § , choose the set A with largest
cardinality in Fj, set X1 = A and Y; = A, and remove A from F;. Oth-
erwise, there is a collection of k sets {Ai,..., A} such that | NF_ | 4;| &
{F A, AL 31 AR - - 32 Akl and addition of any more set A
into {Ay,..., Ay} makes [N¥_, A, N A| € { Al A AR -
‘g—z Agl, ‘Z—”A[, cee ‘Z—j =Ajand Y] = ﬂleAi. Remove A4, ..., Ag
from F;. Repeat the process until no more set is left in F;. Let X;,Y; be
sets constructed as above, 1 < i < m. Observe that

1%l

_1"—1

(1)

Let X; = By, Y; = BN ...N Bg be a pair of sets constructed as above
for some k and i. By construction,

a a
|X; NYi| = Y] §Z{ !Bl\ bS!Bl\:- !Bk\ bS\Bk\}, and
S S
a
| X MY 6{ lBll |31|,---,—1|Bkl7- IBkl |X| 21,3,
bs bl bs
for all » > 3.

With each X; and Yj, associate the 0-1 incidence vector x; and y;, where
x;(I) = 1 if and only if [ € X;. Define m functions f; to f,,, where each

fe IF,{JO’l}", in the following way.

@ 5@ = (o) = 513) (- 23) - (o) - 529)

It follows that

filws) = ((xi,yz’) - %g) <<xi,yi> - Z—jj) <<$i,yi> - Z-j]) #0

for 1 <7 < m, unless j = 0. Moreover, fi(z,) =0 for 1 <i < r < m. Using
Lemma 7, it follows that the multilinear polynomials f1, ..., f,, are linearly
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independent over F})O’l}n. The dimension of the space is ) (7) Therefore,

S () =m> ‘f_’ll This implies that || < (r —1) (37 (}))-

The maximum value of j is p — 1 and we will show shortly that the

maximum value of p needed in the proof is 2Inn. So, choosing s < n + 1 —
21Inn, the requirements of Lemma 8 are satisfied. We can now improve the
upper bound on |F;| by using the swallowing trick and Lemma 8 to prove
that {f; : 1 <i<m}U{zaf : |A| <s} (where f(z)=> " ;i —j)isa
collection of functions that is linearly independent in the vector space F;{,O’l}n
over IF,,. These functions can be obtained as a linear combination of distinct
monomials of degree at most s. This implies that > () > m-+ Zf;ol (D,
that is m < (7). This yields |F;| < (r — 1)(}).

From the discussion above, it is clear that

—1)("), ifs< 1-21
(3) fj|<{(r U S ¥ E

(r—1) (3 (7)), otherwise

Estimating |Fp| In order to estimate |Fy|, we choose a collection p; <

po < ... < p of t smallest primes such that pips...ps > n. This implies

that every set F' in F has a prime p such that p { |F| — that is, F will be

counted in the estimation of |F; U... U F,_1]|. So,

” ﬂ<{t*(pt—1)(r—1)(§), ifs<n+1-2lnn,
Ttk (e —D(r—1) (X1 (7)), otherwise.

Now, the only thing that remains is to estimate ¢ and p;. The product
of the first ¢ primes is the primorial function p;# and it is known that
pi#t = elltoMtint  Qetting p,4 = e(ltoMtlnt ~ " we get t < lrllr{:n
Moreover, using the Prime Number Theorem (see Section 5.1 of [21]), the tth
largest prime is at most 2t In¢. Using these facts and Inequality 4, Theorem 5

follows. 0

3. L is a singleton set

As explained in Section 1, Fisher’s Inequality is a special case of the clas-
sical L-intersecting families, where |L| = 1. In this section, we study r-wise
fractional L-intersecting families with |L| = 1; a fractional variant of the
Fisher’s inequality.
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3.1. Proof of Theorem 6

Statement of Theorem 6: Let m be a positive integer. Let G be an r-wise
fractional L-intersecting families of subsets of [n], where L = {¢}, ¢ € [0, 1),
and b is a prime. Then, |G| < (b—1)(r — 1)(n + 1)[B2] 47 — 1.

Proof. Tt is easy to see that if a = 0, then |G| < n with the set of all singleton
subsets of [n] forming a tight example to this bound. So assume a # 0. Let
F =G\ H, where H = {A € G : b1 |A|}. From the definition of an
r-wise fractional f-intersecting family it is clear that |H| < r — 1. The rest
of the proof is to show that |F| < (b—1)(r —1)(n+1) [1111112] We do this by
partitioning F into (b — 1)[log, n| parts and then showing that each part is
of size at most (r — 1)(n + 1). We define F} as

Fl ={A e F||A| = j(mod i)}.

Since b divides |A|, for every A € F, under this definition F can be par-
titioned into families ]-"’b , where 2 < k < [logyn] and 1 < i < b— 1.
We show that, for every ¢ € [b — 1] and for every 2 < k < [log,n],
IFE < (r—1)(n +1).

In order to estimate | Zi’kil\, for each A € .Fgfkil, create a vector X4 as
follows:

,if j € A;
xati) = { v
0, otherwise.
Definition 4. Let x!,..., 2" € F" for some field F, where 2 = (2%, ..., 2%).
The r-wise dot product, denoted as <x1, . ,xr> is defined as <x1, axty =

n 1,2 r
PR -

Note that, for distinct sets Aq,..., A, € ]:I;"QFI

(Xa,,X4,) = b(mod bv?),
(5) (Xa,,...,X4,) = ai(mod b).

Estimating |F2"'| If for every pair of sets A,B € Fi¥" ', |[AN B| =

ai(mod b), choose the set A with largest cardinality in ]-"gf ,set Cp = A
and D; = A, and remove A from f;gkil. Otherwise, there is a collection
of k sets {A1,..., Ax} such that | ﬁ;‘-‘zl Aj| # ai(mod b), and addition of
any more set A into {Aj,..., Ay} makes | ﬂ?zl A; NA|l = ai(mod b). Set
Ci = A; and D1 = ﬂ?zlAj. Remove Aq,..., A from ]-"ggkil. Repeat the
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process until no more set is left in ]:Z,ljkfl. Let Cj, D; be sets constructed as
above, 1 < j7 < m. Observe that

F |
m > .
(6) - r—1

Let C; = By, Dj = By N...N By, be a pair of sets constructed as above
for some k and j. By construction, |C; N D;| = |D;| € {§|Bil, ..., §|Bkl},
and |C, N Dy;| € {§|B1l, .., §|Bkl, 7|Cr|}, for all » > j. From the definition
of Fg,ﬁkil, Equation 5, and construction above, it follows that for any 1 <
j?l S m7

# ai(mod b), if j =1,
= ai(mod b), if j > I,

(3 %0 {

Define m functions f; to f,,,, where each f; € Fi'', in the following way.

fi(z) = ((z,Xp,) — ai).
It follows that

#0,ifj=r,
fiXe,) . .
=0, if r > j,

So, f;’s are linearly independent in the vector space F,*" over Iy (by
Lemma 7). Each f; is thus an appropriate linear combination of distinct
monomials of degree at most one. Therefore, m < 2]1.:0 (?) =n+ 1. Thus,
using Equation 6, | 72" | < (r — 1)(n + 1). This concludes the proof of the
Theorem.

O

We shall call F a r-wise bisection closed family if F is a fractional L-
intersecting family where L = {3}. We have the following construction that
yields an r-wise bisection closed family of cardinality at least n{1-+ % +...+
1Y —2r on [n].

Example 5. Let n be an even positive integer. Let B; denote the col-
lection of 2-sized sets that contain only 1 as a common element in any
two sets, i.e. {1,2},{1,3},...,{1,n}; and let By denote collection of 4-
sized sets that contain only {1,2} as common elements, i.e. {1,2,3,4},
{1,2,5,6},...,{1,2,n — 1,n}. Similarly, let B; denote collection of 2i-sized



On the size of an r-wise fractional L-intersecting family 85

sets that contain only {1,2,...,i} as common elements, i.e. {1,2,...,4,i +
1,...,2i}, {1,2,...,4,20 + 1,...,3i},...,{1,2,...,4,mn — i + 1,...,n}, for
1 <@ <r (possibly excluding the last set in the family if it is not of size 2i).
It is not hard to see that B1UByU...UB, is indeed r-wise bisection closed.

4. Discussion

In this paper, we introduce and study the notion of r-wise fractional L-
intersecting families, which is a generalization of notion of fractional L-

intersecting families studied in [17]. If L = {*,...,3*}, Theorem 5 gives
an upper bound of O (1111112117;7'(2)) on the size of such families. When L is a

singleton set, this translates to an upper bound of O (rnlilnfnZ) on the size
of such families. If L = {¢}, § € [0,1), and b is a prime, Theorem 6 gives
an upper bound of O (rnlnn) We believe that in this case, the upper bound
should be linear which we pose as an open problem.

Conjecture 9. Let F be an r-wise fractional L-intersecting family, where
L ={a/b}. Then, |F|= O (rn).

Let r be a fixed constant and L = {%7%""783;1}7 where s is a con-
stant. The collection of all the s-sized subsets of [n] is an r-wise fractional
L-intersecting family of cardinality (Z) In this case, the bound given by

Theorem 5 is asymptotically tight up to a factor of lglfnﬁl. We believe that
in this case, |F| € ©(n®) and improving the bound in Theorem 5 remains
open.

In Theorem 6 and Theorem 8 of [17], the authors have shown linear
upper bound for fractional L-intersecting families for large sized sets and
sets of size nearly 5, respectively. Obtaining similar bounds in the case of

r-wise fractional L-intersecting families remains open.
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