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Monochromatic components with many edges∗

David Conlon, Sammy Luo
†
, and Mykhaylo Tyomkyn

Given an r-edge-coloring of the complete graph Kn, what is the
largest number of edges in a monochromatic connected component?
This natural question has only recently received the attention it
deserves, with work by two disjoint subsets of the authors resolving
it for the first two special cases, when r = 2 or 3. Here we introduce
a general framework for studying this problem and apply it to fully
resolve the r = 4 case, showing that any 4-edge-coloring of Kn

contains a monochromatic component with at least 1
12

(
n
2

)
edges,

where the constant 1
12 is optimal only when the coloring matches

a certain construction of Gyárfás.
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1. Introduction

Given an r-coloring of the edges of the complete graph Kn, how large is
the largest monochromatic connected component? A partial answer to this
question was provided in 1977 by Gyárfás [6], who showed that any such
r-coloring always contains a monochromatic connected component with at
least n/(r−1) vertices. Moreover, this estimate is best possible whenever r−1
is a prime power and n is a multiple of (r− 1)2. An alternative proof of this
result, as a simple corollary of his fractional version of Ryser’s conjecture,
was later found by Füredi [4, 5], who also showed that if there is no affine
plane of order r− 1, then the bound can be improved to (r− 1)n/(r2 − 2r).

There are many variants of this question. For instance, what happens
when the complete graph Kn is replaced by another graph, say a subgraph of
the complete graph [8] or the complete bipartite graph [3] of high minimum
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degree? Or what happens when we insist that our component has small
diameter [10]? Here, we will be concerned with another variant, a rather
basic one which has received surprisingly little attention in the literature,
namely, given an r-coloring of Kn, what is the largest number of edges in a
monochromatic connected component?

This question was first raised by Conlon and Tyomkyn [1] because of its
close relation with another problem, that of determining the Ramsey num-
ber for trails and circuits. However, the components problem is arguably
the more fundamental question. If we write M(n, r) for the largest natural
number such that every r-coloring of Kn contains a monochromatic con-
nected component with at least M(n, r) edges, then the main result of [1]
may be interpreted as saying that M(n, 2) = 2

9n
2 + o(n2). In fact, a more

careful analysis of their argument implies that M(n, 2) ≥ 1
9(2n

2 − n − 1),
with, where divisibility allows it, the example consisting of two disjoint red
cliques of orders 2n+1

3 and n−1
3 with all blue edges between showing that

this is best possible.
To say something about the general case, we first look at Gyárfás’ con-

struction of r-colorings where each monochromatic component has at most
n/(r− 1) vertices. As noted earlier, his construction, which relies on the ex-
istence of the affine plane of order r− 1, works when r− 1 is a prime power
and n is a multiple of (r − 1)2. Concretely, the affine plane of order r − 1
corresponds to a copy of K(r−1)2 together with r different decompositions of
this graph into r−1 vertex-disjoint copies of Kr−1 (that is, r different Kr−1-
factors) with the property that any edge is contained in exactly one of the
r(r − 1) copies of Kr−1. By giving the edges in the ith Kr−1-factor color i,
we obtain an r-coloring where every monochromatic component has at most
r − 1 vertices. Moreover, when n is a multiple of (r − 1)2, we can simply
blow up this coloring to obtain an r-coloring where every monochromatic
component has at most n/(r − 1) vertices.

As noted by Conlon and Tyomkyn [1], essentially the same construction
works in the edge case to show that, when r − 1 is a prime power, there
are r-colorings where each monochromatic component has at most ( 1

r(r−1) +

o(1))
(
n
2

)
edges (the only caveat is that we should use each color roughly

the same number of times within each of the blown-up vertices). They also
showed that this bound is correct up to a constant and conjectured that,
for r = 3, it is asymptotically tight. That this is the case was verified by
Luo [9], who proved that M(n, 3) = �16

(
n
2

)
� for n sufficiently large. Moreover,

by giving a tight lower bound for the largest number of edges in a connected
component in a graph of given density, he was able to show that M(n, r) ≥
1
r2

(
n
2

)
in the general case, a result which was later strengthened to M(n, r) ≥
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1
r2−r+ 5

4

(
n
2

)
in a revised version of the paper. Our concern here will be with

the following conjectural improvement to this bound.

Conjecture 1. For any natural numbers n and r with r ≥ 3,

M(n, r) ≥
⌈

1

r(r − 1)

(
n

2

)⌉
.

Moreover, when there is no affine plane of order r−1, there exists a constant
εr > 0 such that

M(n, r) ≥
(

1

r(r − 1)
+ εr

)(
n

2

)
.

The result of [9] proves this conjecture when r = 3, while the result of [1]
shows that the conjectured bound does not extend to the case r = 2. Our
main result is a proof of the next open case, when r = 4. Note that, in this
case, Gyárfás’ construction corresponds to a 4-coloring of K9 where each
color class is the union of three vertex-disjoint triangles. In the statement
below, by saying that a coloring matches Gyárfás’ construction, we mean
that the set of components and the intersection pattern of their vertex sets
match those in this construction.

Theorem 2. In every 4-coloring of the edges of Kn, there is a monochro-
matic component with at least 1

12

(
n
2

)
edges. That is, M(n, 4) ≥ � 1

12

(
n
2

)
�.

Moreover, unless the coloring matches Gyárfás’s construction, there is a
monochromatic component with at least

(
1
12 + ε

) (
n
2

)
edges, where

ε = 2
14+

√
96

− 1
12 > 0.0007.

Our proof of Theorem 2 consists of first showing that any 4-coloring of
Kn has one of a bounded number of component structures and then that
each such component structure contains a component with enough edges.
For instance, one of the possible component structures is that each color has
precisely three components. But then one of these 12 components clearly
contains at least 1/12 of the edges, as required. For the other possible com-
ponent structures, our arguments are not usually so simple, relying instead
on a key observation, Proposition 3 below. This says that if a certain union
of components is large in the vertex sense, but none of these components is
large in the edge sense, then some one of the remaining components will be
large in the edge sense. In fact, even this is not quite enough and, inspired
by Füredi’s approach to the vertex case, we must allow for weighted or frac-
tional unions of components. We will describe our general framework and
how it may be applied in more detail in the next section.
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2. A general framework

Suppose r ≥ 2 and fix an r-coloring of the edges of the complete graph
G = (V,E) =̂ Kn. For 1 ≤ i ≤ r, let Gi be the “graph of color i”, i.e., the
subgraph of Kn formed by the edges with color i, where we include vertices
that are isolated in that color in the graph. In particular, |Gi| = n for all i.
Let Ci be the set of connected components in Gi and let C be the set of all
monochromatic components, i.e., C =

⋃
1≤i≤r Ci. Since each vertex of G is

in exactly one component of each color, we have∑
C∈C

|V (C)| = r|V (G)| = rn.

Similarly, since each edge of G is in exactly one component of exactly one
color, we have ∑

C∈C
|E(C)| = |E(G)| =

(
n

2

)
.

The following observation will be central to our approach.

Proposition 3. Let X ⊆ C be a set of connected monochromatic components
in an r-coloring of Kn and let x = |X |. Suppose γ ∈ [0, r] and z ∈ R

+ are
constants such that

∑
C∈X |V (C)| ≥ γn and maxC∈C |E(C)| ≤ z

(
n
2

)
. Then

(1) z(r − γ)2 ≥ max(1− xz, 0)2.

Proof. If γ = r, then
∑

C∈X |V (C)| ≥ rn =
∑

C∈C |V (C)|, so X = C. Then

xz =
∑
C∈C

z ≥
∑
C∈C

|E(C)|(
n
2

) = 1,

so both sides of (1) are zero. Thus, we can assume γ < r.
For 1 ≤ i ≤ r, let Hi be the induced subgraph of Gi on V (G) \⋃

C∈Ci∩X V (C). Then

r∑
i=1

|E(Hi)| = |E(Kn)| −
∑
C∈X

|E(C)| ≥ max

(
(1− xz)

(
n

2

)
, 0

)
,

while
r∑

i=1

|V (Hi)| = rn−
∑
C∈X

|V (C)| ≤ (r − γ)n.
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Note that |V (Hi)| = 0 implies |E(Hi)| = 0. Thus, by a standard averaging
argument, there is some j with |V (Hj)| 	= 0 and

|E(Hj)|
|V (Hj)|

≥
∑r

i=1 |E(Hi)|∑r
i=1 |V (Hi)|

≥ n− 1

2
max

(
1− xz

r − γ
, 0

)
.

Let C′
j be the set of components of Hj , so, by the same averaging argument,

there is some C ′ ∈ C′
j such that

(2)
|E(C ′)|
|V (C ′)| ≥

∑
C∈C′

j
|E(C)|∑

C∈C′
j
|V (C)| =

|E(Hj)|
|V (Hj)|

≥ n− 1

2
max

(
1− xz

r − γ
, 0

)
.

Since |E(C ′)| ≤
(|V (C′)|

2

)
, we have

n− 1

2
≥ |V (C ′)| − 1

2
≥ |E(C ′)|

|V (C ′)| ,

which, combined with (2), implies 1−xz
r−γ ≤ 1. We therefore have

z

(
n

2

)
≥ |E(C ′)| = |E(C ′)|

|V (C ′)| |V (C ′)| ≥ |E(C ′)|
|V (C ′)|

(
2|E(C ′)|
|V (C ′)| + 1

)

=

(2|E(C′)|
|V (C′)| + 1

2

)
≥

(
(n− 1)max(1−xz

r−γ , 0) + 1

2

)

≥ max(1− xz, 0)2

(r − γ)2

(
n

2

)
,

which rearranges to the desired bound.

Note that taking X = ∅, we have x = γ = 0, so that z ≥ 1
r2 , which

immediately yields the simple lower bound M(n, r) ≥ 1
r2

(
n
2

)
, as proved in

Corollary 4 of [9]. For 1− xz ≥ 0, x > 0, and 0 ≤ z ≤ 1, (1) is equivalent to

z ≥ (r − γ)2 + 2x−
√

((r − γ)2 + 2x)2 − 4x2

2x2
(3)

=
2

(r − γ)2 + 2x+
√

((r − γ)2 + 2x)2 − 4x2
.

In order to go beyond the boundM(n, r) ≥ 1
r2−r+ 5

4

(
n
2

)
from Theorem 1 of [9],

we must investigate the possible component structures in our r-coloring. For
instance, in the case r = 3, the proof of Theorem 2 in [9] shows that there
are three possible structures for the components in our coloring. Either:



64 David Conlon et al.

(a) Some color has exactly one component (γ = 1, x = 1 above),
(b) Each color has exactly two components (γ = 3, x = 6), or
(c) There is a component of each color such that every vertex is covered by

at least two of these three components (γ = 2, x = 3).

Applying Proposition 3 to cases (a) and (c) yields, in each case, a lower
bound on z higher than the tight bound of 1

6 , while case (b), with r−γ = 0,
implies 1− xz ≤ 0, so z ≥ 1

x = 1
6 , which is tight.

For general r, in order to prove a lower bound of the form M(n, r) ≥
z
(
n
2

)
, it suffices to find, in any given r-coloring, a set X ⊆ C yielding values

of x ∈ Z
+ and γ ∈ [0, r] such that x ≤ 1

z and (1) does not hold, that is,
z(r − γ)2 ≤ (1− xz)2. This rearranges to

(4) x ≤ 1

z
− r − γ√

z
.

We can state our conclusions concisely as follows.

Corollary 4. Let z ∈ R
+. If there exists a set of components X ⊆ C such

that, for some x ∈ Z
+ and γ ∈ [0, r], |X | = x,

∑
C∈X |V (C)| ≥ γn, and (4)

holds, then there is a component C ∈ C with at least z
(
n
2

)
edges.

In fact, a simple probabilistic argument allows us to strengthen Corol-
lary 4 to a fractional form allowing for non-integer values of x.

Proposition 5. Let z ∈ R
+. If there exists a function w : C → [0, 1] such

that, for some x ∈ R
+ and γ ∈ [0, r],

∑
C∈C w(C) = x,

∑
C∈C w(C)|V (C)| ≥

γn, and (4) holds, then there is a component C ∈ C with at least z
(
n
2

)
edges.

Proof. Our proof takes advantage of the fact that (4) is linear in x and γ.
Given a function w with the required properties, we construct a random
subset X ⊆ C by taking each component C ∈ C with probability w(C).
Abusing notation by letting x and γ be the random variables with x = |X |
and γ = 1

n

∑
C∈X |V (C)|, we have

E

(
x+

r − γ√
z

)
=

∑
C∈C

w(C) +
r − 1

n

∑
C∈C w(C)|V (C)|√

z

≤ x+
r − γ√

z
≤ 1

z
,

so there is some choice of X that satisfies the conditions of Corollary 4,
yielding a component with the desired size.
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In practice, we will apply Proposition 5 in the following form, allowing

us to work with the convenient bound (3).

Corollary 6. Let w : C → [0, 1], x ∈ R
+, and γ ∈ [0, r] and suppose∑

C∈C w(C) = x and
∑

C∈C w(C)|V (C)| ≥ γn. Then (3) holds for z =
1

(n2)
maxC∈C |E(C)|.

Note that the condition
∑

C∈C w(C)|V (C)| ≥ γn is satisfied if, for every

vertex v ∈ V (G), we have ∑
C�v

w(C) ≥ γ,

i.e., the function w gives a fractional cover of the vertices by components

that cover each vertex with weight at least γ. This allows us to convert our

problem into a linear program, akin to Füredi’s approach to the vertex case,

namely, we wish to minimize x =
∑

C∈C w(C) subject to the constraints

that 0 ≤ w(C) ≤ 1 for all C and
∑

C�v w(C) ≥ γ for all v ∈ V (G). In

particular, to show that z = 1
r(r−1) works, it would suffice to show that

x ≤ r(r − 1)− (r − γ)
√

r(r − 1).

3. The case r = 4

In the case r = 4, we can investigate the set of possible component struc-

tures as in the case r = 3, though the analysis is now considerably more

intricate. Recall that our aim is to show there exists a component with at

least 1
12

(
n
2

)
edges; moreover, we would like to show that this bound is only

asymptotically tight when the components match the extremal configuration

described by Gyárfás in [7].

We will make use of the following fact shown in the course of handling

the r = 3 case in [9]. An equivalent result also appears as Lemma 4.19 in

[2].

Lemma 7. In any 2-coloring of the complete bipartite graph between two

vertex sets A1 and A2, one of the following holds:

(a) Some color has exactly one component,

(b) Each color has exactly two components, each of which intersects both A1

and A2, or

(c) There is one component of each color such that the intersection of their

vertex sets contains one of A1 and A2 and their union contains both.
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Figure 1: The cases of Lemma 7.

In each of these cases, one may assign weights of 1
2 or 1 to the components

involved to get weights summing to at most 2 that cover every vertex involved
to weight at least 1.

It will sometimes be convenient to specify further subcases within the
cases of Lemma 7. We say that a pair of vertex sets (A1, A2) “satisfies case (a)
for color c” if c is a color with exactly one component covering A1 ∪A2. We
also say that (A1, A2) “satisfies case (c) directed toward A1” (or, equiva-
lently, directed away from A2) if A1 is contained within the intersection of
the two components.

Define the Gi and Ci as before and, for convenience, name the colors
red, orange, yellow, and blue. We begin by establishing a lower bound on
maxC∈C |E(C)| in the following “degenerate” case where some three compo-
nents with distinct colors cover the entire vertex set.

Lemma 8. If, in a 4-coloring of the edges of Kn, there are three components
C1, C2, C3 ∈ C of distinct colors such that C1 ∪ C2 ∪ C3 = V , then

maxC∈C |E(C)|(
n
2

) ≥ 2

14 +
√
96

>
1

12
.

Proof. If there is one component C1 with V (C1) = V , then applying Propo-
sition 3 with X = {C1} and (γ, x) = (1, 1) yields, via (3), the bound

z ≥ 2

11 +
√
117

>
2

22
>

2

14 +
√
96

,

as desired.
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Figure 2: The vertex partition in Lemma 8.

Next, suppose that there are two components C1, C2 with C1 ∪C2 = V ,
but with both V1 := C1 \ C2 and V2 := C2 \ C1 non-empty. Since we have
not yet distinguished the colors in any way, we can assume without loss of
generality that C1 is red and C2 is orange. Then all edges between V1 and V2

are either yellow or blue. Applying Lemma 7 to the pair of vertex sets (V1, V2)
yields a way to choose weights on the yellow and blue components summing
to at most 2 such that every vertex in V1 ∪ V2 is covered by components
with weights summing to at least 1. Starting from this choice of weights and
adding a weight of 1 to each of C1 and C2 then allows us to apply Corollary 6
with (γ, x) = (2, 4), which yields the bound

z ≥ 2

12 +
√
80

>
2

21
>

2

14 +
√
96

,

which again suffices.
The remaining case to consider is where there are three components

C1, C2, C3 with C1 ∪ C2 ∪ C3 = V , but all of V1 := C1 \ (C2 ∪ C3), V2 :=
C2 \ (C3 ∪ C1), and V3 := C3 \ (C1 ∪ C2) are non-empty. Without loss of
generality, we can assume that C1 is red, C2 is orange, and C3 is yellow. For
each pair of the Vi, only two colors are possible on the edges between them,
one of which is blue. Our aim is to apply Lemma 7 to each of these pairs
and then combine the results into an appropriate choice of weights on the
components of the overall coloring of Kn.

For each of the pairs (Vi, Vj), we apply Lemma 7 to the complete bipartite
graph between Vi and Vj , yielding one of the cases (a), (b), or (c) described
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Figure 3: The cases between pairs in Lemma 8.

therein. We further split case (a) into (a1) and (a2), depending on whether
the corresponding component is blue (case (a1)) or not (some cases are not
mutually exclusive, but this will not be an issue).

For any case constellation between the pairs (Vi, Vj), we aim to exhibit
at most two components other than C1, C2, C3 covering V1∪V2∪V3. Together
with C1, C2, and C3, this will yield a 2-cover of the entire graph Kn by at
most 5 components (since all vertices outside V1 ∪ V2 ∪ V3 are in at least
two of the Ci and so are already 2-covered). Applying Corollary 6 with
(γ, x) = (2, 5) would then give the claimed bound of

z ≥ 2

14 +
√
96

.

If case (a) (that is, either (a1) or (a2)) occurs for at least two pairs
(Vi, Vj), then the relevant components readily give a cover of V1 ∪ V2 ∪ V3.
Hence, from now on we can assume that this is not the case.

Suppose case (a1) occurs on one of the pairs, say (V1, V2). If (V1, V3)
satisfies case (b), then V1 ∪ V2 ∪ V3 is covered by a single blue component.
If (V1, V3) satisfies case (c) (in either direction), then V1 ∪ V2 is covered by
a blue component B and V3 \B is covered by a non-blue component. Thus,
we can assume from now on that case (a1) never happens.

If case (b) occurs, say on (V1, V2), then one of the two remaining pairs,
say (V1, V3), must satisfy case (b) or (c). If (V1, V3) satisfies case (b), then
V1 ∪ V2 ∪ V3 is covered by at most two blue components. The same is true if
(V1, V3) satisfies case (c) directed away from V1. Lastly, if (V1, V3) satisfies
(c) directed toward A1, then V1 ∪V2 is covered by a blue component B′ and
V3 \ B′ is covered by a non-blue component. Hence, we may also assume
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from now on that case (b) never happens. In other words, each pair satisfies
either case (a2) or (c) and the former occurs at most once.

If all three pairs (Vi, Vj) satisfy case (c), then the respective ‘case (c)
directions’ result in an auxiliary 3-vertex tournament, which is either cyclic
or transitive. In the cyclic case, we again have that V1 ∪V2 ∪V3 is contained
in a single blue component. In the transitive case, without loss of generality,
let each (Vi, Vj) for i < j be directed toward Vi. Then again V1 ∪ V2 lies
in a single blue component B′′ and V3 \ B′′ can be covered by a non-blue
component.

Hence, we may assume that one pair, say (V1, V2), is of type (a2), with
D being the non-blue component between them, and the other two pairs
are of type (c). If either of these type (c) pairs is directed toward V3, then
V1 ∪ V2 ∪ V3 is covered by D and the corresponding blue component. Thus,
the last case to consider is when both (V1, V3) and (V2, V3) are directed away
from V3.

In that case, letB1 andD1 be the blue and non-blue components between
(V1, V3), respectively, and define B2 andD2 similarly with respect to (V2, V3).
If B1 ∩B2 ∩ V3 	= ∅, then B1 and B2 coalesce into a single component B in
Kn and V3 \B can be covered by a non-blue component. On the other hand,
if B1 ∩B2 ∩ V3 = ∅, then

D1 ∪D2 ⊇ (V3 \B1) ∪ (V3 \B2) = V3

and, since D1 and D2 cover V1 and V2, respectively, we again obtain that
two components, namely D1 and D2, cover V1∪V2∪V3. Thus, in every case,
we have a component with at least 2

14+
√
96

(
n
2

)
edges, as desired.

The lower bound of 2
14+

√
96

in the conclusion of Lemma 8 can be im-

proved slightly through a more careful analysis. However, we chose to omit
this more involved proof, since the improved estimate is not needed for the
tight case in Theorem 2.

For any vertex v and any component C with v ∈ C, we can assume there
is a vertex w ∈ C not in any other component containing v; otherwise, we
are done by Lemma 8. In particular, we can assume that no component has
its vertex set contained entirely within the vertex set of another component.

For the sake of clarity, we say that two vertices v1 and v2 are joined in a
given color if the edge between them is of that color, while a set of vertices is
connected in a given color if they share a component of that color. Call two
vertices v1 and v2 equivalent if they are contained in a common component,
that is, they are connected, in each color. Clearly, this is an equivalence
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relation, so we may speak of equivalence classes with respect to it. Note
that if v1 and v2 share exactly three components, then, considering a vertex
w outside of these three components (if there is no such w, we are again
done by Lemma 8), both v1 and v2 must be joined to w via the fourth color,
meaning that they share all four components, a contradiction. Hence, we
can assume that any two vertices are either equivalent or share at most two
components. If v1 and v2 share precisely two components, let us call them
biconnected.

The next two lemmas cover a pair of general cases where we again get a
lower bound of at least 2

14+
√
96

(
n
2

)
edges.

Lemma 9. If there is a pair of components of different colors that do not
intersect, then there is a monochromatic component with at least 2

14+
√
96

(
n
2

)
edges.

Proof. By symmetry, we can assume that the two disjoint components R
and B are red and blue, respectively. All edges between R and B are orange
or yellow, so we can apply Lemma 7 to the complete bipartite graph GR,B

between them. If either R or B is contained entirely in a single orange
or yellow component in GR,B and thus in G, we are done by Lemma 8, so
assume otherwise. Then only case (b) of Lemma 7 can apply, where there are
exactly two orange components and two yellow components in GR,B (none of
which can coalesce together in G). It is easy to see that in this case any two
vertices in R that share an orange component also share a yellow component
and are therefore equivalent. Hence, there are exactly two equivalence classes
of vertices in R and, likewise, exactly two equivalence classes in B. Taking
representatives v1, v2 ∈ R and w1, w2 ∈ B of these equivalence classes, let

X = {C ∈ C : C ∩ {v1, v2, w1, w2} 	= ∅} \ {R,B}.

Define w(C) = 1 when C ∈ X and w(C) = 0 otherwise. We claim that
this choice of w satisfies the conditions of Corollary 6 with (γ, x) = (3, 8).
If {v1, v2} ⊆ C for any component C 	= R, then R ⊆ C, a contradiction, so
v1 and v2 do not share any non-red components; likewise, w1 and w2 do not
share any non-blue components. Thus, X contains exactly two components
of each color, so

∑
C∈C w(C) = |X| = 8. Moreover, by construction, for

u ∈ R ∪B, we have
∑

C�uw(C) = 3.
Now consider a fixed u /∈ R∪B. Since the two equivalence classes in R do

not share any non-red components, there are at least two colors among the
edges between u and R and, similarly, at least two colors among the edges
between u and B. If there are exactly two colors among the edges between
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u and R ∪ B, then these colors must be orange and yellow, a contradiction
because R∪B cannot be covered by the union of an orange component and
a yellow one. So there are at least three colors among the edges between u
and R ∪ B, which means

∑
C�uw(C) ≥ 3. Thus, we can apply Corollary 6

with (γ, x) = (3, 8), yielding a monochromatic component with at least
2

17+
√
33

(
n
2

)
> 2

14+
√
96

(
n
2

)
edges, as desired.

Lemma 10. If there is a pair of biconnected vertices, then there is a
monochromatic component with at least 2

14+
√
96

(
n
2

)
edges.

Proof. Suppose that v1 and v2 are biconnected. By symmetry, we can assume
that the two components they share are red and orange and that there are at
least as many orange components as red components in our coloring. We can
also assume that there are at least two red components; otherwise, we are
done by Lemma 8. If there are exactly two orange components, then applying
Proposition 3 to the set of red and orange components with (γ, x) = (2, 4)
yields z ≥ 2

12+
√
80

and we are again done, so we can assume that there are

at least three orange components. Let R and O be the joint red and orange
components, respectively, of v1 and v2 and, for i ∈ {1, 2}, let the yellow and
blue components containing vi be Yi and Bi, respectively. Let T = V \R.

Since {R,O, Y1, B1} are the four components of v1, their union is the
whole of V . Hence, D := B1 \ (R ∪ O) 	= ∅, as otherwise {R,O, Y1} would
satisfy the assumptions of Lemma 8 and, analogously, E := Y1\(R∪O) 	= ∅.
Observe that v2 must be joined in yellow to all vertices in D and in blue to
all vertices in E. This means that D ∩E = ∅ and, consequently, v1 is joined
to all of D in blue and to all of E in yellow. Furthermore, E = B2 \ (R∪O)
and D = Y2 \ (R ∪O).

If there is a vertex w ∈ Y1 ∩ B1 ∩ R \ O, then w shares exactly three
components with v1, a contradiction. Hence, we may conclude that

(5) Y1 ∩B1 \O = Y1 ∩B1 \ (R ∪O) = D ∩ E = ∅

and, similarly, Y2 ∩B2 \O = ∅.
Now consider a vertex v3 ∈ R \ O. If v3 is joined in orange to all of

T \ O = D ∪ E, then either there are only two orange components (O and
the component of v3) or there is an orange component whose vertex set is
contained within R; either case is a contradiction. Therefore, v3 is joined
in blue or yellow to some vertex in T \ O, which means it is in one of
B1, B2, Y1, Y2. By symmetry, we can assume it is in B1, so by (5) we have
v3 /∈ Y1. We conclude that v3 must be joined to all of E in orange (see
Figure 4). Since v3 was chosen from R \O arbitrarily, every vertex in R \O
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Figure 4: The situation in Lemma 10.

is joined either to all of D or to all of E in orange. If any orange component
does not intersect R, we are done by Lemma 9. Otherwise, we have at most
three orange components in total, so by our earlier assumption it must be
exactly three. In particular, there will be a vertex in R \ O connected in
orange to all of D and none of E. It follows that every edge between D and
E must be red, so all of D ∪ E = V \ (R ∪ O) is contained in a single red
component. If there is a third red component, it must lie entirely inside O,
so we are done by Lemma 8. Therefore, we can assume there are exactly two
red components.

Next, note that v1 and v3 share components in red and blue but not
in orange, which means v1 and v3 are biconnected. Therefore, by the same
argument as above (with orange and blue swapped), the total number of
blue components is also three. Let B3 be the third blue component and note
that B3 ⊆ R∪O. Consequently, we must have B3 ∩R \O 	= ∅, as otherwise
B3 would be contained in O. Let v4 ∈ B3 ∩R \O be an arbitrary vertex. By
using similar reasoning as for v3, we have that v4 is in one of B1, B2, Y1, Y2;
since v4 ∈ B3, it must be in one of Y1 and Y2. We conclude, as before for v3
and blue, that there are exactly three yellow components.

Thus, we have exactly two red components and exactly three components
of every other color, for a total of exactly 11 monochromatic components.
By the pigeonhole principle, one of these components must have at least
1
11

(
n
2

)
> 2

14+
√
96

(
n
2

)
edges, as needed.

We are now ready to complete the proof of our main theorem.

Proof of Theorem 2. If the hypotheses of any of Lemmas 8, 9, or 10 hold, we
have a component with at least 2

14+
√
96

(
n
2

)
edges, as needed, so we can assume
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otherwise. Thus, every pair of components of different colors intersects and
any pair of vertices sharing at least two components are equivalent.

We claim that in this case there are at most three components of each
color. Without loss of generality, let red be a color with the fewest compo-
nents. Let R be a red component and fix a vertex v /∈ R. Let O, Y , and B be
the orange, yellow, and blue components of v, respectively. By Lemma 10,
we can assume that all vertices in R ∩ O are equivalent and similarly for
R∩Y and R∩B. However, O∪B ∪Y ⊇ R, as every vertex in R is adjacent
to v via a non-red edge. So the vertices of R can be partitioned into at most
three equivalence classes. Thus, there are at most three components of each
color that intersect V (R) and since, by Lemma 9, we can assume that R
intersects every non-red component, there are at most three components of
each color in total, as claimed.

If there is a color with fewer than three components, then |C| ≤ 11
and there is some component with at least 1

11

(
n
2

)
edges. Otherwise, we will

show that our coloring matches the extremal construction claimed. Indeed,
by assumption, the equivalence class of a vertex is determined by its red
and orange components. Let R = R1, R2, R3 be the red components and
O1, O2, O3 the orange components and let Vij = Ri∩Oj for 1 ≤ i, j ≤ 3. The
Vij form a partition of V (G) and each is an equivalence class of vertices. Since
we can assume that every pair of components of different colors intersects,
the Vij are all non-empty.

Every component contains exactly three equivalence classes: one for each
orange component if it is red and one for each red component if it is not
red. Each pair of the three vertex sets V11, V22, V33 must share at least one
component, each of which must be yellow or blue; one of the two colors
occurs at least twice, say yellow. Then V11 ∪V22 ∪V33 is connected in yellow
and in fact must form a yellow component, since each yellow component
contains exactly three equivalence classes. Then neither V13 nor V31 shares
a red, orange, or yellow component with V22, so V13 ∪V22 ∪V31 forms a blue
component and, similarly, so do V12∪V21∪V33 and V11∪V23∪V32. Repeating
this argument shows that V12 ∪ V23 ∪ V31 forms another yellow component,
as does V13 ∪ V21 ∪ V32. Hence, we are in exactly the extremal configuration
claimed.

Thus, only the claimed extremal configuration can have fewer than
2

14+
√
96

(
n
2

)
edges in every component and in this extremal configuration,

since there are 12 components, we instead get a lower bound of 1
12

(
n
2

)
edges,

as desired.

As in [1] and [9], it is possible to amend our argument to show that every
4-coloring of Kn contains a monochromatic trail or circuit of length at least
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( 1
24 + o(1))n2. We omit the details, but briefly note the main idea, which is
to delete a sparse subgraph in order to guarantee that each component is
Eulerian and then work around these omitted edges.
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