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Small domination-type invariants in random graphs

MiCHITAKA FURUYA* AND TAMAE KAWASAKI

For ¢ € Rt U {oo} and a graph G, a function f : V(G) —
{0,1,¢} is called a c-self dominating function of G if for every
vertex u € V(G), f(u) > ¢ or max{f(v) : v € Ng(u)} > 1,
where Ng(u) is the neighborhood of u in G. The minimum weight
w(f) = Yev(q) f(u) of a c-self dominating function f of G is
called the c-self domination number of GG. The c-self domination
concept is a common generalization of three domination-type in-
variants; (original) domination, total domination and Roman dom-
ination. In this paper, we investigate a behavior of the c-self dom-
ination number in random graphs for small c.
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1. Introduction

Throughout this paper, we let R™ and Z* denote the sets of positive numbers
and positive integers, respectively. Let G be a graph. Let V(G) and E(G)
denote the vertex set and the edge set of G, respectively. For a vertex u €
V(G), we let Ng(u) denote the neighborhood of uw in G; thus, Ng(u) =
{v e V(G) : wv € E(G)}. A set S C V(G) is a dominating set (resp. a
total dominating set) of G if each vertex in V(G) \ S (resp. each vertex
in V(G)) is adjacent to a vertex in S. The minimum size of a dominating
set (resp. a total dominating set) of G, denoted by v(G) (resp. 1(G)), is
called the domination number (resp. the total domination number) of G.
Because a graph G with isolated vertices has no total dominating set, the
total domination number has been typically defined only for graphs without
isolated vertices. However, for convenience, we define :(G) as v(G) = oo if
G has an isolated vertex. Domination and total domination are important
invariants in graph theory because they have many applications in both
theoretical and applied problems [5, 6, 7].
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The first author [4] recently defined a novel domination-type concept as
follows: Let G be a graph. For a function f : V(G) — Rt U {0, 00}, the
weight w(f) of f is defined by w(f) = 3 ey (g f(u). Let ¢ € R* U {oo}.
A function f : V(G) — Rt U {0,00} is a c-self dominating function (or
¢-SDF) of G if for each v € V(G), f(u) > ¢ or max{f(v) : v € Ng(u)} > 1.
Then the following proposition holds.

Proposition 1.1 (Furuya [4]). Let ¢ € Rt U {oo}, and let G be a graph. If
f is a c-SDF of G, then there exists a c-SDF g of G such that w(g) < w(f)
and g(u) € {0,1,c} for allu € V(G).

Based on Proposition 1.1, the minimum weight of a ¢-SDF of G is well-
defined. The minimum weight of a ¢-SDF of G, denoted by 7¢(G), is called
the c-self domination number of G. Note that 71 (G) = v(G) and v*(G) =
7(G) for all graphs G (see [4]). Furthermore, the 3-self domination number
is equal to half of the Roman domination number defined in Subsection 1.1.
Hence the self domination concept is a common generalization of three well-
studied invariants.

In this paper, our primary objective is to analyze the behavior of the
c-self domination number in Erdés—Rényi model random graphs G(n,p)
on [n] := {1,2,...,n}. For p € (0,1) and n € Z* \ {1}, let a,(n) =
logy/(1—p) W. Then the following are elucidated.

Theorem A (Wieland and Godbole [9]). For any p € (0,1) a fized constant,
v(G(n,p)) € {lap(n)] + 1, lap(n)| + 2} with a probability that tends to 1 as
n — 00.

Theorem B (Bonato and Wang [2]). For any p € (0,1) a fized constant,
1 (G(n,p)) € {lap(n)] + 1, |ap(n)] + 2} with a probability that tends to 1 as
n— 0.

Remark 1. Recall that our definition of total domination is not conven-
tional because we define v4(G) = oo for graphs G with an isolated vertex.
Hence the total domination in Theorem B strictly differs from the one pre-
sented in this paper. However, Bonato and Wang [2] proved that G(n, p) has
a total dominating set of size |a,(n)] + 2 with a probability that tends to
1 as n — oo. Furthermore, since v(G) < v(G) for all graphs G, it follows
from Theorem A that G(n,p) has no total dominating set of size |a,(n)]
with a probability that tends to 1 as n — oo. Hence Theorem B holds under
our definition.

By the definition of self domination, if ¢,¢’ € RT U {co} satisfy ¢ < ¢/,
then 7¢(G) < 7¢(G) for all graphs G. Here, we note that for ¢ € (1,00),



Small domination-type invariants in random graphs 533

the value v(G) may be a non-integer if ¢ is a non-integer. Therefore, the
following result is obtained as a corollary of Theorems A and B.

Corollary 1.2. For ¢ € [l,00) and any p € (0,1) a fized constant,
Y(G(n,p)) € [lap(n)] + 1, ap(n)] + 2] with a probability that tends to 1
asn — 0o.

In this paper, we focus on c-self domination in the remaining case, that
is, the case where ¢ € (0,1). To state our main result, we extend the floor
|%]. For t € Z* and a € R, let |a]; be the largest number in {m1 + "2
m1,mg € Z, m1+ " < a}. Recall that ap(n) = logy /(1_p) W For

(n

€(0,1),teZ" and n € Z+t\ {1}, let bys(n) = [lap(n)]s + 1] + 1. Note
that if [ap(n)|¢+ 1 is a non integer, then by, ;(n) is the smallest integer more
than a,(n); if |a ( )¢ + is an integer, then by ;(n) is the second smallest
integer more than a,(n). Our main result is the following:

Theorem 1.3. Let s and t be integers with 2 < s <t — 1. Then for any
€ (0,1) a fized constant,

TGO € Lol 3o o) \{ ) = = s+ 1< i< 01

with a probability that tends to 1 as n — oo.

Our approach is similar to that of previous problem. In particular, we
determine a random variable corresponding to ¢-SDF's and calculate its ex-
pected value in Section 3. Then we obtain a weaker result than Theorem 1.3:

Pr (1 (Gnp) € |Lapm)e + 5, bpa()| ) > 1 (0 = o)
( [RIEEE)

(Theorem 3.1). The highlight of this paper is presented in Section 4. Al-
though several known results for domination-type invariants in random
graphs are proven by simply bounding a random variable, we can refine the
above weak result to Theorem 1.3 using an additional graph-theoretic ap-
proach. Note that by (n) < |ay(n)];+ 2L and i (G) € {my + 52 tmy,ma €
Z*+Uu{0}} for all graphs G. Thus Theorem 3.1 claims that v+ (G(n,p)) takes
at most ¢t 4+ 1 values with a high probability, and Theorem 1.3 improves “at
most ¢+ 1”7 to “at most ¢t —s+2”. In Subsection 1.1, we focus on the Roman
domination number and its related topic.

Remark 2. Using a similar strategy as in Sections 3 and 4, we can es-
timate v¢(G(n,p)) even if ¢ € (0,1) is an irrational number. However, it
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seems difficult to describe an optimal formula. However, we can provide the
following estimated formula (based on Theorem 3.1): Let ¢ € (0,1) be an
irrational number. Then for any p € (0,1) a fixed constant and ¢ € R,
Pr(v“(G(n,p)) € (ap(n),ap(n) +1+¢]) = 1 (n = o00).

1.1. Roman domination and differential

A function f : V(G) — {0,1,2} is a Roman dominating function of G if
each vertex u € V(G) with f(u) = 0 is adjacent to a vertex v € V(G) with
f(v) = 2. The minimum weight of a Roman dominating function of G, de-
noted by vr(G), is called the Roman domination number of G. Roman dom-
ination was introduced by Stewart [8], and was further studied by Cockayne
et al. [3]. Since vr(G) = 2v2(G) for all graphs G, we obtain the following
result as a corollary of Theorem 1.3.

Corollary 1.4. For any p € (0,1) a fized constant, yr(G(n,p)) €
{2lap(n)]2 +1i:1 < i < 3} with a probability that tends to 1 as n — oo.

Roman domination is closely related to another important invariant.
The differential of a graph G, denoted by O0(G), is defined as 9(G) =
max{|(U,ex No(uw)) — X| — [X] : X C V(G)}. The differential has been
widely studied because it was inspired by information diffusion in social
networks. Recently, Bermudo et al. [1] validated a very useful result that
every graph G satisfies Yg(G) + 9(G) = |V(G)|. Hence Corollary 1.4 gives
the following.

Corollary 1.5. For any p € (0,1) a fized constant, O(G(n,p)) € {n —
2|lap(n)]e —i:1 <i <3} with a probability that tends to 1 as n — oo.

2. Lemmas

In this section, we prepare a few lemmas that will be used in our argument.
We start with two fundamental lemmas related to the c-self domination
concept.

Lemma 2.1. Leta € Rt andc € (0,1), and let G be a graph of order at least
a. Then v°(G) < a if and only if there exists a c-SDF f : V(G) — {0,1,c}
of G such that a — 1 < w(f) < a.

Proof. The “if” part is trivial. Thus it suffices to prove the “only if” part.
Suppose that v¢(G) < a. Then by Proposition 1.1, there exists a ¢-SDF f
of G such that w(f) < a and f(u) € {0,1,c} for all uw € V(G). Choose f so
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that w(f) is as large as possible under these constraints. If w(f) = |V (G)|,
then w(f) = a because w(f) < a < |V(G)| = w(f), as desired. Thus we may
assume that w(f) < |V(G)|. Since ¢ € (0, 1), there exists a vertex ug € V(G)
such that f(ug) € {0, c}. Then the function g : V(G) — {0, 1, ¢} with

u) = 1 (u = up)
9(w) {f(u) (u # o)

is a ¢-SDF of G and w(g) > w(f). This together with the maximality of
w(f) implies that a < w(g) < w(f)+ 1, and so a — 1 < w(f) < a. O

Lemma 2.2. Let s and t be integers with 2 < s <t —1. Let G be a graph,
and suppose that v+ (G) is a non-integer and v+ (G) < |y (G)| + s Then

YH(G) < (@),
Proof. Let f : V(G) — {0,1,%} be an £-SDF of G with w(f) = v+ (G),

"1

and let U = {u € V(G) : f(u) = £}. Since v+ (G) is a non-integer, we have
U #0.If U] =1, then v+ (G) = | v+ (G)] + £, which contradicts the second
assumption of the lemma. Thus |U| > 2.

Let g : V(G) = {0,1, 1} be the function with

u) = % (uel)
9 {f<u> (ug U).

Then g is a %—SDF of G, and hence

as desired. O

The following lemmas are well-known (or proved by easy argument) in
mathematics.

Lemma 2.3 (Stirling’s formula). Forn € ZT, n! > v/2mn (%)n
Lemma 2.4. Forx >0,1—xz <e™ ",
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3. Crude estimation

In this section, we prove the following theorem, which is weaker than The-
orem 1.3.

Theorem 3.1. Let s and t be integers with 1 < s < t — 1. Then for any
p € (0,1) a fized constant,

V(G € [Lapm))e + 1. byaln)

with a probability that tends to 1 as n — oo.
In [9], Wieland and Godbole implicitly proved the following lemma.

Lemma 3.2 (Wieland and Godbole [9]). Lete € RT. Then for anyp € (0,1)
a fized constant, v(G(n,p)) < [ap(n) + €] with a probability that tends to 1
asn — 0o.

Lemma 3.3. Forp € (0,1),t € Z* andn € Z*\{1}, we have [ay(n)+5;] <
bpyt(n).

Proof. There exist non-negative integers my and ms such that mq + % <
ap(n) < my + m%"l and 0 < mo < ¢t — 1. Suppose mo = ¢t — 1. Since
lap(n) )i+ 1 =mi+ 5L +1 =m;+1 (€ ZF), we have by, (n) = |[ap(n)]¢ +
1]+ 1 = mq + 2. On the other hand, ay(n) + & < m1 + 1+ 2, and so
[ap(n) + 2] < mq + 2 = byy(n), as desired. Thus we may assume that
0<mg <t—2.

Since |ay(n)]i+1 = mi+22H < my+1 we have by (n) = | |ap(n) |+
%J—H = mq+1. In contrast, ap(n)+2it < ml—l—%%—% = mﬁ—zg—_l <mi+1,
and so [ap(n) + 5] < m1 + 1= byy(n), as desired. O

Proof of Theorem 3.1. Note that v+ (G) < v (G) = v(G) for all graphs G.
Hence, by Lemma 3.2 with ¢ = 2% and Lemma 3.3,

Pr(y7(G(n,p)) < byi(n)) = Pr(y(G(n,p)) < bpi(n))

=1 (n— o00).

Consequently, we obtain the upper bound of the theorem.
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Subsequently, we prove the lower bound of the theorem. Let M = {m; +

2 :my,my € ZT U{0}}, and for a € RT, let M(a) = {(m1,ma) : m1 +
B2 —= q}. Then M(a) # 0 if and only if @ € M. Furthermore, we note
that [a,(n)];+ + is the smallest number in M that is more than a,(n). Since

s

7% (G) > ~7(G) for all graphs G, it suffices to show that ¢ (G(n, p)) > ap(n)
with a probability that tends to 1 as n — oo.

o+

For my,mg € Z* U {0}, let X, m, be the random variable counting
the number of 3-SDFs f : [n] — {0,1,1} of G(n,p) with [{u € [n] :
flu) = 1} = my and [{u € [n] : f(u) = 1}| = mo. For a € M, let
Xa =2 m.ma)eM(a) Xmim-

For a graph G, an ordered pair (S1,S2) of subsets of V(G) with S1 N
Sy = () is called a %—self dominating pair of G if the function f : V(G) —
{0,1,1} with

0 (ueV(G)\(51US52))
flu)=191 (uesS)
% (u S SQ)

is & }-SDF of G. Let Syn,my = { (S1,82) € (1) x (1) : $11.8, = 0}, and
for (S1,52) € Smy,mss let Ig, s, be the random variable satisfying

I {1 ((S1,S2) is a 1-self dominating pair of G(n, p))
51,52 =

0 (otherwise).

Note that X, m, = Z( 1,52)ES s Is, s,. The following claim plays a key
role in our argument.

Claim 3.1. For non-negative integers my and ma,

n!

E(Xml,mz) = (1 — (1 = p)my)n—ma—ma,

(n —mq —ma)! my! my!

Proof. For (S1,52) € Sy, m,, since Pr(Ng(u) NSy # 0) =1 — (1 —p)™ for
each u € [n] \ (51U Ss2),

Pr(IShSz = 1) = H Pr(NG(U) m51 7é @) = (1 — (1 _p)ml)n*mlfmz'
u€[n]\(S1US>2)
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Since Xy, m, = Z(Sl,Sz)eSmLmz Is, s,, it follows that

E(Xm1,m2) = Z E<ISMS2)
(81,592) €Sy ,my

= Y Pss=1)

(Sl ,52)68"11 M2

(1) am gy,

as desired. O

Since 1T1p > 1, the value hg = min{h € Z* : t — ﬁ < 0 for
all @ > h} is a well-defined constant (depending on p and ¢ only). For
x € R, let L(x) = logy (1) = Note that a,(n) = logy /(1_p) W =
L(m) In the remainder of this proof, we consider G(n, p) for sufficiently
large n. Thus, for example, we may assume that L(L(n)) > 0, n > tay(n),

ap(n) > ho, etc.

Claim 3.2. Let my and my be non-negative integers with a,(n) —1 < mq +
2 < ap(n). Then the following are satisfied.

(i) We have E(Xp, m,) < exp [(ml +m2)(lnn +2) — O—Lﬁ% )

(i) If0 < my < ap(n)—ho, then E(Xpm, m,) < explt(2L(n)—L(L(n)Inn) x
Inn)|.

Proof. (i) By Lemma 2.3, if m; > 1 and mqo > 1, then

n! < ymatma | 1 1

(n—my —ma)! my! mo! — V2mmy ()™ V2 (m2)™
< (en)mtme;

if m; = 0 for some i € {1,2}, then m3_; > 1, and hence

n! < e 1 _
> Ma_; 3—i
(n —mq —ma)! mq! mo! V2mmg—; ()
< (en)™- = (en)™ T2,
In either case,
n!

< (en)™tmz,

(1)

(n —my —ma)! mq! mo!
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Furthermore, we have

(2)

n(l—p

)m1 _ 7’L(1 _p)L(L("r;hm) n- L(n?)llnn L(n) Inn

(1= p)n=m (1= p)m(m=m = (1= p)mlm—m’

By Claim 3.1, Lemma 2.4, (1), and (2),

n!

E(Xm1,m2) = '(1 — (1 — p)mr)nTmams

(n —mq —ma)! mi! mo!

< (en)mtme <€_(1—p)"”1>

n—mi;—ms

= exp[(m1 + m2) + (m1 +m2)Inn —n(l —p)™
+ (m1 +ma)(1 —p)™|
L(n)lnn

< exp [2(7711 +m2) + (m1+ma)Inn — (1 = p)as(m)—m:

By the definitions of m, and mo, we have
(3) nu+nm§t(my+%?)§u%@):ﬂL@)—L@Uﬂmn»

Since ap(n) —my > hy, it follows from the definition of hg that (¢ —

W)L(n) Inn < 0. This together with (i) and (3) implies that

E(Xm,m,) <exp |(m1+mz)(Inn+2) —

L(n)lnn ]
(1= pyw—m

L(n)lnn ]
(1= pym—m

<exp |t(L(n) — L(L(n)Inn))(Inn + 2) —

[ 1
= exp _<t - W) L(n)Inn
+t(2L(n) — L(L(n)Inn)Inn — 2L(L(n)lnn))]
< exp[t(2L(n) — L(L(n) Inn)Inn)],

as desired. O

Claim 3.3. Let a € M be a number with a,(n) —1 < a < ay(n). Then
E(X,) — 0 ifn — oo.
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Proof. By the definition of X,

E(X,) =E > Xome
(m1,ma)eEM(a)

— Z E(Xm, m,) + Z E(Xm, ms)-

(m1,m2)eM(a) (mq,mz2)eM(a)
0<m;<a,(n)—ho ap(n)—ho<mi<a

Note that the number of m; € Z" satisfying ap(n) —ho < m; < a is at most

ho because a < ap(n). Hence Y (m, ma)em(a) E(Xm,m,) is a sum with a
ap(n)—ho<mi<a
constant number of terms. Thus it suffices to prove the following:

(A1) 3 (myma)emia) B(Xmim,) = 0 (n = 00), and
0<m;<a,(n)—ho
(A2) for each (my,ma) € M(a),if ay(n)—hy < my < a, then E(Xy, m,) —

0 (n — 00).

By Claim 3.2(ii),

> E(Xony m,) < (ap(n) —ho+ 1) exp[t(2L(n) — L(L(n) Inn) Inn)]

(m1,m2)EM(a)
0<mi<a,(n)—ho

< ap(n)exp[t(2L(n) — L(L(n)

= exp|lnay(n) +t(2L(n) — L(L(n)Inn)Inn)]
< exp[ln L(n) + t(2L(n) — L(L(n)Inn)Inn)]
-0 (n— 00),

Inn)lnn)]

which proves (Al).
Next, we assume that (my, ma) € M(a) satisfies a,(n) — hg < mi < q,
and prove (A2). We have

mi+mg =1 <m1 + %mg) —(t—1my < tap(n) —(t— 1)(ap(n) — ho)
= ap(n) + (t — 1)ho.

Note that o := (t—1)hg is a constant depending solely on p and t. We further
remark that L(L(n)Inn)lnn > L(L(n)lnn) > max{L(n),Inn}. Hence it
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follows from Claim 3.2(i) that

L(n)lnn
(1= p)a(m)—m
< exp[(ap(n) + a)(Inn +2) — L(n) Inn]
=exp|—L(L(n)Inn)Inn + 2L(n) — 2L(L(n)Inn) + alnn + 2a]
=0 (n— o0),

E(thmz) < exXp (ml + mg)(lnn -+ 2) —

which proves (A2). O

Let A, = {a e M:ay(n)—1<a < ap(n)}. Then |A,| < t. In particular,
> aca, B(Xq) is a sum with a constant number of terms. Consequently, it
follows from Lemma 2.1 and Claim 3.3 that

Pr(y#(G(n,p) < ap(n)) < Y Pr(Xe>1) < Y E(Xa) 50 (n— o0),
a€A, a€A,

and so Pr(y7(G(n,p)) > ap(n)) =1 (n — 00).
This completes the proof of Theorem 3.1. O

4. Graph-theoretical refinement of Theorem 3.1

In this section, we complete the proof of Theorem 1.3. Let s, t, and p be
numbers as in Theorem 1.3. Let € € RT. Then by Theorem 3.1, there exists
Ny € Z* such that for every integer n > N,

Pr (’yi(G(”yp)) < lap(n)]s + %) < 2(s—1)

and

| ™

Pr (4G # [lap(li+ 7. )] ) <

Fix an integer n > Ny, and let 7 be an integer with t —s+1 <7 <t —1.
Since by,¢(n) is an integer, by ¢(n)—; is a non-integer. Furthermore, if a graph

G satisfies v+ (G) = by 4(n) — !, then

7

@) = [bi) = § | = Byt 1.
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and hence

t—s—+1

<liE)+1- =2

o~ | .

Y (G) = bpe(n) — z = |y (@) +1-
s—1

= i@+

This together with Lemma 2.2 implies that if v+ (G) = by.(n) — L, then
’y%(G) < |77 (G)] =bp(n)—1. Hence we have Pr(vt (G(n,p)) < bpt(n)—1) >
Pr(v+(G(n,p)) = bpi(n) — ;). On the other hand, since b, (n) — 1 =
Hap(n)Jt + %J < L%(”)Jt + %7

&=

Pr (4H(G00) = ) = 1) < P12 Gnp)) < bye) ~ 1)

< Pr ('y%(G(n,p)) < lap(n)]s + %)

Consequently,

N ™

Pr (’yi(G(n,p)) € {bp,t(n) - % t—s+1<i<t— 1}) <
and hence

Pr (77 (G(n,p) & |Lap(n)]e + - bpe(n)
( o 3 o]

E+€_€
2—.

[\)

or v+ (G(n,p)) € {bp’t(n) - % t—s+1<i<t-— 1}) <
Since € is arbitrary, this completes the proof of Theorem 1.3.
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