Small domination-type invariants in random graphs

MICHITAKA FURUYA^{*} AND TAMAE KAWASAKI

For $c \in \mathbb{R}^+ \cup \{\infty\}$ and a graph G, a function $f : V(G) \rightarrow \{0, 1, c\}$ is called a *c*-self dominating function of G if for every vertex $u \in V(G)$, $f(u) \geq c$ or $\max\{f(v) : v \in N_G(u)\} \geq 1$, where $N_G(u)$ is the neighborhood of u in G. The minimum weight $w(f) = \sum_{u \in V(G)} f(u)$ of a *c*-self dominating function f of G is called the *c*-self domination number of G. The *c*-self domination concept is a common generalization of three domination-type invariants; (original) domination, total domination and Roman domination. In this paper, we investigate a behavior of the *c*-self domination number in random graphs for small c.

AMS 2000 subject classifications: Primary 05C69; secondary 05C80.

KEYWORDS AND PHRASES: Domination number, random graph, self domination number, Roman domination number, differential.

1. Introduction

Throughout this paper, we let \mathbb{R}^+ and \mathbb{Z}^+ denote the sets of positive numbers and positive integers, respectively. Let G be a graph. Let V(G) and E(G)denote the vertex set and the edge set of G, respectively. For a vertex $u \in$ V(G), we let $N_G(u)$ denote the *neighborhood* of u in G; thus, $N_G(u) =$ $\{v \in V(G) : uv \in E(G)\}$. A set $S \subseteq V(G)$ is a *dominating set* (resp. a *total dominating set*) of G if each vertex in $V(G) \setminus S$ (resp. each vertex in V(G)) is adjacent to a vertex in S. The minimum size of a dominating set (resp. a total dominating set) of G, denoted by $\gamma(G)$ (resp. $\gamma_t(G)$), is called the *domination number* (resp. the *total domination number*) of G. Because a graph G with isolated vertices has no total dominating set, the total domination number has been typically defined only for graphs without isolated vertices. However, for convenience, we define $\gamma_t(G)$ as $\gamma_t(G) = \infty$ if G has an isolated vertex. Domination and total domination are important invariants in graph theory because they have many applications in both theoretical and applied problems [5, 6, 7].

^{*}This work was supported by JSPS KAKENHI Grant number JP18K13449.

The first author [4] recently defined a novel domination-type concept as follows: Let G be a graph. For a function $f: V(G) \to \mathbb{R}^+ \cup \{0, \infty\}$, the weight w(f) of f is defined by $w(f) = \sum_{u \in V(G)} f(u)$. Let $c \in \mathbb{R}^+ \cup \{\infty\}$. A function $f: V(G) \to \mathbb{R}^+ \cup \{0, \infty\}$ is a c-self dominating function (or c-SDF) of G if for each $u \in V(G)$, $f(u) \ge c$ or $\max\{f(v) : v \in N_G(u)\} \ge 1$. Then the following proposition holds.

Proposition 1.1 (Furuya [4]). Let $c \in \mathbb{R}^+ \cup \{\infty\}$, and let G be a graph. If f is a c-SDF of G, then there exists a c-SDF g of G such that $w(g) \leq w(f)$ and $g(u) \in \{0, 1, c\}$ for all $u \in V(G)$.

Based on Proposition 1.1, the minimum weight of a *c*-SDF of *G* is welldefined. The minimum weight of a *c*-SDF of *G*, denoted by $\gamma^c(G)$, is called the *c*-self domination number of *G*. Note that $\gamma^1(G) = \gamma(G)$ and $\gamma^{\infty}(G) =$ $\gamma_t(G)$ for all graphs *G* (see [4]). Furthermore, the $\frac{1}{2}$ -self domination number is equal to half of the Roman domination number defined in Subsection 1.1. Hence the self domination concept is a common generalization of three wellstudied invariants.

In this paper, our primary objective is to analyze the behavior of the *c*-self domination number in Erdős–Rényi model random graphs G(n, p)on $[n] := \{1, 2, ..., n\}$. For $p \in (0, 1)$ and $n \in \mathbb{Z}^+ \setminus \{1\}$, let $a_p(n) = \log_{1/(1-p)} \frac{n}{\log_{1/(1-p)} n \ln n}$. Then the following are elucidated.

Theorem A (Wieland and Godbole [9]). For any $p \in (0, 1)$ a fixed constant, $\gamma(G(n, p)) \in \{\lfloor a_p(n) \rfloor + 1, \lfloor a_p(n) \rfloor + 2\}$ with a probability that tends to 1 as $n \to \infty$.

Theorem B (Bonato and Wang [2]). For any $p \in (0,1)$ a fixed constant, $\gamma_t(G(n,p)) \in \{\lfloor a_p(n) \rfloor + 1, \lfloor a_p(n) \rfloor + 2\}$ with a probability that tends to 1 as $n \to \infty$.

Remark 1. Recall that our definition of total domination is not conventional because we define $\gamma_t(G) = \infty$ for graphs G with an isolated vertex. Hence the total domination in Theorem B strictly differs from the one presented in this paper. However, Bonato and Wang [2] proved that G(n, p) has a total dominating set of size $\lfloor a_p(n) \rfloor + 2$ with a probability that tends to 1 as $n \to \infty$. Furthermore, since $\gamma(G) \leq \gamma_t(G)$ for all graphs G, it follows from Theorem A that G(n, p) has no total dominating set of size $\lfloor a_p(n) \rfloor$ with a probability that tends to 1 as $n \to \infty$. Hence Theorem B holds under our definition.

By the definition of self domination, if $c, c' \in \mathbb{R}^+ \cup \{\infty\}$ satisfy $c \leq c'$, then $\gamma^c(G) \leq \gamma^{c'}(G)$ for all graphs G. Here, we note that for $c \in (1, \infty)$, the value $\gamma^{c}(G)$ may be a non-integer if c is a non-integer. Therefore, the following result is obtained as a corollary of Theorems A and B.

Corollary 1.2. For $c \in [1,\infty)$ and any $p \in (0,1)$ a fixed constant, $\gamma^c(G(n,p)) \in [\lfloor a_p(n) \rfloor + 1, \lfloor a_p(n) \rfloor + 2]$ with a probability that tends to 1 as $n \to \infty$.

In this paper, we focus on c-self domination in the remaining case, that is, the case where $c \in (0, 1)$. To state our main result, we extend the floor $\lfloor * \rfloor$. For $t \in \mathbb{Z}^+$ and $a \in \mathbb{R}$, let $\lfloor a \rfloor_t$ be the largest number in $\{m_1 + \frac{m_2}{t} : m_1, m_2 \in \mathbb{Z}, m_1 + \frac{m_2}{t} \leq a\}$. Recall that $a_p(n) = \log_{1/(1-p)} \frac{n}{\log_{1/(1-p)} n \ln n}$. For $p \in (0, 1), t \in \mathbb{Z}^+$ and $n \in \mathbb{Z}^+ \setminus \{1\}$, let $b_{p,t}(n) = \lfloor \lfloor a_p(n) \rfloor_t + \frac{1}{t} \rfloor + 1$. Note that if $\lfloor a_p(n) \rfloor_t + \frac{1}{t}$ is a non-integer, then $b_{p,t}(n)$ is the smallest integer more than $a_p(n)$; if $\lfloor a_p(n) \rfloor_t + \frac{1}{t}$ is an integer, then $b_{p,t}(n)$ is the second smallest integer more than $a_p(n)$. Our main result is the following:

Theorem 1.3. Let s and t be integers with $2 \le s \le t - 1$. Then for any $p \in (0,1)$ a fixed constant,

$$\gamma^{\frac{s}{t}}(G(n,p)) \in \left[\lfloor a_p(n) \rfloor_t + \frac{1}{t}, \ b_{p,t}(n) \right] \setminus \left\{ b_{p,t}(n) - \frac{i}{t} : t - s + 1 \le i \le t - 1 \right\}$$

with a probability that tends to 1 as $n \to \infty$.

Our approach is similar to that of previous problem. In particular, we determine a random variable corresponding to c-SDFs and calculate its expected value in Section 3. Then we obtain a weaker result than Theorem 1.3:

$$\Pr\left(\gamma^{\frac{s}{t}}(G(n,p)) \in \left[\lfloor a_p(n) \rfloor_t + \frac{1}{t}, \ b_{p,t}(n)\right]\right) \to 1 \quad (n \to \infty)$$

(Theorem 3.1). The highlight of this paper is presented in Section 4. Although several known results for domination-type invariants in random graphs are proven by simply bounding a random variable, we can refine the above weak result to Theorem 1.3 using an additional graph-theoretic approach. Note that $b_{p,t}(n) \leq \lfloor a_p(n) \rfloor_t + \frac{t+1}{t}$ and $\gamma^{\frac{s}{t}}(G) \in \{m_1 + \frac{m_2}{t} : m_1, m_2 \in \mathbb{Z}^+ \cup \{0\}\}$ for all graphs G. Thus Theorem 3.1 claims that $\gamma^{\frac{s}{t}}(G(n,p))$ takes at most t+1 values with a high probability, and Theorem 1.3 improves "at most t+1" to "at most t-s+2". In Subsection 1.1, we focus on the Roman domination number and its related topic.

Remark 2. Using a similar strategy as in Sections 3 and 4, we can estimate $\gamma^{c}(G(n,p))$ even if $c \in (0,1)$ is an irrational number. However, it

seems difficult to describe an optimal formula. However, we can provide the following estimated formula (based on Theorem 3.1): Let $c \in (0,1)$ be an irrational number. Then for any $p \in (0,1)$ a fixed constant and $\varepsilon \in \mathbb{R}^+$, $\Pr(\gamma^c(G(n,p)) \in (a_p(n), a_p(n) + 1 + \varepsilon]) \to 1 \ (n \to \infty).$

1.1. Roman domination and differential

A function $f: V(G) \to \{0, 1, 2\}$ is a Roman dominating function of G if each vertex $u \in V(G)$ with f(u) = 0 is adjacent to a vertex $v \in V(G)$ with f(v) = 2. The minimum weight of a Roman dominating function of G, denoted by $\gamma_R(G)$, is called the Roman domination number of G. Roman domination was introduced by Stewart [8], and was further studied by Cockayne et al. [3]. Since $\gamma_R(G) = 2\gamma^{\frac{1}{2}}(G)$ for all graphs G, we obtain the following result as a corollary of Theorem 1.3.

Corollary 1.4. For any $p \in (0,1)$ a fixed constant, $\gamma_R(G(n,p)) \in \{2\lfloor a_p(n) \rfloor_2 + i : 1 \le i \le 3\}$ with a probability that tends to 1 as $n \to \infty$.

Roman domination is closely related to another important invariant. The differential of a graph G, denoted by $\partial(G)$, is defined as $\partial(G) = \max\{|(\bigcup_{u \in X} N_G(u)) - X| - |X| : X \subseteq V(G)\}$. The differential has been widely studied because it was inspired by information diffusion in social networks. Recently, Bermudo et al. [1] validated a very useful result that every graph G satisfies $\gamma_R(G) + \partial(G) = |V(G)|$. Hence Corollary 1.4 gives the following.

Corollary 1.5. For any $p \in (0,1)$ a fixed constant, $\partial(G(n,p)) \in \{n - 2\lfloor a_p(n) \rfloor_2 - i : 1 \le i \le 3\}$ with a probability that tends to 1 as $n \to \infty$.

2. Lemmas

In this section, we prepare a few lemmas that will be used in our argument. We start with two fundamental lemmas related to the c-self domination concept.

Lemma 2.1. Let $a \in \mathbb{R}^+$ and $c \in (0, 1)$, and let G be a graph of order at least a. Then $\gamma^c(G) \leq a$ if and only if there exists a c-SDF $f : V(G) \to \{0, 1, c\}$ of G such that $a - 1 < w(f) \leq a$.

Proof. The "if" part is trivial. Thus it suffices to prove the "only if" part. Suppose that $\gamma^c(G) \leq a$. Then by Proposition 1.1, there exists a *c*-SDF *f* of *G* such that $w(f) \leq a$ and $f(u) \in \{0, 1, c\}$ for all $u \in V(G)$. Choose *f* so that w(f) is as large as possible under these constraints. If w(f) = |V(G)|, then w(f) = a because $w(f) \le a \le |V(G)| = w(f)$, as desired. Thus we may assume that w(f) < |V(G)|. Since $c \in (0, 1)$, there exists a vertex $u_0 \in V(G)$ such that $f(u_0) \in \{0, c\}$. Then the function $g: V(G) \to \{0, 1, c\}$ with

$$g(u) = \begin{cases} 1 & (u = u_0) \\ f(u) & (u \neq u_0) \end{cases}$$

is a c-SDF of G and w(g) > w(f). This together with the maximality of w(f) implies that $a < w(g) \le w(f) + 1$, and so $a - 1 < w(f) \le a$.

Lemma 2.2. Let s and t be integers with $2 \le s \le t-1$. Let G be a graph, and suppose that $\gamma^{\frac{s}{t}}(G)$ is a non-integer and $\gamma^{\frac{s}{t}}(G) \le \lfloor \gamma^{\frac{s}{t}}(G) \rfloor + \frac{s-1}{t}$. Then $\gamma^{\frac{1}{t}}(G) < \lfloor \gamma^{\frac{s}{t}}(G) \rfloor$.

Proof. Let $f: V(G) \to \{0, 1, \frac{s}{t}\}$ be an $\frac{s}{t}$ -SDF of G with $w(f) = \gamma^{\frac{s}{t}}(G)$, and let $U = \{u \in V(G) : f(u) = \frac{s}{t}\}$. Since $\gamma^{\frac{s}{t}}(G)$ is a non-integer, we have $U \neq \emptyset$. If |U| = 1, then $\gamma^{\frac{s}{t}}(G) = \lfloor \gamma^{\frac{s}{t}}(G) \rfloor + \frac{s}{t}$, which contradicts the second assumption of the lemma. Thus $|U| \ge 2$.

Let $g: V(G) \to \{0, 1, \frac{1}{t}\}$ be the function with

$$g(u) = \begin{cases} \frac{1}{t} & (u \in U) \\ f(u) & (u \notin U). \end{cases}$$

Then g is a $\frac{1}{t}$ -SDF of G, and hence

$$\begin{split} & \sqrt[]{t}^{\frac{1}{t}}(G) \leq w(g) \\ & = w(f) - \frac{|U|(s-1)}{t} \\ & \leq \gamma^{\frac{s}{t}}(G) - \frac{2(s-1)}{t} \\ & \leq \lfloor \gamma^{\frac{s}{t}}(G) \rfloor - \frac{s-1}{t} \\ & < \lfloor \gamma^{\frac{s}{t}}(G) \rfloor, \end{split}$$

as desired.

The following lemmas are well-known (or proved by easy argument) in mathematics.

Lemma 2.3 (Stirling's formula). For $n \in \mathbb{Z}^+$, $n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. **Lemma 2.4.** For $x \ge 0$, $1 - x \le e^{-x}$.

3. Crude estimation

In this section, we prove the following theorem, which is weaker than Theorem 1.3.

Theorem 3.1. Let s and t be integers with $1 \le s \le t - 1$. Then for any $p \in (0,1)$ a fixed constant,

$$\gamma^{\frac{s}{t}}(G(n,p)) \in \left[\lfloor a_p(n) \rfloor_t + \frac{1}{t}, \ b_{p,t}(n) \right]$$

with a probability that tends to 1 as $n \to \infty$.

In [9], Wieland and Godbole implicitly proved the following lemma.

Lemma 3.2 (Wieland and Godbole [9]). Let $\varepsilon \in \mathbb{R}^+$. Then for any $p \in (0, 1)$ a fixed constant, $\gamma(G(n, p)) \leq \lceil a_p(n) + \varepsilon \rceil$ with a probability that tends to 1 as $n \to \infty$.

Lemma 3.3. For $p \in (0,1)$, $t \in \mathbb{Z}^+$ and $n \in \mathbb{Z}^+ \setminus \{1\}$, we have $\lceil a_p(n) + \frac{1}{2t} \rceil \leq b_{p,t}(n)$.

Proof. There exist non-negative integers m_1 and m_2 such that $m_1 + \frac{m_2}{t} \leq a_p(n) < m_1 + \frac{m_2+1}{t}$ and $0 \leq m_2 \leq t-1$. Suppose $m_2 = t-1$. Since $\lfloor a_p(n) \rfloor_t + \frac{1}{t} = m_1 + \frac{t-1}{t} + \frac{1}{t} = m_1 + 1 \ (\in \mathbb{Z}^+)$, we have $b_{p,t}(n) = \lfloor \lfloor a_p(n) \rfloor_t + \frac{1}{t} \rfloor + 1 = m_1 + 2$. On the other hand, $a_p(n) + \frac{1}{2t} < m_1 + 1 + \frac{1}{2t}$, and so $\lceil a_p(n) + \frac{1}{2t} \rceil \leq m_1 + 2 = b_{p,t}(n)$, as desired. Thus we may assume that $0 \leq m_2 \leq t-2$.

Since $\lfloor a_p(n) \rfloor_t + \frac{1}{t} = m_1 + \frac{m_2 + 1}{t} \le m_1 + \frac{t - 1}{t}$, we have $b_{p,t}(n) = \lfloor \lfloor a_p(n) \rfloor_t + \frac{1}{t} \rfloor + 1 = m_1 + 1$. In contrast, $a_p(n) + \frac{1}{2t} < m_1 + \frac{t - 1}{t} + \frac{1}{2t} = m_1 + \frac{2t - 1}{2t} < m_1 + 1$, and so $\lceil a_p(n) + \frac{1}{2t} \rceil \le m_1 + 1 = b_{p,t}(n)$, as desired.

Proof of Theorem 3.1. Note that $\gamma^{\frac{s}{t}}(G) \leq \gamma^{1}(G) = \gamma(G)$ for all graphs G. Hence, by Lemma 3.2 with $\varepsilon = \frac{1}{2t}$ and Lemma 3.3,

$$\Pr(\gamma^{\frac{s}{t}}(G(n,p)) \le b_{p,t}(n)) \ge \Pr(\gamma(G(n,p)) \le b_{p,t}(n))$$
$$\ge \Pr\left(\gamma(G(n,p)) \le \left\lceil a_p(n) + \frac{1}{2t} \right\rceil\right)$$
$$\to 1 \quad (n \to \infty).$$

Consequently, we obtain the upper bound of the theorem.

Subsequently, we prove the lower bound of the theorem. Let $\mathbb{M} = \{m_1 + \frac{m_2}{t} : m_1, m_2 \in \mathbb{Z}^+ \cup \{0\}\}$, and for $a \in \mathbb{R}^+$, let $\mathcal{M}(a) = \{(m_1, m_2) : m_1 + \frac{m_2}{t} = a\}$. Then $\mathcal{M}(a) \neq \emptyset$ if and only if $a \in \mathbb{M}$. Furthermore, we note that $\lfloor a_p(n) \rfloor_t + \frac{1}{t}$ is the smallest number in \mathbb{M} that is more than $a_p(n)$. Since $\gamma^{\frac{s}{t}}(G) \geq \gamma^{\frac{1}{t}}(G)$ for all graphs G, it suffices to show that $\gamma^{\frac{1}{t}}(G(n, p)) > a_p(n)$ with a probability that tends to 1 as $n \to \infty$.

For $m_1, m_2 \in \mathbb{Z}^+ \cup \{0\}$, let X_{m_1,m_2} be the random variable counting the number of $\frac{1}{t}$ -SDFs $f : [n] \to \{0, 1, \frac{1}{t}\}$ of G(n, p) with $|\{u \in [n] : f(u) = 1\}| = m_1$ and $|\{u \in [n] : f(u) = \frac{1}{t}\}| = m_2$. For $a \in \mathbb{M}$, let $X_a = \sum_{(m_1,m_2) \in \mathcal{M}(a)} X_{m_1,m_2}$.

For a graph G, an ordered pair (S_1, S_2) of subsets of V(G) with $S_1 \cap S_2 = \emptyset$ is called a $\frac{1}{t}$ -self dominating pair of G if the function $f: V(G) \to \{0, 1, \frac{1}{t}\}$ with

$$f(u) = \begin{cases} 0 & (u \in V(G) \setminus (S_1 \cup S_2)) \\ 1 & (u \in S_1) \\ \frac{1}{t} & (u \in S_2) \end{cases}$$

is a $\frac{1}{t}$ -SDF of G. Let $\mathcal{S}_{m_1,m_2} = \left\{ (S_1, S_2) \in {\binom{[n]}{m_1}} \times {\binom{[n]}{m_2}} : S_1 \cap S_2 = \emptyset \right\}$, and for $(S_1, S_2) \in \mathcal{S}_{m_1,m_2}$, let I_{S_1,S_2} be the random variable satisfying

$$I_{S_1,S_2} = \begin{cases} 1 & ((S_1, S_2) \text{ is a } \frac{1}{t} \text{-self dominating pair of } G(n, p)) \\ 0 & (\text{otherwise}). \end{cases}$$

Note that $X_{m_1,m_2} = \sum_{(S_1,S_2)\in \mathcal{S}_{m_1,m_2}} I_{S_1,S_2}$. The following claim plays a key role in our argument.

Claim 3.1. For non-negative integers m_1 and m_2 ,

$$E(X_{m_1,m_2}) = \frac{n!}{(n-m_1-m_2)! m_1! m_2!} (1-(1-p)^{m_1})^{n-m_1-m_2}$$

Proof. For $(S_1, S_2) \in \mathcal{S}_{m_1, m_2}$, since $\Pr(N_G(u) \cap S_1 \neq \emptyset) = 1 - (1-p)^{m_1}$ for each $u \in [n] \setminus (S_1 \cup S_2)$,

$$\Pr(I_{S_1,S_2}=1) = \prod_{u \in [n] \setminus (S_1 \cup S_2)} \Pr(N_G(u) \cap S_1 \neq \emptyset) = (1 - (1-p)^{m_1})^{n-m_1-m_2}$$

Since $X_{m_1,m_2} = \sum_{(S_1,S_2) \in S_{m_1,m_2}} I_{S_1,S_2}$, it follows that

$$E(X_{m_1,m_2}) = \sum_{\substack{(S_1,S_2)\in\mathcal{S}_{m_1,m_2}}} E(I_{S_1,S_2})$$

=
$$\sum_{\substack{(S_1,S_2)\in\mathcal{S}_{m_1,m_2}}} \Pr(I_{S_1,S_2} = 1)$$

=
$$\binom{n}{m_1}\binom{n-m_1}{m_2}(1-(1-p)^{m_1})^{n-m_1-m_2},$$

as desired.

Since $\frac{1}{1-p} > 1$, the value $h_0 = \min\{h \in \mathbb{Z}^+ : t - \frac{1}{(1-p)^a} < 0$ for all $a \ge h\}$ is a well-defined constant (depending on p and t only). For $x \in \mathbb{R}^+$, let $L(x) = \log_{1/(1-p)} x$. Note that $a_p(n) = \log_{1/(1-p)} \frac{n}{\log_{1/(1-p)} n \ln n} = L(\frac{n}{L(n) \ln n})$. In the remainder of this proof, we consider G(n, p) for sufficiently large n. Thus, for example, we may assume that L(L(n)) > 0, $n > ta_p(n)$, $a_p(n) > h_0$, etc.

Claim 3.2. Let m_1 and m_2 be non-negative integers with $a_p(n) - 1 < m_1 + \frac{m_2}{t} \leq a_p(n)$. Then the following are satisfied.

(i) We have
$$E(X_{m_1,m_2}) < \exp\left[(m_1 + m_2)(\ln n + 2) - \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}\right].$$

(ii) $If 0 \le m_1 \le a_p(n) - h_0$, then $E(X_{m_1,m_2}) < \exp[t(2L(n) - L(L(n)\ln n) \times \ln n)].$

Proof. (i) By Lemma 2.3, if $m_1 \ge 1$ and $m_2 \ge 1$, then

$$\frac{n!}{(n-m_1-m_2)! \ m_1! \ m_2!} \le n^{m_1+m_2} \cdot \frac{1}{\sqrt{2\pi m_1} \left(\frac{m_1}{e}\right)^{m_1}} \cdot \frac{1}{\sqrt{2\pi m_2} \left(\frac{m_2}{e}\right)^{m_2}} < (en)^{m_1+m_2};$$

if $m_i = 0$ for some $i \in \{1, 2\}$, then $m_{3-i} \ge 1$, and hence

$$\frac{n!}{(n-m_1-m_2)! \ m_1! \ m_2!} \le n^{m_{3-i}} \cdot \frac{1}{\sqrt{2\pi m_{3-i}} \left(\frac{m_{3-i}}{e}\right)^{m_{3-i}}} < (en)^{m_{3-i}} = (en)^{m_1+m_2}.$$

In either case,

(1)
$$\frac{n!}{(n-m_1-m_2)! \ m_1! \ m_2!} < (en)^{m_1+m_2}.$$

Furthermore, we have

(2)

$$n(1-p)^{m_1} = \frac{n(1-p)^{L(\frac{n}{L(n)\ln n})}}{(1-p)^{a_p(n)-m_1}} = \frac{n \cdot \frac{L(n)\ln n}{n}}{(1-p)^{a_p(n)-m_1}} = \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}$$

By Claim 3.1, Lemma 2.4, (1), and (2),

$$E(X_{m_1,m_2}) = \frac{n!}{(n-m_1-m_2)! m_1! m_2!} (1-(1-p)^{m_1})^{n-m_1-m_2}$$

$$< (en)^{m_1+m_2} \left(e^{-(1-p)^{m_1}}\right)^{n-m_1-m_2}$$

$$= \exp[(m_1+m_2) + (m_1+m_2)\ln n - n(1-p)^{m_1} + (m_1+m_2)(1-p)^{m_1}]$$

$$\leq \exp\left[2(m_1+m_2) + (m_1+m_2)\ln n - \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}\right].$$

(ii) By the definitions of m_1 and m_2 , we have

(3)
$$m_1 + m_2 \le t \left(m_1 + \frac{m_2}{t} \right) \le t a_p(n) = t (L(n) - L(L(n) \ln n)).$$

Since $a_p(n) - m_1 \ge h_0$, it follows from the definition of h_0 that $(t - \frac{1}{(1-p)^{a_p(n)-m_1}})L(n) \ln n < 0$. This together with (i) and (3) implies that

$$\begin{split} E(X_{m_1,m_2}) &\leq \exp\left[(m_1 + m_2)(\ln n + 2) - \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}\right] \\ &\leq \exp\left[t(L(n) - L(L(n)\ln n))(\ln n + 2) - \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}\right] \\ &= \exp\left[\left(t - \frac{1}{(1-p)^{a_p(n)-m_1}}\right)L(n)\ln n + t(2L(n) - L(L(n)\ln n)\ln n - 2L(L(n)\ln n))\right] \\ &< \exp[t(2L(n) - L(L(n)\ln n)\ln n)], \end{split}$$

as desired.

Claim 3.3. Let $a \in \mathbb{M}$ be a number with $a_p(n) - 1 < a \leq a_p(n)$. Then $E(X_a) \to 0$ if $n \to \infty$.

539

Proof. By the definition of X_a ,

$$E(X_a) = E\left(\sum_{\substack{(m_1, m_2) \in \mathcal{M}(a) \\ 0 \le m_1 \le a_p(n) - h_0}} X_{m_1, m_2}\right)$$

=
$$\sum_{\substack{(m_1, m_2) \in \mathcal{M}(a) \\ 0 \le m_1 \le a_p(n) - h_0}} E(X_{m_1, m_2}) + \sum_{\substack{(m_1, m_2) \in \mathcal{M}(a) \\ a_p(n) - h_0 < m_1 \le a}} E(X_{m_1, m_2}).$$

Note that the number of $m_1 \in \mathbb{Z}^+$ satisfying $a_p(n) - h_0 < m_1 \leq a$ is at most h_0 because $a \leq a_p(n)$. Hence $\sum_{\substack{(m_1,m_2) \in \mathcal{M}(a) \\ a_p(n) - h_0 < m_1 \leq a}} E(X_{m_1,m_2})$ is a sum with a constant number of terms. Thus it suffices to prove the following:

- (A1) $\sum_{\substack{(m_1,m_2)\in\mathcal{M}(a)\\0\le m_1\le a_p(n)-h_0}} E(X_{m_1,m_2}) \to 0 \ (n\to\infty)$, and
- (A2) for each $(m_1, m_2) \in \mathcal{M}(a)$, if $a_p(n) h_0 < m_1 \le a$, then $E(X_{m_1, m_2}) \rightarrow 0 \ (n \rightarrow \infty)$.

By Claim 3.2(ii),

$$\sum_{\substack{(m_1,m_2)\in\mathcal{M}(a)\\0\leq m_1\leq a_p(n)-h_0}} E(X_{m_1,m_2}) < (a_p(n)-h_0+1)\exp[t(2L(n)-L(L(n)\ln n)\ln n)] \\ \leq a_p(n)\exp[t(2L(n)-L(L(n)\ln n)\ln n)] \\ = \exp[\ln a_p(n)+t(2L(n)-L(L(n)\ln n)\ln n)] \\ < \exp[\ln L(n)+t(2L(n)-L(L(n)\ln n)\ln n)]$$

which proves (A1).

Next, we assume that $(m_1, m_2) \in \mathcal{M}(a)$ satisfies $a_p(n) - h_0 < m_1 \leq a$, and prove (A2). We have

 $\rightarrow 0 \ (n \rightarrow \infty).$

$$m_1 + m_2 = t \left(m_1 + \frac{1}{t} m_2 \right) - (t - 1)m_1 < ta_p(n) - (t - 1)(a_p(n) - h_0)$$

= $a_p(n) + (t - 1)h_0.$

Note that $\alpha := (t-1)h_0$ is a constant depending solely on p and t. We further remark that $L(L(n)\ln n)\ln n > L(L(n)\ln n) \gg \max\{L(n),\ln n\}$. Hence it

follows from Claim 3.2(i) that

$$E(X_{m_1,m_2}) \le \exp\left[(m_1 + m_2)(\ln n + 2) - \frac{L(n)\ln n}{(1-p)^{a_p(n)-m_1}}\right]$$

< $\exp[(a_p(n) + \alpha)(\ln n + 2) - L(n)\ln n]$
= $\exp[-L(L(n)\ln n)\ln n + 2L(n) - 2L(L(n)\ln n) + \alpha\ln n + 2\alpha]$
 $\rightarrow 0 \quad (n \rightarrow \infty),$

which proves (A2).

Let $A_n = \{a \in \mathbb{M} : a_p(n) - 1 < a \leq a_p(n)\}$. Then $|A_n| \leq t$. In particular, $\sum_{a \in A_n} E(X_a)$ is a sum with a constant number of terms. Consequently, it follows from Lemma 2.1 and Claim 3.3 that

$$\Pr(\gamma^{\frac{1}{t}}(G(n,p)) \le a_p(n)) \le \sum_{a \in A_n} \Pr(X_a \ge 1) \le \sum_{a \in A_n} E(X_a) \to 0 \quad (n \to \infty),$$

and so $\Pr(\gamma^{\frac{1}{t}}(G(n,p)) > a_p(n)) \to 1 \ (n \to \infty).$

This completes the proof of Theorem 3.1.

4. Graph-theoretical refinement of Theorem 3.1

In this section, we complete the proof of Theorem 1.3. Let s, t, and p be numbers as in Theorem 1.3. Let $\varepsilon \in \mathbb{R}^+$. Then by Theorem 3.1, there exists $N_0 \in \mathbb{Z}^+$ such that for every integer $n \ge N_0$,

$$\Pr\left(\gamma^{\frac{1}{t}}(G(n,p)) < \lfloor a_p(n) \rfloor_t + \frac{1}{t}\right) < \frac{\varepsilon}{2(s-1)}$$

and

$$\Pr\left(\gamma^{\frac{s}{t}}(G(n,p))\notin\left[\lfloor a_p(n)\rfloor_t+\frac{1}{t},\ b_{p,t}(n)\right]\right)<\frac{\varepsilon}{2}.$$

Fix an integer $n \ge N_0$, and let *i* be an integer with $t - s + 1 \le i \le t - 1$. Since $b_{p,t}(n)$ is an integer, $b_{p,t}(n) - \frac{i}{t}$ is a non-integer. Furthermore, if a graph *G* satisfies $\gamma^{\frac{s}{t}}(G) = b_{p,t}(n) - \frac{i}{t}$, then

$$\lfloor \gamma^{\frac{s}{t}}(G) \rfloor = \left\lfloor b_{p,t}(n) - \frac{i}{t} \right\rfloor = b_{p,t}(n) - 1,$$

541

and hence

$$\gamma^{\frac{s}{t}}(G) = b_{p,t}(n) - \frac{i}{t} = \lfloor \gamma^{\frac{s}{t}}(G) \rfloor + 1 - \frac{i}{t} \leq \lfloor \gamma^{\frac{s}{t}}(G) \rfloor + 1 - \frac{t-s+1}{t}$$
$$= \lfloor \gamma^{\frac{s}{t}}(G) \rfloor + \frac{s-1}{t}.$$

This together with Lemma 2.2 implies that if $\gamma^{\frac{s}{t}}(G) = b_{p,t}(n) - \frac{i}{t}$, then $\gamma^{\frac{1}{t}}(G) < \lfloor \gamma^{\frac{s}{t}}(G) \rfloor = b_{p,t}(n) - 1$. Hence we have $\Pr(\gamma^{\frac{1}{t}}(G(n,p)) < b_{p,t}(n) - 1) \ge \Pr(\gamma^{\frac{s}{t}}(G(n,p)) = b_{p,t}(n) - \frac{i}{t})$. On the other hand, since $b_{p,t}(n) - 1 = \lfloor \lfloor a_p(n) \rfloor_t + \frac{1}{t} \rfloor \le \lfloor a_p(n) \rfloor_t + \frac{1}{t}$,

$$\Pr\left(\gamma^{\frac{s}{t}}(G(n,p)) = b_{p,t}(n) - \frac{i}{t}\right) \leq \Pr\left(\gamma^{\frac{1}{t}}(G(n,p)) < b_{p,t}(n) - 1\right)$$
$$\leq \Pr\left(\gamma^{\frac{1}{t}}(G(n,p)) < \lfloor a_p(n) \rfloor_t + \frac{1}{t}\right)$$
$$< \frac{\varepsilon}{2(s-1)}.$$

Consequently,

$$\Pr\left(\gamma^{\frac{s}{t}}(G(n,p)) \in \left\{b_{p,t}(n) - \frac{i}{t} : t - s + 1 \le i \le t - 1\right\}\right) < \frac{\varepsilon}{2},$$

and hence

$$\Pr\left(\gamma^{\frac{s}{t}}(G(n,p))\notin\left[\lfloor a_p(n)\rfloor_t+\frac{1}{t},\ b_{p,t}(n)\right]\right)$$

or $\gamma^{\frac{s}{t}}(G(n,p))\in\left\{b_{p,t}(n)-\frac{i}{t}:t-s+1\leq i\leq t-1\right\}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$

Since ε is arbitrary, this completes the proof of Theorem 1.3.

Acknowledgment

The authors would like to thank referees for careful reading, and Professor Yoshimi Egawa for his helpful comments on Section 4.

References

 S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph, *Appl. Anal. Discrete Math.* 8 (2014), 155–171. MR3289473

- [2] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008), 335–343. MR2477234
- [3] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, *Discrete Math.* 278 (2004), 11–22. MR2035387
- M. Furuya, A continuous generalization of domination-like invariants, J. Comb. Optim. 41 (2021), 905–922. MR4264989
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, *Marcel Dekker, Inc.*, New York (1998). MR1605684
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination inn Graphs: Advanced Topics, *Marcel Dekker*, *Inc.*, New York (1998). MR1605685
- [7] M.A. Henning and A. Yeo, Total domination in graphs, Springer Monographs in Mathematics. Springer, New York (2013). MR3060714
- [8] I. Stewart, Defend the Roman Empire! Sci. Am. 281 (1999), 136–139.
- [9] B. Wieland and A.P. Godbole, On the domination number of a random graph, *Electron. J. Combin.* 8 (2001), #R37. MR1877656

MICHITAKA FURUYA COLLEGE OF LIBERAL ARTS AND SCIENCES KITASATO UNIVERSITY 1-15-1 KITASATO, MINAMI-KU, SAGAMIHARA, KANAGAWA 252-0373, JAPAN *E-mail address:* michitaka.furuya@gmail.com

TAMAE KAWASAKI DEPARTMENT OF APPLIED MATHEMATICS TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN *E-mail address:* tm.kawasaki@rs.tus.ac.jp

Received November 19, 2019