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Rank of near uniform matrices∗

Jake Koenig and Hoi Nguyen

A central question in random matrix theory is universality. When
an emergent phenomena is observed from a large collection of cho-
sen random variables it is natural to ask if this behavior is specific
to the chosen random variable or if the behavior occurs for a larger
class of random variables.

The rank statistics of random matrices chosen uniformly from
Mat(Fq) over a finite field are well understood. The universality
properties of these statistics are not yet fully understood however.
Recently Wood [40] and Maples [26] considered a natural require-
ment where the random variables are not allowed to be too close
to constant and they showed that the rank statistics match with
the uniform model up to an error of type e−cn. In this paper we
explore a condition called near uniform, under which we are able
to prove tighter bounds q−cn on the asymptotic convergence of the
rank statistics.

Our method is completely elementary, and allows for a small
number of the entries to be deterministic, and for the entries to not
be identically distributed so long as they are independent. More
importantly, the method also extends to near uniform symmetric,
alternating matrices.

Our method also applies to two models of perturbations of ran-
dom matrices sampled uniformly over GLn(Fq): subtracting the
identity or taking a minor of a uniformly sampled invertible ma-
trix.

AMS 2000 subject classifications: 60B20.

1. Introduction

A central question in random matrix theory is that of universality. If instead
of taking a Haar-uniform random matrix, we sample by some other meth-
ods, under what conditions will we observe similar statistics in some large
scale matrix phenomena? While there have been many results addressing
universality of random matrices in characteristic zero to study the spectral
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behavior of various models of random matrices, we have not seen much in
the literature addressing universality behavior in the finite fields setting. In
fact, to the best of our knowledge, although there had been results for ma-
trices over finite fields such as [1, 3, 6, 9, 14, 12, 20, 21, 19, 35], universality
results only appeared very recently in [15, 23, 26, 27, 31, 32, 33, 40, 41].

The rank statistics of a uniform random matrix over a finite field Fq

are well studied. An exact formula for the rank of a uniform matrix in Fq

are folklore and can be found in for instance [2]. A formula for the rank of
a symmetric matrix was found by MacWilliams [24] and for an alternating
matrix by MacWilliams and Sloane [25]. We will recover these formulas
throughout our presentation under a more probabilistic viewpoint.

Consider random matrices with entries being iid copies of ξ satisfying a
so called min-entropy condition that P(ξ = k) ≤ 1 − α for all k ∈ Fq. The
main result of [26] by Maples (see also [31] for corrections) and a special
case of the recent result [41] by Wood showed that the rank distribution of
such matrices is asymptotically equal to the distribution of the Haar dis-
tributed random matrices. Maples’ approach relies on a very fine machinery
(swapping method) originating from [5, 11, 37], which achieves an exponen-
tial error bound e−cαn, while Wood’s approach relies on counting surjections
(moment method) which yields weaker error but the method has wider ap-
plications.

In this paper we introduce a condition on the entries which can be seen
as an interpolating between uniform and constant min-entropy. Let ξ ∈ Fq

be a random variable satisfying,

(1) ck = P(ξ = k) ≤ C/q, ∀k ∈ Fq,

where C ≥ 1 is a given constant. We refer to ξ satisfying equation 1 as near
uniform. In a sense, it resembles distributions with bounded density in the
characteristic zero case.

Under this stronger hypothesis we show that the error bound can be
improved to q−cn, by a completely elementary approach. Our other main
contributions are: (1) we do not require the entries to be identically dis-
tributed, only that they each satisfy the near uniform condition, and we do
not even need all the entries to be near uniform as we can allow a small
linear number of entries in each column to be arbitrary (see Theorem 1.4
and Theorem 1.6); (2) our method can be extended to symmetric and al-
ternating matrices (see Theorem 3.3 and Theorem 3.7) where we also allow
many entries to be arbitrary, (3) furthermore, our method also yields inter-
esting applications towards the uniform model itself, such as perturbation of
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matrices sampled uniformly over GLn(Fq) (see Theorem 4.1 and Theorem
4.2), or the evolution of rank of a matrix evolved from an arbitrary matrix
(see Theorem 3.5). All of these results seem to be new.

In the following subsection we detail our main result for the independent
model. The statements of our results in the other models are deferred to their
corresponding section.

1.1. Random matrices of independent entries

In this section, if not stated otherwise, we assume that X1, . . . , Xn are inde-
pendent random vectors in Fn

q with independent and near uniform entries.
Let Mn be the random n×n matrix with the Xi as column vectors. Denote
the corank of the matrix Mn by

Q(Mn) := n− rank(Mn).

It is known (see for instance [2]) that for the uniform model Muniform,n, for
any 0 ≤ k ≤ n we have

P(Q(Muniform,n) = k) =
1

qk2

∏n
i=1(1− 1/qi)

∏n
i=k+1(1− 1/qi)∏n−k

i=1 (1− 1/qi)
∏k

i=1(1− 1/qi)
.

Let Q∞ be the “limiting” random variable with

P(Q∞ = k) =
1

qk2

∏∞
i=k+1(1− 1/qi)∏k
i=1(1− 1/qi)

.

The following was shown by Fulman and Goldstein [17]

(2)
1

8qn+1
≤ ‖Q(Muniform,n)−Q∞‖TV ≤ 3

qn+1
.

This is a striking result, but as their method compares Q(Muniform,n) and
Q∞ directly, it does not seem to extend beyond the uniform model. One of
the main results of this note is the following.

Theorem 1.2 (rank distribution of independent entry square matrices).
There exist constants c, C ′ depending on C such that

‖Q(Mn)−Q∞‖TV ≤
(C ′

q

)cn
.
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Next, motivated by problems from algebraic combinatorics to enumerate
invertible matrices with given constraints of zero entries (see for instance [22]
and the references therein), we consider perturbations in the following way.
For each 1 ≤ i ≤ n, let Fi ⊂ [n] be the set of coordinates of Xi which are
allowed to be any random variable (independent of the others). These sets
Fi satisfy the following.

Condition 1. Let α be a sufficiently small constant.

• |Fi| < αn.

• Every index i ∈ [n] is contained in at most (1− 12α)n sets Fj
1.

These conditions are necessary as our result does not hold if the matrix
has (many) fixed rows or columns. One typical example is Fi = {i, . . . , i+αn}
(which corresponds to the case that the entries of distance αn from the main
diagonals are allowed to be deterministic, for instance all of them can be
zero).

Definition 1.3. We say that Xi is a near uniform vector of type Fi if the
entries of Xi are independent and near uniform, except those with indices
in Fi, which may be arbitrary.

Theorem 1.4. Let F1, . . . , Fn be index sets satisfying Condition 1. Assume
that X1, . . . , Xn are independent random vectors, where Xi is of type Fi.
Then there exist constants C ′, c depending on C and α such that

‖Q(Mn)−Q∞‖TV ≤
(C ′

q

)cn
.

Note that Theorem 1.2 is a corollary of Theorem 1.4 where one can
simply take the sets Fi to be empty.

Corollary 1.5. The number of matrices Mn ∈ Matn(Fq) of rank r, where
r ≥ (1− α)n, and where the entries in F1, . . . , Fn are all zero, is asymptot-
ically

NF1,...,Fn
= qn

2−
∑

i |Fi|
(
Q∞(n− r) +O((C ′/q)cn)

)
.

We remark that invertible matrices with vanishing diagonal are studied
in [22]. A precise formula for the number of n × (m + n) matrices of rank
n with vanishing diagonal is given in [22, Proposition 2.2]. Relatedly, we

1There is nothing special about the constant 12, we use it for convenience, and
without intention to optimize.
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show that the above estimate also holds for more general rectangular matri-
ces (stated here without perturbations for convenience). Let X1, . . . , Xn+m

be random independent vectors with near uniform entries in Fn
q , and let

Mn×(n+m) be the random n × (n +m) matrix spanned by the column vec-
tors. It is known (again from [2]) that for the uniform model Muniform,n,m,
for any 0 ≤ k ≤ n we have

P(Q(Muniform,n,m) = k) =
1

qk(m+k)

∏n+m
i=1 (1− 1/qi)

∏n
i=k+1(1− 1/qi)∏n−k

i=1 (1− 1/qi)
∏m+k

i=1 (1− 1/qi)
.

Let Qm,∞ be “limiting” (as n → ∞) random variable with

P(Qm,∞ = k) =
1

qk(m+k)

∏∞
i=k+1(1− 1/qi)∏m+k
i=1 (1− 1/qi)

.

Note that [17] Fulman and Goldstein showed that the two distributions
above are very close,

(3)
1

8qn+m+1
≤ ‖Q(Muniform,n,m)−Q∞‖TV ≤ 3

qn+m+1
.

Here we show

Theorem 1.6 (rank distribution of independent entry rectangular matri-
ces). For the near uniform model Mn×(n+m) there exist constants c, C ′ de-
pending on C such that

‖Q(Mn×(n+m))−Qm,∞‖TV ≤
(C ′

q

)c(m+n)
.

1.7. Organization of paper and proof method

All our results are obtained through a column or column and row exposure
process. See Figures 1 and 2 as well as Claim 4.3.

This exposure process has two regimes. For the first linear stretch of the
process we have with high probability full or nearly full rank. See Lemma 2.2,
Proposition 3.10 and Lemma 4.4 for the precise statements in the different
contexts. All of these results are similar to Odlyzko’s lemma and obtained
through the same method.

For the remaining columns we show with high probability our matrix
so far has no structured normal vectors. See Proposition 2.6 and Proposi-
tion 3.12. Our notion of structure is related to the concentration probability
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in [30]. See their Equation (10). Our goal with the structure is similar but
less technical and easier. They contain their structured set in a GAP and
we simply avoid a bad set B. See Lemma 2.9 which is used in both the
independent and symmetric cases.

This structure on the normal vectors to the column space implies a
column is contained in the column space with probability close to what one
would predict from the uniform model. This is shown in Lemma 2.11.

For the independent and alternating models these observations suffice.
But for the symmetric model the rank sometimes increases by one or two so
we need to understand quadratic forms. This analysis uses the decoupling
lemma and is done in Lemma 3.18 of Section 3.

In Section 2 we show our results for the independent model. In Section 3
we show our results for the symmetric and alternating models. In Section 4
we give the perturbed and corner model of a random matrix and give our
results for that model.

1.8. Notation

We use Mn = (Mn(ij))1≤i,j≤n to denote a square matrix of size n with
entries Mn(ij) from Fq. This matrix will be either non-symmetric, symmet-
ric, or alternating of near uniform entries or a perturbed invertible matrix
depending on the section.

We denote by ri(Mn), cj(Mn) the ith row and jth column of Mn respec-
tively. When Mn is one of our models of random matrix and N is a fixed
k × k matrix we let Mn(N) denote a matrix with upper left corner N and
other entries distributed like those of Mn.

We denote by Wk(Mn) the column span of the first k columns of Mn.
We write simply Wk when the matrix is clear.

Let ei denote the i-th basis vector (0, . . . , 0, 1, 0, . . . , 0).
We write P for probability and E for expected value. Sometimes we

write PX(.) to emphasize that the probability is taken with respect to X.
For an event E , we write Ē for its complement.

For a given index set J ⊂ [n] and a vector X = (x1, . . . , xn), we write
X|J or sometimes XJ to be the subvector of X of components indexed from
J . Similarly, if H is a subspace then H|J or HJ is the subspace spanned by
X|J for X ∈ H.

For W ⊂ V a subspace we write W for the complement of W in V and
W⊥ for the orthogonal complement.

Finally we let

eq(t) := exp(2πi tr(t)/p)
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Mk

X1 X2 Xk Xk+1

Figure 1: column exposure process.

where p is the characteristic of Fq. Note that the trace is equally distributed
in Fp so for every a ∈ Fq we have,

1a=0 =
1

q

∑
t∈Fq

eq(at).(4)

2. Independent entry random matrices: proof of
Theorem 1.4 and Theorem 1.6

We first note that throughout the paper the constants c, C ′ in (C ′/q)cn might
differ from case to case.

Let Wk be the subspace generated by X1, . . . , Xk and Mk be the matrix
with X1, . . . Xk as columns. The approach is a column exposure process
illustrated by Figure 1.

The idea is to show that the rank statistics evolve similarly to how they
evolve in the uniform case when we expose the columns X1, . . . , Xn one by
one. Note that in the uniform case we have

PXk+1

(
rank(Mk+1) = rank(Mk)|Wk ∧ rank(Mk) = l

)
(5)

= P(Xk+1 ∈ Wk|Wk ∧ rank(Mk) = l)

=
|Wk|
qn

=
1

qn−l
.

To show that the rank for the near uniform model evolves asymptotically
as in (5), there are two regimes to understand. We first show that for k ≤
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(1 − ε)n, Mk is full rank with high probability. This is Lemma 2.3. For
k ≥ (1 − ε)n, Mk is no longer full rank with high probability. We show
the probability an additional column increases the rank matches with the
uniform model by combining Proposition 2.6 and Lemma 2.11. These pieces
are combined to prove the main theorems at the end of the section.

2.1. Full rank for thin matrices and non-sparsity of normal
vectors

We first show that if k < (1 − 6α)n then with high probability our vectors
Xi are independent.

Lemma 2.2 (Odlyzko). Let V be a subspace of codimension d in Fn
q and

X be a random vector with independent near uniform entries except for up
to k entries which may have arbitrary distribution. Then,

P(X ∈ V ) ≤
(C

q

)d−k
.

Proof. Let V = 〈v1, . . . , vn−d〉 and consider the n×(n−d) matrix with the vi
as columns. Without loss of generality suppose the first n−d rows are linearly
independent. Restricting to the first n−d rows we haveX|[n−d] = c1v1|[n−d]+
· · ·+ cn−dvn−d|[n−d] for unique ci.. If X ∈ V then X = c1v1+ · · ·+ cn−dvn−d.
This implies we have equality in the last d coordinates of X. By assumption
at least d − k of the last d entries of X are independent and equal a fixed
value with probability at most C/q. The result follows.

Lemma 2.3. Let α be as in Condition 1. With probability at least 1 −
n(C/q)5αn, the matrix generated by X1, . . . , X�(1−6α)n� has full rank.

Proof. Recall that Xi has type Fi and |Fi| < αn. If the vectors X1, . . . ,
X�(1−6α)n� do not have full rank then for some i we have,

Xi ∈ 〈X1 . . . Xi−1〉 and X1 . . . Xi−1 are linearly independent.

By Lemma 2.2 we can bound the probability of this event by,

P(Xi ∈ 〈X1 . . . Xi−1〉|X1 . . . Xi−1 are lin. ind.) ≤ (C/q)n−i+1−nα

≤ (C/q)n−(�(1−6α)n�−nα

≤ (C/q)5αn.

Taking the union bound over all (1− 6α)n places where the rank may drop
we get the desired bound.
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Therefore, with a loss of at most n(C/q)5αn in probability it suffices to
assume that W(1−6α)n has full rank.

Next we show that Wk does not have a “sparse” normal vector for k ≥
(1− 6α)n with high probability. This is important to the argument because
we allow some entries of our matrix to be deterministic. If we had a normal
vector a with support contained in one of our bad sets |Fi| we wouldn’t
be able to estimate the probability Xk+1 · a = 0. Roughly speaking, these
events are needed towards establishing any asymptotic form of (5) as the
event Xk+1 ∈ Wk is equivalent with Xk+1 · a = 0 for all normal vectors a of
Wk.

Lemma 2.4. Let α be as in Condition 1. Then there exist constants C ′, c
such that the following hold. For any (1 − 6α)n ≤ k ≤ n, with probability
at least 1− (C ′/q)cn the following holds: any normal vector a of Wk has at
least αn non-zero coordinates.

Proof. Let a be a prospective normal vector with S = supp(a), and s =
|S| ≤ αn. There are less than 2nqαn such vectors. For each 1 ≤ i ≤ k, if we
have that F̄i ∩ S �= ∅ (that is S �⊂ Fi), then by (1), it is clear that

P(Xi · a = 0) ≤ C/q.

Letting k′ denote the number of such indices, by Condition 1 we see that

k′ ≥ k − (1− 12α)n ≥ 6αn.

Hence the probability that there exists a sparse a serving as the normal
vector to Wk is bounded by∑
a,|supp(a)|≤αn

P(Xi · a = 0, 1 ≤ i ≤ �6αn�) ≤ 2nqαn(C/q)�6αn� ≤ (C ′/q)cn.

In the next step we show that with high probability the normal vectors
are not only sparse but do not have structures (see Proposition 2.6). Thanks
to the near uniform assumption, our method is much simpler compared to
those of [23, 26, 31, 32, 41].

2.5. Anti-concentration probability

We first introduce concentration inequalities for vectors with randomness
from (1). Let X = (x1, . . . , xn) be a random vector of type F . Let cik =
P(xi = k), where by definition we know that cik ≤ C/q.



406 Jake Koenig and Hoi Nguyen

Let X be a near uniform random vector of type F . By the Fourier

transform for any r ∈ Fq and fixed a ∈ Fn
q we have

P(X · a = r) = E(1X·a=r) =
1

q

∑
t∈Fq

∏
i/∈F

Eep(tr(xiait))ep(−tr(r′t))

where r′ depends on r and other deterministic entries of X. By the triangle

inequality

|P(X · a = r)− 1

q
| ≤ 1

q

∑
t∈Fq,t 	=0

∏
i/∈F

|Eep(tr(xiait))|

=
1

q

∑
t∈Fq,t 	=0

∏
i/∈F

∣∣∣∣ ∑
k∈Fq

cikep(tr(kait))

∣∣∣∣
=:

1

q

∑
t 	=0

∏
i/∈F

fi(tai).(6)

Where fi(t) = |
∑

k∈Fq
cikep(tr(kt))|. Motivated by this, for convenience we

define the following,

ρF (a) :=
1

q

∑
t 	=0

∏
i/∈F

fi(tai).

Conceptually ρF (a) measures the “structure” of a. Vectors with smaller

ρF are “less structured”. The concept is a waypoint in the proof. At a high

level our approach is to show that normal vectors are likely unstructured and

unstructured vectors are orthogonal to near uniform vectors with probability

close to uniform.

The goal of this subsection is to show the following proposition which

states that with high probability the column space of Wk has no structured

normal vectors.

Proposition 2.6. Given C and α where α is sufficiently small. There exist

constants C ′, c such that the following holds for m ≥ (1 − 6α)n: with prob-

ability at least 1 − (C ′/q)cn with respect to X1, . . . , Xm any nonzero vector

a = (a1, . . . , an) orthogonal to each Xi has,

ρFm+1
(a) ≤ (C ′/q)cn.
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To prove the above result, observe that if a �= 0 then, noting that∑
t∈Fq

ep(tr(at)) = q1a=0, we have

∑
t∈Fq

fi(ta)
2 =

∑
t∈Fq

∣∣∣∣∑
k

cikep(tr(kta))

∣∣∣∣
2

=
∑
t∈Fq

[∑
k

(cik)
2 +

∑
k 	=k′

cikc
i
k′ep(tr((k − k′)ta))

]

= q
∑
k

(cik)
2 ≤ qmax

k
cik

∑
k

cik ≤ C.

As such, for any K > 0, let Ti ⊂ Fq be the set of a where |fi(a)| ≥
Kq−1/2 then

(7) |Ti| ≤ Cq/K2.

This implies the following claim.

Claim 2.7. For any M if a = (a1, . . . , an) is such that for any t �= 0, it has

at least M indices i ∈ [n]\F such that tai /∈ Ti. Then we have

ρF (a) =
1

q

∑
t

∏
i/∈F

fi(tai) ≤ (Kq−1/2)M .(8)

Thus towards Proposition 2.6, it suffices to show the following and then

choose suitable M and K.

Lemma 2.8. With probability at least 1 − q6αn(2C)n(C/K2)n−M−|F | with
respect to X1, . . . , Xm, any normal vector a of Wm satisfies the condition in

Claim 2.7.

To prove Lemma 2.8 we bound the number of vectors not satisfying

equation (8). Then we bound the probability each of those vectors is a

normal vector to our matrix. Counting the bad set is also important in the

symmetric section so we split it into the following lemma.

Lemma 2.9 (Counting lemma). Let B be the set of vectors in Fn
p where

1

q

∑
t

∏
i/∈F

fi(tai) ≥ (Kq−1/2)M .
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Then

|B| ≤ qn+12n(C/K2)n−M−|F |.

Proof. By Claim 2.7 for any a ∈ B there exists t0 such that t0ai ∈ Ti for
at least n−M − |F | indices i and Ti| ≤ (Cq/K2) by 7. The other M + |F |
entries of a can be any element of Fq. Thus

|B| ≤ q2n(Cq/K2)n−M−|F |qM+|F |

≤ qn+12n(C/K2)n−M−|F |.

Proof of Lemma 2.8. We estimate the probability of the complement event.
For a given a = (a1, . . . , an) ∈ B,a �= 0, we estimate the probability that
it is a normal vector to Wm. By Lemma 2.4, we just need to focus on the
event that a has at least αn non-zero entries. As such, by Condition 1, for
each 1 ≤ i ≤ m we have

P(Xi · a = 0) ≤ C/q.

So the probability that a is a normal vector to Wm is bounded by

m∏
i=1

P(a ·Xi = 0) ≤ (C/q)m.

Taking a union bound over B, we obtain an upper bound for the probability
of the existence of structured normal vectors,

(9) qn+12n(C/K2)n−M−|F | × (C/q)n−6αn ≤ q6αn(2C)n(C/K2)n−M−|F |.

Proof of Proposition 2.6. Choose M = βn,K = qβ with small β < 1/2
and with even smaller α. We obtain a bound (C ′/q)−cn for the bound on
probability in Equation (9), and for the bound on structure in Claim 2.7.

2.10. The rank statistics in the exposure process

The motivation to consider structure is if all vectors orthogonal to a given
subspace have small ρ then the probability it contains a near uniform random
vector behaves like the probability it contains a uniform random vector.
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Lemma 2.11. Let H ⊂ Fn
q be a fixed subspace of codimension d such that

for every nonzero w ∈ H⊥ |P(X · w = 0) − 1/q| < δ and let X be a near

uniform random vector of type F as above. Then

|P(X ∈ H)− 1/qd| ≤ 2δ.

Note when applying the lemma it suffices to bound ρF (w) because |P(X ·w =

0)− 1/q| ≤ ρF (w).

We also refer the reader to [23] for a variant for fields of prime order.

Proof. We have the following identity,

1a1=0∧···∧ad=0 =
1

qd

∑
t1,...,td∈Fq

eq(a1t1 + · · ·+ adtd).

Therefore, letting v1, . . . ,vd be a basis for H⊥,

P(X ∈ H) = P(X · v1 ∧ · · · ∧X · vd)

= E

[
1

qd

∑
t1,...,td∈Fq

eq(t1[X · v1] + · · ·+ td[X · vd])

]

= E

[
1

qd
+

1

qd

∑
t1,...,td∈Fq

not all ti are zero

eq(t1[X · v1] + · · ·+ td[X · vd])

]

=
1

qd
+

1

qd

∑
t1,...,td∈Fq

not all ti are zero

Eeq(t1[X · v1] + · · ·+ td[X · vd]).

We now split the sum into projective equivalence classes. Let ∼ be the

equivalence relation given by (t1, . . . , dd) ∼ (t′1, . . . , t
′
d) if there exists t �= 0

such that (t1, . . . , td) = (t · t′1, . . . , t · t′d). Not worrying about our choice of

representative on account of our inner sum we can continue,

=
1

qd
+

1

qd

∑
(t1,...,td)∈(Fn

q )
×/∼

[ ∑
t∈F×

q

eq(t(t1[X · v1] + · · ·+ td[X · vd]))

]

=
1

qd
+

1

qd

∑
(t1,...,td)∈(Fn

q )
×/∼

q

[
1

q

∑
t∈F×

q

eq

(
t

(
X ·

n∑
i=1

tivi

))]
.
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Now observe,

[
1

q

∑
t∈F×

q

eq

(
t

(
X ·

n∑
i=1

tivi

))]
= P

(
X ·

n∑
i=1

tivi = 0

)
− 1/q.

The vi are a basis and the ti are not all zero so
∑n

i=1 tivi is a nonzero

element of H⊥. By assumption then this is bounded by δ. There are qd−1
q−1

elements in (t1, . . . , td) ∈ (Fn
q )

×/ ∼. We have,

q(qd − 1)

qd(q − 1)
≤ 2.

So by the triangle inequality we obtain,

|P(X ∈ H)− 1/qd| ≤ 2δ.

Let Em be the event considered in Proposition 2.6, namely the event that
all normal vectors a have ρ(a) < (C ′/q)cn. By the proposition we know that

P(Em) ≥ 1− (C ′/q)cn.

Proposition 2.12. Assume that (1−6α)n ≤ m ≤ n and the non-symmetric
matrix Mn is as in Theorem 1.2. For each l ≤ m we have∣∣∣P(Xm+1 ∈ Wm|rank(Wm) = l ∧ Em)− (1/q)n−l

∣∣∣ ≤ (C ′/q)cn.

In other words this result confirm that our rank evolution matches with
Equation (5) of the uniform model.

Proof. By Proposition 2.6 on Em, for any a ⊥ Wn, we have ρFm+1
(a) ≤

(1/q)cn. Therefore by Lemma 2.11,

|P(Xm+1 ∈ Wm|rank(Wm) = l ∧ Em)− (1/q)n−l| ≤ (C ′/q)cn.

Now we prove our main results for non-symmetric matrices.

Proof of Theorem 1.4. We first condition on the events in Lemma 2.3, Lem-
ma 2.4, and on ∧m≥�(1−6α)n�Em from Proposition 2.6. For each k ≥ �(1 −
6α)n� =: m0, the event Q(Mn) = n− k can be written as follows using the
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column exposure process

P(rank(Mn) = k)

=
∑

0<i1<···<ik−m0≤n−m0

P
(
∧j Xm0+ij /∈ Wm0+ij−1 ∧ no other rank increase

)
.

Now using Proposition 2.12 we can estimate the RHS above as

=
∑

0<i1<···<ik−m0<n−m0

P(a uniform matrix of size n−m0 drops rank

at i1, . . . , ik−m0
) +O(n(C ′/q)cn)

= P(a uniform matrix of size n−m0 has rank k) +O(n(C ′/q)cn)

= Q∞(n− k) +O

(
1/qn−m0 + n(C ′/q)cn)

)
,

where we used (2) in the last estimate.

Proof of Theorem 1.6. For this we observe that the column rank is equal to

the row rank and consider the (n + m) × n transpose of M . Our proof of

Theorem 1.4 shows that as we expose the columns the rank statistics match

up to an error of type (C ′/q)c(m+n) at each step.

3. Random symmetric and alternating matrices

3.1. Random symmetric matrices

Now we discuss our result for symmetric matrices. Let the entries mij , i ≥ j

of Mn be independent near uniform random variables. It is known (from

[7, 24]) that for the uniform model Muniform, for any 0 ≤ k ≤ n we have

P(Q(Muniform,n) = k) =
1

q(
n+1

2 )

�(n−k)/2�∏
i=1

q2i

q2i−1

n−k−1∏
i=0

(qn−i − 1).

Let Qsym,∞ be the random variable with

P(Qsym,∞ = k) =

∏∞
i=0(1− q−2i−1)∏k

l=1(q
i − 1)

.
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In the uniform model of symmetric matrices Fulman and Goldstein [17]
showed

0.18

qn+1
≤ ‖Q(Muniform,n)−Q∞‖TV ≤ 2.25

qn+1
for n even

0.18

qn+2
≤ ‖Q(Muniform,n)−Q∞‖TV ≤ 2

qn+2
for n odd.(10)

We show that

Theorem 3.2. For the near uniform symmetric model Mn

‖Q(Mn)−Qsym,∞‖TV ≤
(C ′

q

)cn
.

Next, as in the iid case, we can extend the result to perturbations. More
precisely we will sample Mn, a random symmetric matrix of size n in the
following way. All the entries on and above its diagonal are near uniform
and independent except for those falling in index sets Fi ⊆ [n] which satisfy
the following condition:

Condition 2. Let α be a sufficiently small constant.

• |Fi| < αn.

• For symmetry, we also assume that for every i, j ∈ [n], Fj contains i
if and only if Fi contains j. In particular each index is contained in at
most αn sets.

Theorem 3.3 (rank distribution for random symmetric matrices). With
Mn as above, there exist constants C ′, c such that

‖Q(Mn)−Qsym,∞‖TV ≤
(C ′

q

)cn
.

Corollary 3.4. The number of matrices Mn ∈ Matn(Fq) of rank r, where
r ≥ (1− α)n, and where the entries in F1, . . . , Fn are all zero, is asymptot-
ically

NF1,...,Fn
= q(

n+1

2 )−
∑

i |Fi|
(
Qsym,∞(n− r) +O((C ′/q)cn)

)
.

In particular, when F1 = {1}, . . . , Fn = {n} then the number of full rank

symmetric matrices with zero entries on the diagonal is q(
n

2)
(
Qsym,∞(0) +
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O(1/qcn)
)
, which is asymptotically the number of full rank symmetric matri-

ces of size n−1. (In fact these two quantities are the same, see [22, Theorem
3.3].) Similarly one can also deduce an asymptotic formula for the number

of invertible matrices of the first k entries zero (and so on), see also [22,
Theorem 4.25].

For all these results we depend on the following special case of Theo-
rem 3.3 and Theorem 3.7. We state it as a theorem because it may be of

independent interest.

Theorem 3.5. Let Mm0
be an arbitrary matrix of size m0 which is symmet-

ric (or alternating). Let Mu
n (Mm0

) be the n × n random matrix with Mm0

as its upper left hand corner and the remaining entries above the diagonal

sampled uniformly and those below chosen to make the matrix symmetric
(or alternating). Then,

‖Q(Mu
n (Mm0

))−Q•‖TV ≤ 3n/2

qn/2−m0
.

Where Q• is either Qsym,∞, Qalt,e or Qalt,o depending on whether Mn is

symmetric or alternating and the parity of n.

We remark that the range of m0 above is nearly optimal as the result

no longer holds for m0 ≥ (1 + o(1))n/2. To see how this result is used to
deduce Theorem 3.3 and Theorem 3.7 see Proposition 3.21.

3.6. Random alternating matrices (skew symmetric matrices)

Here we assume q is odd. For alternating matrices MT
n = −Mn. It is well-

known that the rank is even and is implied for example by Proposition 3.17.

It is known (from [8]) that for the uniform model Muniform,n, for any 0 ≤
k ≤ n of the same parity with n we have

P(Q(Muniform,n) = k) =
1

q(
n

2)

(n−k)/2∏
i=1

q2i−2

q2i − 1

n−k−1∏
i=0

(qn−i − 1).

Let Qalt,e and Qalt,o be the limiting random variables given by

P(Qalt,e = k) :=

{∏∞
i=0(1− q−2i−1) qk

∏k
i=1(q

i−1)
, k is even

0, k is odd
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and

P(Qalt,o = k) :=

{∏∞
i=0(1− q−2i−1) qk

∏k
i=1(q

i−1)
, k is odd

0, k is even

LetMn be a random matrix with independent near uniform entries above
the diagonal except for entries in index sets Fi satisfying 2. The entries on
the diagonal are zero and the entries below the diagonal are the negative of
the entries above the diagonal.

Theorem 3.7 (Rank distribution for random alternating matrices). There
exist constants c, C ′ depending on C such that

‖(Q(Mn)−Qalt,e‖TV ≤
(C ′

q

)cn
if n is even

and

‖(Q(Mn)−Qalt,o‖TV ≤
(C ′

q

)cn
if n is odd.

Note that for the uniform model of random alternating matrices Fulman
and Goldstein [17] showed

0.18

qn+1
≤ ‖Q(Muniform,n)−Q∞‖TV ≤ 1.5

qn+1
for n even.

0.37

qn+1
≤ ‖Q(Muniform,n)−Q∞‖TV ≤ 2.2

qn+1
for n odd.(11)

3.8. Corner exposure process

In this section, if we don’t specify otherwise, the arguments will work for
both Mn symmetric or alternating simultaneously. We let Mm be the upper
left minor of size m of Mn. (Hence the notation is different from the non-
symmetric case.)

Some of our ideas here are motivated by [10, 24, 28, 29, 38], and in
particular [28]2. The basic idea of our approach in the symmetric and alter-
nating cases is similar to our approach in the independent case. But instead
of considering a column exposure process, to preserve the independence be-
tween what we have and haven’t seen, we expose one row and column at a
time. In other words at the mth step we will have observed the upper left
Mm block and we’ll be asking for the effect on the corank of expanding this
block by one in both directions.

2The main result of this paper has been improved substantially in [33].
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Mm

xm+1

Xm+1

Figure 2: corner exposure process.

Throughout this section we will use X = Xm+1 to refer to the top m

cells of column m+1 when we are at step m, that is X = cm+1(M)|[m]. We

also let xm+1 be the entry Mn(m+ 1,m+ 1), and Hm be the column span

of the exposed block at step m. This is summarized by Figure 2.

The principle difference between the models is that if X ∈ Hm then in

the alternating modelMm+1 has the same rank asMm. This is an elementary

fact shown in Proposition 3.17. In the symmetric model when X ∈ Hm the

rank typically increases by 1, but it depends on xm+1. In Lemma 3.18 we

show the probability the rank increases by 1 is what we’d predict from the

uniform model.

3.9. Almost full rank for Mm and non-sparsity of generalized

normal vectors

This subsection is similar to Subsection 2.1 where we show the following

Odlyzko’s lemma for random symmetric and alternating matrices, here we

assume
√
αn ≤ m ≤ n

where we recall that α is sufficiently small.

Lemma 3.10. Let ε be positive constant that is small but larger than
√
α.

We have

1. rank(Mm) ≥ (1− ε)m with probability 1−m(C/q)(ε−
√
α)m.
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2. (non-sparsity of solution vectors) Let Y0 be a fixed vector in Fm
q . The

following holds with probability at least 1 − (C ′/q)(1−3ε−√
α)m: any

nonzero vector v for which Mmv agrees with Y0 in at least (1 − ε)m
coordinates must have at least εm non-zero components.

We will denote the intersection of these events by Fm. Also, for conve-
nience, if v satisfies (2) then we say that v is a generalized normal vector of
Mm (with parameter ε).

Proof. (1) Let k ≤ m be an intermediate step. If corank(Mk) ≥ r then by
Lemma 2.2 (where we recall that the number of deterministic compo-
nents is at most αn ≤ √

αm) with probability at least 1− (C/q)(r−
√
αm)

we have Xk+1 is not in the column span of Mk which implies
rank(Mk+1) = rank(Mk) + 2.
If Mm has corank greater than εm there must be an intermediate step
Mk where the corank is greater than or equal to εm but the rank doesn’t
increase by 2. Taking a union bound over the possible indices we get,

P(corank(Mm) ≥ εm) ≤ m
(C

q

)(ε−√
α)m

.

(2) The number of candidate sparse vectors is,(
m

εm

)
qεm.

Note that the probability such a vector dotted with row i is equal to any
fixed value is bounded above by C

q provided that Fi does not contain

the support of the vector. By Condition 2 at most
√
αm rows do. We

don’t have independence among all v ·Xi but we do have independence
between v · Xi and the other columns if i is not in the support of v.
So because the support is assumed to be at most εm the probability of
equality is bounded above by,(

m

εm

)
qεm

(C

q

)(1−2ε−√
α)m

≤
(C ′

q

)(1−3ε−√
α)m

.

Provided ε, α are sufficiently small.

3.11. Anti-concentration probability

Here and later we continue to assume that
√
αn ≤ m ≤ n. Our next step is

similar to Subsection 2.5 where we will show that generalized normal vectors



Rank of near uniform matrices 417

do not have structures with very high probability. We next recall from Equa-

tion (6) that ρF (a) =
1
q

∑
t 	=0

∏
i/∈F f(tai), where f(y) = |

∑
k ckeq(ky)|, and

∣∣∣ sup
a

P(X · a = a)− 1/q
∣∣∣ ≤ ρF (a).

There is the following analog of Proposition 2.6 for generalized normal

vectors. Loosely, it states that large symmetric near uniform matrices are

unlikely to have structured vectors orthogonal to their row span. By sym-

metry the same result applies to the column span.

Proposition 3.12. Assume that α is sufficiently small. There exist con-

stants c1, c2, C
′ such that with probability 1− (C ′/q)c1m every nonzero gen-

eralized normal vector a of Mm of parameter ε = 2
√
α has

ρF (a) ≤ (C ′/q)c2m.

Proof. Let c2 = (1/2−β)β where β is the constant in the proof of Proposition

2.6 (chosen appropriately, for instance β = 8
√
α would work). Let B denote

the set of v ∈ Fm
q with ρF (v) > (C ′/q)c2m. From Lemma 2.9 we know,

|B| < (2C ′)mqm−βm/2.

Without loss of generality we assume that the first (1− ε)m entries of Mma

are zero, and our aim is to bound this event,

∑
a∈B\{0}

P
(
(Mma)i = 0, 1 ≤ i ≤ (1− ε)m

)
.

For all a ∈ B \ {0} we have the simple bound,

P
(
(Mma)i = 0, 1 ≤ i ≤ (1− ε)m

)
≤ (C/q)(1−ε)m−1−√

αm.(12)

Because a �= 0 it has some entry ai �= 0. Conditioning on all the entries

of Mm outside of the ith column and row the probability that the jth row of

Mm has rj(Mm) ·Z = 0, provided j /∈ Fi, is bounded above by C/q because

of the near uniformity of the entry Mm(j, i). The Mm(j, i) for j fixed and

not equal to i are independent so we get inequality (12).
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So we obtain,∑
a∈B\{0}

P(a is a generalized normal vector of Mm)

≤
(

m

�(1− ε)m�

)
(2C ′)mqm−βm/2(C/q)(1−ε)m−1−√

αm

≤ (C ′′/q)(β/2−3
√
α)m.

3.13. The rank statistics in the exposure process

The analysis to understand the rank evolution in the corner exposure process
is more involved than in the independent case. The technique hinges on
the following so called Decoupling Lemma. The technique was first used to
analyze symmetric random matrices by Costello, Tao and Vu [10] though
the idea is old and common in number theory.

Lemma 3.14 (Decoupling). Assume that aij ∈ Fq and aij = aji and bi ∈
Fq. Assume that xi are independent random variables. Then for any index
set I ⊂ [m] we have

sup
r

∣∣∣∣P
(∑

ij

aijxixj+
∑
i

bixi = r

)
−1/q

∣∣∣∣
4

≤
∣∣∣∣P

( ∑
i∈I,j∈Ic

aijyiyj = 0

)
−1/q

∣∣∣∣,
where yi ≡ xi − x′i with x′i an iid copy of xi.

Proof. For short we write f(X) =
∑

ij aijxixj +
∑

i bixi. We write

∣∣∣P(f(X) = 0)− 1

q

∣∣∣ =
∣∣∣∣1q

∑
t 	=0

Eeq(−tf(X))

∣∣∣∣.
We then use Cauchy-Schwarz to complete squares,

LHS2 ≤ q − 1

q2

∑
t 	=0

|Eeq(−tf(X))|2(13)

≤ q − 1

q2

∑
t 	=0

EXI
|EXIc

eq(−tf(XI , XIc))|2

=
q − 1

q2

∑
t 	=0

EXI
EXIc ,X′

Ic
eq(−t[f(XI , XIc)− f(XI , X

′
Ic)])
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=
q − 1

q2

∑
t 	=0

EXIc ,X′
Ic
EXI

eq(−t[f(XI , XIc)− f(XI , X
′
Ic)]).

Using Cauchy-Schwarz once more, we obtain

LHS4 ≤
(q − 1

q2

)2
(q − 1)

∑
t 	=0

EXIc ,X′
Ic
EXI ,X′

I
eq(−t[f(XI , XIc)− f(XI , X

′
Ic)

− f(X ′
I , XIc) + f(X ′

I , X
′
Ic)])

=
(q − 1

q2

)2
q(q − 1)

1

q

∑
t 	=0

EYI ,YIc
eq

(
−t

∑
i∈I,j∈Ic

aijyiyj

)

=
(q − 1

q

)3
(
P

( ∑
i∈I,j∈Ic

aijxiyj = 0

)
− 1/q

)
.

By Lemma 3.10, with probability at least 1 − (C ′/q)cm we can assume
that Mm has rank at least (1− ε)m. Let us consider the event that Mm has
rank m− k (where k ≤ εm).

Claim 3.15. Assume that Gm has rank m − k, then there is a set I ⊂
[m], |I| = m − k such that the principle minor matrix GI×I has full rank
m− k.

Proof. It suffices to consider the symmetric case. Let Mm−k×m denote the
top m− k rows of Mm and assume without loss of generality that Mm−k×m

is full rank. Then by symmetry the leftmost m − k columns Mm×m−k are
also full rank. But we know the first m − k rows of Mm×m−k span the row
space by our assumption that Mm−k×m is full rank. Therefore the minor
Mm−k×m−k is full rank.

Therefore in what follows, we may assume without loss of generality that
r1(Mm), . . . , rm−k(Mm) span the row space of Mm.

Probability for rank(Mm+1) ≤ rank(Mm) + 1: When we add the new
column Xm+1 = (x1(m+1), . . . , x(m+1)(m+1)) := (x1, . . . , xm+1) and its trans-
pose (or negative transpose in the alternating case), the event rank(Mm+1) <
rank(Mm) + 2 is equivalent with the event that the extended row vector
r1(Mm+1), . . . , rm−k(Mm+1) still generate the space spanned by the vectors
r1(Mm+1), . . . , rm(Mm+1). In particular, this hold if for m− k + 1 ≤ i ≤ m

(14) xi =

n−k∑
j=1

aijxj ,
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where aij are determined from Mm via

ri(Mm) =

m−k∑
j=1

aijrj(Mm).

In other words, equation (14) says that the vector (x1, . . . , xm) is orthogonal
to the vectors (ai1, . . . , ai(m−k), 0, . . . ,−1, 0, . . . , 0), or equivalently it belongs
to the hyperplane Hm generated by the column vectors of Mm. We next
pause to record the evolution of the uniform model (where (x1, . . . , xm) is
chosen uniformly from Fm

q ): assume that k ≥ 1. Then (see also [24, Lemma
4])

(15) PXm+1

(
rank(Mm+1) ≤ rank(Mm) + 1|rank(Mm) = m− k

)
=

1

qk
.

Now, let Em be the event from Proposition 3.12. Then we have P(Em) =
1− (C ′/q)−cm. By this proposition, and by Lemma 2.11, we have

Lemma 3.16. Assume that k ≥ 1. Then∣∣∣PXm+1

(
rank(Mm+1) ≤ rank(Mm) + 1|rank(Mm) = m− k ∧ Em

)
− 1

qk

∣∣∣
=

∣∣∣P(
Xm+1 ∈ Hm|rank(Mm) = m− k ∧ Em

)
− 1

qk

∣∣∣ ≤ (C ′/q)cn.

Probability for rank(Mm+1) = rank(Mm): For alternating matrices we
have Xm+1 ∈ Hm implies Q(Mm+1) = Q(Mm) + 1 by the following elemen-
tary proposition.

Proposition 3.17. For A an alternating m × m matrix and x a column
vector of length m the following block matrix has either corank Q(A)− 1 or
Q(A) + 1, (

A x
−xT 0

)
.

Proof. If x is not in the column span of A then [−xT 0] is not in the row
span of [A x] so the rank increases by 2.

For the other direction, if x is in the column span of A, so Aa = x for
some a we need to show that −xTa = 0 so that the addition of the row will
not increase the rank. Because A is alternating we have A = −AT . Therefore
(aTAa)T = aTATa = −aTAa. This implies aTAa = 0 and aTx = 0.
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For symmetric matrices, rank(Mm+1) ≤ rank(Mm) + 1 does not auto-

matically imply that rank(Mm+1) = rank(Mm), so we have to consider the

events rank(Mm+1) = rank(Mm) and rank(Mm+1) = rank(Mm) + 1 sepa-

rately. Let’s focus on the event that

rank(Mm+1) = rank(Mm).

Here besides the event considered in Lemma 3.16, rm+1(Mm+1) also belongs

to the subspace generated by r1(Mm+1), . . . , rm(Mm+1). Knowing that Mm

has rank m− k, by Claim 3.15 we can assume that MI×I is a submatrix of

full rank m − k in Mm, for some I ⊂ [n] and |I| = m − k. Let B = (bij)

be the inverse of MI×I in Fq. The exposure of X = (x1, . . . , xm−k, xm+1)

would then increase the rank of Mm+1 by one, except when

(16)
∑
ij

bijxixj + xm+1 = 0.

For short we write f(Xm+1) :=
∑

1≤i,j≤m−k bijxixj + xm+1. We next pause

to record the evolution of the uniform model (where (x1, . . . , xm+1) is chosen

uniformly from Fm
q ). The probability P(X ∈ Hm ∧ f(Xm+1) = 0) can be

simply reduced to P(X ∈ Hm) × Pxm+1
(f(Xm+1 = 0|x1, . . . , xm) = 1

qk × 1
q

because xm+1 is uniform and independent from the other entries. Hence we

have in the uniform case (see also [24, Lemma 4])

(17) PXm+1

(
rank(Mm+1) = rank(Mm)|rank(Mm) = m− k

)
=

1

qk+1
.

For our case, we cannot rely on xm+1 because this entry can be deter-

ministic. Furthermore, the random entries x1, . . . , xm are not uniform either.

Nevertheless, we show that the evolution is still asymptotically the same as

in the uniform case, under the events Em∧Fm from Lemma 3.10 and Propo-

sition 3.12.

Lemma 3.18. Let k ≥ 0. We have∣∣∣PXm+1

(
rank(Mm+1)= rank(Mm)|rank(Mm) = m− k ∧ Em ∧ Fm

)
− q−k−1

∣∣∣
=

∣∣∣PXm+1

(
X ∈ Hm ∧ f(Xm+1) = 0|Em ∧ Fm

)
− q−k−1

∣∣∣ ≤ (C ′/q)cm,

where B = {bij}1≤i,j,≤m−k is the inverse to the full rank I×I minor of Mm.
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Proof. The probability can be rewritten in the following way.

P(X ∈ Hm ∧ f(X) = 0) = q−k−1
∑

ξ∈H⊥
n ,t∈Fq

Eeq(X · ξ + f(X)t)

= q−k−1 + q−k−1
∑

ξ∈H⊥
m,t∈Fq,t 	=0

Eeq(X · ξ + f(X)t)

+ q−k−1
∑

ξ 	=0,ξ∈H⊥
m

Eeq(X · ξ).

Note that the third sum is

q−k−1
∑

ξ 	=0,ξ∈H⊥
m

Eeq(X · ξ) = q−k−1

( ∑
ξ∈H⊥

m

Eeq(X · ξ)− 1

)

=
1

q
P(X ∈ Hm)− q−k−1.

Hence the third sum is bound by (C ′/q)cm using Lemma 3.16.

For the second summand because multiplication by t �= 0 is a bijection

on H⊥
m we have the following equality

∣∣∣∣q−k−1
∑

ξ∈H⊥
m,t∈Fq,t 	=0

Eep(X · ξ + f(X)t)

∣∣∣∣
=

∣∣∣∣q−k
∑
ξ∈H⊥

m

q−1
∑

t∈Fq,t 	=0

Eep((X · ξ + f(X))t)

∣∣∣∣.
The inner sum can be recognized as,

∣∣∣∣q−1
∑

t∈Fq,t 	=0

Eep((X · ξ + f(X))t)

∣∣∣∣
= P(X · ξ + f(X) = 0)

= P

( ∑
1≤i,j≤m−k

bijxixj +

n∑
i=1

ξixi = −xm+1

)
.

Now applying Lemma 3.14 with ξ, bi, X, xm+1 in the context of this proof

serving the role of bi, ai, xi,−r in the context of the lemma respectively, we
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obtain,

∣∣∣∣q−k−1
∑

ξ∈H⊥
m,t∈Fq,t 	=0

Eeq(X · ξ + f(X)t)

∣∣∣∣
1/4

≤
∣∣∣P(YI1 ·BYI2 = 0)− 1

q

∣∣∣.
Where I1 ∪ I2 = I and YI1 , YI2 are random vectors in FI1

q ,FI2
q with entries

yi distributed by xi − x′i. Let Y ′
I1
, Y ′

I2
denote random vectors in Fm

q which

restrict to YI1 , YI2 on I1, I2 and are zero elsewhere. Similarly let B′ be the

m × m matrix with I × I minor equal to B and zeros elsewhere. Then

YI1 ·BYI2 = 0 is equivalent to

Y ′
I1 ·B

′Y ′
I2 = 0.

Now choose |I1| = �(1− ε)m� and I2 = I\I1, where ε = 2
√
α. Therefore the

vector Y ′
I2

is non-zero with probability at least 1− (C ′/q)εm and

Mm(B′Y ′
I2) = (MmB′)Y ′

I2 = Y ′
I2 .

It follows by Lemma 3.12 that, as B′Y ′
I2

is a generalized normal vector of

Mm on Em, we have

ρ(B′Y ′
I2) ≤ (C ′/q)cm.

Noting ρ(B′Y ′
I2
) = ρ((B′Y ′

I2
)I1), it follows by the definition of ρ that

∣∣∣PY ′
I1
(Y ′

I1 ·BY ′
I2 = 0)− 1

q

∣∣∣ = ∣∣∣PY ′
I1
(Y ′

I1 ·B
′Y ′

I2 = 0)− 1

q

∣∣∣ ≤ (C ′/q)cm.

Putting together by changing the constants, we obtain

Proposition 3.19 (Rank relations for symmetric matrices). Assume that√
αn ≤ m ≤ n and the symmetric matrix Mn is as in Theorem 3.3. Then

there exist positive constants c, C ′ such that

• Assume that 1 ≤ k ≤ cm, then∣∣∣P(
rank(Mm+1) ≤ rank(Mm) + 1|rank(Mm) = m− k ∧ Em ∧ Fm

)
− 1

qk

∣∣∣ ≤ (C ′

q

)cm
.
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• Assume that 0 ≤ k ≤ cm, then∣∣∣P(
rank(Mm+1) = rank(Mm)|rank(Mm) = m− k ∧ Em ∧ Fm

)
− 1

qk+1

∣∣∣ ≤ (C ′

q

)cm
.

Proposition 3.20 (Rank relations for alternating matrices). Assume that√
αn ≤ m ≤ n and the alternating matrix Mm is as in Theorem 3.7. Then

there exist positive constants c, C ′ such that the following holds for any 0 ≤
k ≤ cm3

∣∣∣P(
rank(Am+1) = rank(Am)|rank(Am) = m−k∧Em∧Fm

)
− 1

qk

∣∣∣ ≤ (C ′

q

)cm
.

Now Theorems 3.3 and 3.7 are almost in reach. We recall that in the
independent case we started from a full rank matrix of size n×m0 (withm0 =
�(1− 6α)n�) and expose the remaining columns one by one. Aside from the
negligible events, we showed there that the rank statistics is asymptotically
that of the uniform matrix of size n −m0. The situation in the symmetric
and alternating cases is different: instead of a column exposure process we
have a corner exposure process, and because of this the situation is more
complicated. To motivate the reader, let’s say we use Lemma 3.10 to evolve
from m0 = �√αn� with a matrix Mm0

whose corank is at most εm0 (but
we will not use this information). Assume for now that at each step we
append a new uniform vector to move from a square matrix of size m to a
square matrix of size m+ 1, what is the rank statistics of the final matrix?
In this case we establish the following, which is Theorem 3.5 restated here
for convenience.

Proposition 3.21. Assume that Mm0
is an arbitrary matrix of size m0. Let

Mu
n (M0) be the n×n random matrix with M0 as its upper right hand corner

and the remaining entries above the diagonal sampled uniformly and those
below chosen to make the matrix alternating or symmetric. Then,

‖Q(Mu
n (M0))−Q•‖TV ≤ 3n/2

qn/2−m0
.

Where Q• is either Qsym,∞, Qalt,e or Qalt,o depending on whether Mn is
symmetric or alternating and the parity of n.

3Strictly speaking, Lemma 3.16 just gave k ≥ 1, but for k = 0 the bound
automatically holds with probability one.
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We recall that the random matrix model above is a special case of Theo-
rem 3.3 and Theorem 3.7, and hence inevitable. In order to prove Proposition
3.21, a key problem is that at any given step the corank isn’t likely zero.
In fact it is likely similar to the final distribution but not within the error
tolerance we are aiming for. Our solution to this problem is to show that at
some step of the corner exposure process with high probability the corank is
zero. As a consequence, because at that step the corank matches with that
of the uniform model at step zeroth, we can evolve as in the uniform model
from there on. We will leave a linear length stretch to get our desired final
distribution with our desired error bound.

Lemma 3.22. Assume that ε >
√
α. Let M0 be a symmetric or alternating

matrix of corank x0 ≤ m0. If we add rows and columns according to the
uniform model and let xi denote the corank after adding the ith row and
column then

P(∃i ≤ εn, xi = 0) ≥ 1− 3εn

qεn−m0
.

Proof of Lemma 3.22. When a row and column are added there are at most
three possibilities for the corank: it could increase by one, decrease by one
or stay the same. Therefore there are at most 3εn possible paths. At most
because paths which have negative corank at some step are impossible and
because the corank flatting is not possible in the alternating model. We
compute the probability of the most likely path which has corank strictly
greater than zero at every step then take a union bound.

Claim 3.23. Among all sequences of coranks strictly greater than 0 the one
with highest probability is the one which decreases to 1 and then alternates
between 1 and 2. The probability of this path is less than,

(
1

q

)εn−m0

.

Proof of Claim 3.23. We prove the claim for the symmetric rank relations
and then describe the necessary modifications for the alternating model. We
first recall the following transition probabilities for the uniform symmetric
model

P(xm+1 = xm + 1) =
1

pxm+1

and

P(xm+1 = xm − 1) = 1− 1

pxm
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as well as

P(xm+1 = xm) =
1

pxm
− 1

pxm+1
=

1

pxm
(1− 1/p).

Denote by +,−, 0 if the corank increases, decreases, and levels respectively,
and by a string of those characters a sequence of those moves for our row-
column appending process. We compare the probabilities of the following
pairs of transitions at step m:

P(+ 0) =
1

qxm+1

1

qxm+1
(1− 1/q) <

1

qxm
(1− 1/q)

1

qxm+1
= P(0 +).

Also

P(− 0) =
(
1− 1

qxm

) 1

qxm−1
(1− 1/q) >

1

qxm
(1− 1/q)

(
1− 1

qxm

)
= P(0 −)

and

P(− +) =
(
1− 1

qxm

) 1

qxm
>

1

qxm+1

(
1− 1

qxm+1

)
= P(+ −).

So we have

P(−...−+...+ 0) ≤ P(−...−+...0+) ≤ P(−...− 0 + ...+).

Furthermore,

P(−...−+...+−) ≤ P(−...−+...−+) ≤ P(−...−+−+...+).

Repeating the above comparison we can then arrive at sequences of the
form

−...− 0...0 +−0...0 +−0...0 +−0...0 + ...+ .

Observe we can replace the trailing +...+ by increasing the number of zeros,
and we can move the zeros to the right side without changing the probability,
so the maximum sequences might have the form

−...−+−+− ...+−0...0.

Lastly, we have

P (00) =
( 1

qxm
(1− 1/q)

)2
≤ P (+ −) =

1

qxm+1

(
1− 1

qxm

)
even when xm = 1. So the most likely sequence is −...−+−+− ...+− as
claimed.
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To bound the probability of this sequence observe there are at least
(εn − (m0 − x0))/2 pluses since the initial rank is at most m0 − x0, that
is the maximum length of the leading string of −’s. Each plus occurs with
probability at most 1/q2 so we get the desired bound.

For the alternating model observe the corank either increases or de-
creases by one at each step. Staying the same isn’t an option. The proba-
bility of the corank decreasing in the alternating model is equal to the sum
of the probability of the rank staying the same and decreasing in the sym-
metric model. Therefore the alternating model has the same most probable
corank sequence with the same bounding probability.

From the claim we have,

P(∀i ≤ εn(xi > 0)) ≤ 3εnq−(εn−m0),

completing the proof.

Proof of Proposition 3.21. By the previous lemma with probability 1 −
3εn/qεn−m0 for some index i ≤ εn, Q(Mm0+i) = 0. The corank evolution
only depends on the corank in the previous step so the distribution at the
nth step is the same as the distribution of the corank of an (n− i)× (n− i)
matrix. By (10) and (11) the total variation distance between this and Q•
is less than 3εn/qn−εn−m0 . Choose εn = n/2 we obtain as claimed.

Proof of Theorem 3.3 and 3.7. Let M0 be the upper left m0 ×m0 corner of
our near uniform random matrix Mn. By our rank relations 3.19 and 3.20
at each of the remaining n−m0 steps the evolution of the uniform and near
uniform models differ by an error of at most (C ′/q)cm0 . Therefore summing
over all possible indices of rank drops we have,

‖Q(Mu
n (M0))−Q(Mn)‖TV ≤ 2n

(C ′

q

)cm0

.

By the previous Corollary we have,

‖Q(Mu
n (M0)−Q•‖TV ≤ 3n/2

qn/2−m0
.

Therefore by the triangle inequality we have,

‖Q(Mn)−Q•‖TV ≤ 2n
(C ′

q

)cm0

+
3n/2

qn/2−m0
.
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4. Two models of perturbed GLn matrices

Our method is quite general and allows us to give the rank statistics for two

other models of random matrix. Rather than sampling entries independently

or mostly independently we start with an invertible matrix and perturb it’s

diagonal or take a minor. Though these models have no independent entries

at all our method is still able to handle them.

Theorem 4.1 (Perturbation of GLn). Let An be chosen uniformly from

GLn(Fq) and let Mn = An − I, then there exist constants C, c such that

‖Q(Mn)−Q∞‖TV ≤
(C

q

)cn
.

This model was first considered in [39] by Washington in his study of

the Cohen-Lenstra heuristic, where it was shown that limn→∞P(Q(Mn) =

r) = Q∞(r). Here we show that the rate of convergence is extremely fast.

We also remark that one might be able to study this model using the cycle

index technique by Kung and Stong (see for instance [16]), however it is not

clear how far one can quantify the speed of convergence.

Finally, our method also gives the following rank statistics of corners of

GLn(Fq), a model considered recently by Van Peski [36] in his study of the

singular numbers of products.

Theorem 4.2 (Corner of GLn). Let ε > 0 be given and let An be chosen

uniformly from GLn(Fq). Let Mn′ be the top left corner of size n′ of An,

where n′ ≤ (1− ε)n.

‖Q(Mn′)−Q∞‖TV ≤ 3

qn′ +
2min(n′,εn)+1

qεn
.

Note there’s nothing special about the upper left corner so the same

result holds for any fixed n′ × n′ minor.

Let An ∈ GLn(Fq) be chosen uniformly. Let X1, . . . , Xn denote the

columns of An. We start with two simple results which will be important

for both theorems: a uniform element of GLn(Fq) can be sampled using

the column exposure process and a bound on the probability a rectangular

submatrix of An is full rank.

Claim 4.3. Sample vectors X1, . . . , Xn one at a time as follows: for 0 ≤ k ≤
n − 1 sample Xk+1 uniformly from Fn

q \〈X1, . . . , Xk〉. Let A be the matrix
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with Xi as columns. Then for each B ∈ GLn(Fq)

P(A = B) =
1

|GLn(Fq)|
.

Proof. Let ci be the i-th column vector of B. By definition P(Xk+1 =
ck+1(B)|X1 = c1(B), . . . , Xk = ck(B)) = 1

qn−qk , and so P(A = B) =∏n−1
k=0

1
qn−qk .

Lemma 4.4. For 1 ≤ k ≤ l ≤ n, let X ′
1, . . . , X

′
k be the vectors obtained

from X1, . . . , Xk by restricting to the first (or last) l coordinates. We have

P(X ′
1, . . . , X

′
k are linearly independent) ≥ 1− 2/ql−k.

By symmetry for X ′′
1 , . . . , X

′′
l the restrictions of X1, . . . Xl to the first (or

last) k coordinates we have,

P(X ′′
1 , . . . , X

′′
l span Fk

q ) ≥ 1− 2/ql−k.

Proof. We show that the event that the X ′
i are dependent is bounded by

2/ql−k. If the X ′
i are dependent there exists t < k such that X ′

1, . . . , X
′
t are

linearly independent and X ′
t+1 ∈ 〈X ′

1, . . . , X
′
t〉.

We have that X ′
t+1 ∈ 〈X ′

1, . . . , X
′
t〉 if X ′

t+1 belongs to the set St, where
St is the set whose projection onto the first l coordinates is a subset of
〈X ′

1, . . . , X
′
t〉. If X ′

1, . . . X
′
t are linearly independent then St has size qt ×

qn−l = qn+t−l. Therefore summing over the indices t < k we obtain,

P(X ′
1, . . . , X

′
k are linearly dependent) ≤ S0

|W 0|
+ · · ·+ Sk−1

|W k−1|

≤ qn−l

qn − 1
+ · · ·+ qn+(k−1)−l

qn − qk−1

≤ 2(q−l + · · ·+ qk−l−1)

≤ 2qk−l.

For the symmetric statement note that X ′′
1 , . . . , X

′′
l spanning Fk

q is equiva-
lent to the first k rows’ restriction to the first l coordinates being linearly
independent.

4.5. Proof of Theorem 4.1

Let Mn = An − I. The method is very similar to the one in Section 2.
Claim 4.3 justifies our use of a column exposure process. From Lemma 4.4 it
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follows X1−e1, . . . , Xk−ek are linearly independent for k < (1/2−c)n with
probability 1− q−cn. By Proposition 4.6 the normal vectors to Wk are likely
unstructured. The proof concludes similarly to the proof of Theorem 1.4.

From Lemma 4.4 it follows that Wk(Mn) has dimension k with proba-
bility at least 1 − q−cn for k ≤ 1/2(1 − c)n so we may start analyzing the
rank evolution process there. For k ≥ (1/2+ε)n, let FGL,k be the event that
X ′

1, . . . , X
′
k span Fn−k

q where X ′
1, . . . , X

′
k are the restrictions of X1, . . . , X

′
k

to the last n−k coordinates. For other k let FGL,k be empty. By Lemma 4.4,
P(FGL,k) > 1 − qn−2k. We now study how the rank evolves after exposing
X = Xk+1.

Proposition 4.6. Let k ≥ (1/2− ε)n. For any nonzero normal vector w of
〈X1 − e1, . . . , Xk − ek〉 we have∣∣∣P((Xk+1 − ek+1) ·w = 0|FGL,k)− 1/q

∣∣∣ ≤ q(−1/2+ε)n.

Proof. Let Y1, . . . , Yn−k be an orthonormal basis for Wk. We can view Xk+1

as a random vector
∑k

i=1 βiXi+
∑n−k

i=1 αiYi where (α1, . . . , αn−k, β1, . . . , βk)
is chosen uniformly from the set of vectors where at least one of αi is nonzero.
In particular each βi is independent of α1, . . . , αn−k, β1, . . . , β̂i, . . . , βk.

Case 1: k ≥ (1/2 + ε)n.

Because we conditioned on X ′
1, . . . , X

′
k spanning Fn−k

q , w is not orthog-
onal to one of e1, . . . , ek. Without loss of generality assume that w is not
orthogonal to e1. Now as w is orthogonal to X1 − e1, . . . , Xk − ek, we have

Pβ1
((Xk+1 − ek+1) ·w = 0) = Pβ1

(( k∑
i=1

βiXi +

n−k∑
i=1

αiYi − ek+1

)
·w = 0

)

= Pβ1

(
β1X1 ·w = a

)
= Pβ1

(β1e1 ·w = a)

= 1/q.

Note a = −
∑k

i=2 βiXi −
∑n−k

i=1 +ek+1 is independent of β1 and e1 · w =
X1 ·w �= 0.

Case 2: (1/2− ε)n ≤ k ≤ (1/2 + ε)n.

If w is not orthogonal to some ei, 1 ≤ i ≤ k we can use the argument
from Case 1. So assume ei · w = 0 for i ≤ k. Because w · (Xi − ei) = 0
for i ≤ k this also implies Xi ·w = 0 for i ≤ k. Write w = (w1, . . . , wn) =
(0, . . . , 0, wk+1, . . . , wn) with respect to the basis {X1, . . . , Xk, Y1, . . . , Yn−k}.
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The tuple (α1, . . . , αn−k) is chosen uniformly from Fn−k
q \{0}, and (wk+1, . . . ,

wn) is a fixed vector in Fn−k
q \{0}. If X was chosen uniformly from Fn−k

q

then P((X − ek+1) ·w = 0) = 1/q. Accounting for whether X = 0 would or
would not have given an equality we get,

∣∣∣P(
(X − ek+1) ·w = 0

)
− 1/q

∣∣∣ ≤ max
{ qn−k−1

qn−k − 1
− 1/q, 1/q− qn−k−1 − 1

qn−k − 1

}
≤ 1

qn−k−1
.

Proof of Theorem 4.1. Combining Proposition 4.6 and Lemma 2.11 we then
obtain that for any k ≥ (1/2− ε)n, with Xk+1 being chosen uniformly from
Fn
q \Wk(An) we have

∣∣∣PXk+1
(Xk+1 − ek+1 ∈ Wk(Mn)| codim(Wk(Mn)) = l)− 1

ql

∣∣∣ ≤ q(−1/2+ε)n.

Using this result together with the fact that codim(W�(1/2−ε)n�(Mk)) = 0
with probability 1−p−εn, we can complete the proof of Theorem 4.1 the same
way we concluded Theorem 1.4. Namely there are 2n ways the rank could
evolve during the column exposure process. Choosing ε = 1/4 each occurs
with the probability one would predict from the uniform model except for
an error bounded by,

2q−n/2 + (1− 1/4)nq−n/4.

Where the errors come from the probability W�n/4�(Mn) is not full rank and
the error we accumulate in the remaining �(1− 1/4)n� steps. So for q > 24

we can sum our errors and get our desired bound.

4.7. Proof of Theorem 4.2

In this subsection, let Mn′ denote the upper left n′ × n′ corner of An where
n′ ≤ (1− ε)n and let X ′

1, . . . , X
′
n′ denote its columns.

Just as in the independent and perturbed models the goal is to apply
Proposition 2.11 to determine the transition probabilities. With that in mind
we show the following.

Proposition 4.8. For all nonzero normal vectors w to Wk(Mn′) we have

|P(w ·X ′
k+1 = 0)− 1/q| < 1

qn−k−1
.
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Proof. Let Y1, . . . , Yn−k be a basis forWk(An). As in Proposition 4.6Xk+1 =∑k
i=1 βiXi+

∑n−k
i=1 αiYi where (α1, . . . , αn−k, β1, . . . , βk) is chosen uniformly

from the set of vectors where at least one of αi is nonzero. Now consider the
restriction of this equation to the first n′ entries,

X ′
k+1 =

k∑
i=1

βiX
′
i +

n−k∑
i=1

αiY
′
i .

Taking the dot product with w we get,

w ·X ′
k+1 =

k∑
i=1

βiX
′
i ·w +

n−k∑
i=1

αiY
′
i ·w

=

n−k∑
i=1

αiY
′
i ·w

At least one Yi must have Yi ·w �= 0. Therefore as in Proposition 4.6 we
get,

∣∣∣P(
(X ′

k+1 ·w = 0
)
− 1/q

∣∣∣ ≤ max
{ qn−k−1

qn−k − 1
− 1/q, 1/q − qn−k−1 − 1

qn−k − 1

}
≤ 1

qn−k−1
.

Proof of Theorem 4.2. Combining Proposition 4.8 and Proposition 2.11 we
obtain,

|P(X ′
k+1 ∈ Wk(Mn′)| codim(Wk(Mn′)) = d)− 1/pd| ≤ 1

qn−k−1

≤ q−εn.

As a consequence, by directly comparing with the rank evolution of the
uniform model over size n′ (via (5)) and by taking union bound, we obtain
a total variation distance of 2n

′
q−εn for the rank distribution of this model

and the uniform n′×n′ model. This bound can be improved if n′ is large, for
instance when n′ ≥ εn. Indeed, in this case, by Lemma 4.4 Wn′−�εn�(Mn′)

has full dimension n′−�εn� with probability at least 1−2q−�εn�. Starting at
this step leaves 2�εn� ways for the rank to evolve. As such we obtain a total
variation distance of 2q−�εn�+2�εn�q−εn between the rank distribution of this
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model and the uniform n′×n′ model. Finally, using Fulman and Goldstein’s
result we add another term of 3

qn′ for the total variation distance to the

limiting distribution Q∞.
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