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Symmetric group action of the birational R-matrix

Sunita Chepuri and Feiyang Lin

The birational R-matrix is a transformation that appears in the
theory of geometric crystals, the study of total positivity in loop
groups, and discrete dynamical systems. This R-matrix gives rise
to an action of the symmetric group Sm on an m-tuple of vectors.
While the birational R-matrix is defined by the action of the simple
transpositions si, explicit formulas for the action of other permuta-
tions are generally not known. One particular case was studied by
Lam and Pylyavskyy as it relates to energy functions of crystals. In
this paper, we will discuss formulas for several additional cases, in-
cluding transpositions, and provide combinatorial interpretations
for the functions that appear in our work.
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1. Introduction

The study of total positivity began in the 1930’s with the discoveries of
Schoenberg [19], regarding variation-diminishing properties of the totally
nonnegative part of GLn(R), and Gantmacher–Krein [5], regarding spectral
properties of the totally positive part of GLn(R). Since then, totally positive
and totally nonnegative matrices have been found to have applications in
many areas of math and physics.

One of the most important classical results in total positivity is the
Loewner–Whitney Theorem [11, 21]. This theorem gives a set of generators,
with easily computable relations, for the totally nonnegative part of GLn(R).
Lusztig [17] revolutionized the field by using the Loewner–Whitney Theorem
to generalize the concept of total nonnegativity in GLn(R) to other Lie
groups.

In [13], Lam and Pylyavskyy explored total positivity in setting of loop
groups. One of their main results was an analogue of the Loewner–Whitney
Theorem for the upper unitriangular part of the formal loop group. The
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relations between generators in this setting led to their definition of the
birational R-matrix, a transformation on an ordered pair of vectors in R>0.

The generators found by Lam and Pylyavskyy in [13] correspond to cylin-
dric networks via a boundary measurement map. The birational R-matrix,
which describes relations between the generators, can also be interpreted in
terms of cylindric networks: it describes a semi-local move on cylindric net-
works that preserves boundary measurements. The connection between the
birational R-matrix and cylindric networks is explored more fully in Part 2
of [14]. This work has since been extended by the first author to the context
of plabic networks [3].

The birational R-matrix is also related to several other areas of math-
ematics. This transformation plays an important role in the study of geo-
metric crystals [2, 4]. It tropicalizes to the combinatorial R-matrix [9] and
can be obtained using cluster algebras via the cluster R-matrix of Inoue–
Lam–Pylyavskyy [7]. In addition, it has applications to discrete Painlevé
dynamical systems [10] and box-ball systems [15].

We now proceed to define the birational R-matrix. Given x=(x1, . . . , xn),
y = (y1, . . . , yn), let κi(x,y) be the polynomial

κi(x,y) =

i+n−1∑
j=i

j∏
k=i+1

yk

i+n−1∏
k=j+1

xk,

where the subscripts k are taken modulo n. Then given a = (a1, . . . , an),b =
(b1, . . . , bn) ∈ Rn

>0, we define a map

η : (a,b) �→ (b′,a′)

where a′ = (a′1, . . . , a
′
n),b

′ = (b′1, . . . , b
′
n), and

a′i =
ai−1κi−1(a,b)

κi(a,b)
, b′i =

bi+1κi+1(a,b)

κi(a,b)
.

Example 1.1. For n = 4,

a′2 = a1
κ1(a,b)

κ2(a,b)
= a1

a2a3a4 + b2a3a4 + b2b3a4 + b2b3b4
a3a4a1 + b3a4a1 + b3b4a1 + b3b4b1

.

Let a1, . . . ,am ∈ Rn
>0 where ai = (a

(1)
i , . . . , a

(n)
i ) and upper indices are

considered modulo n. For 1 ≤ i < m, we define

ηi(a1, . . . ,am) = (a1, . . . ,ai−1, η(ai,ai+1),ai+2, . . . ,am).
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Theorem 1.2 ([13] Lemma 6.1, Theorem 6.3). Let a1, . . . ,am ∈ Rn
>0. Then

the birational R-matrix has the following properties:

• η is an involution: for 1 ≤ i < m, η2i = 1;
• η satisfies the braid relation: for 1 ≤ i < m− 1,

ηiηi+1ηi(a1, . . . ,am) = ηi+1ηiηi+1(a1, . . . ,am).

Let si denote the transposition that switches i and i+ 1. Following the
above result, the paper [13] then proceeds to define an action of Sm on
(Rn

>0)
m where the action of si is given by ηi. In this paper, we are interested

in finding explicit formulas for the action of a general permutation, so it is
convenient to consider the dual action.

Given f : (Rn)m → R, let η∗i f : (Rn)m → R be given by

(η∗i f)(a1, . . . ,am) := f(ηi(a1, . . . ,am)).

Theorem 1.2 then implies that the η∗i ’s are involutions and satisfy the
braid relations. Hence there is an action of the symmetric group Sm on

Q(x1, . . . ,xm)=Q({x(r)i : 1 ≤ i ≤ m, 1 ≤ r ≤ n}), where xi=(x
(1)
i , . . . , x

(n)
i ),

given by

sif = η∗i f.

As the definition of η involves rational, subtraction-free expressions only, if
f is a (subtraction-free) rational function, then sif is a (subtraction-free)
rational function as well. It follows that the semifield of subtraction-free
rational functions is invariant under this action. It is convenient to note
down the explicit formula for the action of si. From the definition of η∗i , we
have that

si(x
(r)
i+1) = x

(r−1)
i

κr−1(xi,xi+1)

κr(xi,xi+1)
,

si(x
(r)
i ) = x

(r+1)
i+1

κr+1(xi,xi+1)

κr(xi,xi+1)
,

si(x
(r)
j ) = x

(r)
j if j �= i, i+ 1.

The aim of this paper is to investigate explicit formulas for the action of
a general s ∈ Sm. As the action of s ∈ Sm on Q(x1, . . . ,xm) is determined

by its action on the generators x
(r)
i , it suffices to ask the following question:

Main Problem. For any s ∈ Sm, 1 ≤ i ≤ m and 1 ≤ r ≤ n, what is

s(x
(r)
i ) ∈ Q(x1, . . . ,xm)?
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In [1], Berenstein, Fomin, and Zelevinsky asked a similar question: given
a minimal factorization of a totally positive matrix, how can we explicitly
write the parameters of another minimal factorization? This line of study
led to the development of cluster algebras. Our main problem is the loop
group analogue of this question.

This paper will proceed as follows. In Section 2.1 of this paper, we build
on results in [12] to produce explicit formulas for the action of sj−1sj−2 . . . si
and sisi+1 . . . sj−1 when 1 ≤ i < j < m. These formulas are given in
terms of functions we denote as τ , σ, and σ̄. In Section 2.2, we intro-
duce Ω functions and we state formulas for the action of permutations
sksk+1 . . . sj−2sj−1sj−2 . . . si where 1 ≤ i ≤ k < j < m and sk−1sk−2 . . .
si+1sisi+1 . . . sj−1 where 1 ≤ i < k ≤ j < m. Note that when k = i in the
first case this permutation is the transposition of i and j, and similarly when
k = j in the second case. Section 3 contains the proof of a technical lemma
needed in Section 2.2. In Section 4, we provide combinatorial interpretations
of the τ , σ, σ̄ and Ω functions. Lastly, Section 5 contains some applications
of our formulas and Section 6 explores some avenues for future work.

2. Formulas

Our formulas rely heavily on functions we denote as τ, σ and σ̄. The τ and
σ functions were defined by Lam and Pylyavskyy in [12]. The σ̄ function is
dual to the σ function.

Let n be a positive integer, k a nonnegative integer, and let 1 ≤ r ≤ n.

Then τ
(r)
k is defined as follows:

τ
(r)
k (x1,x2, . . . ,xm) =

∑
1≤ii≤i2≤···≤ik≤m

x
(r)
i1

x
(r−1)
i2

. . . x
(r−k+1)
ik

where no index appears more than n − 1 times in the sum. By convention,

τ
(r)
0 (x1,x2, . . . ,xm) = 1 and τ

(r)
k (x1,x2, . . . ,xm) = 0 if k is negative or if

k > m(n− 1).

Example 2.1. Let n = 4. Then τ
(3)
5 (x1,x2) = x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
2 x

(3)
2 +

x
(3)
1 x

(2)
1 x

(1)
2 x

(4)
2 x

(3)
2 .

The σ and σ̄ functions are defined using τ . We can think of them as
the τ functions with the caveat that x1 or xm variables are now allowed to
appear more than n− 1 times.

σ
(r)
k (x1,x2, . . . ,xm) =

k∑
i=0

x
(r)
1 x

(r−1)
1 . . . x

(r−i+1)
1 τ

(r−i)
k−i (x2,x3, . . . ,xm),
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σ̄
(r)
k (x1,x2, . . . ,xm)

=

k∑
i=0

τ
(r)
k−i(x1,x2, . . . ,xm−1)x

(r−k+i)
m x(r−k+i−1)

m . . . x(r−k+1)
m .

Example 2.2. Let n = 4. Then

σ
(3)
5 (x1,x2) = τ

(3)
5 (x2) + x

(3)
1 τ

(2)
4 (x2) + x

(3)
1 x

(2)
1 τ

(1)
3 (x2)

+ x
(3)
1 x

(2)
1 x

(1)
1 τ

(4)
2 (x2) + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 τ

(3)
1 (x2)

+ x
(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
1 τ

(2)
0 (x2)

= x
(3)
1 x

(2)
1 τ

(1)
3 (x2) + x

(3)
1 x

(2)
1 x

(1)
1 τ

(4)
2 (x2)

+ x
(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 τ

(3)
1 (x2) + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
1

= x
(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
1 + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
2 + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
2 x

(3)
2

+ x
(3)
1 x

(2)
1 x

(1)
2 x

(4)
2 x

(3)
2 .

Similarly,

σ̄
(3)
5 (x1,x2) = x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
2 x

(3)
2 + x

(3)
1 x

(2)
1 x

(1)
2 x

(4)
2 x

(3)
2 + x

(3)
1 x

(2)
2 x

(1)
2 x

(4)
2 x

(3)
2

+ x
(3)
2 x

(2)
2 x

(1)
2 x

(4)
2 x

(3)
2 .

We state a fundamental identity of the σ and σ̄ functions.

Lemma 2.3. Let 1 ≤ i < j ≤ m. Then

σ
(r)
(n−1)(j−i)(xi, . . . ,xj)

=

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ
(r−k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
,

σ̄
(r)
(n−1)(j−i)(xi, . . . ,xj)

=

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ̄
(r−k)
(n−1)(j−i−1)(xi+1, . . . ,xj)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
.

Proof. We sketch the proof of the first identity. The second identity is exactly
dual.

We can group the terms of σ
(r)
(n−1)(j−i)(xi, . . . ,xj) by the number of times

xj variables are used at the end. By definition of the σ functions, xj can
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appear at most n− 1 times.

σ
(r)
(n−1)(j−i)(xi, . . . ,xj)

=

n−1∑
k=0

σ
(r)
(n−1)(j−i)−k(xi, . . . ,xj−1)

(
k−1∏
s=0

x
(r−k+j−i−1−s)
j

)

=

n−1∑
k=0

(
k−1∏
t=0

x
(r−t)
i

)
σ
(r−k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

(
n−k−2∏
s=0

x
(r−k+j−i−1−s)
j

)
,

Since all terms of σ
(r−k)
(n−1)(j−i)−k(xi, . . . ,xj−1) must use xi at least n− 1− k

times, the second equality holds by a change of summation index from k to
n− 1− k.

2.1. 1-shifts

In this section, we state explicit formulas for the action of a permutation
of the form sisi+1 . . . sj−1 and sj−1sj−2 . . . si, where 1 ≤ i < j ≤ m. Such
permutations are shifts by 1 for i < k < j so we call them 1-shifts.

Theorem 2.4 ([12] Lemma 3.1). Let 1 ≤ i < j ≤ m. Then

κr(sj−2sj−3 · · · si(xj−1),xj) =
σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i)
(n−1)(j−i−1)(xi, . . . ,xj−1)

and

sj−1 . . . si(x
(r)
j ) =

x
(r−j+i)
i σ

(r−j+i−1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

.

The following lemma is the dual of Theorem 2.4 and the proof exactly
emulates the one in [12].

Theorem 2.5 (Dual of Theorem 2.4). Let 1 ≤ i < j ≤ m. Then

κr(xi, si+1 . . . sj−1(xi+1)) =
σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

and

si . . . sj−1(x
(r)
i ) =

x
(r+j−i)
j σ̄

(r)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj).
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Proof. We prove the two statements in parallel by induction on j − i. For
j − i = 1 they coincide with the formulae for the κr and the R-action of si.
By the induction assumption,

si+1 . . . sj−1(x
(r)
i+1) =

x
(r+j−i−1)
j σ̄

(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

.

Therefore

κr(xi, si+1 . . . sj−1(xi+1))

=

n−1∑
s=0

[
s∏

t=1

si+1 . . . sj−1(x
(r+t)
i+1 )

]
x
(r+s+1)
i · · ·x(r+n−1)

i

=

n−1∑
s=0

⎡⎣ s∏
t=1

x
(r+t+j−i−1)
j σ̄

(r+t)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r+t−1)
(n−1)(j−i−1)(xi+1, . . . ,xj)

⎤⎦x
(r+s+1)
i · · ·x(r+n−1)

i

=

n−1∑
s=0

[
n−s−2∏
t=0

x
(r+n−1−t)
i

]
σ̄
(r+s)
(n−1)(j−i−1)(xi+1, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

[
s−1∏
t=0

x
(r+s+j−i−1−t)
j

]

=
σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r)
(n−1)(j−i−1)(xi+1, . . . ,xj)

.

The last equality holds by Lemma 2.3. Now we can also prove the second
claim, since

si . . . sj−1(x
(r)
i ) =

si+1 . . . sj−1(x
(r+1)
i+1 )κr+1(xi, si+1 . . . sj−1(xi+1))

κr(xi, si+1 . . . sj−1(xi+1))

= x
(r+j−i)
j

σ̄
(r)
(n−1)(j−i)(xi, . . . ,xj)

σ̄
(r−1)
(n−1)(j−i)(xi, . . . ,xj)

.

We next consider what happens to xi, . . . ,xj−1 under the action of
sj−1 . . . si, and dually, what happens to xi+1, . . . ,xj under the action of
si . . . sj−1.

Theorem 2.6. Let 1 ≤ i < j ≤ m. Then for i ≤ k < j,

sj−1 . . . si(x
(r)
k ) =

x
(r+1)
k+1 σ

(r−k+i)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi, . . . ,xk+1)σ

(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)

.
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Similarly, for i < k ≤ j,

si . . . sj−1(x
(r)
k ) =

x
(r−1)
k−1 σ̄

(r−2)
(n−1)(j−k+1)(xk−1, . . . ,xj)σ̄

(r)
(n−1)(j−k)(xk, . . . ,xj)

σ̄
(r−1)
(n−1)(j−k+1)(xk−1, . . . ,xj)σ̄

(r−1)
(n−1)(j−k)(xk, . . . ,xj)

.

Proof. We prove the first part of the lemma. The second part is exactly
dual.

Let s = sk−1sk−2 · · · si. By Theorem 2.4,

κr(s(xk),xk+1) =
σ
(r−k+i−1)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)

σ
(r−k+i−1)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

.

So

sj−1sj−2 . . . si(x
(r)
k )

= sksk−1 · · · si(x(r)k )

= sk(s(x
(r)
k ))

= x
(r+1)
k+1

κr+1(s(xk),xk+1)

κr(s(xk),xk+1)

= x
(r+1)
k+1

σ
(r−k+i)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)σ

(r−k+i−1)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

σ
(r−k+i−1)
(n−1)(k+1−i)(xi,xi+1, . . . ,xk+1)σ

(r−k+i)
(n−1)(k−i)(xi,xi+1, . . . ,xk)

as desired.

2.2. Transpositions

In this section, we state formulas for the action of sk . . . sj−2sj−1sj−2 . . . si,
where i ≤ k < j, and sk−1 . . . si+1sisi+1 . . . sj−1, where i < k ≤ j. Note that
this is the transposition that switches i and j when k = i for the former
permutation and k = j for the latter. We assume throughout that i < j− 1,
as the case where i = j − 1 is given by definition of the birational R-matrix
action.

To state our formulas, we must first define the Ω functions.

Definition 2.7. For i ≤ k ≤ j − 1, let

Ω
(r)
k (xi, . . . ,xj) =

n−1∑
�=0

σ
(r)
(n−1)(k−i)+�(xi, . . . ,xk)σ̄

(r+k−i−�)
(n−1)(j−k)−�(xk+1, . . . ,xj).
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Example 2.8. The Ω functions generalize σ and σ̄ functions:

Ω
(r)
j−1(xi, . . . ,xj) =

n−1∑
�=0

σ
(r)
(n−1)(j−i−1)+�(xi, . . . ,xj−1)σ̄

(r+j−i−1−�)
n−1−� (xj)

=

n−1∑
�=0

σ
(r)
(n−1)(j−i−1)+�(xi, . . . ,xj−1)

n−2−�∏
t=0

x
(r−j−i−1−�−t)
j

= σ
(r)
(n−1)(j−i)(xi, . . . ,xj).

Similarly, Ω
(r)
i (xi, . . . ,xj) = σ̄

(r)
(n−1)(j−i)(xi, . . . ,xj).

Now we are ready to state our formulas for the action of
sk . . . sj−2sj−1sj−2 . . . si and sk−1 . . . si+1sisi+1 . . . sj−1.

Theorem 2.9. Let s = sk . . . sj−2sj−1sj−2 . . . si. Then for i < k < j,

κr(s(xk−1), s(xk)) =
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k−1 (xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1) Ω

(r−k+i)
k (xi, . . . ,xj)

,

and for i ≤ k < j,

s(x
(r)
k ) = x

(r+j−k)
j

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k (xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i−1)
k (xi, . . . ,xj)

.

Theorem 2.10. Let s = sk−1 . . . si+1sisi+1 . . . sj−1. Then for i < k < j,

κr(s(xk), s(xk+1)) =
σ̄
(r−1)
(n−1)(j−k)(xk, . . . ,xj)Ω

(r−k+i−1)
k (xi, . . . ,xj)

σ̄
(r)
(n−1)(j−k−1)(xk+1, . . . ,xj)Ω

(r−k+i−1)
k−1 (xi, . . . ,xj)

,

and for i < k ≤ j,

s(x
(r)
k ) = x

(r−k+i)
i

σ̄
(r)
(n−1)(j−k)(xk, . . . ,xj)Ω

(r−k+i−1)
k−1 (xi, . . . ,xj)

σ̄
(r−1)
(n−1)(j−k)(xk, . . . ,xj)Ω

(r−k+i)
k−1 (xi, . . . ,xj)

.
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Theorem 2.11. For 1 ≤ i < j ≤ m and i < k < j,

si . . . sj−2sj−1sj−2 . . . si(x
(r)
k )

= x
(r)
k

Ω
(r−k+i)
k (xi, . . . ,xj) Ω

(r−k+i−1)
k−1 (xi, . . . ,xj)

Ω
(r−k+i)
k−1 (xi, . . . ,xj) Ω

(r−k+i−1)
k (xi, . . . ,xj)

.

Since Theorem 2.10 is entirely dual to Theorem 2.9, we will limit our
discussion and proof in the remainder of the paper to the case of s =
sk . . . sj−2sj−1sj−2 . . . si.

Note that for i ≤ k < j, Theorem 2.9 and Theorem 2.11 solve the action
of s = sk . . . sj−2sj−1sj−2 . . . si completely:

• The action of s on xk is given by Theorem 2.9.
• If k > i, then for i ≤ � < k, the action of s on x� is the same as the
action of s�s�−1 . . . si, which is given in Theorem 2.4.

• If k < j−1, then for k < � < j, the action of s on x� is the same as the
action of si . . . sj−2sj−1sj−2 . . . si, which is solved by Theorem 2.11.

• The action of s on xj is the same as the action of sj−1sj−2 . . . si, which
is given in Theorem 2.4.

The key ingredient to prove Theorem 2.9 and Theorem 2.11 is the fol-
lowing identity.

Lemma 2.12. For i < k ≤ j − 1, the following identity of Ωk−1 and Ωk

holds:(
n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

)
Ω
(r−k+i)
k−1 (xi, . . . ,xj)

=

n−1∑
s=0

r+s∏
t=r+1

x
(t+j−k)
j

r+n−1∏
t=r+s+1

x
(t+1)
k

s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

× Ω
(r−k+i+s)
k (xi, . . . ,xj)σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

Example 2.13. Consider the case where i = 1, j = r = n = 4, and k = 3.
Since Ω3 is the σ function, this identity says that
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σ
(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3)Ω

(2)
2 (x1,x2,x3,x4)

= x
(2)
3 x

(3)
3 x

(4)
3 σ

(2)
9 (x1,x2,x3,x4)σ

(3)
3 (x1,x2)σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3)

+ x
(2)
4 x

(3)
3 x

(4)
3 σ

(2)
6 (x1,x2,x3)σ

(3)
9 (x1,x2,x3,x4)σ

(4)
3 (x1,x2)σ

(1)
6 (x1,x2,x3)

+ x
(2)
4 x

(3)
4 x

(4)
3 σ

(2)
6 (x1,x2,x3)σ

(3)
6 (x1,x2,x3)σ

(4)
9 (x1,x2,x3,x4)σ

(1)
3 (x1,x2)

+ x
(2)
4 x

(3)
4 x

(4)
4 σ

(2)
3 (x1,x2)σ

(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3)σ

(1)
9 (x1,x2,x3,x4).

The following proof assumes Lemma 2.12, which is proven in Section 3.

Proof of Theorem 2.9. We proceed by induction on k. When k = j − 1, by

Theorem 2.6, indeed

s(x
(r)
j−1) = sj−1sj−2 . . . si(x

(r)
j−1)

= x
(r+1)
j

σ
(r−j+i)
(n−1)(j−i−1)(xi, . . . ,xj−1) σ

(r−j+i+1)
(n−1)(j−i)(xi, . . . ,xj)

σ
(r−j+i+1)
(n−1)(j−i−1)(xi, . . . ,xj−1) σ

(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)

.

Now let s = sk . . . sj−2sj−1sj−2 . . . si and suppose that

s(x
(r)
k ) = x

(r+j−k)
j

σ
(r−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k (xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i−1)
k (xi, . . . ,xj)

.

By Theorem 2.6,

s(x
(r)
k−1) = sj−1sj−2 . . . si(x

(r)
k−1)

=
x
(r+1)
k σ

(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

.

We may use the above to calculate the κ function:

κr(s(xk−1), s(xk))

=

n−1∑
s=0

r+s∏
t=r+1

s(x
(t)
k )

r+n−1∏
t=r+s+1

s(x
(t)
k−1)

=

n−1∑
s=0

r+s∏
t=r+1

x
(r+j−k)
j

σ
(t−k+i−1)
(n−1)(k−i)(xi, . . . ,xk) Ω

(t−k+i)
k (xi, . . . ,xj)

σ
(t−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(t−k+i−1)
k (xi, . . . ,xj)
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×
r+n−1∏

t=r+s+1

x
(t+1)
k σ

(t−k+i+1)
(n−1)(k−i)(xi, . . . ,xk)σ

(t−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(t−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(t−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

=

n−1∑
s=0

(
r+s∏

t=r+1

x
(t+j−k)
j

)(
r+n−1∏

t=r+s+1

x
(t+1)
k

)

×
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i+s)
k (xi, . . . ,xj)

σ
(r−k+i+s)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k (xi, . . . ,xj)

×
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+s+1)
(n−1)(k−i) (xi, . . . ,xk)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

=
σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk)Ω

(r−k+i)
k−1 (xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)Ω

(r−k+i)
k (xi, . . . ,xj)

,

where the last equality is by Lemma 2.12. We can now calculate the action
of s on xk:

sk−1sk . . . sj−2sj−1sj−2 . . . si(x
(r)
k−1)

= sk−1(s(x
(r)
k−1))

= s(x
(r+1)
k )

κr+1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))

= x
(r+j−k+1)
j

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i+1)
k (xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k (xi, . . . ,xj)

×
σ
(r−k+i+1)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i+1)
k−1 (xi, . . . ,xj)

σ
(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1) Ω

(r−k+i+1)
k (xi, . . . ,xj)

×
σ
(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1) Ω

(r−k+i)
k (xi, . . . ,xj)

σ
(r−k+i)
(n−1)(k−i)(xi, . . . ,xk) Ω

(r−k+i)
k−1 (xi, . . . ,xj)

= x
(r+j−k+1)
j

Ω
(r−k+i+1)
k−1 (xi, . . . ,xj)σ

(r−k+i)
(n−1)(k−i−1)(xi, . . . ,xk−1)

σ
(r−k+i+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)Ω

(r−k+i)
k−1 (xi, . . . ,xj)

as desired.
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Proof of Theorem 2.11. Let s = sk . . . sj−2sj−1sj−2 . . . si.

si . . . sj−2sj−1sj−2 . . . si(x
(r)
k ) = sk−1s(x

(r)
k )

= s(x
(r−1)
k−1 )

κr−1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))

= sj−1sj−2 . . . si(x
(r−1)
k−1 )

κr−1(s(xk−1), s(xk))

κr(s(xk−1), s(xk))
.

Plugging in the formulas from Theorem 2.6 and Theorem 2.9 yields the
desired result.

3. Proof of Lemma 2.12

We will need a series of technical lemmas to prove Lemma 2.12.
To begin, we define a family of functions

P
(r)
k (xi, . . . ,xj)

:=

k∑
t=0

t−1∏
s=0

x
(r−s)
i σ

(r−t)
(n−1)(j−i−1)(xi, . . . ,xj−1)

k−t−1∏
s=0

x
(r−t+j−i−1−s)
j .

Notice that P
(r)
k (xi,. . . ,xj) is the sum of all terms in σ

(r)
(n−1)(j−i−1)+k(xi,. . . ,xj)

that contain at most k xj variables.
We will also need the expressions Ts for 0 ≤ s ≤ n− 1, where

Ts :=

r+n−1∏
t=r+s+1

x
(t+1)
j

s+n−1∏
t=s+2

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+s+1)
(n−1)(j−i−1)(xi, . . . ,xj−1)

×
s∏

t=1

x
(r−j+i+t)
i ,

and the sums Sk :=
∑k

s=0 Ts and Sk :=
∑n−1

s=k Ts. The following lemma
provides a product formula for these partial sums.

Lemma 3.1. For 0 ≤ k < n− 1,

Sk =

r+n−1∏
t=r+k+1

x
(t+1)
j

k∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)P

(r−j+i+k+1)
k (xi, . . . ,xj)

×
n−1∏

t=k+2

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj).
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For 0 < k ≤ n− 1,

Sk =

k∏
t=1

x
(r−j+i+t)
i

n−1∏
t=k+1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)P

(r−j+i)
n−k−1 (xi, . . . ,xj)

×
k−1∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj).

And lastly,

Sn−1 = S0 =

n−1∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj).

Example 3.2. When r = n = 4, j = 3, i = 1,

T0 = x
(2)
3 x

(3)
3 x

(4)
3 σ

(3)
3 (x1,x2)σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3),

T1 = x
(3)
1 x

(3)
3 x

(4)
3 σ

(2)
6 (x1,x2,x3)σ

(4)
3 (x1,x2)σ

(1)
6 (x1,x2,x3),

T2 = x
(4)
1 x

(3)
1 x

(4)
3 σ

(2)
6 (x1,x2,x3)σ

(3)
6 (x1,x2,x3)σ

(1)
3 (x1,x2),

T3 = x
(1)
1 x

(4)
1 x

(3)
1 σ

(2)
3 (x1,x2)σ

(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3).

The lemma says that

T0 = x
(2)
3 x

(3)
3 x

(4)
3 P

(3)
0 (x1,x2,x3)σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3),

T0 + T1 = x
(3)
3 x

(4)
3 σ

(3)
6 (x1,x2,x3)P

(4)
1 (x1,x2,x3)σ

(1)
6 (x1,x2,x3),

T0 + T1 + T2 = x
(4)
3 σ

(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3)P

(1)
2 (x1,x2,x3);

T3 = x
(1)
1 x

(4)
1 x

(3)
1 P

(2)
0 (x1,x2,x3)σ

(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3),

T2 + T3 = x
(4)
1 x

(3)
1 σ

(1)
6 (x1,x2,x3)P

(2)
1 (x1,x2,x3)σ

(3)
6 (x1,x2,x3),

T1 + T2 + T3 = x
(3)
1 σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3)P

(2)
2 (x1,x2,x3);

and

T0 + T1 + T2 + T3 = σ
(3)
6 (x1,x2,x3)σ

(4)
6 (x1,x2,x3)σ

(1)
6 (x1,x2,x3).

Proof. We prove the first claim first. We proceed by induction on k. When
k = 0, the equality is by definition. Suppose that the claim is true for some k



Symmetric group action of the birational R-matrix 227

such that 0 ≤ k < n−2. Then it suffices to prove that the proposed formula
for Sk+1 satisfies

Sk+1 = Sk + Tk+1.

In other words, we need to show that

r+n−1∏
t=r+k+2

x
(t+1)
j

k+1∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)P

(r−j+i+k+2)
k+1 (xi, . . . ,xj)

×
n−1∏

t=k+3

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)

=

r+n−1∏
t=r+k+1

x
(t+1)
j

k∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)P

(r−j+i+k+1)
k (xi, . . . ,xj)

×
n−1∏

t=k+2

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)

+

r+n−1∏
t=r+k+2

x
(t+1)
j

k+n∏
t=k+3

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

×
k+1∏
t=1

x
(r−j+i+t)
i .

We may factor out

r+n−1∏
t=r+k+2

x
(t+1)
j

n−1∏
t=k+3

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)

k∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)

so that suffices to prove

σ
(r−j+i+k+1)
(n−1)(j−i) (xi, . . . ,xj)P

(r−j+i+k+2)
k+1 (xi, . . . ,xj)

= x
(r+k+2)
j P

(r−j+i+k+1)
k (xi, . . . ,xj)σ

(r−j+i+k+2)
(n−1)(j−i) (xi, . . . ,xj)

+ σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

k+1∏
t=1

x
(r−j+i+t)
i .



228 Sunita Chepuri and Feiyang Lin

Note that we have the following identities:

σ
(r−j+i+k+1)
(n−1)(j−i) (xi, . . . ,xj)

= P
(r−j+i+k+1)
n−2 (xi, . . . ,xj)x

(r+k+2)
j

+

n−2∏
t=0

x
(r−j+i+k+1−t)
i σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

= P
(r−j+i+k+1)
k (xi, . . . ,xj)

n−2−k∏
t=0

x
(r−t)
j

+

k∏
t=0

x
(r−j+i+k+1−t)
i P

(r−j+i)
n−k−3 x

(r+k+2)
j

+

n−2∏
t=0

x
(r−j+i+k+1−t)
i σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

and

P
(r−j+i+k+2)
k+1 = x

(r−j+i+k+2)
i P

(r−j+i+k+1)
k (xi, . . . ,xj)

+ σ
(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

k∏
t=0

x
(r+k+1−t)
j .

Using these two identities, we can rewrite the left hand side of the desired

equality as the following sum:

σ
(r−j+i+k+1)
(n−1)(j−i) (xi, . . . ,xj)P

(r−j+i+k+2)
k+1 (xi, . . . ,xj)

=

n−2∏
t=0

x
(r−j+i+k+1−t)
i σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)P

(r−j+i+k+2)
k+1 (xi, . . . ,xj)

+

k∏
t=0

x
(r−j+i+k+1−t)
i P

(r−j+i)
n−k−3 (xi, . . . ,xj)x

(r+k+2)
j

× σ
(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

k∏
t=0

x
(r+k+1−t)
j

+ P
(r−j+i+k+1)
k (xi, . . . ,xj)

n−2−k∏
t=0

x
(r−t)
j σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)
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×
k∏

t=0

x
(r+k+1−t)
j + P

(r−j+i+k+1)
n−2 (xi, . . . ,xj)x

(r+k+2)
j x

(r−j+i+k+2)
i

× P
(r−j+i+k+1)
k (xi, . . . ,xj).

One can check that the first two terms evaluate to

σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+k+2)
(n−1)(j−i−1)(xi, . . . ,xj−1)

k+1∏
t=1

x
(r−j+i+t)
i

and the last two terms evaluate to

x
(r+k+2)
j P

(r−j+i+k+1)
k (xi, . . . ,xj)σ

(r−j+i+k+2)
(n−1)(j−i) (xi, . . . ,xj),

which shows the desired identity.
To prove the identity for Sk, we again proceed by induction on k. If

k = n− 1 the identity is true. Now suppose that the claim is true for some
k such that 1 < k ≤ n−1. We will show that the proposed formula for Sk−1

satisfies

Sk−1 = Tk−1 + Sk.

After cancelling common factors, the above is equivalent to

P
(r−j+i)
n−k (xi, . . . ,xj)σ

(r−j+i+k)
(n−1)(j−i)(xi, . . . ,xj)

= σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=k

x
(r+t+1)
j

+ σ
(r−j+i+k−1)
(n−1)(j−i) (xi, . . . ,xj)P

(r−j+i)
n−k−1 (xi, . . . ,xj)x

(r−j+i+k)
i .

As before, we can expand the two factors on the left hand side.

P
(r−j+i)
n−k (xi, . . . ,xj)

= P
(r−j+i)
n−k−1 (xi, . . . ,xj)x

(r+k)
j +

n−k−1∏
t=0

x
(r−j+i−t)
i σ

(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

and

σ
(r−j+i+k)
(n−1)(j−i)(xi, . . . ,xj)

= x
(r−j+i+k)
i P

(r−j+i+k−1)
n−2 (xi, . . . ,xj)
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+ σ
(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=1

x
(r+k−t)
j

=

k−1∏
t=0

x
(r−j+i+k−t)
i P

(r−j+i)
n−k−1 (xi, . . . ,xj)

+ x
(r−j+i+k)
i P

(r−j+i+k−1)
k−2 (xi, . . . ,xj)

n−1∏
t=k

x
(r+t+1)
j

+ σ
(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=1

x
(r+k−t)
j .

Thus, we can rewrite the left hand side into a sum of four terms, from which
the desired equality follows.

P
(r−j+i)
n−k (xi, . . . ,xj)σ

(r−j+i+k)
(n−1)(j−i)(xi, . . . ,xj)

= P
(r−j+i)
n−k (xi, . . . ,xj)σ

(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=1

x
(r+k−t)
j

+

n−k−1∏
t=0

x
(r−j+i−t)
i σ

(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)x

(r−j+i+k)
i

× P
(r−j+i+k−1)
k−2 (xi, . . . ,xj)

n−1∏
t=k

x
(r+t+1)
j

+ P
(r−j+i)
n−k (xi, . . . ,xj)

k−1∏
t=0

x
(r−j+i+k−t)
i P

(r−j+i)
n−k−1 (xi, . . . ,xj)

+ P
(r−j+i)
n−k−1 (xi, . . . ,xj)x

(r+k)
j x

(r−j+i+k)
i P

(r−j+i+k−1)
k−2 (xi, . . . ,xj)

×
n−1∏
t=k

x
(r+t+1)
j

= σ
(r−j+i)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i+k)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=k

x
(r+t+1)
j

+ σ
(r−j+i+k−1)
(n−1)(j−i) (xi, . . . ,xj)P

(r−j+i)
n−k−1 (xi, . . . ,xj)x

(r−j+i+k)
i .
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Lastly, we will show that

Sn−1 = S0 =

n−1∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj).

It suffices to show that this product formula satisfies the identity

Sn−2 + Tn−1 = Sn−1,

namely

r+n−1∏
t=r+n−1

x
(t+1)
j

n−2∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)P

(r−j+i+n−1)
n−2 (xi, . . . ,xj)

+

n−2∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj)σ

(r−j+i)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=1

x
(r−j+i+t)
i

=

n−1∏
t=1

σ
(r−j+i+t)
(n−1)(j−i)(xi, . . . ,xj).

This is true because

x
(r)
j P

(r−j+i+n−1)
n−2 (xi, . . . ,xj) + σ

(r−j+i)
(n−1)(j−i−1)(xi, . . . ,xj−1)

n−1∏
t=1

x
(r−j+i+t)
i

= σ
(r−j+i+n−1)
(n−1)(j−i) (xi, . . . ,xj).

The following lemma evaluates two sums that we shall need in the proof
of Lemma 2.12. The proof relies heavily on Lemma 3.1.

Lemma 3.3. Let 0 ≤ q ≤ (n − 1)(j − k + 1) and γ = 2(n − 1) − (m − q).
Then when 0 ≤ m− q ≤ n− 1,[

n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

]
P

(r−k+i)
m−q (xi, . . . ,xk)

= σ
(r−k+i−(m−q+1))
(n−1)(k−i) (xi, . . . ,xk)

n−1∑
s=(n−1)−(m−q)

r+n−1∏
t=r+s+1

x
(t+1)
k

×
s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)
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×
s+m−q−n∏

α=0

x
(r−k+i+s−α)
i σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1);

and when n− 1 ≤ m− q ≤ 2(n− 1),⎡⎣n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

m−q−n∏
α=0

x
(r−k+i−α)
i

m−q∏
β=n

x
(r−β)
k

⎤⎦
× P (r−k+i−γ+1)

γ (xi, . . . ,xk)

= σ
(r−k+i−(m−q+1))
(n−1)(k−i) (xi, . . . ,xk)

2(n−1)−(m−q)∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
k

×
s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

×
s+m−q−n∏

α=0

x
(r−k+i+s−α)
i σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1),

Proof. We begin with the first identity. Note that

s+m−q−n∏
α=0

x
(r−k+i+s−α)
i =

s∏
β=(n−1)−(m−q)+1

x
(r−k+i+β)
i

=

s∏
β=1

x
(r−k+i+β)
i

⎛⎝(n−1)−(m−q)∏
β=1

x
(r−k+i+β)
i

⎞⎠−1

.

So we can rewrite the right hand side as:⎛⎝(n−1)−(m−q)∏
β=1

x
(r−k+i+β)
i

⎞⎠−1

σ
(r−k+i−(m−q+1))
(n−1)(k−i) (xi, . . . ,xk)

×
n−1∑

s=(n−1)−(m−q)

r+n−1∏
t=r+s+1

x
(t+1)
k

s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

× σ
(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

s∏
β=1

x
(r−k+i+β)
i .
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Let p = (n− 1)− (m− q). Then by Lemma 3.1, the sum itself is equal to

p∏
β=1

x
(r−k+i+β)
i

n−1∏
t=p+1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)P

(r−k+i)
n−1−p (xi, . . . ,xk)

×
p−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk).

Substituting the sum, the right hand side is equal to⎛⎝ p∏
β=1

x
(r−k+i+β)
i

⎞⎠−1

σ
(r−k+i+p)
(n−1)(k−i)(xi, . . . ,xk)

p∏
β=1

x
(r−k+i+β)
i

×
n−1∏

t=p+1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)P

(r−k+i)
n−1−p (xi, . . . ,xk)

×
p−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

=

n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)P

(r−k+i)
m−q (xi, . . . ,xk)

as desired.

For the second identity, similarly note that

s+m−q−n∏
α=0

x
(r−k+i+s−α)
i =

s−1∏
α=0

x
(r−k+i+s−α)
i

m−q−n∏
α=0

x
(r−k+i−α)
i

=

s∏
α=1

x
(r−k+i+α)
i

m−q−n∏
α=0

x
(r−k+i−α)
i .

So we can rewrite the right hand side as

m−q−n∏
α=0

x
(r−k+i−α)
i σ

(r−k+i−(m−q+1))
(n−1)(k−i) (xi, . . . ,xk)

2(n−1)−(m−q)∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
k

×
s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1)

s∏
α=1

x
(r−k+i+α)
i .
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By Lemma 3.1, the sum is equal to

r+n−1∏
t=r+γ+1

x
(t+1)
k

γ∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)P

(r−k+i+γ+1)
γ (xi, . . . ,xk)

×
n−1∏

t=γ+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk),

where we can rewrite the product of xk variables as follows:

r+n−1∏
t=r+γ+1

x
(t+1)
k =

n−2−γ∏
β=0

x
(r−β)
k =

m−q−n∏
β=0

x
(r−β)
k =

m−q∏
β=n

x
(r−β)
k .

Thus, we get that the right hand side is equal to

n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

m−q−n∏
α=0

x
(r−k+i−α)
i

×
m−q∏
β=n

x
(r−β)
k P (r−k+i+γ+1)

γ (xi, . . . ,xk)

as desired.

We are now ready to prove Lemma 2.12.

Proof of Lemma 2.12. Notice that the only factor on the left hand side of
this identity that contains xj variables is the Ω function and the only factors
on the right hand side that contain xj variables is the Ω function and the
product of xj variables. We can subdivide terms of an Ω function according
to the number of xj variables contained in a term. In general,

Ω
(r)
k (xi, . . . ,xj)

=

n−1∑
�=0

σ
(r)
(n−1)(k−i)+�(xi, . . . ,xk)σ̄

(r+k−i−�)
(n−1)(j−k)−�(xk+1, . . . ,xj)

=

n−1∑
�=0

(n−1)(j−k)−�∑
q=n−1−�

�−1∏
α=0

x
(r−α)
i σ

(r−�)
(n−1)(k−i)(xi, . . . ,xk)

× τ
(r+k−i−�)
(n−1)(j−k)−�−q(xk+1, . . . ,xj−1)

j+q∏
β=j+1

x
(r+β−i)
j .
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So we can rewrite the two Ω functions appearing in the identity as follows:

Ω
(r−k+i)
k−1 (xi, . . . ,xj)

=

n−1∑
�=0

(n−1)(j−k+1)−�∑
q=n−1−�

�−1∏
α=0

x
(r−k+i−α)
i σ

(r−k+i−�)
(n−1)(k−i−1)(xi, . . . ,xk−1)

× τ
(r−�−1)
(n−1)(j−k+1)−�−q(xk, . . . ,xj−1)

j+q∏
β=j+1

x
(r−k+β)
j

Ω
(r−k+i+s)
k (xi, . . . ,xj)

=

n−1∑
�=0

(n−1)(j−k)−�∑
q=n−1−�

�−1∏
α=0

x
(r−k+i+s−α)
i σ

(r−k+i+s−�)
(n−1)(k−i) (xi, . . . ,xk)

× τ
(r+s−�)
(n−1)(j−k)−�−q(xk+1, . . . ,xj−1)

j+q∏
β=j+1

x
(r−k+s+β)
j .

If we substitute these expressions into the conjectured identity, then on
both the left and right hand side the number of xj variables ranges between
0 and (n − 1)(j − k + 1). We will now show that the terms with q of the
xj variables on the left hand side are equal to the terms with q of the xj

variables on the right hand side.
On the left hand side, if a term contains q of the xj variables, then these

variables will be
∏j+q

β=j+1 x
(r−k+β)
j . On the right hand side, if a term contains

q of the xj variables, then these variables will be

r+s∏
t=r+1

x
(t+j−k)
j

j+q−s∏
β=j+1

x
(r−k+s+β)
j =

j+q∏
β=j+1

x
(r−k+β)
j

as well.
This means we can ignore this product of xj variables in our calculations.
To finish our proof, we need to show that the following are equal for

0 ≤ q ≤ (n− 1)(j − k + 1):

[
n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

]
n−1∑
�=0

�−1∏
α=0

x
(r−k+i−α)
i σ

(r−k+i−�)
(n−1)(k−i−1)(xi, . . . ,xk−1)

(1)

× τ
(r−�−1)
(n−1)(j−k+1)−�−q(xk, . . . ,xj−1),
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n−1∑
s=0

r+n−1∏
t=r+s+1

x
(t+1)
k

s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

n−1∑
�=0

�−1∏
α=0

x
(r−k+i+s−α)
i(2)

× σ
(r−k+i+s−�)
(n−1)(k−i) (xi, . . . ,xk)τ

(r+s−�)
(n−1)(j−k)−�−q+s(xk+1, . . . ,xj−1)

× σ
(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1).

We can simplify the problem further. Currently, the τ function in (1)
is a function of xk, . . .xj−1 whereas the τ function in (2) is a function of
xk+1, . . .xj−1. But recall that we can rewrite a τ function of xk, . . . ,xj−1 in
terms of τ functions of xk+1, . . .xj−1 like so:

τ
(r−�−1)
(n−1)(j−k+1)−�−q(xk, . . . ,xj−1)

=

n−1∑
t=0

t∏
β=1

x
(r−�−β)
k τ

(r−�−t−1)
(n−1)(j−k+1)−�−q−t(xk+1...j−1).

After making this substitution, the τ functions in the two equations will
both be functions of xk+1, . . .xj−1 variables. Now note that the super-

scripts of all the τ functions match: If τ
(∗)
(n−1)(j−k+1)−m(xk+1, . . . ,xj−1) ap-

pears in either equation then the superscript is r − (m − q + 1). This
means that we can prove the identity by showing that the factors containing

τ
(r−(m−q+1))
(n−1)(j−k+1)−m(xk+1, . . . ,xj−1) in both equations are the same.

In the first equation, the terms that contain τ
(r−(m−q+1))
(n−1)(j−k+1)−m(xk+1, . . . ,

xj−1) appear in the sums indexed by � and t when m = �+q+t. Substituting
t = m− q − �, we can simplify the nested sums into one by summing over �
such that 0 ≤ � ≤ n−1 and m−q−(n−1) ≤ � ≤ m−q. Then the coefficient

of τ
(r−(m−q+1))
(n−1)(j−k+1)−m(xk+1, . . . ,xj−1) is[

n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

] ∑
0≤�≤n−1

m−q−(n−1)≤�≤m−q

�−1∏
α=0

x
(r−k+i−α)
i(3)

× σ
(r−k+i−�)
(n−1)(k−i−1)(xi, . . . ,xk−1)

m−q−�∏
β=1

x
(r−�−β)
k .

for 0 ≤ m− q ≤ 2(n− 1).

In the second equation, the terms that contain τ
(r−(m−q+1))
(n−1)(j−k+1)−m(xk+1, . . . ,

xj−1) appear in the sums indexed by s and � when m− (n− 1) = �+ q− s.
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Substituting � = s+(m− q)− (n− 1), we can simplify the nested sums into
one by summing over s such that 0 ≤ s ≤ n − 1, (n − 1) − (m − q) ≤ s ≤
2(n− 1)− (m− q). Then the coefficient of τ

(r−(m−q+1))
(n−1)(j−k+1)−m(xk+1, . . . ,xj−1)

is

σ
(r−k+i−(m−q+1))
(n−1)(k−i) (xi, . . . ,xk)

(4)

×
∑

0≤s≤n−1
(n−1)−(m−q)≤s≤2(n−1)−(m−q)

r+n−1∏
t=r+s+1

x
(t+1)
k

s+n−1∏
t=s+2

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

×
s+m−q−n∏

α=0

x
(r−k+i+s−α)
i σ

(r−k+i+s+1)
(n−1)(k−i−1)(xi, . . . ,xk−1),

To show that (3) and (4) are equal, we will consider two cases:

• 0 ≤ m− q ≤ n− 1;
• n− 1 ≤ m− q ≤ 2(n− 1).

The two cases overlap when m− q = n− 1, in which case the arguments for
the two cases both apply.

In the first case, (3) is equal to[
n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

]
P

(r−k+i)
m−q (xi, . . . ,xk).

In the second case, (3) is equal to⎡⎣n−1∏
t=1

σ
(r−k+i+t)
(n−1)(k−i)(xi, . . . ,xk)

m−q−n∏
α=0

x
(r−k+i−α)
i

m−q∏
β=n

x
(r−β)
k

⎤⎦
× P (r−k+i−γ+1)

γ (xi, . . . ,xk),

where γ = 2(n− 1)− (m− q). Lemma 3.3 shows equality in both cases.

4. Combinatorial interpretations

Following Section 4.3 of [13], let N(n,m) be the cylindric grid network with
n horizontal wires and m vertical loops where each crossing of a horizontal
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wire and a vertical loop is a vertex and all edges are oriented up and to the
right (see Figure 1 for N(3, 5); to highlight the paths, the orientation of the
edges in the network will be omitted in future figures). The crossings of the

k-th vertical loop are given weights of the form x
(r)
k such that the upper

indices of the vertex weights along around a vertical loop decrease by 1 at
each crossing and the upper indices of the vertex weights along a horizontal
wire increase by 1 at each crossing. As before, upper indices are taken mod
n. The left and right endpoints of the horizontal wires are sources and sinks
of N(n,m), respectively. The sources and sinks inherit the upper indices of
the closest crossing.

Figure 1: The network N(3, 5) with sources and sinks labelled. Note that
the dashed top and bottom boundaries are identified.

We write p : s → r to specify a path from source s to sink r. A highway
path is a path from a source to a sink that never uses two up edges in a
row (see Figure 2 for examples). The weight wt(p) of a highway path is the
product of the weights of the vertices that it passes through when it has two
right edges in a row. The degree deg(p) is the degree of the monomial wt(p).

We can think of a highway path in N(n,m) as a sequence of length
m, consisting of through steps, where the path crosses the vertical wire,
and zigzags where the path has one up step along the vertical wire. Call
swapping an adjacent through step and zigzag in some path p a switch. We
say a switch is allowed if it does not cause the path to have multiple up steps
in a row; if the switch is performed on a path in a path family, we require
additionally that an allowed switch does not introduce any crossings.

We write P : S → R to specify a family of highway paths with source
set S and sink set R. In particular, we will be concerned with families of
noncrossing highway paths (note that we allow paths in a noncrossing family
to touch at corners). The weight wt(P ) of a family P of noncrossing highway
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paths is the product of the weights of the paths in the family and the degree

deg(P ) of such a family is the degree of the monomial wt(P ).

Figure 2: A highway path with weight x
(2)
3 (left) and a non-highway path

(right) in N(4, 3). The highway path on the left can be thought of as two
zigzags steps and then a through step.

Remark 4.1. Although previous sections worked with functions of xi, . . . ,

xj , in this section, we only give combinatorial interpretations τ, σ, σ̄ and Ω

functions of x1, . . . ,xm to simplify notation. Correspondingly, the weights

of crossings in N(n,m) are variables in x1, . . . ,xm. A combinatorial inter-

pretation for functions of xi, . . . ,xj can be easily obtained by appropriately

shifting the lower indices of the weights of the network N(n, j − i + 1).

This is implicit in the proof of Theorem 4.9, which uses the combinatorial

interpretation of a σ̄ function in the variables xk+1, . . . ,xm.

Let Ñ(n,m) be the universal cover of N(n,m) (see Figure 3). Choose a

lift of source 1 in N(n,m) to label as source 1 in Ñ(n,m). Label the rest of

the sources such that if a horizontal wire has source si then the horizontal

wire below has source si + 1. Label the sink of the horizontal wire with

source si as si +m − 1. Note that every source and sink in Ñ(n,m) has a

label congruent modulo n to the label of its projection in N(n,m).

We now proceed to state and prove a combinatorial interpretation of τ

functions. The following theorem is proven for certain cases in [13] through

Lemma 6.5, which shows that τ
(0)
(n−1)m−rn(x1, . . . ,xm) is a cylindric loop

Schur function, and Proposition 4.7, which establishes a weight-preserving

bijection between cylindric semistandard Young tableaux and families of

noncrossing highway paths in N(n,m) with specific source and sink sets.

We extend these results to the generality of all τ functions by directly

appealing to the properties of noncrossing paths.
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Figure 3: Ñ(2, 6).

Theorem 4.2. Let k = �(n−1)+t where 0 ≤ t < n−1. Define si = r−i+1
and

ri =

{
si + � i ≤ t,

si + �− 1 i > t,

where i ranges from 1 to n−1. Let P(r)
k be the set of families P = {pi : si →

ri} of noncrossing highway paths in N(n,m) such that deg(P ) = k. Then

τ
(r)
k (x1, . . . ,xm) =

∑
P∈P(r)

k

wt(P ).

Proof. We begin by showing that each term of τ
(r)
k corresponds to a path

family P ∈ P(r)
k . Consider the term in τ

(r)
k where each index in the sum is

as low as possible:

x
(r)
1 x

(r−1)
1 . . . x

(r−n+2)
1 x

(r−n+1)
2 . . . x

(r−k+t+1)
� x

(r−k+t)
�+1 . . . x

(r−k+1)
�+1 .

We get this initial term as the weight of an initial family of paths P0 =
{pi : si → ri}, where pi is defined as follows. If 1 ≤ i ≤ t, then the path pi
goes through the first � + 1 crossings and zigzags until it reaches a sink. If
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Figure 4: The initial family of paths P0 in the proof of Theorem 4.2.

t < i ≤ n−1, then the path pi goes through the first � crossings and similarly

zigzags the rest of the way. This does not result in crossings (see Figure 4).

We can compute which sink each path will end at by starting with the source

it started at, increasing by 1 for each crossing it went straight through, and

subtracting one at the end because the indices for the sinks are not shifted

from the indices of the vertices in the previous column (zigzagging doesn’t

change the index). This shows that the sink of pi is indeed ri.

To show that each term is the weight of some family of noncrossing

paths, we proceed by induction.

We can get all other terms in τ
(r)
k by increasing the lower indices of this

initial term one by one while maintaining the restrictions on the terms of

τ at each step. Suppose that some term x
(r)
i1

x
(r−1)
i2

. . . x
(r−k+1)
ik

in τ
(r)
k is the

weight of a family P of noncrossing highway paths with sources and sinks

as described above, has ij = a, and that shifting to ij = a+1 gives another

term in τ
(r)
k . Note that if changing this index is allowed, this means ij+1 > a.

It suffices to show that the new term is also the weight of a path family.
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Since we can change the index of ij , it must be that in P , the path that

goes through the vertex with weight x
(r−j+1)
a does not go through the next

crossing. If it did, it would pick up the weight x
(r−j+2)
a+1 . This would mean

wt(P ) must have been . . . x
(r−j+1)
a x

(r−j)
a+1 x

(r−j−1)
a+1 . . . x

(r−j−n+2)
a+1 . . . , where

a + 1 appears as an index n − 1 times. In this case, we would not be al-
lowed to change ij from a to a+1. So there is a path in P that goes straight

through x
(r−j+1)
a and then zigzags at the next crossing.

We can apply a switch to the path through x
(r−j+1)
a so that the path

zigzags at x
(r−j+1)
a and then goes straight through x

(r−j+1)
a+1 . Since ij+1 > a

and a appears as an index at most n − 1 times, there is no path that goes

through x
(r−j)
a . Hence this is an allowed switch. This gives us a family of

highway paths that corresponds to the new term.

Now we need to show that any path family P ∈ P(r)
k gives a term in

τ
(r)
k . An allowed switch on a path family P replaces x

(a)
i with x

(a)
i+1 in wt(P )

when there is no x
(a−1)
i . So if wt(P ) is a term in τ

(r)
k , performing an allowed

switch on P generates a new term in τ
(r)
k . Therefore, it suffices to show that

any path family P ∈ P(r)
k is related to the initial family P0 by a sequence of

allowed switches.
Consider the lifts P̃o = {p∗i : si → r̃i} and P̃ = {pi : si → r̃i

′} in Ñ(n,m)

of P and P0. Since there are no crossings in P , all the sinks of P̃ must have
pairwise differences of less than n, and likewise for P̃0. The sums of the sinks
of P̃0 and P̃ must be the same in order for the path families to have the
same degrees, which means we must have r̃i = r̃i

′, and deg(pi) = deg(p∗i ).
We will now choose a sequence of allowed switches. So that we can better

refer to the relative position of paths, consider the lift P̃ of P in Ñ(n,m)
such that the lifts of the sources are consecutive and the lowest (largest)

source is r. Let loop i be the first vertical loop where P̃ differs from P̃0,
and consider the lowest crossing v where this difference occurs: a path p
zigzags at v when the corresponding path p∗ in P0 goes straight through
v. Since deg(p) = deg(p∗), there is at least one more through step in p. So
we know that starting at v, our path p zigzags at least once and then goes
through some crossing v′. Between the crossing v and v′, we will perform a
sequence of switches starting at the crossing v′ and the previous crossing so
that instead of consecutively zigzagging a number of times and then going
through v′, this path will now first go through v and then zigzag until it
reaches v′. This will not introduce a crossing if p is the path with source r,
since there is no path in the family that has source r + 1. It will also not
introduce a crossing otherwise, because the path immediately below agrees
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Figure 5: The two path families whose weights sum to τ
(3)
5 (x1,x2).

with the corresponding path in the minimal family, which means that it goes

through to the right at loop i.

Remark 4.3. The set of sources S and set of sinks R in Theorem 4.2 have

a clean presentation in terms of r and k, namely S = [n] \ {r + 1} and

R = [n] \ {r − k}. If two path families P1, P2 : S → R lift to families

with the same sources in the universal cover, they have the same degree if

and only if their lifts have the same sink sets in the universal cover. The

pairing between sources and sinks is then determined by the noncrossing

property of the family. Thus we need not place restrictions on the pairing

between sources and sinks and path families in P(r)
k . In other words, P(r)

k

is equivalently the set of noncrossing families of highway paths P : S → R

such that deg(P ) = k.

Example 4.4. Consider τ
(3)
5 (x1,x2) where n = 4. We have k = 5, � = 1, t =

2, and r = 3. So s1 = 3, s2 = 2, s3 = 1, r1 = 4, r2 = 3, and r3 = 1. There are

two path families, P1, P2, that consist of highway paths pi : si → ri, as in

Figure 5. In the example above, the path families consisting of pi : si → ri
happen to have degree 5. But the degree requirement becomes nontrivial

in the following example. There is only one path family of degree 8 with

p1 : 3 → 3, p2 : 2 → 2, but there are more path families with p1 : 3 → 3,

p2 : 2 → 2 but of lower degree (Figure 6).

In order to state the definitions we need for the combinatorial interpre-

tation of the σ and σ̄ functions, we must fist prove a lemma.
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Figure 6: Unique path family (left) that contributes to τ
(3)
8 (x1,x2,x3,x4)

and a path family (right) whose paths have the same sources and sinks.

Lemma 4.5. Fix a set of sources S = {s1, s2, . . . , sk} and a set of sinks

R = {r1, r2, . . . , rk}. If P,Q : S → R are two families of highway paths in

N(n,m), then deg(P ) ≡n deg(Q).

Proof. We will first calculate deg(p) for a path p : s → r in N(n,m) by

considering its unique lift p̃ : s → r− jn. Let p̃s be the path in Ñ(n,m) that

begins at source s, goes straight to the right, and ends at sink s + m − 1.

We can see that deg(p̃s) = m. Given paths q̃ : s → t − 1 and p̃ : s → t in

Ñ(n,m), q̃ must have one more up step than p̃, and so deg(q̃) = deg(p̃)− 1.

This means we can calculate

deg(p) = m− (s+m− 1− (r − jn)) ≡n r − s+ 1.

Now consider a family of paths P with source set S = {s1, . . . , sk}, R =

{r1, . . . , rk}. By the previous paragraph, regardless of the pairing between

sources and sinks, the sum of degrees of paths in P is

deg(P ) ≡n

∑
i

ri −
∑
j

sj + k,

which concludes our proof.

Let k ≤ m(n− 1), S = [n] \ {r + 1}, and R = [n] \ {r − k} and let P(r)
≤k

be the set of families P : S → R of noncrossing highway paths in N(n,m)

such that deg(P ) ≤ k. In the proof of Theorem 4.2, for k ≤ m(n − 1), we

exhibited a family of noncrossing paths from S to R of degree k. So by

Lemma 4.5, any family P : S → R of noncrossing highway in N(n,m) has
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deg(P ) = k − jn for some integer j. Thus we can define

wtσk
(P ) =

(
n−1∏
i=0

x
(i)
1

)j

wt(P ) and wtσ̄k
(P ) =

(
n−1∏
i=0

x(i)m

)j

wt(P ).

Theorem 4.6. If k ≤ m(n− 1), then

σ
(r)
k (x1, . . . ,xm) =

∑
P∈P(r)

≤k

wtσk
(P ), σ̄

(r)
k (x1, . . . ,xm) =

∑
P∈P(r)

≤k

wtσ̄k
(P ).

Proof. Let k = an+ b where 0 ≤ b < n.

We will show that P(r)
≤k =

⋃a
j=0 P

(r)
k−jn. By checking that the set of sources

and sinks that define P(r)
k−jn are exactly S and R, we note that

⋃a
j=0 P

(r)
k−jn ⊆

P(r)
≤k . Since the possible degrees for path families in P(r)

≤k are precisely k− jn

where 0 ≤ j ≤ a, by Remark 4.3, we have P(r)
≤k ⊆

⋃a
j=0 P

(r)
k−jn. Therefore,

σ
(r)
k (x1, . . . ,xm) =

a∑
j=0

(
n−1∏
i=0

x
(i)
1

)j ∑
P∈P(r)

k−jn

wt(P )

=

a∑
j=0

∑
P∈P(r)

k−jn

wtσk
(P )

=
∑

P∈P(r)
≤k

wtσk
(P ).

The proof of the second part of the theorem concerning σ̄ is entirely
analogous.

Remark 4.7. When k > m(n− 1), we can write

σ
(r)
k (x1, . . . ,xm) =

k−m(n−1)−1∏
t=0

x
(r−t)
1 σ

(r−k+m)
m(n−1) (x1, . . . ,xm)

and

σ̄
(r)
k (x1, . . . ,xm) = σ̄

(r)
m(n−1)(x1, . . . ,xm)

k−m(n−1)−1∏
t=0

x(r+m−t)
m .
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Thus we can adjust the weight of every family of paths that arises as a

term of σ
(r−k+m)
m(n−1) (x1, . . . ,xm) or σ̄

(r−k+m)
m(n−1) (x1, . . . ,xm) monomial to obtain

a combinatorial interpretation for the case where k > m(n− 1).

Example 4.8. We apply Theorem 4.6 to σ
(3)
5 (x1,x2) with n = 4. We have

k = 5, a = 1, b = 1, r = 3. So S = {1, 2, 3} and R = {1, 3, 4}. There are four
possible path families P1, P2, P3, P4 with source set S and sink set R (see
Figure 5 and Figure 7). We can compute wtσ(Pi) for each path family: for
i = 1, 2, since deg(Pi) = 5, wtσ5

(Pi) = wt(Pi); for i = 3, 4, since deg(Pi) = 1,

wtσ5
(Pi) = x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 wt(Pi). Indeed,

σ
(3)
5 (x1,x2) = x

(3)
1 x

(2)
1 x

(1)
2 x

(4)
2 x

(3)
2 + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
2 x

(3)
2 + x

(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
1

+ x
(3)
1 x

(2)
1 x

(1)
1 x

(4)
1 x

(3)
2 .

Figure 7: The two path families whose weights sum to τ
(3)
1 (x1,x2).

Based on the interpretations of σ and σ̄ functions, we obtain a combi-
natorial interpretation of the Ω functions.

Let S = [n] \ {r + 1} and R = [n] \ {r + m − 1} be the sources and

sinks of P ∈ P(r)
(m−1)(n−1) in N(n,m). Given a family of noncrossing highway

paths from S to R, cut the network along the middle of the xk and xk+1

vertical loops, resulting in two families P1 and P2 of noncrossing highway
paths in N(n, k) and N(n,m−k) respectively. Then there exists � such that
R′ = [n] \ {r+k− 1− �} is the sink set of P1 and S′ = [n] \ {r+k− �} is the
source set of P2. Since (k−1)(n−1)+� ≤ k(n−1), there exists a path family
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from S to R′ with degree (k−1)(n−1)+�. So deg(P1) ≡n (k−1)(n−1)+�. In
order for deg(P1) ≤ k(n−1), we must have deg(P1) = (k−1)(n−1)+�−j1n
for some nonnegative integer j1. Similarly, deg(P2) = (n−1)(m−k)−�−j2n
for some nonnegative integer j2. Let

wtΩk
(P ) =

(
n−1∏
i=0

x
(i)
1

)j1

wt(P )

(
n−1∏
i=0

x(i)m

)j2

.

Theorem 4.9. For 1 ≤ k ≤ m− 1,

Ω
(r)
k (x1, . . . ,xm) =

∑
P∈P(r)

≤(m−1)(n−1)

wtΩk
(P ).

Proof. Recall that

Ω
(r)
k (x1, . . . ,xm)=

n−1∑
�=0

σ
(r)
(n−1)(k−1)+�(x1, . . . ,xk)σ̄

(r+k−1−�)
(n−1)(m−k)−�(xk+1, . . . ,xm).

Consider the term

σ
(r)
(n−1)(k−1)+�(x1, . . . ,xk)σ̄

(r+k−1−�)
(n−1)(m−k)−�(xk+1, . . . ,xm)

for some 0 ≤ � ≤ n− 1.

By Theorem 4.6, σ
(r)
(n−1)(k−1)+�(x1, . . . ,xk) is the generating function for

families of noncrossing highway paths starting from S = [n] \ {r + 1} and
ending at [n] \ {r + k − 1 − �} with degree at most (n − 1)(k − 1) + �,

and σ̄
(r+k−1−�)
(n−1)(m−k)−�(xk+1, . . . ,xm) is the generating function for families of

noncrossing highway paths starting at [n] \ {r + k − �} and ending at R =
[n] \ {r + m − 1} with degree at most (n − 1)(m − k) − �. Thus, for each

�, noncrossing path families corresponding to σ
(r)
(n−1)(k−1)+�(x1, . . . ,xk) and

σ̄
(r+k−1−�)
(n−1)(m−k)−�(xk+1, . . . ,xm) connect between the xk and xk+1 demarcation.

Therefore, each term in Ωk corresponds to some path family P : S → R.

Conversely, to define wtΩk
(P ), we have already shown that any path fam-

ily P : S → R breaks up into P1 ∈ P(r)
≤(k−1)(n−1)+� and P2 ∈ P(r+k−1−�)

≤(m−k)(n−1)−�

for a unique 0 ≤ � ≤ n− 1.

Lastly, one can check that

wtΩk
(P ) = wtσ(n−1)(k−1)+�

(P1) wtσ̄(n−1)(m−k)−�
(P2).



248 Sunita Chepuri and Feiyang Lin

Figure 8: P : S → R such that wtΩk
(P ) = wt(P ) for k = 1, 2, 3.

Remark 4.10. Since the sum is always over P ∈ P(r)
≤(m−1)(n−1), this the-

orem implies that the number of terms in Ω
(r)
k (x1, . . . ,xm) is constant for

different k. When k = 1, j1 must be zero for any path family, which implies
that wtΩ1

(P ) = wtσ̄(n−1)(m−1)
(P ). Similarly, wtΩm−1

(P ) = wtσ(n−1)(m−1)
(P ).

Example 4.11. Consider Ω
(3)
k (x1,x2,x3,x4) where n = 3, which consists

of monomials of length (n − 1)(m − 1) = 6. We calculate that S = {2, 3}
and R = {1, 2}. Two path families P,Q : S → R are depicted below. Since
deg(P ) = 6, wtΩk

(P ) = wt(P ).

On the other hand, the path family Q has deg(Q) = 3, so we expect that
j1 + j2 = 1. We will explicitly calculate j1 and j2 when k = 2 and wtΩ2

(Q).
When we cut between the second and the third vertical loop, the sink set
of the path family restricted to the network on the left is {1, 2}. Therefore
r + k − 1− � = 3, which implies that � = r + k − 1− 3 = 3 + 2− 1− 3 = 1.
Let the path families of the left and right networks be Q1 and Q2. Since
deg(Q1) = 3 = (n− 1)(k− 1)+ � and deg(Q2) = 0 = (n− 1)(m− k)− �− 3,

we have j1 = 0 and j2 = 1. Therefore, wtΩ2
(Q) = wt(Q)x

(3)
4 x

(2)
4 x

(1)
4 =

x
(3)
1 x

(2)
1 x

(1)
2 x

(3)
4 x

(2)
4 x

(1)
4 .

5. Applications

In this section we briefly discuss a few applications of our work.

Example 5.1. We will use the following example to illustrate each appli-
cation. Let n = 3 and consider the permutation s = s2s1s2. Our formulas
give the following:

s(x
(r)
1 ) = x

(r−1)
3

σ̄
(r)
4 (x1,x2,x3)

σ̄
(r−1)
4 (x1,x2,x3)

(Theorem 2.5)
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Figure 9: A path family Q : S → R such that wtΩ1
(Q) = wtΩ2

(Q) �=
wtΩ3

(Q).

s(x
(r)
2 ) = x

(r)
2

Ω
(r−1)
2 (x1,x2,x3) Ω

(r+1)
1 (x1,x2,x3)

Ω
(r−1)
1 (x1,x2,x3) Ω

(r+1)
2 (x1,x2,x3)

(Theorem 2.11)

s(x
(r)
3 ) = x

(r+1)
1

Ω
(r)
2 (x1,x2,x3)

Ω
(r+1)
2 (x1,x2,x3)

(Theorem 2.10)

5.1. The plabic R-matrix

Consider a directed graph embedded a cylinder (i.e., the graph can be drawn
on the cylinder without any of the edges crossing). If we assign a nonnegative
weight to each edge, we can compute the boundary measurements for the
network and its image under the boundary measurement map (see Section 2
of [6]). This construction is analogous to Postnikov’s boundary measurement
map for plabic networks [18].

One of the hallmarks of Postnikov’s theory relating plabic networks to
the totally nonnegative Grassmannian is the fact that if a plabic graph is
reduced, the weights can be uniquely recovered from boundary measure-
ments, up to gauge transformations. However, in the cylindric setting this
is not true. In [3] the first author showed that there is a semi-local transfor-
mation called a plabic R-matrix on edge weights of cylindric networks that
preserves the boundary measurements. When the graph has a particular
simple form, this map is the birational R-matrix. The formulas developed
in this paper can be used to compute how this map acts when iterated and
further our understanding of the boundary measurement map. They could
potentially be useful in further work on the open question of whether the
action of the plabic R-matrix generates all edge weights, up to gauge, on a
particular graph with the same boundary measurements. See [3] for more
background and details.
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Example 5.2. Consider the following graph on a cylinder where all un-
labeled edges are given weight 1 (the labels are all associated to vertical
edges):

By applying three plabic R-matrices on adjacent sections of the graph,
we obtain the edge weights below, coming from Example 5.1:
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5.2. The combinatorial R-matrix

The birational R-matrix also appears in the study of crystals. Crystals give
a combinatorial model for the representation theory of Lie algebras (see
e.g. [9, 8] for more details). The Kirillov-Reshetikhin (KR) crystal for the

symmetric powers of the standard representation of U ′
q(ŝln) can be identified

with the set of semistandard tableaux filled with 1, 2, . . . , n of a fixed row-
shape. We can tensor these crystals to obtain affine crystals.

Given KR crystals B1 and B2, there is a unique crystal isomorphism
R : B1 ⊗ B2 → B2 ⊗ B1 (see [20]). This map is called the combinatorial
R-matrix and can be defined as follows. If S ∈ B1 and T ∈ B2, then we can
define S ∗ T to be the rectification (using jeu de taquin slides) of the skew
tableau obtained by placing T northeast of S. This product was introduced
by Lascoux and Schützenberger [16]. There is a unique S′ ∈ B1 and T ′ ∈ B2

such that S ∗T = T ′ ∗S′. We then define R(S⊗T ) = T ′⊗S. More generally,
we can define Ri : B1⊗. . . Bi⊗Bi+1⊗· · ·⊗Bm → B1⊗. . . Bi+1⊗Bi⊗· · ·⊗Bm

as sending b1 ⊗ . . . bi ⊗ bi+1 ⊗ · · · ⊗ bm to b1 ⊗ . . . b′i+1 ⊗ b′i ⊗ · · · ⊗ bm where
bi ∗ bi+1 = b′i+1 ∗ b′i.

Example 5.3. Let n = 3, b1 = 1 1 2 3 , b2 = 1 2 2 , and

b3 = 2 3 .

Since
1 2 2

1 1 2 3
and

1 1 2 2

1 2 3
both rec-

tify to
1 1 1 2 2

2 3
,

R1(b1 ⊗ b2 ⊗ b3) = 1 2 3 ⊗ 1 1 2 2 ⊗ b3.

We can realize the combinatorial R-matrix more efficiently by using the

birational R-matrix. Consider b1⊗· · ·⊗bm ∈ B1⊗· · ·⊗Bm and let x
(j)
i be the

number of (j− i+1)’s (modulo n) in bi. We let stropi be the tropicalization of
the action of si defined in Section 1. That is, all additions are replaced with
minimums, all multiplications are replaced with additions, and all divisions

are replaced with subtractions. Then stropi (x
(j)
i ) is the number of (j− i+1)’s

in b′i+1. Since b
′
i, b

′
i+1 are one row semistandard tableaux, they are completely

determined by this information.

Example 5.4. In the previous example, we obtain

x
(1)
1 = 2 x

(1)
2 = 0 x

(1)
3 = 1
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x
(2)
1 = 1 x

(2)
2 = 1 x

(2)
3 = 1

x
(3)
1 = 1 x

(3)
2 = 2 x

(3)
3 = 0

For n = 3 we have

s1(x
(j)
1 ) =

x
(j+1)
2 (x

(j+2)
1 x

(j)
1 + x

(j+2)
2 x

(j)
1 + x

(j+2)
2 x

(j)
2 )

x
(j+1)
1 x

(j+2)
1 + x

(j+1)
2 x

(j+2)
1 + x

(j+1)
2 x

(j+2)
2

s1(x
(j)
2 ) =

x
(j−1)
1 (x

(j)
1 x

(j+1)
1 + x

(j)
2 x

(j+1)
1 + x

(j)
2 x

(j+1)
2 )

x
(j+1)
1 x

(j+2)
1 + x

(j+1)
2 x

(j+2)
1 + x

(j+1)
2 x

(j+2)
2

.

Tropicalizing, we obtain

strop1 (x
(j)
1 ) = x

(j+1)
2 +min{x(j+2)

1 + x
(j)
1 , x

(j+2)
2 + x

(j)
1 , x

(j+2)
2 + x

(j)
2 }

−min{x(j+1)
1 + x

(j+2)
1 , x

(j+1)
2 + x

(j+2)
1 , x

(j+1)
2 + x

(j+2)
2 }

strop1 (x
(j)
2 ) = x

(j−1)
1 +min{x(j)1 + x

(j+1)
1 , x

(j)
2 + x

(j+1)
1 , x

(j)
2 + x

(j+1)
2 }

−min{x(j+1)
1 + x

(j+2)
1 , x

(j+1)
2 + x

(j+2)
1 , x

(j+1)
2 + x

(j+2)
2 }.

In this case, we get

s1(x
(1)
1 ) = 1 +min{1 + 2, 2 + 2, 2 + 0} −min{1 + 1, 1 + 1, 1 + 2} = 1

s1(x
(1)
2 ) = 0 s1(x

(1)
3 ) = 1

s1(x
(2)
1 ) = 2 +min{2 + 1, 0 + 1, 0 + 1} −min{1 + 2, 2 + 2, 2 + 0} = 1

s1(x
(2)
2 ) = 2 s1(x

(2)
3 ) = 1

s1(x
(3)
1 ) = 0 +min{1 + 1, 1 + 1, 1 + 2} −min{2 + 1, 0 + 1, 0 + 1} = 1

s1(x
(3)
2 ) = 2 s1(x

(3)
3 ) = 0

This means the first tableau in the tensor product of R1(b1 ⊗ b2 ⊗ b3)

has one 1, one 2, and one 3, making it 1 2 3 . The next tableau in the

tensor product has two 1’s, two 2’s, and no 3’s, so it’s 1 1 2 2 . The

third is still b3. This is the same result we found in the previous example.

Tropicalizing rational maps commutes with iterating them, so we can
compute multiple iterations of the combinatorial R-matrix by tropicalizing
the formulas from this paper. For any s ∈ Sm we let strop be the tropical-
ization of the action of s defined in Section 1.
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Example 5.5. Starting with the formulas from Example 5.1, expanding
the σ̄ and Ω functions, tropicalizing, and plugging in the values from the
previous example, we get:

strop(x
(1)
1 ) = 0 strop(x

(1)
2 ) = 0 strop(x

(1)
3 ) = 3

strop(x
(2)
1 ) = 1 strop(x

(2)
2 ) = 3 strop(x

(2)
3 ) = 1

strop(x
(3)
1 ) = 1 strop(x

(3)
2 ) = 0 strop(x

(3)
3 ) = 0

Thus, R2R1R2(b1 ⊗ b2 ⊗ b3) = 2 3 ⊗ 1 1 1 ⊗ 2 2 2 3 .

6. Questions

We conclude with some questions for future work.

Question 1. What are the explicit formulas for general permutations?

While the results of the present paper are limited to special permuta-
tions, we explored some other permutations and our findings suggested that

there may be nice formulas in general. An interesting example is s(x
(1)
2 ),

where n = 2, m = 4, and s = s2s3s1s2 = (13)(24). The following factor

appears in the numerator of s(x
(1)
2 ):

x
(1)
1 x

(2)
1 x

(1)
2 x

(2)
2 + x

(1)
1 x

(2)
1 x

(1)
2 x

(2)
3 + x

(2)
1 x

(1)
2 x

(1)
2 x

(2)
3 + x

(2)
1 x

(1)
2 x

(1)
3 x

(2)
3

+ x
(1)
1 x

(2)
1 x

(1)
2 x

(2)
4 + x

(2)
1 x

(1)
2 x

(1)
2 x

(2)
4 + x

(1)
1 x

(2)
1 x

(1)
3 x

(2)
4 + 2x

(2)
1 x

(1)
2 x

(1)
3 x

(2)
4

+ x
(1)
2 x

(2)
2 x

(1)
3 x

(2)
4 + x

(2)
1 x

(1)
3 x

(1)
3 x

(2)
4 + x

(2)
2 x

(1)
3 x

(1)
3 x

(2)
4 + x

(2)
1 x

(1)
2 x

(1)
4 x

(2)
4

+ x
(2)
1 x

(1)
3 x

(1)
4 x

(2)
4 + x

(2)
2 x

(1)
3 x

(1)
4 x

(2)
4 + x

(1)
3 x

(2)
3 x

(1)
4 x

(2)
4 .

Unlike our Ω functions, some monomials in this factor have a coefficient

of 2 or contain squares, such as (x
(1)
2 )2 and (x

(1)
3 )2. It would be interesting to

understand this factor as an example of a generalization of our Ω functions
and interpret it in terms of cylindric networks.

Question 2. Is there a combinatorial proof of algebraic identities such as
Lemma 2.12 and Lemma 3.1 using cylindric networks?

Currently, our proofs of Lemma 2.12 and Lemma 3.1 rely on only ele-
mentary algebra. As we have combinatorially interpreted factors involved in
these identities, it is natural to look for combinatorial proofs. One possibility
would be that the two sides of a desired identity are two different ways of
writing the sum of weights of a certain set of path families.
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Question 3. Can cluster algebraic methods be used to prove our formulas?

In [7], Inoue, Lam, and Pylyavskyy define the cluster R-matrix, a trans-

formation obtained from a sequence of cluster mutations. They then use a

change of variables to obtain the birational R-matrix from the cluster R-

matrix. Motivated by these results, the connection between cluster algebras

and the plabic R-matrix, a generalization of the birational R-matrix, was

further studied by the first author in [3]. These connections cluster algebras

may be able to be exploited to find more elegant proofs of our formulas or

to extend our results.
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