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Small domination-type invariants in random graphs
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For c ∈ R
+ ∪ {∞} and a graph G, a function f : V (G) →

{0, 1, c} is called a c-self dominating function of G if for every
vertex u ∈ V (G), f(u) ≥ c or max{f(v) : v ∈ NG(u)} ≥ 1,
where NG(u) is the neighborhood of u in G. The minimum weight
w(f) =

∑
u∈V (G) f(u) of a c-self dominating function f of G is

called the c-self domination number of G. The c-self domination
concept is a common generalization of three domination-type in-
variants; (original) domination, total domination and Roman dom-
ination. In this paper, we investigate a behavior of the c-self dom-
ination number in random graphs for small c.
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1. Introduction

Throughout this paper, we let R+ and Z
+ denote the sets of positive numbers

and positive integers, respectively. Let G be a graph. Let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. For a vertex u ∈
V (G), we let NG(u) denote the neighborhood of u in G; thus, NG(u) =
{v ∈ V (G) : uv ∈ E(G)}. A set S ⊆ V (G) is a dominating set (resp. a
total dominating set) of G if each vertex in V (G) \ S (resp. each vertex
in V (G)) is adjacent to a vertex in S. The minimum size of a dominating
set (resp. a total dominating set) of G, denoted by γ(G) (resp. γt(G)), is
called the domination number (resp. the total domination number) of G.
Because a graph G with isolated vertices has no total dominating set, the
total domination number has been typically defined only for graphs without
isolated vertices. However, for convenience, we define γt(G) as γt(G) = ∞ if
G has an isolated vertex. Domination and total domination are important
invariants in graph theory because they have many applications in both
theoretical and applied problems [5, 6, 7].
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The first author [4] recently defined a novel domination-type concept as
follows: Let G be a graph. For a function f : V (G) → R

+ ∪ {0,∞}, the
weight w(f) of f is defined by w(f) =

∑
u∈V (G) f(u). Let c ∈ R

+ ∪ {∞}.
A function f : V (G) → R

+ ∪ {0,∞} is a c-self dominating function (or
c-SDF ) of G if for each u ∈ V (G), f(u) ≥ c or max{f(v) : v ∈ NG(u)} ≥ 1.
Then the following proposition holds.

Proposition 1.1 (Furuya [4]). Let c ∈ R
+ ∪ {∞}, and let G be a graph. If

f is a c-SDF of G, then there exists a c-SDF g of G such that w(g) ≤ w(f)
and g(u) ∈ {0, 1, c} for all u ∈ V (G).

Based on Proposition 1.1, the minimum weight of a c-SDF of G is well-
defined. The minimum weight of a c-SDF of G, denoted by γc(G), is called
the c-self domination number of G. Note that γ1(G) = γ(G) and γ∞(G) =
γt(G) for all graphs G (see [4]). Furthermore, the 1

2 -self domination number
is equal to half of the Roman domination number defined in Subsection 1.1.
Hence the self domination concept is a common generalization of three well-
studied invariants.

In this paper, our primary objective is to analyze the behavior of the
c-self domination number in Erdős–Rényi model random graphs G(n, p)
on [n] := {1, 2, . . . , n}. For p ∈ (0, 1) and n ∈ Z

+ \ {1}, let ap(n) =
log1/(1−p)

n
log1/(1−p) n lnn . Then the following are elucidated.

Theorem A (Wieland and Godbole [9]). For any p ∈ (0, 1) a fixed constant,
γ(G(n, p)) ∈ {	ap(n)
+ 1, 	ap(n)
+ 2} with a probability that tends to 1 as
n → ∞.

Theorem B (Bonato and Wang [2]). For any p ∈ (0, 1) a fixed constant,
γt(G(n, p)) ∈ {	ap(n)
+1, 	ap(n)
+2} with a probability that tends to 1 as
n → ∞.

Remark 1. Recall that our definition of total domination is not conven-
tional because we define γt(G) = ∞ for graphs G with an isolated vertex.
Hence the total domination in Theorem B strictly differs from the one pre-
sented in this paper. However, Bonato and Wang [2] proved that G(n, p) has
a total dominating set of size 	ap(n)
 + 2 with a probability that tends to
1 as n → ∞. Furthermore, since γ(G) ≤ γt(G) for all graphs G, it follows
from Theorem A that G(n, p) has no total dominating set of size 	ap(n)

with a probability that tends to 1 as n → ∞. Hence Theorem B holds under
our definition.

By the definition of self domination, if c, c′ ∈ R
+ ∪ {∞} satisfy c ≤ c′,

then γc(G) ≤ γc
′
(G) for all graphs G. Here, we note that for c ∈ (1,∞),
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the value γc(G) may be a non-integer if c is a non-integer. Therefore, the
following result is obtained as a corollary of Theorems A and B.

Corollary 1.2. For c ∈ [1,∞) and any p ∈ (0, 1) a fixed constant,
γc(G(n, p)) ∈ [	ap(n)
 + 1, 	ap(n)
 + 2] with a probability that tends to 1
as n → ∞.

In this paper, we focus on c-self domination in the remaining case, that
is, the case where c ∈ (0, 1). To state our main result, we extend the floor
	∗
. For t ∈ Z

+ and a ∈ R, let 	a
t be the largest number in {m1 +
m2

t :
m1,m2 ∈ Z, m1+

m2

t ≤ a}. Recall that ap(n) = log1/(1−p)
n

log1/(1−p) n lnn . For

p ∈ (0, 1), t ∈ Z
+ and n ∈ Z

+ \ {1}, let bp,t(n) = 		ap(n)
t + 1
t 
 + 1. Note

that if 	ap(n)
t+ 1
t is a non-integer, then bp,t(n) is the smallest integer more

than ap(n); if 	ap(n)
t + 1
t is an integer, then bp,t(n) is the second smallest

integer more than ap(n). Our main result is the following:

Theorem 1.3. Let s and t be integers with 2 ≤ s ≤ t − 1. Then for any
p ∈ (0, 1) a fixed constant,

γ
s

t (G(n, p)) ∈
[
	ap(n)
t +

1

t
, bp,t(n)

]
\
{
bp,t(n)−

i

t
: t− s+ 1 ≤ i ≤ t− 1

}

with a probability that tends to 1 as n → ∞.

Our approach is similar to that of previous problem. In particular, we
determine a random variable corresponding to c-SDFs and calculate its ex-
pected value in Section 3. Then we obtain a weaker result than Theorem 1.3:

Pr

(
γ

s

t (G(n, p)) ∈
[
	ap(n)
t +

1

t
, bp,t(n)

])
→ 1 (n → ∞)

(Theorem 3.1). The highlight of this paper is presented in Section 4. Al-
though several known results for domination-type invariants in random
graphs are proven by simply bounding a random variable, we can refine the
above weak result to Theorem 1.3 using an additional graph-theoretic ap-
proach. Note that bp,t(n) ≤ 	ap(n)
t+ t+1

t and γ
s

t (G) ∈ {m1+
m2

t : m1,m2 ∈
Z
+∪{0}} for all graphs G. Thus Theorem 3.1 claims that γ

s

t (G(n, p)) takes
at most t+ 1 values with a high probability, and Theorem 1.3 improves “at
most t+1” to “at most t−s+2”. In Subsection 1.1, we focus on the Roman
domination number and its related topic.

Remark 2. Using a similar strategy as in Sections 3 and 4, we can es-
timate γc(G(n, p)) even if c ∈ (0, 1) is an irrational number. However, it
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seems difficult to describe an optimal formula. However, we can provide the
following estimated formula (based on Theorem 3.1): Let c ∈ (0, 1) be an
irrational number. Then for any p ∈ (0, 1) a fixed constant and ε ∈ R

+,
Pr(γc(G(n, p)) ∈ (ap(n), ap(n) + 1 + ε]) → 1 (n → ∞).

1.1. Roman domination and differential

A function f : V (G) → {0, 1, 2} is a Roman dominating function of G if
each vertex u ∈ V (G) with f(u) = 0 is adjacent to a vertex v ∈ V (G) with
f(v) = 2. The minimum weight of a Roman dominating function of G, de-
noted by γR(G), is called the Roman domination number of G. Roman dom-
ination was introduced by Stewart [8], and was further studied by Cockayne

et al. [3]. Since γR(G) = 2γ
1

2 (G) for all graphs G, we obtain the following
result as a corollary of Theorem 1.3.

Corollary 1.4. For any p ∈ (0, 1) a fixed constant, γR(G(n, p)) ∈
{2	ap(n)
2 + i : 1 ≤ i ≤ 3} with a probability that tends to 1 as n → ∞.

Roman domination is closely related to another important invariant.
The differential of a graph G, denoted by ∂(G), is defined as ∂(G) =
max{|(

⋃
u∈X NG(u)) − X| − |X| : X ⊆ V (G)}. The differential has been

widely studied because it was inspired by information diffusion in social
networks. Recently, Bermudo et al. [1] validated a very useful result that
every graph G satisfies γR(G) + ∂(G) = |V (G)|. Hence Corollary 1.4 gives
the following.

Corollary 1.5. For any p ∈ (0, 1) a fixed constant, ∂(G(n, p)) ∈ {n −
2	ap(n)
2 − i : 1 ≤ i ≤ 3} with a probability that tends to 1 as n → ∞.

2. Lemmas

In this section, we prepare a few lemmas that will be used in our argument.
We start with two fundamental lemmas related to the c-self domination
concept.

Lemma 2.1. Let a ∈ R
+ and c ∈ (0, 1), and let G be a graph of order at least

a. Then γc(G) ≤ a if and only if there exists a c-SDF f : V (G) → {0, 1, c}
of G such that a− 1 < w(f) ≤ a.

Proof. The “if” part is trivial. Thus it suffices to prove the “only if” part.
Suppose that γc(G) ≤ a. Then by Proposition 1.1, there exists a c-SDF f
of G such that w(f) ≤ a and f(u) ∈ {0, 1, c} for all u ∈ V (G). Choose f so
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that w(f) is as large as possible under these constraints. If w(f) = |V (G)|,
then w(f) = a because w(f) ≤ a ≤ |V (G)| = w(f), as desired. Thus we may
assume that w(f) < |V (G)|. Since c ∈ (0, 1), there exists a vertex u0 ∈ V (G)
such that f(u0) ∈ {0, c}. Then the function g : V (G) → {0, 1, c} with

g(u) =

{
1 (u = u0)

f(u) (u �= u0)

is a c-SDF of G and w(g) > w(f). This together with the maximality of
w(f) implies that a < w(g) ≤ w(f) + 1, and so a− 1 < w(f) ≤ a.

Lemma 2.2. Let s and t be integers with 2 ≤ s ≤ t− 1. Let G be a graph,
and suppose that γ

s

t (G) is a non-integer and γ
s

t (G) ≤ 	γ s

t (G)
+ s−1
t . Then

γ
1

t (G) < 	γ s

t (G)
.
Proof. Let f : V (G) → {0, 1, st} be an s

t -SDF of G with w(f) = γ
s

t (G),

and let U = {u ∈ V (G) : f(u) = s
t}. Since γ

s

t (G) is a non-integer, we have

U �= ∅. If |U | = 1, then γ
s

t (G) = 	γ s

t (G)
+ s
t , which contradicts the second

assumption of the lemma. Thus |U | ≥ 2.
Let g : V (G) → {0, 1, 1t } be the function with

g(u) =

{
1
t (u ∈ U)

f(u) (u /∈ U).

Then g is a 1
t -SDF of G, and hence

γ
1

t (G) ≤ w(g)

= w(f)− |U |(s− 1)

t

≤ γ
s

t (G)− 2(s− 1)

t

≤ 	γ s

t (G)
 − s− 1

t

< 	γ s

t (G)
,

as desired.

The following lemmas are well-known (or proved by easy argument) in
mathematics.

Lemma 2.3 (Stirling’s formula). For n ∈ Z
+, n! ≥

√
2πn

(
n
e

)n
.

Lemma 2.4. For x ≥ 0, 1− x ≤ e−x.
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3. Crude estimation

In this section, we prove the following theorem, which is weaker than The-

orem 1.3.

Theorem 3.1. Let s and t be integers with 1 ≤ s ≤ t − 1. Then for any

p ∈ (0, 1) a fixed constant,

γ
s

t (G(n, p)) ∈
[
	ap(n)
t +

1

t
, bp,t(n)

]

with a probability that tends to 1 as n → ∞.

In [9], Wieland and Godbole implicitly proved the following lemma.

Lemma 3.2 (Wieland and Godbole [9]). Let ε ∈ R
+. Then for any p ∈ (0, 1)

a fixed constant, γ(G(n, p)) ≤ �ap(n) + ε� with a probability that tends to 1

as n → ∞.

Lemma 3.3. For p ∈ (0, 1), t ∈ Z
+ and n ∈ Z

+\{1}, we have �ap(n)+ 1
2t� ≤

bp,t(n).

Proof. There exist non-negative integers m1 and m2 such that m1 +
m2

t ≤
ap(n) < m1 + m2+1

t and 0 ≤ m2 ≤ t − 1. Suppose m2 = t − 1. Since

	ap(n)
t+ 1
t = m1+

t−1
t + 1

t = m1+1 (∈ Z
+), we have bp,t(n) = 		ap(n)
t+

1
t 
 + 1 = m1 + 2. On the other hand, ap(n) +

1
2t < m1 + 1 + 1

2t , and so

�ap(n) + 1
2t� ≤ m1 + 2 = bp,t(n), as desired. Thus we may assume that

0 ≤ m2 ≤ t− 2.

Since 	ap(n)
t+ 1
t = m1+

m2+1
t ≤ m1+

t−1
t , we have bp,t(n) = 		ap(n)
t+

1
t 
+1 = m1+1. In contrast, ap(n)+

1
2t < m1+

t−1
t + 1

2t = m1+
2t−1
2t < m1+1,

and so �ap(n) + 1
2t� ≤ m1 + 1 = bp,t(n), as desired.

Proof of Theorem 3.1. Note that γ
s

t (G) ≤ γ1(G) = γ(G) for all graphs G.

Hence, by Lemma 3.2 with ε = 1
2t and Lemma 3.3,

Pr(γ
s

t (G(n, p)) ≤ bp,t(n)) ≥ Pr(γ(G(n, p)) ≤ bp,t(n))

≥ Pr

(
γ(G(n, p)) ≤

⌈
ap(n) +

1

2t

⌉)
→ 1 (n → ∞).

Consequently, we obtain the upper bound of the theorem.
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Subsequently, we prove the lower bound of the theorem. Let M = {m1+
m2

t : m1,m2 ∈ Z
+ ∪ {0}}, and for a ∈ R

+, let M(a) = {(m1,m2) : m1 +
m2

t = a}. Then M(a) �= ∅ if and only if a ∈ M. Furthermore, we note

that 	ap(n)
t+ 1
t is the smallest number in M that is more than ap(n). Since

γ
s

t (G) ≥ γ
1

t (G) for all graphs G, it suffices to show that γ
1

t (G(n, p)) > ap(n)

with a probability that tends to 1 as n → ∞.

For m1,m2 ∈ Z
+ ∪ {0}, let Xm1,m2

be the random variable counting

the number of 1
t -SDFs f : [n] → {0, 1, 1t } of G(n, p) with |{u ∈ [n] :

f(u) = 1}| = m1 and |{u ∈ [n] : f(u) = 1
t }| = m2. For a ∈ M, let

Xa =
∑

(m1,m2)∈M(a)Xm1,m2
.

For a graph G, an ordered pair (S1, S2) of subsets of V (G) with S1 ∩
S2 = ∅ is called a 1

t -self dominating pair of G if the function f : V (G) →
{0, 1, 1t } with

f(u) =

⎧⎪⎨
⎪⎩
0 (u ∈ V (G) \ (S1 ∪ S2))

1 (u ∈ S1)
1
t (u ∈ S2)

is a 1
t -SDF of G. Let Sm1,m2

=
{
(S1, S2) ∈

(
[n]
m1

)
×
(
[n]
m2

)
: S1 ∩ S2 = ∅

}
, and

for (S1, S2) ∈ Sm1,m2
, let IS1,S2

be the random variable satisfying

IS1,S2
=

{
1 ((S1, S2) is a

1
t -self dominating pair of G(n, p))

0 (otherwise).

Note that Xm1,m2
=
∑

(S1,S2)∈Sm1,m2
IS1,S2

. The following claim plays a key

role in our argument.

Claim 3.1. For non-negative integers m1 and m2,

E(Xm1,m2
) =

n!

(n−m1 −m2)! m1! m2!
(1− (1− p)m1)n−m1−m2 .

Proof. For (S1, S2) ∈ Sm1,m2
, since Pr(NG(u) ∩ S1 �= ∅) = 1− (1− p)m1 for

each u ∈ [n] \ (S1 ∪ S2),

Pr(IS1,S2
= 1) =

∏
u∈[n]\(S1∪S2)

Pr(NG(u)∩S1 �= ∅) = (1− (1− p)m1)n−m1−m2 .
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Since Xm1,m2
=
∑

(S1,S2)∈Sm1,m2
IS1,S2

, it follows that

E(Xm1,m2
) =

∑
(S1,S2)∈Sm1,m2

E(IS1,S2
)

=
∑

(S1,S2)∈Sm1,m2

Pr(IS1,S2
= 1)

=

(
n

m1

)(
n−m1

m2

)
(1− (1− p)m1)n−m1−m2 ,

as desired.

Since 1
1−p > 1, the value h0 = min{h ∈ Z

+ : t − 1
(1−p)a < 0 for

all a ≥ h} is a well-defined constant (depending on p and t only). For
x ∈ R

+, let L(x) = log1/(1−p) x. Note that ap(n) = log1/(1−p)
n

log1/(1−p) n lnn =

L( n
L(n) lnn). In the remainder of this proof, we considerG(n, p) for sufficiently

large n. Thus, for example, we may assume that L(L(n)) > 0, n > tap(n),
ap(n) > h0, etc.

Claim 3.2. Let m1 and m2 be non-negative integers with ap(n)− 1 < m1+
m2

t ≤ ap(n). Then the following are satisfied.

(i) We have E(Xm1,m2
) < exp

[
(m1 +m2)(lnn+ 2)− L(n) lnn

(1−p)ap(n)−m1

]
.

(ii) If 0 ≤ m1 ≤ ap(n)−h0, then E(Xm1,m2
) < exp[t(2L(n)−L(L(n) lnn)×

lnn)].

Proof. (i) By Lemma 2.3, if m1 ≥ 1 and m2 ≥ 1, then

n!

(n−m1 −m2)! m1! m2!
≤ nm1+m2 · 1√

2πm1

(
m1

e

)m1
· 1√

2πm2

(
m2

e

)m2

< (en)m1+m2 ;

if mi = 0 for some i ∈ {1, 2}, then m3−i ≥ 1, and hence

n!

(n−m1 −m2)! m1! m2!
≤ nm3−i · 1

√
2πm3−i

(m3−i

e

)m3−i

< (en)m3−i = (en)m1+m2 .

In either case,

n!

(n−m1 −m2)! m1! m2!
< (en)m1+m2 .(1)
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Furthermore, we have

n(1− p)m1 =
n(1− p)

L( n

L(n) lnn
)

(1− p)ap(n)−m1
=

n · L(n) lnn
n

(1− p)ap(n)−m1
=

L(n) lnn

(1− p)ap(n)−m1
.

(2)

By Claim 3.1, Lemma 2.4, (1), and (2),

E(Xm1,m2
) =

n!

(n−m1 −m2)! m1! m2!
(1− (1− p)m1)n−m1−m2

< (en)m1+m2

(
e−(1−p)m1

)n−m1−m2

= exp[(m1 +m2) + (m1 +m2) lnn− n(1− p)m1

+ (m1 +m2)(1− p)m1 ]

≤ exp

[
2(m1 +m2) + (m1 +m2) lnn− L(n) lnn

(1− p)ap(n)−m1

]
.

(ii) By the definitions of m1 and m2, we have

m1 +m2 ≤ t
(
m1 +

m2

t

)
≤ tap(n) = t(L(n)− L(L(n) lnn)).(3)

Since ap(n) − m1 ≥ h0, it follows from the definition of h0 that (t −
1

(1−p)ap(n)−m1
)L(n) lnn < 0. This together with (i) and (3) implies that

E(Xm1,m2
) ≤ exp

[
(m1 +m2)(lnn+ 2)− L(n) lnn

(1− p)ap(n)−m1

]

≤ exp

[
t(L(n)− L(L(n) lnn))(lnn+ 2)− L(n) lnn

(1− p)ap(n)−m1

]

= exp

[(
t− 1

(1− p)ap(n)−m1

)
L(n) lnn

+t(2L(n)− L(L(n) lnn) lnn− 2L(L(n) lnn))]

< exp[t(2L(n)− L(L(n) lnn) lnn)],

as desired.

Claim 3.3. Let a ∈ M be a number with ap(n) − 1 < a ≤ ap(n). Then

E(Xa) → 0 if n → ∞.
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Proof. By the definition of Xa,

E(Xa) = E

⎛
⎝ ∑

(m1,m2)∈M(a)

Xm1,m2

⎞
⎠

=
∑

(m1,m2)∈M(a)
0≤m1≤ap(n)−h0

E(Xm1,m2
) +

∑
(m1,m2)∈M(a)
ap(n)−h0<m1≤a

E(Xm1,m2
).

Note that the number of m1 ∈ Z
+ satisfying ap(n)−h0 < m1 ≤ a is at most

h0 because a ≤ ap(n). Hence
∑

(m1,m2)∈M(a)
ap(n)−h0<m1≤a

E(Xm1,m2
) is a sum with a

constant number of terms. Thus it suffices to prove the following:

(A1)
∑

(m1,m2)∈M(a)
0≤m1≤ap(n)−h0

E(Xm1,m2
) → 0 (n → ∞), and

(A2) for each (m1,m2) ∈ M(a), if ap(n)−h0 < m1 ≤ a, then E(Xm1,m2
) →

0 (n → ∞).

By Claim 3.2(ii),

∑
(m1,m2)∈M(a)
0≤m1≤ap(n)−h0

E(Xm1,m2
)< (ap(n)−h0+1) exp[t(2L(n)−L(L(n) lnn) lnn)]

≤ ap(n) exp[t(2L(n)− L(L(n) lnn) lnn)]

= exp[ln ap(n) + t(2L(n)− L(L(n) lnn) lnn)]

< exp[lnL(n) + t(2L(n)− L(L(n) lnn) lnn)]

→ 0 (n → ∞),

which proves (A1).

Next, we assume that (m1,m2) ∈ M(a) satisfies ap(n) − h0 < m1 ≤ a,

and prove (A2). We have

m1 +m2 = t

(
m1 +

1

t
m2

)
− (t− 1)m1 < tap(n)− (t− 1)(ap(n)− h0)

= ap(n) + (t− 1)h0.

Note that α := (t−1)h0 is a constant depending solely on p and t. We further

remark that L(L(n) lnn) lnn > L(L(n) lnn) � max{L(n), lnn}. Hence it
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follows from Claim 3.2(i) that

E(Xm1,m2
) ≤ exp

[
(m1 +m2)(lnn+ 2)− L(n) lnn

(1− p)ap(n)−m1

]
< exp[(ap(n) + α)(lnn+ 2)− L(n) lnn]

= exp[−L(L(n) lnn) lnn+ 2L(n)− 2L(L(n) lnn) + α lnn+ 2α]

→ 0 (n → ∞),

which proves (A2).

Let An = {a ∈ M : ap(n)−1 < a ≤ ap(n)}. Then |An| ≤ t. In particular,∑
a∈An

E(Xa) is a sum with a constant number of terms. Consequently, it

follows from Lemma 2.1 and Claim 3.3 that

Pr(γ
1

t (G(n, p)) ≤ ap(n)) ≤
∑
a∈An

Pr(Xa ≥ 1) ≤
∑
a∈An

E(Xa) → 0 (n → ∞),

and so Pr(γ
1

t (G(n, p)) > ap(n)) → 1 (n → ∞).

This completes the proof of Theorem 3.1.

4. Graph-theoretical refinement of Theorem 3.1

In this section, we complete the proof of Theorem 1.3. Let s, t, and p be

numbers as in Theorem 1.3. Let ε ∈ R
+. Then by Theorem 3.1, there exists

N0 ∈ Z
+ such that for every integer n ≥ N0,

Pr

(
γ

1

t (G(n, p)) < 	ap(n)
t +
1

t

)
<

ε

2(s− 1)

and

Pr

(
γ

s

t (G(n, p)) /∈
[
	ap(n)
t +

1

t
, bp,t(n)

])
<

ε

2
.

Fix an integer n ≥ N0, and let i be an integer with t− s+1 ≤ i ≤ t− 1.

Since bp,t(n) is an integer, bp,t(n)− i
t is a non-integer. Furthermore, if a graph

G satisfies γ
s

t (G) = bp,t(n)− i
t , then

	γ s

t (G)
 =
⌊
bp,t(n)−

i

t

⌋
= bp,t(n)− 1,
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and hence

γ
s

t (G) = bp,t(n)−
i

t
= 	γ s

t (G)
+ 1− i

t
≤ 	γ s

t (G)
+ 1− t− s+ 1

t

= 	γ s

t (G)
+ s− 1

t
.

This together with Lemma 2.2 implies that if γ
s

t (G) = bp,t(n) − i
t , then

γ
1

t (G)< 	γ s

t (G)
= bp,t(n)−1. Hence we have Pr(γ
1

t (G(n, p))<bp,t(n)− 1) ≥
Pr(γ

s

t (G(n, p)) = bp,t(n) − i
t). On the other hand, since bp,t(n) − 1 =

		ap(n)
t + 1
t 
 ≤ 	ap(n)
t + 1

t ,

Pr

(
γ

s

t (G(n, p)) = bp,t(n)−
i

t

)
≤ Pr(γ

1

t (G(n, p)) < bp,t(n)− 1)

≤ Pr

(
γ

1

t (G(n, p)) < 	ap(n)
t +
1

t

)

<
ε

2(s− 1)
.

Consequently,

Pr

(
γ

s

t (G(n, p)) ∈
{
bp,t(n)−

i

t
: t− s+ 1 ≤ i ≤ t− 1

})
<

ε

2
,

and hence

Pr

(
γ

s

t (G(n, p)) /∈
[
	ap(n)
t +

1

t
, bp,t(n)

]

or γ
s

t (G(n, p)) ∈
{
bp,t(n)−

i

t
: t− s+ 1 ≤ i ≤ t− 1

})
<

ε

2
+

ε

2
= ε.

Since ε is arbitrary, this completes the proof of Theorem 1.3.
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