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On Mallows’ variation of the Stern-Brocot tree

Takanori Hida

Mallows (2011) showed that if we, starting with the initial sequence
〈 01 ,

1
1 〉, successively insert two fractions between two adjacent frac-

tions in a certain way, then every fraction from Q ∩ (0, 1) eventu-
ally appears. In this article, we first show that Mallows’ variation
MTk (k ≥ 0) of the Stern-Brocot tree can be obtained from the
left subtree SBTL of the Stern-Brocot tree. We then present algo-
rithms for the following two questions: Where is the j′th element
of MTk′ placed in SBTL? Conversely, where is the jth element of
the kth level of SBTL placed in Mallows’ variation?

We then do similar things for the tree R-DT obtained from the
Ducci tree by reversing the paths. More precisely, inspired by the
way that we obtained Mallows’ variation from the left subtree of
the Stern-Brocot tree, we introduce a variation VTk (k ≥ 0) of the
tree R-DT and study analogous questions concerning placement
between VTk (k ≥ 0) and the left subtree R-DTL of the tree R-DT.
We also provide an algorithm, which, given a k ≥ 2, outputs the
ordered set VTk as a sequence.

Lastly, we explain how Mallows’ variation of the Stern-Brocot
tree and our variation of the tree R-DT are related to each other.
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1. Introduction

Starting with the initial sequence 〈01 ,
1
0〉, successively update it by inserting

fractions as follows: In the first step, between 0
1 and 1

0 , insert their mediant
0+1
1+0 to obtain 〈01 ,

1
1 ,

1
0〉. In the second step, between each adjacent pair of frac-

tions from 〈01 ,
1
1 ,

1
0〉, insert their mediant 0+1

1+1 and 1+1
1+0 to obtain 〈01 ,

1
2 ,

1
1 ,

2
1 ,

1
0〉.

In the third step, between each adjacent pair of fractions from 〈01 ,
1
2 ,

1
1 ,

2
1 ,

1
0〉,

insert their mediant 0+1
1+2 ,

1+1
2+1 ,

1+2
1+1 and 2+1

1+0 to obtain 〈01 ,
1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,

1
0〉.

And so on. The Stern-Brocot tree [1, 7] is the labeled binary tree whose kth
level (k ≥ 0) is labeled by the fractions inserted at the (k + 1)st step. It
is known that this tree contains (as a label of some vertex) each positive
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fractions precisely once. For background information, we refer the reader

to [2].

When studying the relationship between the Stern-Brocot tree and the

Ducci map, we introduced an analogous tree, which we termed the Ducci

tree [4]. By reversing the paths in the Ducci tree, we also defined the tree

R-DT in [3]. Like the Stern-Brocot tree, both of these trees contain each

positive fractions precisely once. Conversion algorithms between the kth

levels of the Stern-Brocot tree and the tree R-DT as well as properties of

the tree R-DT are presented in [3].

Another variation was introduced by Mallows who inserted not one but

two fractions in the above construction. Explicitly, in the first step, between
0
1 and 1

1 , insert two fractions 0+1
1+1 and 0+2·1

1+2·1 to obtain 〈01 ,
1
2 ,

2
3 ,

1
0〉. In the

second step, between 0
1 and 1

2 (resp. 1
2 and 2

3 ,
2
3 and 1

1), insert
0+1
1+2 and 0+2·1

1+2·2
(resp. 2·1+2

2·2+3 and 1+2
2+3 ,

2+1
3+1 and 2+2·1

3+2·1) to obtain 〈01 ,
1
3 ,

2
5 ,

1
2 ,

4
7 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1〉.

And so forth. Let us write MTk (k ≥ 0) for the ordered set consisting of the

fractions inserted at the (k + 1)st step. Then each fractions from Q ∩ (0, 1)

appears in one of MTk (k ≥ 0) precisely once [6].

In Section 3, we shall first show that Mallows’ variation MTk (k ≥ 0)

can be obtained from the left subtree SBTL of the Stern-Brocot tree. We

then present algorithms for the following two questions: Where is the j′th

element of MTk′ placed in SBTL? Conversely, where is the jth element of the

kth level of SBTL placed in Mallows’ variation? In Section 4, inspired by the

way that we obtained Mallows’ variation from the left subtree of the Stern-

Brocot tree, we shall introduce a variation VTk (k ≥ 0) of the tree R-DT

and study similar questions concerning placement between VTk (k ≥ 0) and

the left subtree R-DTL of the tree R-DT. We also provide an algorithm,

which, given a k ≥ 2, outputs the ordered set VTk as a sequence. In the last

section, we explain how Mallows’ variation of the Stern-Brocot tree and our

variation of the tree R-DT are related to each other.

2. Notation and terminology

For the later sections, we first prepare notation and terminology here.

Let T be a rooted binary tree. For any its vertices v, v′ such that either

v = v′ or one of them is an ancestor of the other, we recursively define a
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finite sequence PathT(v, v
′) of L’s and R’s by:

PathT(v, v
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈〉 if v = v′

〈L〉�PathT(v
′′, v′) if either (a) v′ is equal to or a

descendant of the left child v′′

of v or (b) v′′ is equal to or a

descendant of v′ and v is the

left child of v′′

〈R〉�PathT(v
′′, v′) if either (a) v′ is equal to or a

descendant of the right child v′′

of v or (b) v′′ is equal to or a

descendant of v′ and v is the

right child of v′′

.

Here and in what follows, the symbol � represents the concatenation oper-

ator, e.g., 〈L, R〉�〈R, R, L〉 = 〈L, R, R, R, L〉.
Another fundamental concept is that of level in T, which is defined

inductively as follows: The root is at level 0. If a vertex is at level k, then its

children are at level k + 1. We write Tk for the set of all vertices at level k.

By ordering vertices from left to right, we shall often view Tk as an ordered

set.

In this paper, we shall sometimes identify an ordered set with a sequence.

Hence for example, if v′ and v′′ are the left and right children of the root of

T, respectively, then two equations T1 = {v′, v′′} and T1 = 〈v′, v′′〉 are both

correct for us.

We shall also use finite continued fraction. Write [a0; a1, a2, . . . , a�] for

a0 +
1

a1 +
1

a2 +
1

. . . +
1

a�

.

a0, a1, a2, . . . , a� (called elements of the continued fraction) are such that

a0 ∈ Z and a1, a2, . . . , a� ∈ Z>0. In order to use the finite continued fractions

as an apparatus for representing the rationals, we shall adopt the conven-

tion that the last element a� is larger than 1 if � > 0. Then every rational
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Figure 1: Top levels of the Stern-Brocot tree.

number admits a unique representation as a finite continued fraction. For

more details on continued fraction, we refer the reader to [5].

3. The Stern-Brocot tree and its variation

Let us start with the definition of the Stern-Brocot tree [1, 7]:

Definition 1. Define (ordered) sets SBTk (k ≥ 0) of 2k fractions by induc-

tion as follows: Let SBT0 :=
{
1
1

}
. Suppose we have defined SBT0, SBT1, . . . ,

SBTk and let n1

m1
< n2

m2
< · · · < n2k+1+1

m2k+1+1
be the elements of

{
0
1 ,

1
0

}
∪ SBT0 ∪

SBT1 ∪ · · · ∪ SBTk. (
1
0 is viewed as the largest element.) Then SBTk+1 is

the (ordered) set
{

n1+n2

m1+m2
, n2+n3

m2+m3
, . . . ,

n2k+1+n2k+1+1

m2k+1+m2k+1+1

}
.

The Stern-Brocot tree (SBT) is the labeled binary tree such that the

labels of its kth level (k ≥ 0), in left-to-right order, is SBTk. (See Figure 1.)

Since the fraction n1+n2

m1+m2
is called the mediant of n1

m1
and n2

m2
, the above

way of constructing SBTk+1 from
{
0
1 ,

1
0

}
∪ SBT0 ∪ SBT1 ∪ · · · ∪ SBTk is

referred to as the mediant construction.

In what follows, we are concerned with the left subtree SBTL of the

Stern-Brocot tree. It is formally defined as the rooted binary tree whose kth

level is the left half of the (k + 1)st level of the Stern-Brocot tree. Observe

that this definition is equivalent to the ensuing inductive one, which does not

refer to the Stern-Brocot tree: Let SBTL

0 :=
{
1
2

}
. Suppose we have defined

SBTL

0 , SBT
L

1 , . . . , SBT
L

k and let n1

m1
< n2

m2
< · · · < n2k+1+1

m2k+1+1
be the elements
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of
{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

k . Then SBTL

k+1 is the (ordered) set{
n1+n2

m1+m2
, n2+n3

m2+m3
, . . . ,

n2k+1+n2k+1+1

m2k+1+m2k+1+1

}
.

Let us list some known properties:

Proposition 1 ([2]). Let k ≥ 0.

(i) The left subtree SBTL of the Stern-Brocot tree contains each fraction
from Q ∩ (0, 1) precisely once;

(ii) The left-to-right order and the order defined by the magnitude relation
coincide on SBTL

k ;
(iii) If n1

m1
< n2

m2
are adjacent elements in

{
0
1 ,

1
1

}
∪SBTL

0∪SBTL

1∪· · ·∪SBTL

k ,
then n1m2 −m1n2 = −1;

(iv) If n
m appears in SBTL

k and if nL

mL
(resp. nR

mR
) is its left (resp. right)

adjacent element in
{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

k , then nL

mL

(resp. nR

mR
) and the left (resp. right) child of n

m are adjacent in
{
0
1 ,

1
1

}
∪

SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

k+1.

Since the first item above guarantees that different vertices get differ-
ent labels, we shall hereafter freely identify a vertex with its label without
explicit mention.

The following property will be well-known but, as it is important for us,
we shall include its proof here:

Proposition 2 (folklore). Let n
m ∈ Q ∩ (0, 1) and let n′

m′ ,
n′′

m′′ be its left and
right children in SBTL, respectively.

(i) If n is odd, then precisely one of n′ and n′′ is even;
(ii) If n is even, then both n′ and n′′ are odd.

Proof. Let k ≥ 0 be such that the fraction n
m is at level k of SBTL.

(i): If k = 0, then the statement is evidently true. So suppose k ≥ 1 and let
n1

m1
be the parent of n

m in SBTL. Then it follows from the mediant construc-

tion that there exists a fraction n2

m2
adjacent to n1

m1
in

{
0
1 ,

1
1

}
∪SBTL

0∪SBTL

1∪
· · · ∪ SBTL

k−1 such that n1+n2

m1+m2
= n

m . The mediant construction also implies

that children of n
m are n1+n

m1+m and n2+n
m2+m . Hence n′+n′′ = n1+n+n2+n = 3n

is odd, which indicates that precisely one of n′ and n′′ is even.
(ii): Since n

m and n′

m′ (resp. n
m and n′′

m′′ ) are adjacent in
{
0
1 ,

1
1

}
∪ SBTL

0 ∪
SBTL

1 ∪ · · · ∪ SBTL

k+1, which is immediate from the mediant construction,
we have |nm′−mn′| = |nm′′−mn′′| = 1 by Proposition 1 (iii). As n is even,
these equations force n′ and n′′ to be odd.

There are several trees closely related to the Stern-Brocot tree: In the
left subtree SBTL of the Stern-Brocot tree, the set

{
0
1 ,

1
1

}
∪SBTL

0 ∪SBTL

1 ∪
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Figure 2: Top levels of MTk (k ≥ 0).

· · · ∪ SBTL

k+1 can be obtained from
{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

k by
inserting one fraction between each pair of adjacent fractions. By inserting
not one but two fractions, Mallows introduced the following variation:

Definition 2 ([6]). Define (ordered) sets MTk (k ≥ 0) of 2 · 3k frac-
tions inductively as follows: Let MT0 :=

{
1
2 ,

2
3

}
. Suppose we have defined

MT0,MT1, . . . ,MTk and let n1

m1
< n2

m2
< · · · <

n3k+1+1

m3k+1+1
be the elements

of
{
0
1 ,

1
1

}
∪ MT0 ∪ MT1 ∪ · · · ∪ MTk. Then MTk+1 is the (ordered) set{ n′

1

m′
1
, n′

2

m′
2
, . . . ,

n′
2·3k+1

m′
2·3k+1

}
, where

〈 n′
2j−1

m′
2j−1

,
n′

2j

m′
2j
〉 =

{
〈 nj+nj+1

mj+mj+1
, nj+2nj+1

mj+2mj+1
〉 if nj is even

〈 2nj+nj+1

2mj+mj+1
, nj+nj+1

mj+mj+1
〉 otherwise

for each j = 1, 2, . . . , 3k+1. (See Figure 2.)

A simple calculation shows the inequality nj

mj
<

n′
2j−1

m′
2j−1

<
n′

2j

m′
2j

< nj+1

mj+1
,

which indicates that the set
{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk+1 can indeed

be obtained from
{
0
1 ,

1
1

}
∪MT0∪MT1∪· · ·∪MTk by inserting two fractions

between each pair of adjacent fractions and also that three pairs nj

mj
<

n′
2j−1

m′
2j−1

,
n′

2j−1

m′
2j−1

<
n′

2j

m′
2j
,

n′
2j

m′
2j

< nj+1

mj+1
are all adjacent ones in

{
0
1 ,

1
1

}
∪ MT0 ∪ MT1 ∪

· · ·∪MTk+1. It can also be inferred that the left-to-right order and the order
defined by the magnitude relation coincide on MTk.
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Our first result states that this variation can be obtained from SBTL by
iterating the following, one level at a time, from the zeroth level to deeper
level: if the left (resp. right) child of a vertex at the specified level has even
numerator, then bring up the subtree under that child by one level and place
it on the left (resp. right) of the vertex. To make the statement more precise,
let us make some preparations:

Definition 3. On the set
{

n
m ∈ Q ∩ (0, 1)

∣∣ n is odd
}
, define two functions

ϕSBT and ψSBT by setting

ϕSBT

(
n
m

)
:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
〈 n′

m′ ,
n
m〉 if the left child n′

m′ of n
m in

SBTL has even numerator

〈 n
m , n′′

m′′ 〉 if the right child n′′

m′′ of n
m in

SBTL has even numerator

and

ψSBT

(
n
m

)
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 n′

m′ ,
n′′′

m′′′ ,
n′′′′

m′′′′ 〉 if the left child n′

m′ of n
m in SBTL has

odd numerator and n′′′

m′′′ and n′′′′

m′′′′ are

the left and right children of the right

child of n
m in SBTL, respectively

〈 n′′′

m′′′ ,
n′′′′

m′′′′ ,
n′′

m′′ 〉 if the right child n′′

m′′ of n
m in SBTL has

odd numerator and n′′′

m′′′ and n′′′′

m′′′′ are

the left a right children of the left

child of n
m in SBTL, respectively

.

Extend these two functions to the sequences of positive fractions with odd
numerators by setting

ϕSBT

(
〈 n1

m1
, n2

m2
, . . . , n�

m�
〉
)
:= ϕSBT

(
n1

m1

)�
ϕSBT

(
n2

m2

)� · · ·� ϕSBT

(
n�

m�

)
ψSBT

(
〈 n1

m1
, n2

m2
, . . . , n�

m�
〉
)
:= ψSBT

(
n1

m1

)�
ψSBT

(
n2

m2

)� · · ·� ψSBT

(
n�

m�

)
It is immediate from Proposition 2 that these two functions are well-

defined. The same proposition also implies that fractions appearing in the
sequence ψSBT

(
n
m

)
all have odd numerator. A simple induction on k then

shows that any fraction from ψk
SBT

(
n
m

)
has odd numerator, which in turn

implies (again by the same proposition) that precisely one child of it has
odd numerator.

Here is the precise statement of how MTk can be obtained from SBTL

(see Figure 3):
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Figure 3: Illustration of how to define ϕ
(
ψk

(
1
2

))
and ψk+1

(
1
2

)
.

Theorem 1. MTk = ϕSBT

(
ψk

SBT

(
1
2

))
for any k ≥ 0.

Proof. Two remarks are in order before going to the main part of the proof:
In this proof (and throughout this section), when we simply write ϕ and
ψ, it means ϕSBT and ψSBT, respectively. Also, when we simply say that a
fraction is the parent (or a child) of another fraction, we are referring to the
parent and child relation in SBTL.

Let us then go to the proof of the theorem. For technical reasons, we
shall actually prove the following two statements about k simultaneously by
induction on k:

(k)′ MTk = ϕ
(
ψk

(
1
2

))
.

(k)′′ For any fraction n
m from ψk

(
1
2

)
, if its left (resp. right) child has odd

numerator, then three pairs nL

mL
< n

m , n
m < n+nR

m+mR
and n+nR

m+mR
< nR

mR

(resp. nL

mL
< nL+n

mL+m , nL+n
mL+m < n

m and n
m < nR

mR
) are all adjacent ones in{

0
1 ,

1
1

}
∪ϕ

(
ψ0

(
1
2

))
∪ϕ

(
ψ1

(
1
2

))
∪· · ·∪ϕ

(
ψk

(
1
2

))
, where nL

mL
and nR

mR
are

the left and right adjacent fractions to n
m in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪
· · · ∪ SBTL

� , respectively. (� is the unique integer such that n
m appears

in SBTL

� .)

Verification of the correctness for k = 0, 1 can be done by hand. For the
induction step, assume that we have verified the correctness until k (≥ 1).
We first claim that for any n

m ∈ ψk
(
1
2

)
, the (ordered) set MTk+1 contains

every element of ϕ
(
ψ
(
n
m

))
. To validate this claim, take a fraction n

m ∈
ψk

(
1
2

)
arbitrarily and let nL

mL
, nR

mR
be as in the statement (k)′′. Then, by the

mediant construction, the left and right children of n
m are nL+n

mL+m and n+nR

m+mR
,

respectively. As has been noted already, precisely one child of n
m has odd

numerator. Since proofs for the two cases run parallel to each other, we shall
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take up only the case where the left child nL+n
mL+m of n

m has odd numerator.
Therefore, in the next paragraph, nL and nR are even and odd, respectively.

In view of the mediant construction and Proposition 1 (iv), it is evi-
dent that the left and right children of the right child of n

m are 2n+nR

2m+mR
and

n+2nR

m+2mR
, respectively. Consequently, ψ

(
n
m

)
=

{
nL+n
mL+m , 2n+nR

2m+mR
, n+2nR

m+2mR

}
. It

is immediate from the mediant construction that the right child of nL+n
mL+m

is nL+2n
mL+2m , which has even numerator. Therefore, we have ϕ

(
nL+n
mL+m

)
={

nL+n
mL+m , nL+2n

mL+2m

}
. As the induction hypothesis (0)′, (1)′, . . . , (k)′ and (k)′′

combine to prove that nL

mL
< n

m are adjacent elements in
{
0
1 ,

1
1

}
∪ MT0 ∪

MT1∪· · ·∪MTk, the definition of MTk+1 implies that MTk+1 contains both
elements nL+n

mL+m , nL+2n
mL+2m of ϕ

(
nL+n
mL+m

)
. The mediant construction also implies

that the left child of 2n+nR

2m+mR
is 3n+nR

3m+mR
, which has even numerator. Hence,

ϕ
(

2n+nR

2m+mR

)
=

{
3n+nR

3m+mR
, 2n+nR

2m+mR

}
. From (0)′, (1)′, . . . , (k)′ and (k)′′, one can

derive, as before, that MTk+1 contains both elements 3n+nR

3m+mR
, 2n+nR

2m+mR
of

ϕ
(

2n+nR

2m+mR

)
. By a similar line of reasoning, one can show that MTk+1 con-

tains both elements of ϕ
(

n+2nR

m+2mR

)
=

{
n+2nR

m+2mR
, n+3nR

m+2mR

}
. We thus conclude

that MTk+1 ⊃ ϕ
(

nL+n
mL+m

)
∪ϕ

(
2n+nR

2m+mR

)
∪ϕ

(
n+2nR

m+2mR

)
= ϕ

(
ψ
(
n
m

))
, proving the

claim.
Since MTk+1 and ϕ

(
ψk+1

(
1
2

))
comprise the same number of fractions,

which can be proved by induction, the established claim implies that MTk+1

and ϕ
(
ψk+1

(
1
2

))
are identical as sets. The statement (k+ 1)′, which asserts

that MTk+1 and ϕ
(
ψk+1

(
1
2

))
are identical as ordered sets, follows from this

because the left-to-right order and the order defined by the magnitude re-
lation coincide not only on MTk+1 but also on ϕ

(
ψk+1

(
1
2

))
, which can be

seen by induction.
Having completed the verification of the correctness of the statement

(k+1)′, let us turn to the proof of the statement (k+1)′′. Take an element
n
m of ψk+1

(
1
2

)
arbitrarily and let � be such that n

m appears in SBTL

� . Since
k ≥ 1, we have � ≥ 2. As in the preceding argument for the statement (k+1)′,
we shall take up only the case where the left child of n

m has odd numerator.
Then, as before, nL is even and nR is odd, where nL

mL
and nR

mR
are the left

and right adjacent element to n
m in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

� ,
respectively. Observe that one of nL

mL
and nR

mR
is the parent of n

m . Also,
nL

mL
< nR

mR
are adjacent elements in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

�−1,

whose mediant nL+nR

mL+mR
is equal to n

m . There are two cases to consider:
Case 1: nR

mR
is the parent of n

m .

Being the parent of n
m ∈ ψk+1

(
1
2

)
, the fraction nR

mR
should be from ψk

(
1
2

)
.

Since its left child n
m has odd numerator and since nL

mL
< nR

mR
are adjacent
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elements in
{
0
1 ,

1
1

}
∪SBTL

0 ∪SBTL

1 ∪· · ·∪SBTL

�−1 as has been noted already,
an application of the induction hypothesis (0)′, (1)′, . . . , (k)′ and (k)′′ proves
that nL

mL
< nR

mR
are adjacent elements in

{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk. It

then follows that three pairs nL

mL
< nL+nR

mL+mR
, nL+nR

mL+mR
< nL+2nR

mL+2mR

nL+2nR

mL+2mR
<

nR

mR
are all adjacent ones in

{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk+1. Combined

with the equation nL+nR

mL+mR
= n

m , the induction hypothesis (0)′, (1)′, . . . , (k)′

and the verified statement (k + 1)′, this proves the statement (k + 1)′′.
Case 2: nL

mL
is the parent of n

m .
Let n1

m1
be the parent of nL

mL
, which exists because nL

mL
is from SBTL

�−1

with � ≥ 2. If n1

m1
is nR

mR
, then it can be proved by using the induction

hypothesis (0)′, (1)′, . . . , (k)′ and (k)′′ that nL

mL
< nR

mR
are adjacent elements

in
{
0
1 ,

1
1

}
∪MT0∪MT1∪· · ·∪MTk. From the definition of MTk+1, it follows

that three pairs nL

mL
< nL+nR

mL+mR
, nL+nR

mL+mR
< nL+2nR

mL+2mR
and nL+2nR

mL+2mR
< nR

mR
are all

adjacent ones in
{
0
1 ,

1
1

}
∪MT0∪MT1∪· · ·∪MTk+1. The induction hypothesis

(0)′, (1)′, . . . , (k)′ and the verified statement (k+1)′ thus prove the statement
(k + 1)′′. When n1

m1
is different from nR

mR
, we argue to show the correctness

as follows: Since its child nL

mL
has even numerator, the fraction n1

m1
should

have odd numerator by Proposition 2. Also, as n
m belongs to ψk+1

(
1
2

)
, it can

be inferred from the definition of ψ that n1

m1
belongs to ψk

(
1
2

)
. Moreover,

because nL

mL
< nR

mR
are adjacent elements in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪
SBTL

�−1, the left adjacent element to nR

mR
in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪
SBTL

�−2 should be the parent n1

m1
of nL

mL
by Proposition 1 (iv). One can thus

apply the induction hypothesis (0)′, (1)′, . . . , (k)′, (k)′′ to see that n1+nR

m1+mR
<

nR

mR
are adjacent elements in

{
0
1 ,

1
1

}
∪MT0∪MT1∪· · ·∪MTk. It follows that

three pairs n1+nR

m1+mR
< n1+2nR

m1+2mR
, n1+2nR

m1+2mR
< n1+3nR

m1+3mR
, n1+3nR

m1+3mR
< nR

mR
are all

adjacent ones in
{
0
1 ,

1
1

}
∪MT0∪MT1∪· · ·∪MTk+1. By applying the induction

hypothesis (0)′, (1)′, . . . , (k)′ and the verified statement (k+1)′, because we
have n1+nR

m1+mR
= nL

mL
and nL+nR

mL+mR
= n

m by the mediant construction, we see
that the statement (k + 1)′′ is correct.

Let us derive two properties of Mallows’ variation here: The first property
is that it contains each fraction from Q ∩ (0, 1) precisely once, which was
proved as Theorem 1 in [6]. Indeed, a simple induction on k shows that for
each fraction n

m ∈ SBTL

k , there exists a k′ ≤ k such that n
m ∈ ϕ

(
ψk′(1

2

))
.

This fact, Proposition 1 (i) and Theorem 1 then combine to prove that the
Mallows’ variation contains each fraction from Q∩ (0, 1) at least once. That
each fraction from Q∩ (0, 1) appears precisely once can also be derived from
Proposition 1 (i) and the definition of ϕ and ψ. The second property is that
if n1

m1
< n2

m2
are adjacent elements in

{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk for
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some k, then n1m2 −m1n2 = −1. This follows from Proposition 1 (iii) and
the ensuing fact, which can be verified by induction on k: if two fractions
are adjacent in

{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk, then they are adjacent in{

0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

k′ for some k′.
Let us temporarily write

n(k,L)

m(k,L)
and

n(k,R)

m(k,R)
(k ≥ 0) for the rightmost

element of the left half of MTk and the leftmost element of the right half
of MTk, respectively. Note that, because the left-to-right order and the or-
der defined by the magnitude relation coincide on MTk and because two
fractions

n(k+1,L)

m(k+1,L)
<

n(k+1,R)

m(k+1,R)
are inserted between

n(k,L)

m(k,L)
and

n(k,R)

m(k,R)
when

constructing MTk+1 from
{
0
1 ,

1
1

}
∪MT0 ∪MT1 ∪ · · · ∪MTk, they satisfy the

relation
n(1,L)

m(1,L)
<

n(2,L)

m(2,L)
<

n(3,L)

m(3,L)
< · · · < n(3,R)

m(3,R)
<

n(2,R)

m(2,R)
<

n(1,R)

m(1,R)
. Two limits

limk
n(k,L)

m(k,L)
≤ limk

n(k,R)

m(k,R)
coincide and separate each of MTk (k ≥ 0) into its

left and right half:

Proposition 3. A fraction from Q ∩ (0, 1) appears in the left half of MTk

for some k ≥ 0 if and only if it is smaller than 2−
√
2.

Proof. It is plain that if a fraction from Q ∩ (0, 1) appears in the left (resp.
right) half of MT0, then it is smaller (resp. larger) than 2 −

√
2. Also, if

a fraction from Q ∩ (0, 1) appears in the left (resp. right) half of MTk

for some k ≥ 1, then, since the left-to-right order and the order defined
by the magnitude relation coincide on MTk, it is smaller than or equal to
n(k,L)

m(k,L)
< limk

n(k,L)

m(k,L)
(resp. larger than or equal to

n(k,R)

m(k,R)
> limk

n(k,R)

m(k,R)
). It

is thus sufficient to prove that limk
n(k,L)

m(k,L)
= limk

n(k,R)

m(k,R)
= 2 −

√
2. For this

purpose, let us calculate the continued fraction representations of
n(k,L)

m(k,L)
and

n(k,R)

m(k,R)
(k ≥ 1).

By Theorem 1,
n(k,L)

m(k,L)
is the rightmost element

n(k,R)

m(k,R)
of the left half of

ϕ
(
ψk

(
1
2

))
and

n(k,R)

m(k,R)
is the leftmost element of the right half of ϕ

(
ψk

(
1
2

))
. In

view of the mediant construction of the Stern-Brocot tree and the definition
of ϕ and ψ, the following equations can then be verified by induction:

Path SBT

(
2
3 ,

n(k,L)

m(k,L)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈L, L, R, R, L, L, R, R, . . . , R, R︸ ︷︷ ︸

2k−2

, L, L〉 if k is odd

〈L, L, R, R, L, L, R, R, . . . , R, R︸ ︷︷ ︸
2k−4

, L, L, R〉 if k is even

Path SBT

(
2
3 ,

n(k,R)

m(k,R)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈L, L, R, R, L, L, R, R, . . . , R, R︸ ︷︷ ︸

2k−2

, L〉 if k is odd

〈L, L, R, R, L, L, R, R, . . . , R, R︸ ︷︷ ︸
2k

〉 if k is even
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It is known [2] that if the path from 1
1 to a fraction in the Stern-Brocot tree

is equal to

〈U1, U1, . . . , U1︸ ︷︷ ︸
a1

, U2, U2, . . . , U2︸ ︷︷ ︸
a2

, . . . , U�−1, U�−1, . . . , U�−1︸ ︷︷ ︸
a�−1

, U�, . . . , U�︸ ︷︷ ︸
a�−1

〉,

where U1 (= L), U2, . . . , U�−1, U� is an alternating sequence of L’s and R’s,

then the continued fraction representation of that fraction is [0; a1, a2, . . . ,

a�−1, a�]. Therefore,

n(k,L)

m(k,L)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[0; 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸

k−1

, 3] if k is odd

[0; 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
k

] if k is even

n(k,R)

m(k,R)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[0; 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸

k

] if k is odd

[0; 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
k−1

, 3] if k is even
.

It follows that limk
n(k,L)

m(k,L)
= limk

n(k,R)

m(k,R)
= [0; 1, 1, 2, 2, 2, . . .]. Since the value

of the infinite continued fraction [0; 1, 1, 2, 2, 2, . . .] is equal to 2 −
√
2, this

completes the proof.

In the same spirit, one can show, for instance, that 4−
√
2

7 separates each

of MTk (k ≥ 1) into its left one-sixth and right five-sixths.

Concerning the relationship between the left subtree SBTL of the Stern-

Brocot tree and Mallows’ variation, there are natural questions: Where is the

j′th element of MTk′ placed in SBTL? Conversely, where is the jth element

of SBTL

k placed in Mallows’ variation? Making use of Theorem 1 and the

definition of ϕ and ψ, we shall present a way of answering these questions

without actually constructing Mallows’ variation. For the first question, we

shall provide the following algorithm, which, when given k′ ≥ 0 and j′ ∈
{1, 2, . . . , 2 ·3k′}, outputs integers k and j such that the jth element of SBTL

k

is the j′th element of MTk′ :
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Algorithm 1

Step 1: Set w := 〈〉, � := k′, i := j′, a := 0, b := 0, k := 0, j := 1.
Step 2: Update w by iterating the following while � ≥ 0:

· Set a := � i−1
6 � and b := i− 6a

· If a is odd and b = 1 then w := 〈L, L〉�w, i := 2a+ 1
else if a is odd and b = 2 then w := 〈L〉�w, i := 2a+ 1
else if a is odd and b = 3 then w := 〈R〉�w, i := 2a+ 1
else if a is odd and b = 4 then w := 〈R, R〉�w, i := 2a+ 1
else if a is odd and b = 5 then w := 〈R, L〉�w, i := 2a+ 2
else if a is odd and b = 6 then w := 〈R〉�w, i := 2a+ 2
else if a is even and b = 1 then w := 〈L〉�w, i := 2a+ 1
else if a is even and b = 2 then w := 〈L, R〉�w, i := 2a+ 1
else if a is even and b = 3 then w := 〈L, L〉�w, i := 2a+ 2
else if a is even and b = 4 then w := 〈L〉�w, i := 2a+ 2
else if a is even and b = 5 then w := 〈R〉�w, i := 2a+ 2
else w := 〈R, R〉�w, i := 2a+ 2

· Set � := �− 1
Step 3: Set k := lh(w)− 1, i := 1.
Step 4: Update j by iterating the following while i ≤ k:

If proji+1(w) = R then j := j + 2k−i, i := i+ 1 else i := i+ 1
Step 5: Output k and j.
(Here, lh(·) and proji(·) denote the functions that return the length and the ith
letter of the input sequence, respectively.)

Proof of the correctness of the algorithm. We shall first verify the correct-

ness of the following statement about k′ ≥ 0: For any j′ ∈ {1, 2, . . . , 2 · 3k′},

• the j′th element of ϕ
(
ψk′(1

2

))
has odd numerator if and only if j′ ≡ 1

or 4 (mod 4);

• if we input k′ and j′ to the algorithm, then the final updated value of

w is equal to the path in the Stern-Brocot tree from the root 1
1 to the

fraction which appears as the j′th element of ϕ
(
ψk′(1

2

))
.

Verification of the correctness of the statement is by induction on k′: For
k′ = 0 or 1, verification can be done by hand. For the induction step, assume

that we have verified the correctness until k′ (≥ 1). Take a j′ ∈ {1, 2, . . . ,
2 · 3k′+1} arbitrarily and write n

m for the j′th element of ϕ
(
ψk′+1

(
1
2

))
. Since

the argument for the case where � j′−1
6 � is even runs in much the same way

as the odd case, we shall take up the latter case only. Let n′

m′ and n′′

m′′ be

the
(
2� j′−1

6 �+1
)
st and

(
2� j′−1

6 �+2
)
nd elements of ϕ

(
ψk′(1

2

))
, respectively.

An application of the induction hypothesis then implies that n′ is even and

n′′ is odd, which in turn proves, in view of the definition of ϕ, that n′

m′ is
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the left child of n′′

m′′ in SBTL. Note that, by Proposition 2, children of n′

m′

and the right child of n′′

m′′ all have odd numerator. It can be inferred from

the mediant construction that the left child of the left child of n′

m′ , the right

child of the right child of n′

m′ and the left child of the right child of n′′

m′′ all

have even numerator. From the definition of ϕ and ψ and the induction

hypothesis, we thus conclude that

- if j′ = 6� j′−1
6 � + 1, then n

m is the left child of the left child of n′

m′ ,

which has even numerator, and the final updated value of w, when

k′ + 1 and j′ are given as input, is equal to Path SBT

(
1
1 ,

n′

m′

)�〈L, L〉 =
Path SBT

(
1
1 ,

n
m

)
;

- if j′ = 6� j′−1
6 � + 2, then n

m is the left child of n′

m′ , which has odd

numerator, and the final updated value of w, when k′ + 1 and j′ are
given as input, is equal to PathSBT

(
1
1 ,

n′

m′

)�〈L〉 = Path SBT

(
1
1 ,

n
m

)
;

- if j′ = 6� j′−1
6 � + 3, then n

m is the right child of n′

m′ , which has odd

numerator, and the final updated value of w, when k′ + 1 and j′ are
given as input, is equal to PathSBT

(
1
1 ,

n′

m′

)�〈R〉 = Path SBT

(
1
1 ,

n
m

)
;

- if j′ = 6� j′−1
6 � + 4, then n

m is the right child of the right child of n′

m′ ,

which has even numerator, and the final updated value of w, when

k′ + 1 and j′ are given as input, is equal to Path SBT

(
1
1 ,

n′

m′

)�〈R, R〉 =
Path SBT

(
1
1 ,

n
m

)
;

- if j′ = 6� j′−1
6 � + 5, then n

m is the left child of the right child of n′′

m′′ ,

which has even numerator, and the final updated value of w, when

k′ + 1 and j′ are given as input, is equal to Path SBT

(
1
1 ,

n′′

m′′

)�〈R, L〉 =
Path SBT

(
1
1 ,

n
m

)
;

- if j′ = 6� j′−1
6 � + 6, then n

m is the right child of n′′

m′′ , which has odd

numerator, and the final updated value of w, when k′ + 1 and j′ are
given as input, is equal to PathSBT

(
1
1 ,

n′′

m′′

)�〈R〉 = Path SBT

(
1
1 ,

n
m

)
.

These indicate the correctness of the statement for k′ + 1.

Using the verified statement, we can complete the proof of the correct-

ness as follows: Let n
m be the j′th element of MTk′ . Then Theorem 1 and

the verified statement combine to show that if we input k′ and j′ to the

algorithm, then the final updated value of w is equal to PathSBT

(
1
1 ,

n
m

)
.

Therefore, k = lh
(
Path SBT

(
1
1 ,

n
m

))
−1 = lh

(
Path SBTL

(
1
2 ,

n
m

))
, which clearly

indicates that n
m indeed appears at the kth level of SBTL. That the final

updated value of j is the desired one follows from the ensuing general fact,

which can be verified readily by induction on �: For any vertex v from level

� of the binary tree T (with root v0), the output of the following simple
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algorithm is such that v is the jth element of Tk:

i := 1; j := 1

while i ≤ � do :

if proji+1

(
PathT(v0, v)

)
= R then j := j + 2�−i, i := i+ 1

else i := i+ 1

output j

Having presented an algorithm for the first question, we then provide
an algorithm for the converse question of where the jth element of SBTL

k

is placed in Mallows’ variation. The following algorithm, when given k ≥ 0
and j ∈ {1, 2, . . . , 2k}, outputs integers k′ and j′ such that the j′th element
of MTk′ is the jth element of SBTL

k :

Algorithm 2

Step 1: Set w := 〈〉, k′ := 0, j′ := j, i := 1, x := 1.
Step 2: Update w by iterating the following while i ≤ k:

If j′ > 2k−i then w := w�〈R〉, j′ := j′ − 2k−i, i := i+ 1
else w := w�〈L〉, i := i+ 1

Step 3: Set j′ := 1, i := 1.
Step 4: Update k′, j′ by iterating the following while i ≤ k:

If x = 1 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 1, x := 1, i := i+ 1

else if x = 1 and proji(w) = R

then j′ := j′ + 1, x := 4, i := i+ 1
else if x = 2 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 2, x := 3, i := i+ 1

else if x = 2 and proji(w) = R

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 3, x := 1, i := i+ 1

else if x = 3 and proji(w) = L

then j′ := j′ − 1, x := 2, i := i+ 1
else if x = 3 and proji(w) = R

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 6, x := 3, i := i+ 1

else if x = 4 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 4, x := 3, i := i+ 1

else k′ := k′ + 1, j′ := 6� j′−1
2 �+ 5, x := 1, i := i+ 1

Step 5: Output k′ and j′.

Proof of the correctness of the algorithm. For given k and j, let n
m be the

jth element of the kth level of SBTL. In view of Theorem 1, it is sufficient
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to show that the outputs k′ and j′ of the algorithm is such that the fraction
n
m is the j′th element of ϕ

(
ψk′(1

2

))
. Since this is evident when k = 0, we

shall hereafter assume k ≥ 1.

A simple induction on k shows that the variable w, when Step 2 of
the algorithm has been completed, has length k and has value equal to
Path SBTL

(
1
2 ,

n
m

)
. For i ∈ {0, 1, . . . , k}, let ni

mi
be the fraction such that

Path SBTL

(
1
2 ,

ni

mi

)
is the length i initial subsequence of Path SBTL

(
1
2 ,

n
m

)
.

Also, to make the ensuing argument precise, let us write k′(i), j′(i) and
x(i) for the values of k′, j′ and x when the ith round of the while-loop in
Step 4 has been completed, respectively. (We set k′(0) := 0, j′(0) := 1 and
x(0) := 1.) We claim that for i = 0, 1, . . . , k, the fraction ni

mi
is the j′(i)th

element of ϕ
(
ψk′(i)

(
1
2

))
whose numerator ni has the same parity as x(i).

This will complete the proof because we have nk

mk
= n

m and the outputs of
the algorithm are k′(k) and j′(k).

Let us validate the claim by induction on i: For i = 0, the claim can be
verified readily. For i = 1, since the initial value of x is 1, if proj1(w) = L,
then n1

m1
= 1

3 , k
′(1) = 1, j′(1) = 1 and x(1) = 1. From Figure 2, it is clear

that n1

m1
is the j′(1)st element of ϕ

(
ψk′(1)

(
1
2

))
. As n1 = 1 = x(1), the claim

is indeed correct in this case. If proj1(w) = R, then n1

m1
= 2

3 , k
′(1) = 0,

j′(1) = 2 and x(1) = 4. Figure 2 shows that n1

m1
is the j′(1)st element of

ϕ
(
ψk′(1)

(
1
2

))
. Also, n1 = 2 and x(1) = 4 have the same parity. Therefore,

the claim is correct also in this case. For the induction step, assume that
we have verified the correctness of the claim until i (≥ 1). Observe that if
x(i) is even, then an application of the induction hypothesis proves that ni

is even too, which excludes by Proposition 2 the case where the parent ni−1

mi−1

of ni

mi
has even numerator. Therefore, there are the following six cases:

Case 1: x(i) = 1 and ni−1 is odd.

From the induction hypothesis, it is evident that ni and x(i − 1) are
both odd. In order to have x(i) = 1, it should be the case that x(i − 1) =
1 and proji(w) = L. Being the left child of ni−1

mi−1
, the fraction ni

mi
should

be equal to nL+ni−1

mL+mi−1
, where nL

mL
is the left adjacent element to ni−1

mi−1
in{

0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

i−1. As ni and ni−1 are both odd, it
follows that nL is even. There are two subcases: If proji+1(w) = L, then ni+1

mi+1

is the left child nL+ni

mL+mi
of ni

mi
, whose right child nL+2ni

mL+2mi
has even numerator.

From the induction hypothesis and the definition of ϕ and ψ, it follows that
ni+1

mi+1
= nL+ni

mL+mi
is the

(
6� j

′(i)−1
2 � + 1

)
st element of ϕ

(
ψk′(i)+1

(
1
2

))
. Since

x(i + 1) = 1 has the same parity as ni+1 = nL + ni, the claim is correct
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in this subcase. If proji+1(w) = R, then ni+1

mi+1
is the right child ni+ni−1

mi+mi−1
of

ni

mi
, which has even numerator. The fraction ni

mi
being the j′(i)th element

of ϕ
(
ψk′(i)

(
1
2

))
by the induction hypothesis, the definition of ϕ proves that

ni+1

mi+1
is the (j′(i)+1)st element of ϕ

(
ψk′(i)

(
1
2

))
. As the parity of x(i+1) = 4

and ni+1 = ni + ni−1 are the same, we conclude that the claim is true also
in this subcase.

Case 2: x(i) = 1 and ni−1 is even.

The induction hypothesis and the algorithm show that ni is odd, x(i−1)
is even and proji(w) = R. If proji+1(w) = L, then ni+1

mi+1
is equal to ni−1+ni

mi−1+mi
,

whose right child ni−1+2ni

mi−1+2mi
has even numerator. The induction hypothesis

and the definition of ϕ and ψ imply that ni+1

mi+1
is the

(
6� j

′(i)−1
2 � + 1

)
st

element of ϕ
(
ψk′(i)+1

(
1
2

))
. Also, ni+1

mi+1
has odd numerator and x(i+ 1) = 1.

If proji+1(w) = R, then ni+1

mi+1
should be equal to the mediant ni+nR

mi+mR
of ni

mi
and

the right adjacent element nR

mR
to ni−1

mi−1
in

{
0
1 ,

1
1

}
∪SBTL

0∪SBTL

1∪· · ·∪SBTL

i−1.

As we have ni

mi
= ni−1+nR

mi−1+mR
, the fraction ni+1

mi+1
= ni+nR

mi+mR
= ni−1+2nR

mi−1+2mR
has even

numerator. From the induction hypothesis and the definition of ϕ, it follows
that ni+1

mi+1
is the (j′(i)+1)st element of ϕ

(
ψk′(i)

(
1
2

))
. Note that the parity of

ni+1

mi+1
and x(i+ 1) = 4 are the same. Hence the claim is correct in this case.

Case 3: x(i) = 2 and ni−1 is odd.

From the induction hypothesis and the algorithm, it is immediate that
ni is even, x(i − 1) = 3 and proji(w) = L. The left adjacent element nL

mL
to

ni−1

mi−1
in

{
0
1 ,

1
1

}
∪ SBTL

0 ∪ SBTL

1 ∪ · · · ∪ SBTL

i−1 should have odd numerator

because the mediant nL+ni−1

mL+mi−1
is equal to ni

mi
. If proji+1(w) = L, then ni+1

mi+1

is the left child nL+ni

mL+mi
of ni

mi
, whose left child 2nL+ni

2mL+mi
has even numerator.

Since ni

mi
is the j′(i)th element of ϕ

(
ψk′(i)

(
1
2

))
by the induction hypothesis,

the definition of ϕ and ψ implies that ni+1

mi+1
is the

(
6� j

′(i)−1
2 �+2

)
nd element

of ϕ
(
ψk′(i)+1

(
1
2

))
. Note that ni+1

mi+1
has odd numerator and x(i + 1) = 3. If

proji+1(w) = R, then ni+1

mi+1
is the right child ni+ni−1

mi+mi−1
of ni

mi
, whose right

child ni+2ni−1

mi+2mi−1
has even numerator. From the induction hypothesis and the

definition of ϕ and ψ, it follows that ni+1

mi+1
is the

(
6� j

′(i)−1
2 � + 3

)
rd element

of ϕ
(
ψk′(i)+1

(
1
2

))
. Observe that ni+1

mi+1
has odd numerator and x(i + 1) =

1. In either of the two subcases, ni+1

mi+1
is thus the j′(i + 1)st element of

ϕ
(
ψk′(i+1)

(
1
2

))
and its numerator has the same parity as x(i+ 1).
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Case 4: x(i) = 3 and ni−1 is odd.
The proof runs in much the same way as in Case 1.

Case 5: x(i) = 3 and ni−1 is even.
An analogous argument to Case 2 proves the claim also in this case.

Case 6: x(i) = 4 and ni−1 is odd.
The proof is similar to Case 3.

There are closely related questions: Given k′ ≥ 0 and j′ ∈ {1, 2, . . . ,
2 · 3k′}, what is the j′th fraction of MTk′? Conversely, given a fraction n

m ,
where is it placed in Mallows’ variation? The first question can be answered
by combining Algorithm 1 with an algorithm [2] which calculates the jth
fraction of SBTL

k . To answer the second question, one can first use a known
algorithm [2] to calculate where n

m is placed in the Stern-Brocot tree. Using
the output as input, Algorithm 2 then calculates k′ and j′.

4. The tree R-DT and its variation

Recall that the Ducci map D (over the triples) is the one defined by the
equation D(v1, v2, v3) = (|v1 − v2|, |v2 − v3|, |v3 − v1|). Using this map, we
introduced another labeled binary tree in [4]. To state its definition, observe

that for each n
m ∈ Q>0 \ {1

1}, there exist precisely two fractions n′
1

m′
1
< 1 <

n′
2

m′
2
such that D

(
0, n′

i

m′
i
, 1
)
∼

(
0, n

m , 1
)
(i = 1, 2), where ∼ is the smallest

equivalence relation on Q3 satisfying the ensuing two conditions:

• (v1, v2, v3) ∼ λ(v1−c, v2−c, v3−c) for any λ ∈ Q>0 and c, v1, v2, v3 ∈ Q;
• (v1, v2, v3) ∼ (v2, v3, v1) for any v1, v2, v3 ∈ Q.

Because of this property, we can make the following:

Definition 4 ([4]). The Ducci tree (DT) is the labeled binary tree con-
structed by the next rules:

• The root of the tree is labeled by 1
1 . Its left and right children are

labeled by 1
2 and 2

1 , respectively;
• If a vertex is labeled by a fraction n

m �= 1
1 (in simplest terms), then

its left (resp. right) child is labeled by n′
1

m′
1
(resp. n′

2

m′
2
), where fractions

n′
1

m′
1
< 1 < n′

2

m′
2
are such that D

(
0, n′

i

m′
i
, 1
)
∼

(
0, n

m , 1
)
(i = 1, 2).

Actually, it turned out that the labeled binary tree obtained by reversing
the paths in the Ducci tree has closer relationship to the Stern-Brocot tree
than the Ducci tree itself does. Here is its precise definition:
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Figure 4: Top levels of the tree R-DT.

Definition 5 ([3]). R-DT is the labeled binary tree such that the equation

PathDT

(
n
m , 11

)
= PathR-DT

(
1
1 ,

n
m

)
is valid for any n

m ∈ Q>0. (See Figure 4.)

Note that in the statement, and also in what follows, a vertex is identified

with its label. We can do so because different vertices get different labels in

both trees [3].

In the Stern-Brocot tree, children of [0; a1, . . . , a�−1, a�] are [0; a1, . . . ,

a�−1, a� − 1, 2] and [0; a1, . . . , a�−1, a� + 1], which can be seen readily from

the relationship between paths in the tree and continued fractions (referred

already in the proof of Proposition 3). In the tree R-DT, we have:

Proposition 4 ([3]). If [0; a1, . . . , a�−1, a�] with
∑�

j=1 aj > 2 is

• the left child of a vertex, then its left and right children are [0; a1, . . . ,

a�−1, a� − 1, 2] and [0; a1, . . . , a�−1, a� + 1], respectively;

• the right child of a vertex, then its left and right children are [0; a1, . . . ,

a�−1, a� + 1] and [0; a1, . . . , a�−1, a� − 1, 2], respectively.

Consequently, n
m and n′

m′ have the parent and child relation in the Stern-

Brocot tree if and only if they have the parent and child relation in the tree

R-DT. From Propositions 1 and 2, we can thus derive the following:

Corollary 1. (i) The left subtree R-DTL of the tree R-DT (i.e., the sub-

tree of R-DT under 1
2) contains each fraction from Q∩ (0, 1) precisely

once;
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Figure 5: Top levels of VTk (k ≥ 0).

(ii) Suppose that in the tree R-DTL, a vertex and its left and right children
are labeled by n

m , n′

m′ and n′′

m′′ , respectively. If n is odd, then precisely
one of n′ and n′′ is even; If n is even, then both n′ and n′′ are odd.

Observe that the already-referred fact that different vertices get different
labels in the tree R-DT (hence in R-DTL) can also be inferred from the first
item above.

As Mallows did for the Stern-Brocot tree, can we introduce a variation
of the tree R-DT? Recall that the original formulation of Mallows’ variation
(“to insert two fractions between two adjacent fractions”) was a natural vari-
ation of the mediant construction of the Stern-Brocot tree. Hence, because
the tree R-DT does not have close relationship to the mediant construction,
Mallows’ original formulation is not so suggestive. However, there is a dif-
ferent yet equivalent formulation: Theorem 1 states that Mallows’ variation
can equivalently be defined as ϕSBT

(
ψk

SBT

(
1
2

))
(k ≥ 0). It is this formulation

that inspired us to introduce a variation as follows:

Definition 6. For any k ≥ 0, define VTk := ϕR-DT

(
ψk

R-DT

(
1
2

))
, where ϕR-DT

and ψR-DT are resulting functions obtained by replacing all occurrences of
“SBTL” with “R-DTL” in the definition of ϕSBT and ψSBT (see Definition 3).

(See Figure 5.) Note that two functions ϕR-DT and ψR-DT are well-defined by
Corollary 1 (ii).

Proposition 5. Let n
m ∈ Q ∩ (0, 1) and let n′

m′ and n′′

m′′ be the right child
of the left child of n

m in R-DTL and the left child of the right child of n
m in

R-DTL, respectively. Then n ≡ n′ ≡ n′′ (mod 2) and m ≡ m′ ≡ m′′ (mod 2).
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Proof. If n
m = 1

2 , then the assertion is evidently correct. If n
m �= 1

2 is the left
(resp. right) child of a vertex, then we have

n′

m′ = [0; a1, . . . , a�−1, a� − 1, 3] and n′′

m′′ = [0; a1, . . . , a�−1, a� + 2]

(resp. n′

m′ = [0; a1, . . . , a�−1, a� + 2] and n′′

m′′ = [0; a1, . . . , a�−1, a� − 1, 3])

by Proposition 4, where a1, . . . , a�−1, a� are positive integers such that n
m =

[0; a1, . . . , a�−1, a�]. The validity of the asserted congruences can then be
established by induction on �.

Proposition 6. Let k ≥ 0 and j ∈ {1, 2, . . . , 2 · 3k}.

(When k is odd) The jth element of VTk has odd numerator if and only
if j ≡ 2 or 3 (mod 4);

(When k is even) The jth element of VTk has odd numerator if and only
if j ≡ 1 or 4 (mod 4).

Proof. The proof is by induction on k: Figure 5 shows that the asserted
equivalences are correct for k = 0, 1 and 2. Let us then show that if the
stated equivalence for 2k (≥ 2) is true, then so is the equivalence for 2k+1.
Take an arbitrary a ∈ {0, 1, . . . , 32k−1

2 }. By the induction hypothesis, the
(4a+ 1)st element of VT2k has odd numerator and the (4a+ 2)nd element
of VT2k has even numerator. From the definition of ϕR-DT, it follows that
the latter is the right child of the former in the tree R-DTL. By combining
Corollary 1 (ii), Proposition 5 and the definition of ϕR-DT and ψR-DT, we see
that

• the left child of the (4a+1)st element of VT2k has odd numerator and
its left child has even numerator. Hence they are the (12a+ 2)nd and
(12a+ 1)st elements of VT2k+1, respectively;

• the left child of the (4a + 2)nd element of VT2k has odd numerator
and its right child has even numerator. Hence they are the (12a+3)rd
and (12a+ 4)th elements of VT2k+1, respectively;

• the right child of the (4a+ 2)nd element of VT2k has odd numerator
and its left child has even numerator. Hence they are the (12a+ 6)th
and (12a+ 5)th elements of VT2k+1, respectively.

By a similar line of reasoning, we can show that for any b ∈ {0, 1, . . . , 32k−3
2 },

• the left child of the (4b+3)rd element of VT2k has odd numerator and
its right child has even numerator. Therefore they are the (12b+ 7)th
and (12b+ 8)th elements of VT2k+1, respectively;
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• the right child of the (4b+3)rd element of VT2k has odd numerator and
its left child has even numerator. Therefore they are the (12b+ 10)th
and (12b+ 9)th elements of VT2k+1, respectively;

• the right child of the (4b + 4)th element of VT2k has odd numerator
and its right child has even numerator. Hence they are the (12b+11)th
and (12b+ 12)th elements of VT2k+1, respectively.

Since every j ∈ {1, 2, . . . , 2 · 32k+1} can be written as either 12a + i for
some a ∈ {0, 1, . . . , 32k−1

2 } and i ∈ {1, 2, . . . , 6} or 12b + i for some b ∈
{0, 1, . . . , 32k−3

2 } and i ∈ {7, 8, . . . , 12}, this indicates that the stated equiv-
alence for 2k + 1 is correct.

To complete the proof of the induction step, we need to show that if
the stated equivalence for 2k+1 (≥ 3) is true, then so is the equivalence for
2k + 2. But that can be done by arguing similarly to the above.

In the same spirit to the preceding section, we ask the ensuing questions:
Where is the j′th element of VTk′ placed in R-DTL? Conversely, where is
the jth element of R-DTL

k placed in VTk′ (k′ ≥ 0)? The following algorithm
is for the first question, which, when given k′ ≥ 0 and j′ ∈ {1, 2, . . . , 2 · 3k′},
outputs integers k and j such that the jth element of R-DTL

k is the j′th
element of VTk′ :

Algorithm 3

Step 1: Set w := 〈〉, � := k′, i := j′, a := 0, b := 0, k := 0, j := 1.
Step 2: Update w by iterating the following while � ≥ 0:

· Set a := � i−1
6 � and b := i− 6a

· If a ≡ � (mod 2) and b = 1 then w := 〈L〉�w, i := 2a+ 1
else if a ≡ � (mod 2) and b = 2 then w := 〈L, R〉�w, i := 2a+ 1
else if a ≡ � (mod 2) and b = 3 then w := 〈R, L〉�w, i := 2a+ 1
else if a ≡ � (mod 2) and b = 4 then w := 〈R〉�w, i := 2a+ 1
else if a ≡ � (mod 2) and b = 5 then w := 〈R〉�w, i := 2a+ 2
else if a ≡ � (mod 2) and b = 6 then w := 〈R, R〉�w, i := 2a+ 2
else if a �≡ � (mod 2) and b = 1 then w := 〈L, L〉�w, i := 2a+ 1
else if a �≡ � (mod 2) and b = 2 then w := 〈L〉�w, i := 2a+ 1
else if a �≡ � (mod 2) and b = 3 then w := 〈L〉�w, i := 2a+ 2
else if a �≡ � (mod 2) and b = 4 then w := 〈L, R〉�w, i := 2a+ 2
else if a �≡ � (mod 2) and b = 5 then w := 〈R, L〉�w, i := 2a+ 2
else w := 〈R〉�w, i := 2a+ 2

· Set � := �− 1
Step 3: Set k := lh(w)− 1, i := 1.
Step 4: Update j by iterating the following while i ≤ k:

If proji+1(w) = R then j := j + 2k−i, i := i+ 1 else i := i+ 1
Step 5: Output k and j.
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Proof of the correctness of the algorithm. Since the rest of the proof runs
along a similar line to that for Algorithm 1, we shall present a proof only for
the induction part of the following claim: for any k′ ≥ 0 and j′ ∈ {1, 2, . . . ,
2 · 3k′}, if we input k′ and j′ to the algorithm, then the final updated value
of w is equal to PathR-DT

(
1
1 ,

n
m

)
, where n

m is the j′th element of VTk′ .
Suppose we have verified the correctness of the claim for k′ (≥ 1). Take

an arbitrary j′ ∈ {1, 2, . . . , 2 · 3k′+1} and write n
m for the j′th element of

VTk′+1. Also, write n′

m′ and
n′′

m′′ for the
(
2� j′−1

6 �+ 1
)
st and

(
2� j′−1

6 �+ 2
)
nd

elements of VTk′ , respectively. Assume that � j′−1
6 � and k′ are both odd.

(Proof for other three cases, i.e., either � j′−1
6 � or k′ is even, run similarly

and thus are not presented.) Then, by Proposition 6, n′ is odd and n′′ is even.
In view of the definition of ϕR-DT, this indicates that

n′′

m′′ is the right child of
n′

m′ in R-DTL. Corollary 1 (ii) shows that the left child of n′

m′ in R-DTL has
odd numerator, whose right child has odd numerator by Proposition 5. This,
combined with Corollary 1 (ii), proves that the left child of the left child of
n′

m′ has even numerator. Corollary 1 (ii) and Proposition 5 also imply that

both children of n′′

m′′ have odd numerator and the right child of the left child

of n′′

m′′ and the left child of the right child of n′′

m′′ both have even numerator.
From the definition of ϕR-DT and ψR-DT and the induction hypothesis, it thus
follows that

• if j′ = 6� j′−1
6 �+ 1, then n

m is the left child of the left child of n′

m′ and
thus the final updated value of w, when k′ + 1 and j′ are given as
input, is equal to PathR-DT

(
1
1 ,

n′

m′

)�〈L, L〉 = PathR-DT

(
1
1 ,

n
m

)
;

• if j′ = 6� j′−1
6 � + 2, then n

m is the left child of n′

m′ and thus the final
updated value of w, when k′ + 1 and j′ are given as input, is equal to
PathR-DT

(
1
1 ,

n′

m′

)�〈L〉 = PathR-DT

(
1
1 ,

n
m

)
;

• if j′ = 6� j′−1
6 � + 3, then n

m is the left child of n′′

m′′ and thus the final
updated value of w, when k′ + 1 and j′ are given as input, is equal to
PathR-DT

(
1
1 ,

n′′

m′′

)�〈L〉 = PathR-DT

(
1
1 ,

n
m

)
;

• if j′ = 6� j′−1
6 � + 4, then n

m is the right child of the left child of n′′

m′′

and thus the final updated value of w, when k′ +1 and j′ are given as
input, is equal to PathR-DT

(
1
1 ,

n′′

m′′

)�〈L, R〉 = PathR-DT

(
1
1 ,

n
m

)
;

• if j′ = 6� j′−1
6 � + 5, then n

m is the left child of the right child of n′′

m′′

and thus the final updated value of w, when k′ +1 and j′ are given as
input, is equal to PathR-DT

(
1
1 ,

n′′

m′′

)�〈R, L〉 = PathR-DT

(
1
1 ,

n
m

)
;

• if j′ = 6� j′−1
6 �+ 6, then n

m is the right child of n′′

m′′ and thus the final
updated value of w, when k′ + 1 and j′ are given as input, is equal to
PathR-DT

(
1
1 ,

n′′

m′′

)�〈R〉 = PathR-DT

(
1
1 ,

n
m

)
.
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The validity of the claim for k′ + 1 is evident from these.

We then take up the converse question of where the jth element of
R-DTL

k is placed in VTk′ (k′ ≥ 0). The next algorithm, when given k ≥ 0
and j ∈ {1, 2, . . . , 2k}, outputs integers k′ and j′ such that the j′th element
of VTk′ is the jth element of R-DTL

k :

Algorithm 4

Step 1: Set w := 〈〉, k′ := 0, j′ := j, i := 1, x := 1.
Step 2: Update w by iterating the following while i ≤ k:

If j′ > 2k−i then w := w�〈R〉, j′ := j′ − 2k−i, i := i+ 1
else w := w�〈L〉, i := i+ 1

Step 3: Set j′ := 1, i := 1.
Step 4: Update k′, j′ by iterating the following while i ≤ k:

If x = 1 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 2, x := 3, i := i+ 1

else if x = 1 and proji(w) = R then j′ := j′ + 1, x := 2, i := i+ 1
else if x = 2 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 3, x := 1, i := i+ 1

else if x = 2 and proji(w) = R

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 6, x := 3, i := i+ 1

else if x = 3 and proji(w) = L

then j′ := j′ − 1, x := 4, i := i+ 1
else if x = 3 and proji(w) = R

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 5, x := 1, i := i+ 1

else if x = 4 and proji(w) = L

then k′ := k′ + 1, j′ := 6� j′−1
2 �+ 1, x := 1, i := i+ 1

else k′ := k′ + 1, j′ := 6� j′−1
2 �+ 4, x := 3, i := i+ 1

Step 5: Output k′ and j′.

Proof of the correctness of the algorithm. The line of the proof being the
same as that for Algorithm 2, we shall prove only the induction part of
the following claim: for i = 0, 1, . . . , k, the j′(i)th element of VTk′(i) is ni

mi

and its numerator ni has the same parity as x(i), where the fraction ni

mi
is

such that PathR-DTL

(
1
2 ,

ni

mi

)
is the length i initial subsequence of the path

in R-DTL from 1
2 to the jth element of R-DTL

k and k′(i), j′(i) and x(i) are
the values of k′, j′ and x when the ith round of the while-loop in Step 4 has
been completed, respectively. (We set k′(0) := 0, j′(0) := 1 and x(0) := 1.)

Suppose we have verified the correctness of the claim until i (≥ 1). The
proof of the claim for i+ 1 is by case analysis. Observe that if x(i) is even,
then the induction hypothesis implies that the numerator ni of the fraction
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ni

mi
is also even, which proves by Corollary 1 (ii) that the parent ni−1

mi−1
of nI

mi

has odd numerator. The cases that we need to analyze is thus the same as

the six cases from the proof for Algorithm 2. Let us present a proof for the

first case (i.e., x(i) = 1 and ni−1 is odd) only, from which the reader will see

how to prove the claim also in other five cases.

From the induction hypothesis and the algorithm, it follows that ni is

odd, x(i− 1) = 3 and proji(w) = R. (Here, the value of the variable w is the

final one, i.e., the value when Step 2 of the algorithm has been completed.)

There are two subcases: If proji+1(w) = L, then ni+1

mi+1
is the left child of

the right child of ni−1

mi−1
. As ni−1 is odd by assumption, Proposition 5 proves

that ni+1 is odd too. The same proposition and Corollary 1 (ii) combine to

show that the left child of ni+1

mi+1
and the right child of ni

mi
both have even

numerator. From the definition of ϕR-DT and ψR-DT, since
ni

mi
is the j′(i)th

element of VTk′(i) by the induction hypothesis, we conclude that ni+1

mi+1
is

the
(
6� j

′(i)−1
2 � + 2

)
nd element of VTk′(i)+1. As x(i + 1) = 3 and ni+1 are

both odd, the claim is thus correct in this subcase. If proji+1(w) = R, then
ni+1

mi+1
is the right child of ni

mi
and has even numerator (as has been mentioned

already in the preceding subcase). From the induction hypothesis and the

definition of ϕR-DT, it can be inferred that ni+1

mi+1
is the (j′(i) + 1)st element

of VTk(i). The parity of x(i+ 1) = 2 being the same as that of ni+1, we see

that the claim is correct also in this subcase.

By combining Algorithm 3 with an algorithm [3] which calculates the

jth fraction of R-DTL

k , one can answer the ensuing question: given k′ ≥ 0

and j′ ∈ {1, 2, . . . , 2 · 3k′}, what is the j′th fraction of VTk′? The converse

question can also be answered as follows: Given a fraction n
m , first use a

known algorithm [3] to calculate where it is placed in the tree R-DT. The

outputs can then be provided to Algorithm 4 to yield k′ and j′ such that n
m

is the j′th element of VTk′ .

Unlike on ϕ
(
ψk

(
1
2

))
, the left-to-right order and the order defined by

the magnitude relation do not coincide on VTk if k ≥ 1. It will thus be

useful if we can generate the ordered set VTk directly without constructing

VT0,VT1, . . . ,VTk−1. The next algorithm is for that purpose: given a k ≥ 2,

it outputs a sequence of continued fraction representations of elements of the

ordered set VTk.
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Algorithm 5

Step 1: Set w := f(1, k, 〈[0; 2, 1, 1, . . . , 1, 2]〉) (k + �k−3
2 � consecutive 1’s).

Step 2: Update w by iterating the following for i from 1 to 3k−1 − 1:
w := w�f(i+ 1, k, g(p(k, i), proj6i(w)))

Step 3: Output w.
(Here, functions f , g and p are defined as follows:
f(i, k, [0; a1, . . . , a�−1, a�]) =

if i ≡ k (mod 2) and a�−1 = 1 then
〈[0; a1, . . . , a�−1, a�], [0; a1, . . . , a�−2, a�],
[0; a1, . . . , a�−3, a�−2 + 3], [0; a1, . . . , a�−3, a�−2 + 4],
[0; a1, . . . , a�−3, a�−2 + 1, 3], [0; a1, . . . , a�−3, a�−2 + 1, 2]〉

else if i ≡ k (mod 2) then
〈[0; a1, . . . , a�−1, a�], [0; a1, . . . , a�−2, a�−1 + 1],
[0; a1, . . . , a�−2, a�−1 − 1, 3], [0; a1, . . . , a�−2, a�−1 − 1, 4],
[0; a1, . . . , a�−2, a�−1 − 1, 1, 3], [0; a1, . . . , a�−2, a�−1 − 1, 1, 2]〉

else if a�−1 = 1 then
〈[0; a1, . . . , a�−1, a�], [0; a1, . . . , a�−1, a� + 1], [0; a1, . . . , a�−2, 4],
[0; a1, . . . , a�−2, 3], [0; a1, . . . , a�−3, a�−2 + 2], [0; a1, . . . , a�−3, a�−2 + 1, 2]〉

else
〈[0; a1, . . . , a�−1, a�], [0; a1, . . . , a�−1, a� + 1],
[0; a1, . . . , a�−2, a�−1 + 3], [0; a1, . . . , a�−2, a�−1 + 2],
[0; a1, . . . , a�−2, a�−1 − 1, 2], [0; a1, . . . , a�−2, a�−1 − 1, 1, 2]〉

g(p, [0; a1, . . . , a�−1, a�]) =
if p = 0 and aj1 = 2 then

[0; a1, . . . , aj1−2, aj1−1 + 2, 1, 1, . . . , 1, 2] (�− j1 − 1 consecutive 1’s)
else if p = 0 then

[0; a1, . . . , aj1−1, aj1 − 2, 2, 1, 1, . . . , 1, 2] (�− j1 − 1 consecutive 1’s)
else if p = 1 then

[0; a1, . . . , aj2−1, aj2 + 2, 1, 1, . . . , 1, 2] (�− j2 − 1 consecutive 1’s)
else if p = 2 then

[0; a1, . . . , aj2−1, aj2 + 2, 1, 1, . . . , 1, 2] (�− j2 − 3 consecutive 1’s)
else if p = 3 then

[0; a1, . . . , aj3−1, aj3 − 2, 2, 1, 1, . . . , 1, 2] (�− j3 consecutive 1’s)
else [0; a1, . . . , aj3−1, aj3 − 2, 2, 1, 1, . . . , 1, 2] (�− j3 − 2 consecutive 1’s)
where j1 := max{j < � | aj �= 1}, j2 := min{j < � | only one of aj+2, aj+3,
. . . , a�−1 is 2} and j3 := max{j < � | aj �= 1, 2}.

p(k, i) =
if i = 3k−2 then 3
else if i = 2 · 3k−2 then 0
else if k ≡ e (mod 2) then proja−� a

3 �(u)

else proja−� a
3 �+6(u)

where i = a · 3e (3 � a) and u = 〈1, 0, 0, 4, 3, 0, 0, 2, 1, 0, 0, 4〉3k .)



On Mallows’ variation of the Stern-Brocot tree 365

Proof of the correctness of the algorithm (Sketch). To prove the correctness,
we need the following properties, which can be verified by using Proposi-
tions 4 and 6 and the definition of ϕR-DT and ψR-DT:

(i) If [0; a1, . . . , a�−1, a�] is the (6i+1)st (i ∈ {0, 1, . . . , 3k−1− 1}) element
of VTk, then f(i + 1, k, [0; a1, . . . , a�−1, a�]) is the sequence consisting
of the (6i+ 1)st, (6i+ 2)nd, . . ., (6i+ 6)th elements of VTk;

(ii) Let i ∈ {1, 2, . . . , 3k−1 − 1} and write n
m for the youngest common

ancestor (in R-DT) of the 6ith and (6i+ 1)st elements of VTk. Then

• p(k, i) = 0 if and only if n
m has even numerator;

• p(k, i) = 1 if and only if n
m is different from 1

2 , is the left child of a
vertex, has odd numerator and its right child has even numerator;

• p(k, i) = 2 if and only if n
m is the left child of a vertex, has odd

numerator and its left child has even numerator;

• p(k, i) = 3 if and only if either n
m = 1

2 or n
m is the right child of a

vertex, has odd numerator and its right child has even numerator;

• p(k, i) = 4 if and only if n
m is the right child of a vertex, has odd

numerator and its left child has even numerator.

It will be sufficient to validate the claim that for any i ∈ {0, 1, . . . , 3k−1−
1}, the sequence w(i) is equal to the length 6i+6 initial subsequence of VTk,
where w(i) is the value of the variable w when the ith round of the loop in
Step 2 has been completed. (We set w(0) to be the initial value of w.) Let
us do so by induction: Since the first element of VTk is [0; 2, 1, 1, . . . , 1, 2]
(k+�k−3

2 � consecutive 1’s), which can be seen also by induction, the validity
of the claim for i = 0 follows from (i). For the induction step, assume that the
equality between w(i) and the length 6i+ 6 initial subsequence of VTk has
been verified. Proofs for other cases being analogous, we shall argue for the
case p(k, i+ 1) = 1 only. As (ii) shows that the youngest common ancestor
(in R-DT) of the (6i+6)th and (6i+7)th elements of VTk is different from
1
2 , is the left child of a vertex, has odd numerator and its right child has
even numerator, it can be inferred from Proposition 4 and the definition of
ϕR-DT and ψR-DT that if the youngest common ancestor is [0; a1, . . . , a�−1, a�],
then the (6i+ 6)th and (6i+ 7)th elements of VTk should be of the form

[0; a1, . . . , a�−1, a�−1, 2, 1, 1, . . . , 1︸ ︷︷ ︸
j

, 2] and [0; a1, . . . , a�−1, a�+1, 1, 1, . . . , 1︸ ︷︷ ︸
j+1

, 2]

for some j ≥ 0, respectively. Since they satisfy the equation
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g(1, [0; a1, . . . , a�−1, a� − 1, 2, 1, 1, . . . , 1, 2])

= [0; a1, . . . , a�−1, a� + 1, 1, 1, . . . , 1, 2]

and since the (6i+6)th element [0; a1, . . . , a�−1, a�−1, 2, 1, 1, . . . , 1, 2] of VTk

is equal to proj6(i+1)(w(i)) by the induction hypothesis, the (6i+7)th element
[0; a1, . . . , a�−1, a�+1, 1, 1, . . . , 1, 2] of VTk is equal to g(1, proj6(i+1)(w(i))) =
g(p(k, i+1), proj6(i+1)(w(i))). Therefore, w(i+1) = w(i)�f(i+2, k, g(p(k, i+
1), proj6(i+1)(w(i)))) is equal to the length 6i+12 initial subsequence of VTk

by (i) and the induction hypothesis, completing the proof of the induction
step in this case.

5. Relationship between two variations

In this last section, we shall explain how Mallows’ variation MTk (k ≥ 0) of
the Stern-Brocot tree and our variation VTk (k ≥ 0) of the tree R-DT are
related to each other.

Proposition 7. MTk and VTk comprise the same fractions for any k ≥ 0.

Proof. It will be sufficient to prove that k1
(
n
m

)
= k2

(
n
m

)
holds for any

n
m ∈ Q ∩ (0, 1), where k1

(
n
m

)
and k2

(
n
m

)
denote the unique integers such

that n
m belongs to ϕSBT

(
ψ
k1(

n

m
)

SBT

(
1
2

))
and ϕR-DT

(
ψ
k1(

n

m
)

R-DT

(
1
2

))
, respectively. To

do so, take a fraction n
m ∈ Q ∩ (0, 1) arbitrarily. Then, since the parent and

child (hence the ancestor and descendant) relations in the Stern-Brocot tree
and the tree R-DT coincide, the sequence n0

m0

(
= 1

2

)
, n1

m1
, . . . , n�

m�

(
= n

m

)
is

a descending sequence from 1
2 to n

m in the Stern-Brocot tree if and only if
it is a descending sequence from 1

2 to n
m in the tree R-DT. We shall prove

by induction that k1
(
ni

mi

)
= k2

(
ni

mi

)
holds for any i ∈ {0, 1, . . . , �}. The

equation is evidently correct if i = 0. Then assume that we have verified the
equation k1

(
ni

mi

)
= k2

(
ni

mi

)
. From the definition of ϕSBT and ψSBT, it follows

that k1
( ni+1

mi+1

)
= k1

(
ni

mi

)
or = k1

(
ni

mi

)
+ 1 according as ni+1 is even or odd.

Similarly, it follows from the definition of ϕR-DT and ψR-DT that k2
( ni+1

mi+1

)
=

k2
(
ni

mi

)
or = k2

(
ni

mi

)
+ 1 according as ni+1 is even or odd. These and the

induction hypothesis completes the proof.

This brings us the question of how MTk and VTk can be converted
to each other. For one direction (i.e., given a j ∈ {1, 2, . . . , 2 · 3k}, what
is j′ such that the j′th element of VTk is the jth element of MTk?), we
can furnish an algorithm as follows: Let k ≥ 0 and j ∈ {1, 2, . . . , 2 · 3k} be
given and let n

m denote the jth element of MTk. Following Steps 1 and 2 of
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Algorithm 1, update the variable w. The final updated value of w is equal to

Path SBT

(
1
1 ,

n
m

)
as has been shown in the proof for Algorithm 1. Given w =

Path SBT

(
1
1 ,

n
m

)
as input, an algorithm from [3] then outputs the sequence

PathR-DT

(
1
1 ,

n
m

)
. Steps 3, 4 and 5 of Algorithm 4 with PathR-DT

(
1
1 ,

n
m

)
substituted into w then yield k′ and j′ such that n

m is the j′th element of

VTk′ . (The above proposition guarantees k′ = k; we need only j′.) The

complexity of this algorithm is linear in k.

Likewise, we can provide an algorithm also for the opposite direction

(i.e., given a j ∈ {1, 2, . . . , 2 · 3k}, what is j′ such that the j′th element of

MTk is the jth element of VTk?): Let k ≥ 0 and j ∈ {1, 2, . . . , 2 · 3k} be

given and let n
m denote the jth element of VTk. Steps 1 and 2 of Algorithm 3

updates the variable w from 〈〉 to PathR-DT

(
1
1 ,

n
m

)
. An algorithm from [3]

then converts PathR-DT

(
1
1 ,

n
m

)
to Path SBT

(
1
1 ,

n
m

)
. Finally, by substituting

Path SBT

(
1
1 ,

n
m

)
into w in Steps 3, 4 and 5 of Algorithm 2, we obtain integers

k′ and j′ such that n
m is the j′th element of MTk′ . (We again have k′ = k by

the above proposition.) As before, the complexity of this algorithm is linear

in k.
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