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Lower bound on the size-Ramsey number of tight
paths

Christian Winter

The size-Ramsey number R̂(k)(H) of a k-uniform hypergraph H is
the minimum number of edges in a k-uniform hypergraph G with
the property that every ‘2-edge coloring’ of G contains a monochro-
matic copy of H. For k ≥ 2 and n ∈ N, a k-uniform tight path on

n vertices P(k)
n is defined as a k-uniform hypergraph on n vertices

for which there is an ordering of its vertices such that the edges
are all sets of k consecutive vertices with respect to this order.

We prove a lower bound on the size-Ramsey number of k-uniform
tight paths, which is, considered assymptotically in both the uni-

formity k and the number of vertices n, R̂(k)(P(k)
n ) = Ω

(
log(k)n

)
.
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1. Introduction

For a k-graph G = (V,E), i.e. a k-uniform hypergraph on a vertex set V

and an edge set E ⊆
(
V
k

)
, a 2-edge coloring of G is a function c : E(G) →

{red, blue} that maps every edge to one of the given colors red or blue. In

the following we refer to such a function simply as a coloring of G. We say

that a k-graph G has the Ramsey property G → H for some k-graph H if

every coloring of G contains a monochromatic copy of H. The size-Ramsey

number of a k-graph H is defined as

R̂(k)(H) = min
{
|E(G)| : G k-graph with G → H

}
.

Size-Ramsey problems were introduced by Erdős, Faudree, Rousseau and

Schelp [7] for graphs. One of the focus points of studies on the graph case is

estimating the size-Ramsey number of paths. Beck [2] disproved a conjecture

of Erdős [6] by showing that R̂(2)(Pn) = O(n). Since then, estimates on this

number have been gradually improved, with the current best known bounds
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being
(
3.75−o(1)

)
n ≤ R̂(2)(Pn) ≤ 74n given by Bal, DeBiasio [1] and Dudek,

Pralat [5], respectively.

Let n, k ∈ N with k ≥ 2. A k-uniform tight path on n vertices P(k)
n is a

k-graph on n vertices for which there exists an ordering of its vertices such
that every edge is a k-element set of consecutive vertices with respect to this
order, two consecutive edges have precisely k − 1 vertices in common, and

there are no isolated vertices. Equivalently, P(k)
n is a k-graph isomorphic to

the hypergraph ({1, . . . , n}, E) with edge set

E =
{
{i, . . . , i+ k − 1} : i ∈ {1, . . . , n− k + 1}

}
.

If the uniformity is clear from the context we omit the prefix ‘k-uniform’
when referring to tight paths.

Research on the size-Ramsey number of hypergraphs has been substan-
tially driven forward by Dudek, La Fleur, Mubayi and Rödl [4]. Among
other results, they conjectured that the size-Ramsey number of tight paths
is linear in terms of n. This conjecture was recently verified by Letzter,
Pokrovskiy and Yepremyan [8].

Theorem 1 ([8]). Let k ≥ 2 be fixed. Then

R̂(k)(P(k)
n ) = O(n).

Regarding a lower bound on this number, the following is a simple ob-
servation.

Observation. Let n, k ∈ N, k ≥ 2. Then

R̂(k)(P(k)
n ) ≥ 2n− 2k + 1.

In this paper we show an improved lower bound on the size-Ramsey
number of tight paths.

Theorem 2. Let n ≥ 7. Then

R̂(3)(P(3)
n ) ≥ 8

3n− 28
3 .

Theorem 3. Let k ≥ 4 and n > k2+k−2
2 . Then

R̂(k)(P(k)
n ) ≥

⌈
log2(k + 1)

⌉
· n− 2k2.

Section 2 discusses some properties which are useful for the main proofs.
In Section 3 the proofs of Theorem 3 and Theorem 2 are presented.
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2. Preliminaries

Let G be a k-graph and Z ⊆ E(G) be an edge set. Let ∪Z = {v ∈ e : e ∈ Z}
be the set of vertices that are covered by Z. We say that the k-graph (∪Z,Z)
is formed by Z. Given a vertex set W ⊆ V (G) the subhypergraph induced
by W is G[W ] = (W, {e ∈ E(G) : e ⊆ W}). For q ∈ R, 0 ≤ q < k, the
q-neighborhood of Z is the edge set

N>q(Z) =
{
e ∈ E(G) : ∃e′ ∈ Z with |e ∩ e′| > q

}
.

Note that we allow e = e′, thus Z ⊆ N>q(Z) for all 0 ≤ q < k.

For each k-uniform tight path P on n vertices we fix an ordering of the
vertices such that each edge is a set of consecutive vertices. We say that
such an enumeration V (P) = {v1, . . . , vn} is according to P . For a k-graph

G, we define e(G) = |E(G)|, e.g. e(P(k)
n ) = n − k + 1. Furthermore, let

[n] = {1, . . . , n} for n ∈ N. For any other notation, see Diestel [3].

Proposition 4. Let n, k ∈ N such that k ≥ 2 and n > k2+k−2
2 . Let P

be a k-uniform tight path on n vertices. Furthermore, let α ∈ R such that
1 ≤ α ≤ k and W ⊆ V (P) be a vertex set such that for every edge e ∈ E(P)
we have |e ∩W | ≥ α. Then

|W | ≥ α(n− k + 1)

k
.

In particular, if for each e ∈ E(P), |e ∩W | > k+1
2 , then for n > k2+k−2

2 ,

|W | > n

2
.

Proof. We estimate the size of W by double-counting ordered pairs (v, e)
consisting of a vertex v ∈ W and an edge e ∈ E(P) with v ∈ e. Let ρ(v,e) be
the number of such pairs.

Considering the edges of P it is immediate that

ρ(v,e) ≥ α · e(P) = α(n− k + 1).

Now consider the vertices in W ⊆ V (P). The maximum degree of the
tight path P is at most k, so

ρ(v,e) ≤ k · |W |.
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Combining both inequations, we obtain

|W | ≥ α(n− k + 1)

k
.

Now consider the case that for each edge e ∈ E(P) we have |e∩W | > k+1
2 ,

then also |e ∩W | ≥ k+2
2 . Therefore we obtain for sufficiently large n,

|W | ≥ k + 2

2
· n− k + 1

k
>

n

2
.

3. Proofs of the main results

Proof of Theorem 3. Let G be a k-uniform hypergraph with G → P(k)
n , i.e.

such that every 2-coloring contains a monochromatic k-uniform tight path on
n vertices. We show that there are at least 
log2(k + 1)�·n−2k2 many edges
in G by iteratively constructing many edge-disjoint tight paths of length n.
Let λ = 
log2(k + 1)� − 1, this number indicates how many iteration steps
are executed. Additionally, we define the function q : {0, . . . , λ} → R,

q(i) =

(
1− 1

2i

)
(k + 1),

which will be the parameter of the q-neighborhoods considered in each itera-
tion step. Clearly, q is an increasing function and q(i) ≥ 0 for i ∈ {0, . . . , λ}.
For i ≤ λ (or equivalently i < log2(k+1)) it can be seen that q(i) < k, which
implies that the q(i)-neighborhood is well-defined for all i ∈ {0, . . . , λ}.

As an initial step of the iteration, the Ramsey property G → P(k)
n pro-

vides that there is some tight path on n vertices in G, which we denote by
P0.

From now on we proceed iteratively, so let i = 1, . . . , λ and suppose that
the iteration has been performed for all smaller values of i. In each step of
the iteration we construct the following:

• Edge sets Z1
i , Z

2
i ⊆ E(Pi−1) such that ∪Z1

i ∩ ∪Z2
i = ∅ and each of

the sets forms a tight path in G on precisely
⌊
n
2

⌋
vertices.

• A tight path Pi on n vertices with E(Pi) ∩ N>q(i)(Z
a
b ) = ∅ for all

a ∈ [2], b ∈ [i].

First we construct Z1
i and Z2

i by dividing the tight path Pi−1 into two
parts of equal length and considering the edge sets of the two created shorter
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Figure 1: Possible constellation of the edges in iteration step i = 1 where
k = 6.

tight paths. For this purpose, consider an ordering of the vertices V (Pi−1) =
{v1, . . . , vn} according to Pi−1. Let

V 1
i =

{
v1, . . . , v�n

2 

}

and V 2
i =

{
v
n

2 �+1, . . . , vn
}
.

Then |V 1
i | =

⌊
n
2

⌋
= |V 2

i |. Now let Z1
i = E(Pi−1[V

1
i ]) and Z2

i = E(Pi−1[V
2
i ]).

Clearly, these two sets form vertex-disjoint tight paths on
⌊
n
2

⌋
vertices in G.

The size of Z1
i and Z2

i is

|Z1
i | = |Z2

i | = e(P(k)

�n2 

) =

⌊n
2

⌋
− k + 1 ≥ n− 2k + 1

2
.

In the next step we show a key property of the edge sets Za
b for a ∈ [2],

b ∈ [i].

Claim. Let a1, a2 ∈ [2], b1, b2 ∈ [i] such that (a1, b1) �= (a2, b2). Then for
any two edges e1 ∈ N>q(i)(Z

a1

b1
) and e2 ∈ N>q(i)(Z

a2

b2
) we have

|e1 ∩ e2| < k − 1.

Proof of the claim. Assume that there are edges e1 ∈ N>q(i)(Z
a1

b1
), e2 ∈

N>q(i)(Z
a2

b2
) with |e1 ∩ e2| ≥ k − 1. By definition, there is an edge z1 ∈ Za1

b1
such that |e1 ∩ z1| > q(i) and an edge z2 ∈ Za2

b2
with |e2 ∩ z2| > q(i).

We estimate the size of z1 ∩ z2 in order to find a contradiction to our
assumption. Since |e1 ∩ e2| ≥ k − 1, we have |e1\e2| ≤ 1 and so |e2 ∩ z1| >
q(i)− 1. Applying this, we obtain:

|z1 ∩ z2| ≥ |e2 ∩ z1 ∩ z2|
≥ |e2| − |e2\z1| − |e2\z2| = −|e2|+ |e2 ∩ z1|+ |e2 ∩ z2|
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> −k + q(i)− 1 + q(i) =

(
1− 1

2i−1

)
(k + 1) = q(i− 1).

If b1 = b2, we have ∪Za1

b1
∩∪Za2

b2
= ∅ by construction. But then q(i−1) <

|z1 ∩ z2| = 0, which is a contradiction.
We suppose that b1 �= b2, then without loss of generality b1 > b2 (and

by this b1 − 1 ≥ 1). By construction we know z1 ∈ Za1

b1
⊆ E(Pb1−1). In the

iteration step b1−1 the tight path Pb1−1 was chosen to be edge-disjoint from⋃
a∈[2],b<b1

N>q(b1−1)(Z
a
b ). This yields that z1 /∈ N>q(b1−1)(Z

a2

b2
) and so

|z1 ∩ z2| ≤ q(b1 − 1) ≤ q(i− 1),

where the last inequality holds because q is an increasing function, and we
again reach a contradiction. This concludes the proof of the claim.

Now we find the next tight path Pi in G by considering the following
coloring of G. For all a ∈ [2] and b ∈ [i], assign the color red to each edge in
N>q(i)(Z

a
b ). The remaining edges are colored blue. We will prove that there

is a monochromatic blue P(k)
n in this coloring. We shall let Pi be that path.

With this in mind, assume for a contradiction that there is a monochromatic
red tight path R on n vertices in G.

Clearly, each edge in E(R) is in some neighborhood N>q(i)(Z
a
b ), a ∈

[2], b ∈ [i]. Now the above claim provides that any two edges which are con-
secutive in R, so intersect in precisely k − 1 vertices, belong to the same
neighborhood N>q(i)(Z

a
b ) for some a ∈ [2], b ∈ [i]. By repeating this argu-

ment, we obtain that E(R) ⊆ N>q(i)(Z
a
b ) for some a ∈ [2], b ∈ [i]. This

implies that for all e ∈ E(R),

|e ∩ ∪Za
b | > q(i) ≥ q(1) = k+1

2 .

Then applying Proposition 4 for the tight path R and the vertex set ∪Za
b

yields |∪Za
b | > n

2 . But by construction Za
b forms a k-graph on precisely

⌊
n
2

⌋
vertices, a contradiction.

Consequently, there is no red tight path on n vertices in the coloring, so

the Ramsey property G → P(k)
n implies the existence of a monochromatic

blue P(k)
n , which we denote Pi. Observe that for all e ∈ E(Pi) and for all

a ∈ [2], b ∈ [i], we have e /∈ N>q(i)(Z
a
b ), since all edges in these neighborhoods

are colored in red.
By iterating the described procedure for i = 1, . . . , λ, we obtain edge

sets Za
b for a ∈ [2], b ∈ [λ] which are pairwise disjoint and additionally a

tight path Pλ on n vertices such that each edge in E(Pλ) is not contained
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in any set Za
b . This allows for the following estimate on the number of edges

in G

e(G) ≥
∑
b∈[λ]

(
|Z1

b |+ |Z2
b |

)
+ e(Pλ) ≥ λ(n− 2k − 1) + (n− k + 1)

≥ 
log2(k + 1)� · n− (k − 1)(2k + 2) ≥ 
log2(k + 1)� · n− 2k2,

where in the last line we used 
log2(k + 1)� ≤ k.

We point out that the above proof also applies to 3-uniform tight paths,
but does not yield an improvement of the trivial bound. In order to obtain
a refined bound in this case, we instead use a non-iterative adaption of the
above proof.

Proof of Theorem 2. Let G be an arbitrary 3-uniform hypergraph which has

the Ramsey property G → P(3)
n . As before, we show that G is a 3-graph on at

least 8
3n−

28
3 many edges. Using the Ramsey property G → P(3)

n , there exists
some tight path on n vertices in G. In particular, we find a shorter tight path
P0 on only

⌈
2
3n− 7

3

⌉
many vertices. Observe that e(P0) =

⌈
2
3n− 7

3

⌉
− 2 ≥

2
3n− 13

3 .
In order to find a tight path P1 which is edge-disjoint from P0, we

consider the following coloring. Color all edges in the 1-neighborhoodN>1

(
E

(P0)
)
in red and the remaining edges in blue. Assume for a contradiction

that in this coloring there is a monochromatic red tight path on n vertices,
say R. Then Proposition 4 applied to the tight path R and the vertex set

V (P0) provides a contradiction. Since G → P(3)
n , there is a monochromatic

blue tight path on n vertices in G. This implies that there is also a blue tight
path on n− 1 vertices, i.e. on n− 3 edges. We fix such a tight path P1 with
e(P1) = n− 3. Note that N>1

(
E(P0)

)
and E(P1) are disjoint edge sets.

In the following, in order to find a third edge-disjoint tight path, we
consider another coloring of G. From now on, let each edge in E(P0)∪E(P1)
be colored red and all other edges blue. Assume for a contradiction that
there is a red tight path R on n vertices in this coloring. Then neither
E(R) ⊆ E(P0) nor E(R) ⊆ E(P1), because the two edge sets have size

strictly less than e(P(3)
n ). Therefore, R consists of edges of both E(P0) and

E(P1). Both of these edge sets are disjoint, so there exist two edges e1 ∈
E(P0)∩E(R), e2 ∈ E(P1)∩E(R) which are consecutive in R, i.e. |e1∩e2| =
2. But that is a contradiction to the fact that N>1

(
E(P0)

)
and E(P1) are

disjoint. Consequently, there is no red P(3)
n in this coloring. By the same

argument as before, there is a blue tight path P2 on n vertices in G.
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Then the three edge sets E(P0), E(P1), E(P2) are pairwise disjoint. Thus,

e(G) ≥ e(P0) + e(P1) + e(P2) ≥ 8
3n− 28

3 .
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