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Motivated by the inverse eigenvalue problem, vertex leaky forcing
was recently introduced as a new variation of zero forcing in order
to show how vertex leaks can disrupt the zero forcing process in
a graph. An edge leak is an edge that is not allowed to be forced
across during the zero forcing process. The �-edge-leaky forcing
number of a graph is the size of a smallest zero forcing set that
can force the graph blue despite � edge leaks. This paper contains
an analysis of the effect of edge leaks on the zero forcing process
instead of vertex leaks. Furthermore, specified �-leaky forcing is
introduced. The main result is that �-leaky forcing, �-edge-leaky
forcing, and specified �-leaky forcing are equivalent. Furthermore,
all of these different kinds of leaks can be mixed so that vertex
leaks, edge leaks, and specified leaks are used. This mixed �-leaky
forcing number is also the same as the (vertex) �-leaky forcing
number.
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1. Introduction

Zero forcing was introduced by the AIM Minimum Rank and Special Graphs
Work Group in [2], in order to find upper bounds for the maximum nullity
for the family of real symmetric matrices whose off-diagonal entries are de-
scribed by a graph. The zero forcing process uses a set of blue vertices in
a graph that color other vertices blue given a color change rule. Given a
graph G and a blue vertex v ∈ V (G), if v has one white neighbor w, then v
forces w (v colors w blue). Formally, this process is known as the zero forcing
color-change rule. A zero forcing set for G is an initial set of blue vertices B
such that after iteratively and exhaustively applying the zero forcing color-
change rule, every vertex in G is blue. The zero forcing number of a graph
is the size of a minimum zero forcing set, and is denoted Z(G).
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Zero forcing has shown up as a way to control quantum systems [6, 11].

In fact, it was shown that if a set of vertices is a zero forcing set, then the

associated quantum system is controllable [5]. Another system that utilizes

the zero forcing process is the electric power system. In [10], Haynes et al.

looked into the problem of monitoring an electric power system by placing

as few measurement devices as possible. These applications of zero forcing

lead to a natural questions: What if something breaks in the system? Is there

a way to keep control? These questions were the main focus in [1] and [9].

In [9], Dillman and Kenter introduced leaky forcing, which is a variation on

zero forcing that focuses on when vertices in a graph are not able to force.

Leaky forcing uses the same color-change rule as zero forcing, but certain

vertices are not allowed to perform forces.

Given a graph G, a vertex leak (also referred to as a leak) is a vertex in

G that is not able to perform a force. An �-leaky forcing set, is a zero forcing

set such that for any set of � vertex leaks in G, exhaustively applying the

color-change rule results in every vertex in G becoming blue. The �-leaky

forcing number for a graph G is the size of a minimum �-leaky forcing set,

and we denote this by Z(�)(G). Notice that Z(G) = Z(0)(G). Furthermore,

the notion of how resilient a graph is to leaks, and which structures need to

be circumvented in a graph for a zero forcing set to be an �-leaky forcing set

were explored in [1]. The notation used in this paper will follow the notation

introduced in [1]. The rest of this section contains results from [1] which are

useful for exploring variations of leaky forcing.

In general, let B ⊆ V (G) be an initial set of blue vertices in G. If vertex

u colors v blue, then u forces v and we denote this by u → v. The symbol

u → v is called a force. A set of forces F of B in G is a set of forces such that

there is a chronological ordering of the forces in F where each force is valid

and the whole graph turns blue. When the set B is clear form context, F may

be referred to as a forcing process of B or a forcing process F (suppressing

the reference to B). Intuitively, F represents the instructions for how B can

force G blue, or provides a proof that B is a zero forcing set. Implicitly, F

gives rise to discrete time steps in which sets of white vertices turn blue. A

set B′ such that B ⊆ B′ ⊆ V (G) is obtained from B using F if B can color

B′ blue using only a subset of forces in a forcing process F . More generally,

B′ is obtained from B if there is some forcing process F by which B can

color B′ blue.
Given an initial set of blue vertices B, the set B[∞] is the set of blue

vertices obtained after exhaustively applying the zero forcing color-change

rule. Therefore, if B is a zero forcing set, then B[∞] = V . Furthermore, let
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B
[∞]
L be the set of blue vertices obtained from B after the zero forcing color-

change rule has been exhaustively applied, and a set of leaks L are present

in the graph. In particular, B
[∞]
L will be determined after a set of leaks L

has been chosen.
Let F(B) denote the set of all possible forces given a vertex set B. That

is, u → v ∈ F(B) if there exists a set of forces F of B in G that contains
u → v. Given this notation, B is an �-leaky forcing set if for every L ⊆ V (G)
with |L| = � there exists a forcing process F such that if u → v ∈ F , then
u /∈ L.

Suppose S ⊆ V (G) and F is a forcing process. Let

F (S) = {x → y ∈ F : y /∈ S}.

By extension,

F \ F (S) = {x → y ∈ F : y ∈ S}.
The following lemma proves that abandoning process F to follow process F ′

creates a new forcing process.

Lemma 1.1 ([1]). Let B be a blue set in G with forcing processes F and
F ′. Then (F \F (B′))∪F ′(B′) is a forcing process of B for any B′ obtained
from B using F .

The next lemma shows that for any (� − 1)-leaky forcing set B and
set of � vertex leaks L, there exists a time when all � leaks in L are blue.
Furthermore, there is also a time when all but one of the � leaks in L are
blue.

Lemma 1.2 ([1]). If B is an (�−1)-leaky forcing set and L is a set of k ≥ �

vertex leaks, then |L \B[∞]
L | ≤ k − �.

The previous two lemmas are used to prove Theorem 1.3. The gist of the
proof is to use a forcing process that turns all but one of the leaks blue. This
is possible by Lemma 1.2. At this point, the forcing process is abandoned for
a process that will completely force the graph despite the remaining leak.
Switching forcing processes is justified by Lemma 1.1.

Theorem 1.3 ([1]). A set B is an �-leaky forcing set if and only if B is an
(� − 1)-leaky forcing set such that for every set of � − 1 vertex leaks L and
v ∈ V (G) \B there exists x → v, y → v ∈ FL(B) with y �= x.

A natural generalization of �-leaky forcing is to consider what happens
when forces are prohibited from passing over particular edges. An edge xy
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is an edge leak if neither x → y nor y → x are allowed. A set of blue vertices
B is an �-edge-leaky forcing set if B can turn the whole graph G blue given
any set of � edge leaks. Denote the �-edge-leaky forcing number of a graph
G by Z′

(�)(G).
Edge-leaky forcing is analysed in Section 2. The main result of this

section is that the �-edge-leaky forcing number is the same as the �-leaky
forcing. Section 3 introduces specified leaks, and shows that preventing a
directional force is also equivalent to vertex leaky forcing. In Section 4, ver-
tex leaks, edge leaks, and specified leaks are mixed in the leak set without
changing the underlying behavior of leaky forcing. Furthermore, in Section 5,
sets of leaks with a particular underlying structure are explored. In general,
analogs of Lemma 1.2 will be used to conclude that the condition in Theo-
rem 1.3 applies for �-edge-leaky forcing and specified �-leaky forcing.

1.1. Motivation for variations of leaky forcing

The Inverse Eigenvalue Problem for a graph (IEPG) G on n vertices is to
determine all possible spectra of matrices in

S(G) = {A ∈ R
n×n : ai,j = aj,i, for i �= j, ai,j �= 0 iff ij ∈ E(G)}.

In particular, the IEPG is about the spectra of real symmetric matrices,
with free diagonal entries, and off diagonal entries that respect the pattern
of a graph’s edges.

Zero forcing on G was introduced as a way to bound the maximum
nullity of matrices in S(G). Consider the following system:

a1,1x1 + a1,2x2 + a1,3x3 + a1,4x4 = 0(1)

a2,1x1 + a2,2x2 + a2,3x3 + 0x4 = 0(2)

a3,1x1 + a3,2x2 + a3,3x3 + 0x4 = 0(3)

a4,1x1 + 0x2 + 0x3 + a4,4x4 = 0(4)

or equivalently,

⎛
⎜⎜⎝
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 0
a3,1 a3,2 a3,3 0
a4,1 0 0 a4,4

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ .

Zero forcing studies the minimum number of entries in the x vector that need
to be set to 0 before one can conclude that the whole x vector is identically 0
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Figure 1: The paw graph with a corresponding zero forcing set.

under the additional assumption that ai,j = aj,i �= 0 for i �= j. In particular,

determining that x2 = x4 = 0 implies x1 = x3 = 0 is equivalent to seeing

that {x2, x4} is zero forcing set in Figure 1. The bound on the maximum

nullity of S(G) comes from the fact, that if the entries in x indexed by B

are zero implies that all entries are zero, then the columns of A indexed by

V (G) \B must be linearly independent.

Though vertex-leaky forcing is a natural generalization of zero forcing,

its relationship to the linear algebra roots of zero forcing is less clear. We can

interpret a vertex leak as a prohibition of using the corresponding equation

to force zeros in the x vector. For example, supposing that x2 is a leak in

the paw graph in Figure 1 would prevent us from using equation (2) to solve

for x3 = 0 in the zero forcing process. This is an unsatisfying interpretation

of vertex-leaky forcing since forgetting an equation out of a linear system is

somewhat unnatural.

The main result of this paper is Corollary 2.4 which states that edge-

leaky forcing sets and vertex leaky forcing sets are the same. An edge leak

at x4x1 corresponds to assuming that a1,4 and a4,1 are zero divisors. That

is, if a4,1 is a zero divisor and x4 = 0, then a4,1x1 + a4,4x4 = 0 does not

imply that x1 = 0. Equivalently, if x1x4 is an edge leak, then x1 cannot be

used to turn x4 blue. We will return to this interpretation shortly.

A key insight in the study of the IEPG is that S(G) is a manifold. This

allows us to use the Implicit Function Theorem to study graph minor mono-

tone parameters defined on S(G), by transversely intersecting S(G) with

manifolds corresponding to various spectral properties (the rank manifold,

multiplicity list manifold, spectrum manifold, etc.). For references on the use

of the Implicit Function Theorem to define strong properties see [7, 8, 3, 4].

Close inspection of S(G) shows that S(G) is the disjoint union of cones in

R
n×n were the discontinuities arise from the fact that ai,j cannot equal zero

if ij is an edge in the graph. Therefore, a natural thing to wonder is which
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cones contained in S(G) can transversely intersect a spectrally defined man-
ifold M, since it may be the case that each cone exhibits its own spectral
behavior.

These considerations motivate the definition and study of the Inverse
Eigenvalue Problem for Signed Multi-Graphs. For a signed multi-graph Gs

with underlying graph G, we say the patter of a matrix A respects Gs, or
A ∈ S(Gs) if

• aij = 0 whenever the pair {i, j} has no edge,
• aij > 0 whenever the pair {i, j} has at least one positive edge but no
negative edge, and

• aij < 0 whenever the pair {i, j} has at least one negative edge but no
positive edge.

Notice that pairs {i, j} that have both positive and negative edges in Gs can
be associated with any real valued entry in aij . The manifold S(Gs) for a
simple underlying graph G would pick out a particular cone of the manifold
corresponding to the unsigned graph underlying Gs. The signed multi-edges
allow us to consider the manifolds where we glue together the various cones
from the unsigned case, by allowing an entry ai,j to take the boundary value
0 for some edges.

While gluing together cones makes the manifolds in question topologi-
cally nicer, it also introduces zero divisors into the zero forcing process. That
is, allowing ai,j to possibly take the value zero for some edge ij ∈ E(G)
amounts to placing an edge leak at edge ij. This alone should motivate
the study of zero forcing on signed multi-graphs. In this setting, the edge
leaks would be given before choosing a zero forcing set since the leaks
must appear on particular edges of the signed multi-graph. One trivial
bound for a signed multi-graph Gs with underlying graph G would be
M(Gs) ≤ Z(Gs) ≤ Z(G) + � where M(Gs) is the maximum nullity over
matrices in S(Gs) and � is the number of pairs of vertices with both positive
and negative edges between them.

In general, zero forcing on a signed multi-graph should be harder than
zero forcing on the simple underlying graph, since in the signed multi-graph
case there may be some edges that we are not allowed to use. Furthermore,
there are many signings and “multi-ing” of a simple graph, which leads to
a combinatorial explosion in the amount of work that needs to be done to
understand Z(Gs) for even just small signed multi-graphs.

The �-edge-leaky forcing number of a simple graph G (and by Corol-
lary 2.4, the �-vertex-leaky forcing number) addresses the combinatorial ex-
plosion by seeking a zero forcing bound that holds over manifolds obtained
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by gluing together � adjacent cones in R
n×n (which are sub-manifolds of

S(G)). Symbolically, Z(Gs) ≤ Z′
(�)(G) where Gs is a multi-signing of G with

at most � edges that are both positive and negative. With this in mind, a
reasonable program for further research would be to characterize graphs G
such that Z(G) = Z′

(�)(G), where we consider Z as an imperfect proxy for the

maximum nullity (there are graphs where Z and M are different). Some work
in this direction comes immediately through the equivalence of Z(�) and Z′

(�).

In fact, the authors of this paper have shown that if Z(�)(G) = Z(G), then
G cannot have small and compact edge cuts (see Theorem 3.4 in [1]).

On its face, the motivation for vertex-leaky forcing comes from a desire
to understand zero forcing as a graph coloring process. Vertex leaks obstruct
the zero forcing process in the sense that vertex leaks must be turned blue,
will not force other vertices, and can stop their neighbors from forcing other
vertices as long as the leaks are white. This kind of obstruction is stronger
than vertex deletion, since deleting vertex v is equivalent to coloring v blue
(for free) and making it a leak. Admittedly, this is not particularly moti-
vating if the primary interest in zero forcing comes from its applications to
the inverse eigenvalue problem. Furthermore, the obstruction caused by a
vertex leak may or may not actually correspond to the physical disruption
of a network. Edge leaks, on the other hand, do have a linear algebraic in-
terpretation. The edge-leaky forcing number is essentially a measurement of
how much worse the zero forcing bound on the maximum nullity can get
across some glued together cones of S(G).

To round out this section, we will spare a few words for the motivation
of specified leaks, mixed-leaky forcing, and sets of independent leaks. While
undefined at this point in the paper, each of these variants of leaky forcing
takes a finer grained approach to obstructing the zero forcing process. This
is motivated by the somewhat surprising result that Z(�) and Z′

(�) are the
same parameter despite the fact that edge leaks seem more permissive than
vertex leaks. By considering finer grained versions of leaky forcing, we hope
to understand the nature of the equivalence of vertex and edge leaks.

2. On edge-leaky forcing

Recall that an edge leak is an edge xy where we prohibit x → y and y → x
in the zero forcing process. On the other hand, a vertex leak v is a vertex
that is not allowed to perform a force. Setting both x and y as vertex leaks is
a strictly stronger constraint on the zero forcing process than setting xy as
an edge leak. However, setting x as a vertex leak is not obviously as strong
as setting xy as an edge leak, since setting x as a vertex leak still allows
y → x. This makes the following result somewhat surprising.
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Proposition 2.1. A set B is a 1-edge-leaky forcing set if and only if for all
v ∈ V (G) \B, there exists x → v, y → v ∈ F(B) with y �= x.

Proof. Assume that B is a 1-edge-leaky forcing set. This implies that B is
a zero forcing set with forcing process F . Let v ∈ V (G) \B and x → v ∈ F .
Since B is a 1-edge-leaky forcing set, there exists a forcing process F ′ by
which B turns G blue despite setting xv as an edge leak. Therefore, F ′ must
contain a force y → v where y �= x. Thus, x → v, y → v ∈ F(B), proving
the forward direction.

Assume that for all v ∈ V (G) \ B, there exists x → v, y → v ∈ F(B)
with y �= x. Clearly, this implies that B is a zero forcing set of G with forcing
process F . Let xv be an arbitrary edge leak. If neither x → v nor v → x are
in F , then there is nothing to show. Therefore, without loss of generality,
assume that x → v ∈ F . Let B′ be a set of blue vertices obtained from B
using F such that x → v is valid given F (were it not for xv being an edge
leak), and v /∈ B′. By assumption, there exists y → v ∈ F(B) where y �= x.
This implies that there exists a set of forces F ′ of B in G with y → v. Since
x ∈ B′, it follows that v → x /∈ F ′(B′). Therefore, (F \ F (B′)) ∪ F ′(B′) is a
forcing process of B by Lemma 1.1, that does not use xv.

With Proposition 2.1, it’s not as surprising that the �-edge-leaky forcing
number is equivalent to the �-leaky forcing number for all � ≥ 0. The next
lemma finds an appropriate time to switch forcing processes and controls how
edge leaks and forcing sets interact. Given a set of edges L and S ⊆ V (G),
let L− S denote the edges in L that do not have vertices in S. Explicitly,

L− S = {xy ∈ L : x, y /∈ S}.

By extension,

L \ (L− S) = {xy ∈ L : x ∈ S or y ∈ S}.

Lemma 2.2. If B is an (�−1)-edge-leaky forcing set and L is a set of k ≥ �

edge leaks, then |L−B
[∞]
L | ≤ k − �.

Proof. Let L be a set of k ≥ � edge leaks, and assume |L−B
[∞]
L | ≥ k− �+1.

Furthermore, let L′ = L\ (L−B
[∞]
L ). Since |L′| = |L|− |L−B

[∞]
L |, it follows

that |L′| ≤ k − k + �− 1 = �− 1. Notice that edge leaks uv ∈ L−B
[∞]
L did

not change the zero forcing behavior of B. In particular, these edge leaks
never played a role in stopping B from propagating because their endpoints
never were forced. Therefore, L′ is a set of at most � − 1 edge leaks which
shows that B is not an (�− 1)-edge-leaky forcing set.
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As in the vertex leaky setting, Lemma 2.2 says that if B is an (� − 1)-
edge-leaky forcing set and L is a set of � edge leaks, then B forces at least
one vertex in every edge leak.

Theorem 2.3. A set B is an �-edge-leaky forcing set if and only if B is an
(� − 1)-leaky forcing set such that for every set of � − 1 vertex leaks L and
v ∈ V (G) \B, there exists x → v, y → v ∈ FL(B) with y �= x.

Proof. Proceed by induction on �. Notice Proposition 2.1 is the base case
when � = 1. Assume that the claim holds for all r < �.

Let B be an (� − 1)-vertex-leaky forcing set such that for every set of
�− 1 vertex leaks T and v ∈ V (G) \B, there exists x → v, y → v ∈ FT (B).
Clearly, B is an (� − 2)-vertex-leaky forcing set such that for every set of
�− 2 vertex leaks T and v ∈ V (G) \B, there exists x → v, y → v ∈ FT (B).
Therefore, by the induction hypothesis, B is an (� − 1)-edge-leaky forcing
set.

Let L be a set of � edge leaks. By Lemma 2.2, it is possible to apply
forces one by one until every edge in L contains a blue vertex. Let B′ be
the resulting set of blue vertices. Notice that B′ is an (�− 1)-edge-leaky set
since B ⊆ B′. Therefore, if B′ contains an edge in L, then there is nothing
left to show. Thus, assume that every edge in L contains exactly one blue
vertex in B′.

Let A ⊆ {x ∈ B′ : xy ∈ L} such that |L − A| ≤ 1 and |A| ≤ � − 1.
Observe that because every edge in L contains at most one blue vertex in
B′, no vertex of A can ever perform a force. Therefore, assume that vertices
in A never perform a force; otherwise, there is nothing left to show.

Let G∗ = G − A. Since B, and hence B′, is an (� − 1)-vertex-leaky
forcing set, it follows that B∗ = B′ \ A is a zero forcing set of G∗. At this
point there is at most one edge leak from L in G∗. Let v ∈ V (G∗) \B∗. By
assumption, there exists x → v, y → v ∈ FA(B) in G with y �= x. Notice
that x, y /∈ A since v is a white neighbor of both x and y, and both x and y
are adjacent to a white vertex on an edge leak. Therefore, x, y ∈ V (G∗) and
x → v, y → v ∈ FA(B

∗). By Proposition 2.1, B∗ is a 1-edge-leaky forcing set
of G∗. Thus, B∗ can color G∗ blue, demonstrating that B is an �-edge-leaky
forcing set.

To prove the contrapositive of the forward direction, assume that B is
an (� − 1)-vertex-leaky forcing set, L = {x1, . . . , x�−1} is a set of vertex
leaks, and v ∈ V (G) \ B such that if x → v, y → v ∈ FL(B), then x = y.
Since B is an (� − 1)-vertex-leaky forcing set, there exist x0 → v ∈ FL(B).
Let L′ = L ∪ {x0} be a set of � vertex leaks and exhaustively apply the

zero forcing rule so that B
[∞]
L′ is blue. Notice that x0 is the only vertex that
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can force v by assumption; therefore, L′ is a set of � leaks that prevents B

from forcing all the vertices in G. Therefore, B
[∞]
L′ ⊂ V (G) and B is not an

�-vertex-leaky forcing set.
To complete the proof, the set of vertex leaks L′ will be converted into

a set of edge leaks. By Lemma 1.2, L′ ⊆ B
[∞]
L′ . It follows that every vertex

xi ∈ L′ has exactly one white neighbor yi when the blue set of G is B
[∞]
L′ ;

otherwise, it is possible to remove a vertex from L′ to conclude that B is
not an (�− 1)-vertex-leaky forcing set. Let L∗ = {xiyi : 0 ≤ i ≤ �− 1}. Now
L∗ demonstrates that B is not an �-edge-leaky forcing set.

By Theorems 1.3 and 2.3, we immediately get the following.

Corollary 2.4. For any graph G and � ≥ 0,

Z(�)(G) = Z′
(�)(G).

In particular, B is an �-leaky forcing set if and only if B is an �-edge-leaky
forcing set.

The combination of Theorems 1.3 and 2.3 provide insight into how leaks
interact with the zero forcing rule. Furthermore, vertex leaks are nicer than
edge leaks. Once a vertex leak turns blue, it can safely be deleted from the
graph and disregarded for the rest of the process. Edge leaks do not afford us
the same luxury. Even if an endpoint of an edge leak turns blue, the vertex
cannot be deleted without further care, since it might perform a force later.

3. On specified-leaky forcing

Throughout this section, v → u is a specified leak if v is prohibited from
forcing u. In this sense, setting a vertex v as a leak represents the set of
specified leaks {v → u : u ∈ N(v)}, and setting an edge uv as a leak
represents the set of specified leaks {v → u, u → v}.

It seems as though prohibiting v → x and v → y is not more restrictive
than prohibiting just v → x or v → y, but not both. This is more intuitive
after considering the fact that in any particular forcing process F , only
setting v → x or v → y as a specified leak poses a problem since v → x and
v → y are not both in F . Furthermore, the strength of leaks being picked
after the initial blue sets makes a single leak v → x as devastating as two
leaks v → x, v → y.

To formalize this intuition a little more, consider the following defini-
tions. A set B is a specified �-leaky forcing set of G if B can color G blue
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when any set of � forces are prohibited. Let Zs
(�)(G) be the minimum size of

a specified �-leaky forcing set of G.

Consider the following definitions before proceeding with the proof of

Theorem 3.1: If v → u is a specified leak, then v is called the tail of the leak

v → u and u is the head of the leak v → u. Let T (L) = {x : x → y ∈ L} be

the set of tails of L and H(L) = {y : x → y ∈ L} be the set of heads of L.

Theorem 3.1. A set B is a specified �-leaky forcing set if and only if B is

an (� − 1)-leaky forcing set such that for every set of � − 1 vertex leaks L

and v ∈ V (G) \B, there exist x → v, y → v ∈ FL(B) with y �= x.

Proof. Let L be a set of � specified leaks that shows that B is not a specified

�-leaky forcing set. Notice that |T (L)| ≤ �. Therefore, T (L) demonstrates

that B is not an �-leaky forcing set. Thus, by Theorem 1.3, there exist

v ∈ V (G) \B such that if x → v, y → v ∈ FT (L)(B) then y = x.

Suppose that B is an (�−1)-leaky forcing set, L = {x1, . . . , x�−1} is a set

of �− 1 vertex leaks, and v0 ∈ V (G) \B is such that x → v0, y → v0 ∈ F(L)

implies y = x. Since B is an (�− 1)-leaky forcing set, there exists x0 → v0 ∈
FL(B). Let L′ = L ∪ {x0}. By Lemma 1.2,

|L′ \B[∞]
L′ | = 0.

Notice that if there exists y ∈ L′ with at least two white neighbors, then

L′ \ {y} would show that B is not an (� − 1)-leaky forcing set. Therefore,

each vertex xi ∈ L′ has exactly one white neighbor vi ∈ V (G) \ B[∞]
L′ . The

set of specified leaks

{xi → vi : 0 ≤ i ≤ �− 1}

shows that B is not a specified �-leaky forcing set.

By Theorems 1.3 and 3.1, we immediately get the following.

Corollary 3.2. For any graph G and � ≥ 0,

Zs
(�)(G) = Z(�)(G).

In particular, B is an �-leaky forcing set if and only if B is a specified �-leaky

forcing set.
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4. On mixed-leaky forcing

This section investigates what happens when a system has various types of
leaks preventing the zero forcing process from finishing. A set B ⊆ V (G) is
a mixed �-leaky forcing set of a graph G if B can color G blue despite any
set of � vertex leaks, edge leaks, or specified leaks (refer to these collectively
as leaks). Let Zm

(�)(G) be the minimum size of a mixed �-leaky forcing set.

Lemma 4.1. Let L = L1 ∪ L2 ∪ L3 be a set of k ≥ � leaks where L1 is the
set of vertex leaks, L2 is the set of edge leaks, and L3 is the set of specified

leaks. If B is a mixed (�−1)-leaky forcing set, then |L1\B[∞]
L |+ |L2−B

[∞]
L |+

|L3 −B
[∞]
L | ≤ k − �.

Proof. To prove the contrapositive, assume that |L1 \B[∞]
L |+ |L2 −B

[∞]
L |+

|L3 − B
[∞]
L | ≥ k − � + 1. Every vertex in B

[∞]
L has either 0, 1, or at least 2

white neighbors. If v ∈ B
[∞]
L such that v has exactly one white neighbor u,

then either v ∈ L1, vu ∈ L2, or v → u ∈ L3. Let L′ = [L1 \ (L1 \ B[∞]
L )] ∪

[L2 \ (L2 −B
[∞]
L )] ∪ [L3 \ (L3 −B

[∞]
L )]. Since this is a disjoint union,

|L′| = |L1 \ (L1 \B[∞]
L )|+ |L2 \ (L2 −B

[∞]
L )|+ |L3 \ (L3 −B

[∞]
L )|

≤ �− 1.

Notice that any leak in either L1 \ B
[∞]
L , L2 − B

[∞]
L , or L3 − B

[∞]
L did not

change the zero forcing behavior of B. In particular, these leaks never played
a role in stopping B from propagating because the vertex leaks were never
forced blue, the tails of the specified leaks were never forced blue, and the
endpoints of the edge leaks were never forced blue. Therefore, L′ is a set
of at most � − 1 leaks which shows B is not a mixed (� − 1)-leaky forcing
set.

Notice that if L2 and L3 are empty, then Lemma 1.2 is recovered. With
this more general formulation of leaky forcing, the next theorem can be
proven.

Theorem 4.2. A set B is a mixed �-leaky forcing set if and only if B is
an (� − 1)-leaky forcing set such that for every � − 1 vertex leaks L and
v ∈ V (G) \B, there exist x → v, y → v ∈ FL(B) with y �= x.

Proof. Proceed by induction on �. Notice either Theorem 1.3, Proposition 2.1,
or Theorem 3.1 handles the base case when � = 1. Assume the claim holds
for all r < �.
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Let B be an (� − 1)-leaky forcing set such that for every set of � − 1
vertex leaks L and v ∈ V (G), there exists x → v, y → v ∈ FL(B) with
y �= x. Clearly, B is an (� − 2)-leaky forcing set such that for every set of
�− 2 vertex leaks L and v ∈ V (G) \ B, there exists x → v, y → v ∈ FL(B)
with y �= x. Therefore, by the induction hypothesis, B is a mixed (�−1)-leaky
forcing set.

Let L = L1∪L2∪L3 be a set of � leaks where L1 is the set of vertex leaks,
L2 is the set of edge leaks, and L3 is the set of specified leaks. By Lemma 4.1,
it is possible to apply forces one by one until every vertex leak in L1 is blue,
every edge leak in L2 contains a blue vertex, and the tails of specified leaks
in L3 are blue. Let B′ be the resulting set of blue vertices. Notice that B′ is
a mixed (�− 1)-leaky forcing set since B ⊆ B′. If B′ contains an edge from
either L2 or L3, then there is nothing left to show. Therefore, assume that
the edges in L2 are incident to one blue vertex, and only the tails of forces
in L3 are blue.

Let L′ ⊂ L be a set of � − 1 leaks. Notice that blue vertices in L1 ∩ L′,
blue vertices incident to edges in L2 ∩ L′, and the tails of specified leaks
in L3 ∩ L′ can be removed since they are blue. Let A be the set of these
vertices.

Consider G∗ = G−A. Since B is an (�− 1)-leaky forcing set, it follows
that B∗ = B′ \A is a zero forcing set for G∗. At this point there is at most
one leak from L in G∗. Let v ∈ V (G∗) \ B∗. By assumption there exists
x → v, y → v ∈ FA(B) in G with y �= x. Since x, y /∈ A, it follows that
x, y ∈ V (G∗) and x → v, y → v ∈ F(B∗). By Theorems 1.3, 2.3, and 3.1, B∗

is a 1-edge-leaky forcing set, a 1-leaky forcing set, and a specified 1-leaky
forcing set. Thus, B∗ can color G∗ blue, demonstrating that B is a mixed
�-leaky forcing set.

To prove the contrapositive of the forward direction, assume B is an
(� − 1)-leaky forcing set, L = {x1, . . . , x�−1} is a set of vertex leaks and
v ∈ V (G) \B such that if x → v, y → v ∈ FL(B), then x = y. Since B is an
(�− 1)-leaky forcing set, there exists x0 → v ∈ FL(B). Let L′ = L∪{x0} be
a set of � vertex leaks. Notice that L′ demonstrates that B is not an �-leaky
forcing set. Thus, B is also not a mixed �-leaky forcing set.

By Theorems 1.3 and 4.2, we immediately get the following.

Corollary 4.3. For any graph G and � ≥ 0,

Z(�)(G) = Zm
(�)(G).

In particular, B is an �-leaky forcing set if and only if B is a mixed �-leaky
forcing set.
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5. Independent sets of specified leaks

Corollaries 2.4 and 3.2 suggest that the strength of a set of specified leaks
is somewhat independent of the number of leaks or their structure as a
subgraph. In particular, a set of � vertex leaks or � edge leaks is at most
as strong as a set of � specified leaks even though � vertex or edge leaks
corresponds to more than � specified leaks. Thus, arranging specified leaks
into sets of out-stars or 2-cycles is in some sense inefficient. The goal of this
section is to formally develop what it means for out-stars and 2-cycles in a
set of specified leaks to be inefficient.

Let L be a set of specified leaks on V (G). Notice that a specified leak
v → u can be thought of as a directed edge from v to u. Therefore, L
naturally corresponds to the edge set of a directed graph on the vertex set
V (G). This gives rise to a notion of isomorphic sets of specified leaks. Let
L1 and L2 be sets of specified leaks on V (G). A set of specified leaks L1

is isomorphic to L2 if there exists a bijection φ : V (G) → V (G) such that
x → y ∈ L1 if and only if φ(x) → φ(y) ∈ L2.

Given a set of specified leaks L, we say that a set B is an L-leaky forcing
set if B can turn G blue despite any set of L1 leaks that is isomorphic to L2

where L2 ⊆ L. Correspondingly, the L-leaky forcing number of G, denoted
Z(L)(G), is the size of the smallest L-leaky forcing set.

A set of specified leaks L is a set of independent leaks if for all x → y, v →
u ∈ L, it follows that x �= v and y �= v. Equivalently, L is independent if
|T (L)| = |L| and T (L) ∩H(L) = ∅. Let I(L) denote the size of the largest
set of independent leaks contained by L.

These definitions let us abstract away general structure of a set of spec-
ified leaks L and focus on the parameter of L that seems to matter. In
particular, a set of specified leaks L is no stronger than a maximum set of
independent leaks contained in L.

Theorem 5.1. Let L be a set of specified leaks on V (G) and let � = I(L).
If B is a specified �-leaky forcing set then B is an L-leaky forcing set. That
is,

Z(L)(G) ≤ Zs
(�)(G).

To prove Theorem 5.1, consider active leaks. The set of active leaks given
a blue set B and a set of specified leaks L is the set of leaks in L that actively
prevents B from performing a force. Formally, the set of active leaks is given
by

A(B,L) = {x → y ∈ L : x ∈ B, {y} = N(x) \B}.
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Proof. Consider the contrapositive of the desired result, and suppose that

B is not an L-leaky forcing set. Therefore, there exists a set of specified

leaks L′ which is isomorphic to a subset of L that prevents B from coloring

all of G blue. Let B
[∞]
L′ be the set of blue vertices obtained from B given

L′ by exhaustively applying forces. Notice that B
[∞]
L′ �= V (G), and let A =

A(B
[∞]
L′ , L′). Since A is a set of independent leaks, it follows that

|A| ≤ I(L′) ≤ I(L).

Furthermore, A demonstrates that B is not a specified �-leaky forcing set.

The converse of Theorem 5.1 holds when I(L) = 1.

Proposition 5.2. Let L be a set of specified leaks on V (G) such that 1 =

I(L). A set B is an L-leaky forcing set if and only if B is a specified 1-leaky

forcing set.

Proof. The backward direction Proposition 5.2 is covered by Theorem 5.1.

Therefore, assume that B is not a specified 1-leaky forcing set. This implies

that there exists L′ = {x → y} that stops B from turning G blue. By

assumption, L has a set of independent leaks of size 1. Therefore, L′ is

isomorphic to a subset of L. Therefore, B is not an L-leaky forcing set.

The proof of Proposition 5.2 relies on the fact that, up to isomor-

phism, there is only one set of independent leaks. Proving the converse

of Theorem 5.1 fails since an arbitrary set of � independent leaks cannot

always be injected into L when I(L) = �. To illustrate this point, con-

sider the following example. Let G = K�+1�K2, � ≥ 2 with vertex set

V (G) = {x1, . . . , x�+1, y1, . . . , y�+1} where the sets {xi : 1 ≤ i ≤ �+ 1}, {yi :
1 ≤ i ≤ �+1} induce cliques, and {xiyi : 1 ≤ i ≤ �+1} induces a matching.

Let L1 = {xi → yi : 1 ≤ i ≤ � + 1}, and L2 = {xi → x�+1 : 1 ≤ i ≤ �}.
Suppose that B = {xi : 1 ≤ i ≤ �+1}. First, notice that B is not a specified

2-leaky forcing set, since L = {x1 → y1, x2 → y2} prevents B from turning

y1, y2 blue. This also shows that B is not an L2-leaky forcing set. However, B

is an L1 leaky forcing set. Since I(L1) = I(L2) = �, this example shows that

the converse of Theorem 5.1 is false for � ≥ 2. Furthermore, this example

shows that in general it is possible that ZL(G) < Zs
I(L)(G).
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6. Closing remarks

A vertex leak at a vertex v can be thought of as a set of specified leaks
L = {v → u : u ∈ N(v)}. An edge leak at vy can be thought of as the set
of specified leaks L′ = {v → y, y → v}. Due to the nature of zero forcing,
at most one of the specified leaks in L ∪ L′ can be operative at a time. In
particular, if v is in a position to force another vertex, then all but one of its
neighbors are already blue. In this case, only one specified leak in L matters.
Similarly, both leaks in L′ cannot be operative at the same time since v will
try to force y or y will try to force v, but not both. This gives some intuition
for the equivalence of specified leaky forcing to both vertex- and edge-leaky
forcing. Since this intuition relied on the fact that the standard zero forcing
rule only allows blue vertices to force unique white neighbors, we would be
surprised if edge and vertex leaks are equivalent for other variants of zero
forcing (which are generally more permissive than standard zero forcing).

Acknowledgements

The authors would like to thank Nathan Warnberg for insightful discussions
and feedback. This material is based upon work supported by the National
Science Foundation under Grant Numbers DMS-1839918 and DMS-1719841.
The authors thank the referees for their thoughtful comments which im-
proved this paper.

References

[1] J. S. Alameda, J. Kritschgau, N. Warnberg, M. Young. On leaky forc-
ing and resilience. Discrete Applied Mathematics, 306 (2022), 32–45.
MR4324207

[2] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W.
Barrett, S. Butler, S. M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil,
W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I.
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