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Criticality, the list color function, and list coloring
the cartesian product of graphs

Hemanshu Kaul and Jeffrey A. Mudrock

We initiate the study of a notion of color-criticality in the con-
text of chromatic-choosability. We define graph G to be strong
k-chromatic-choosable if χ(G) = k and every (k − 1)-assignment
for which G is not list-colorable has the property that the lists
are the same for all vertices. That is the usual coloring is, in
some sense, the obstacle to list-coloring. We prove basic properties
of strongly chromatic-choosable graphs such as vertex-criticality,
and we construct infinite families of strongly chromatic-choosable
graphs. We derive a sufficient condition for the existence of at least
two list colorings of strongly chromatic-choosable graphs and use
it to show that: if M is a strong k-chromatic-choosable graph with
|E(M)| ≤ |V (M)|(k − 2) and H is a graph that contains a Hamil-
ton path, w1, w2, . . . , wm, such that wi has at most ρ ≥ 1 neighbors
among w1, . . . , wi−1, then χ�(M�H) ≤ k + ρ − 1. We show that
this bound is sharp for all ρ ≥ 1 by generalizing the theorem to
apply to H that are (M,ρ)-Cartesian accommodating which is a
notion we define with the help of the list color function, P�(G, k),
the list analogue of the chromatic polynomial.

We also use the list color function to determine the list chro-
matic number of certain star-like graphs: χ�(M�K1,s) = k if s <
P�(M,k), and k + 1 if s ≥ P�(M,k), where M is a strong k-
chromatic-choosable graph. We use the fact that P�(M,k) equals
P (M,k), the chromatic polynomial, when M is an odd cycle, com-
plete graph, or the join of an odd cycle with a complete graph to
prove χ�(C2l+1�K1,s) transitions from 3 to 4 at s = 22l+1 − 2,
χ�(Kn�K1,s) transitions from n to n+ 1 at s = n!, and χ�((Kn ∨
C2l+1)�K1,s) transitions from n+3 to n+4 at s = 1

3 (n+3)!(4l−1).
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1. Introduction

In this paper all graphs are finite simple graphs. Generally speaking we fol-
low West [39] for terminology and notation. List coloring is a well known
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variation on the classic vertex coloring problem, and it was introduced inde-
pendently by Vizing [37] and Erdős, Rubin, and Taylor [12] in the 1970s. In
the classic vertex coloring problem we wish to color the vertices of a graph
G with as few colors as possible so that adjacent vertices receive different
colors, a so-called proper coloring. The chromatic number of a graph, de-
noted χ(G), is the smallest k such that G has a proper coloring that uses
k colors. For list coloring, we associate a list assignment, L, with a graph
G such that each vertex v ∈ V (G) is assigned a list of colors L(v). A list
assignment L is called a k-assignment if all the lists associated with L have
size k. The graph G is L-colorable if there exists a proper coloring f of G
such that f(v) ∈ L(v) for each v ∈ V (G) (we refer to f as a proper L-
coloring for G). The list chromatic number of a graph G, denoted χ�(G),
is the smallest k such that G is L-colorable whenever the list assignment
L satisfies |L(v)| ≥ k for each v ∈ V (G). It is immediately obvious that
for any graph G, χ(G) ≤ χ�(G). Erdős, Taylor, and Rubin observed in [12]
that bipartite graphs can have arbitrarily large list chromatic number. This
means that the gap between χ(G) and χ�(G) can be arbitrarily large.

1.1. Chromatic-choosability

A graph G is chromatic-choosable if χ(G) = χ�(G) (see [29]). Many classes
of graphs have been conjectured to be chromatic-choosable. The most well
known conjecture along these lines is the List Coloring Conjecture which
states that every line graph of a loopless multigraph is chromatic-choosable.
The list coloring conjecture was formulated independently by many dif-
ferent researchers (see [15]). In addition, total graphs [7] and claw free
graphs [14] are conjectured to be chromatic-choosable. In 2001 Kostochka
and Woodall [24] conjectured that the square of any graph is chromatic-
choosable. However, Kim and Park proved this conjecture to be false [20]. On
the other hand, there are classes of graphs that are known to be chromatic-
choosable. In 1995, Galvin [13] showed that the List Coloring Conjecture
holds for line graphs of bipartite multigraphs, and in 1996, Kahn [17] proved
an asymptotic version of the conjecture. Tuza and Voigt [36] showed that
chordal graphs are chromatic-choosable, and Prowse and Woodall [30]
showed that powers of cycles are chromatic-choosable. Recently, Noel, Reed,
and Wu [28] proved Ohba’s conjecture which states that every graph G on
at most 2χ(G) + 1 vertices is chromatic-choosable.

In this paper, we continue this investigation of chromatic-choosability in
the realm of Cartesian products of graphs. To aid our investigations we use
two major tools – criticality and the list color function.
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1.2. Critical graphs

Criticality is a widely used notion in the study of most graph properties.
It is used to define the graphs where the property is lost by removal of an
edge or vertex. Most commonly used in coloring problems, a k-critical graph
is a graph whose chromatic number is k but whose proper subgraphs have
chromatic number strictly less than k. If the proper subgraphs with this
property are restricted to be just the induced subgraphs then such a critical
graph is called k-vertex-critical. In 1951 Dirac [9] initiated the study of
critical graphs and since then a large body of literature has developed around
this notion since they characterize the chromatic number as: χ(G) ≥ k if
and only if G contains a k-critical graph.

A similar notion for list coloring has been harder to study since list col-
oring is highly dependent on the particular list assignment. Criticality in
the context of list coloring was first studied in Kostochka et al. [23] and
Thomassen [34]. In 2009, Stiebitz, Tuza and Voigt [33] introduced and stud-
ied the notion of k-list critical. A graph G is L-critical, for a list assignment
L, if every proper subgraph of G is L-colorable, but G is not L-colorable.
Then, G is called k-list critical if there is a (k− 1)-assignment L for G such
that G is L-critical. They studied the structure of such graphs, in particu-
lar list critical complete graphs. They introduced and studied an important
subclass of list-critical graphs called strong k-critical in which G is k-critical
and every (k−1)-assignment, L, for which G is not L-colorable has the prop-
erty that the lists are the same on all vertices. That is the usual coloring is,
in some sense, the obstacle to list-coloring.

We extend this notion to define criticality in the context of chromatic-
choosability. We define a graph G to be strong k-chromatic-choosable if
χ(G) = k and every (k − 1)-assignment, L, for which G is not L-colorable
has the property that the lists are the same on all vertices. These graphs in-
clude the strong k-critical graphs. Furthermore, these graphs are chromatic-
choosable and k-vertex-critical. In this paper we show how this notion can
be used to study list coloring of Cartesian products of graphs.

1.3. List color function

Counting the number of colorings of a graph is an important question that
is studied systematically using the classical notion of the chromatic polyno-
mial, originally introduced by Birkhoff in 1912 [5]. The chromatic polynomial
of a graph G is the function P (G, k) that is equal to the number of ordinary
k-colorings of G. It can be shown that P (G, k) is a polynomial in k. This
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notion was extended to list coloring as follows. If L is a list assignment for
G, we use P (G,L) to denote the number of proper L-colorings of G. The
list color function P�(G, k) is the minimum value of P (G,L) where the min-
imum is taken over all possible k-assignments L for G. Generally, P (G, k)
and P�(G, k) can be quite different, especially for small values of k. How-
ever, as was reported in [22], if G is a chordal graph (i.e. a graph in which
cycles of length at least four contain a chord), then P�(G, k) = P (G, k) for
all k. Also, Thomassen [35] showed that if G is a graph with n vertices, then
P�(G, k) = P (G, k) whenever k ≥ n10. Recently Wang, Qian, and Yan [38]
gave a major improvement: if G is a connected graph with m edges, then
P�(G, k) = P (G, k) whenever k > m−1

ln(1+
√
2)
.

In this paper, we show how knowledge of the list color function can
be exploited to bound the the list chromatic number of certain Cartesian
products or even find it exactly in some special cases.

1.4. Cartesian product of graphs

The Cartesian product of graphs G and H, denoted G�H, is the graph
with vertex set V (G)×V (H) and edges created so that (u, v) is adjacent to
(u′, v′) if and only if either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).
Note that G�H contains |V (G)| copies of H and |V (H)| copies of G. It is
also easy to show that χ(G�H) = max{χ(G), χ(H)}. So, we have that
max{χ(G), χ(H)} ≤ χ�(G�H).

There are few results in the literature regarding the list chromatic num-
ber of the Cartesian product of graphs. The current authors study the Alon-
Tarsi number (an upper bound for list chromatic number) of Cartesian prod-
ucts of graphs in [18]. In 2006, Borowiecki, Jendrol, Král, and Mǐskuf [6]
showed the following.

Theorem 1 ([6]). χ�(G�H) ≤ min{χ�(G) + col(H), col(G) + χ�(H)} − 1.

Here col(G), the coloring number of a graph G, is the smallest integer
d for which there exists an ordering, v1, v2, . . . , vn, of the elements in V (G)
such that each vertex vi has at most d− 1 neighbors among v1, v2, . . . , vi−1.
The coloring number is a classic greedy upper bound on the list chromatic
number, and it immediately implies that Δ(G)+1 is an upper bound on the
list chromatic number where Δ(G) is the maximum degree of G. Vizing [37]
extended this by proving the list coloring version of Brooks’ Theorem char-
acterizing complete graphs and odd cycles as the only connected graphs with
χ�(G) = Δ(G) + 1.
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Borowiecki et al. [6] construct examples where the upper bound in their
Theorem is tight. Specifically, they show that if k ∈ N and G is a copy of the
complete bipartite graph Kk,(2k)k(k+kk) , then χ�(G�G) = χ�(G)+col(G)−1.
On the other hand, there are examples where the upper bounds from Theo-
rem 1 and Vizing’s extension of Brooks’ Theorem are not tight. For example,
suppose that G is a copy of C2k+1�Pm where m ≥ 3. Since χ�(C2k+1) =
col(C2k+1) = 3 and χ�(Pm) = col(Pm) = 2, both the bounds give us
χ�(G) ≤ 4, yet we will show below that χ�(G) = 3. Another, more dra-
matic, example where these Theorems do not produce tight bounds is when
we are working with the Cartesian product of two complete graphs. Sup-
pose m ≥ n ≥ 2, and note that Km�Kn is the line graph for the com-
plete bipartite graph Km,n. So, by Galvin’s celebrated result [13]: m =
χ(Km�Kn) = χ�(Km�Kn). However, Theorem 1 only yields an upper
bound of m + n − 1 since χ�(Km) = col(Km) = m, and Brooks’ Theorem
only tells us χ�(Km�Kn) ≤ m+ n− 2.

Alon [2] showed that for any graphG, col(G) ≤ 2O(χ�(G)). Combining this
result with Theorem 1 implies that we have an upper bound on χ�(G�H)
in terms of only the list chromatic numbers of the factors. Borowiecki et
al. [6] conjecture that a much stronger bound holds: there is a constant A
such that χ�(G�H) ≤ A(χ�(G) + χ�(H)). While we will not address this
conjecture in this paper, we will present results that are improvements on
Theorem 1 when the factors in the Cartesian product belong to certain large
classes of graphs.

1.5. Outline of the paper and open questions

The following open questions motivated much of the research presented in
this paper.

Question: For what factors, G and H, is G�H chromatic-choosable?

Or, even more simply,

Question: For which graphs, G, is G�Pn chromatic-choosable for each n ∈
N?

In Section 2, we introduce the notion of strongly chromatic-choosable
graphs, and we prove some basic facts about these graphs including that they
are chromatic-choosable, and k-vertex-critical in a strong sense: χ(G−{v}) ≤
χ�(G − {v}) < k, for any v ∈ V (G). This extends the notion of strongly
critical graphs. In fact, a graph is strong k-critical if and only if it is k-critical
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and strong k-chromatic-choosable. In addition to strongly critical graphs like
complete graphs, odd cycles, Dirac graphs. etc., we also construct nontrivial
examples of strong k-chromatic choosable graphs that are not strong k-
critical, for all k ≥ 4. We also discuss how strong chromatic-choosability
is related to an older notion of amenable colorings and to a conjecture of
Mohar from 2001 regarding (Δ(G) + 1)-edge critical graphs.

In Section 3, we derive a sufficient condition for existence of at least
two colorings of strongly chromatic-choosable graphs using a result of Ak-
bari, Mirrokni, and Sadjad [1] that relates f -choosability and unique list
colorability.

Lemma. Let G be a strong k-chromatic-choosable graph with n vertices and
m edges. Suppose that L is a list assignment for G such that |L(v)| ≥ k − 1
for each v ∈ V (G) and L is not a constant (k − 1)-assignment for G. If
m ≤ n(k − 2), then there are at least two proper L-colorings for G.

All strong 3-chromatic-choosable graphs and all the examples of strong
k-chromatic-choosable graphs with k ≥ 4 from Section 2 satisfy this edge
condition: m ≤ n(k−2). Moreover, whenever we have a strongly chromatic-
choosable graph G that does not satisfy the edge condition, we can obtain a
strongly chromatic-choosable graph from G that satisfies the edge condition
by taking the join of G with a sufficiently large complete graph. We construct
strong k-chromatic-choosable graphs that do not satisfy the edge condition
for k = 4, 5, 6, 7. These examples lead us to question whether we really need
the edge condition in the above Lemma.

Question: For k ≥ 4, does there exist a graph G that is strong k-chromatic-
choosable and violates the edge condition, and a non-constant (k − 1)-
assignment, L, for G such that G has a unique proper L-coloring?

In Section 4, we use the existence of these multiple colorings in strongly
chromatic-choosable graphs to prove the following.

Theorem. Let M be a strong k-chromatic-choosable graph with n vertices
and m edges that satisfies m ≤ n(k− 2), and suppose that graph H contains
a Hamilton path, w1, w2, . . . , wm, such that wi has at most ρ ≥ 1 neighbors
among w1, . . . , wi−1. Then, χ�(M�H) ≤ k + ρ− 1.

This Theorem is sharp for ρ = 1 since it gives M�Pn is chromatic-
choosable. It improves the bound from Theorem 1 for any H satisfying
col(H) = χ�(H) and ρ = col(H) − 1 (examples of graphs where both of
these conditions are satisfied include paths, cycles, complete graphs, and
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powers of paths) while M can be any strong k-chromatic-choosable graph
that satisfies the edge condition. Next we study the case when ρ > 1.

In Section 5, we study how the list color function can be used to bound
list chromatic number of certain Cartesian products. One of our early results
is:

Theorem. If M is a strong k-chromatic-choosable graph, then

χ�(M�K1,s) =

{
k if s < P�(M,k)

k + 1 if s ≥ P�(M,k).

It can be shown P�(M,k) = P (M,k) when M is an odd cycle, complete
graph, or the join of an odd cycle and complete graph. The following question
is open.

Question: Is P�(G, k) = P (G, k) whenever G is strongly chromatic-
choosable?

When we can compute the exact value of P�(M,k) for some strong k-
chromatic-choosable graph M , we can determine when χ�(M�K1,s) transi-
tions from k to k+1. For example, χ�((Kn ∨C2l+1)�K1,s) transitions from
n + 3 to n + 4 at s = 1

3(n + 3)!(4l − 1). Note that this gives results, in-
cluding chromatic-choosable Cartesian products, where the second factor of
the product, a star, is far from having a Hamilton path. We can also ex-
tend this Theorem to get chromatic-choosability when the second factor is
a subdivision of a star and the first factor is a strongly chromatic-choosable
graph satisfying the edge condition. The current authors in [19] give a far
reaching extension of the above Theorem to the list chromatic number of
the Cartesian product of any graph with a complete bipartite graph.

Finally, we define (M,ρ)-Cartesian accommodating graphs and prove
that the Theorem from Section 4 remains true with the second factor re-
placed by this more general class of graphs. We prove sharpness, for all ρ, by
constructing a (M,ρ)-Cartesian accommodating graphH, with χ�(M�H) =
k + ρ − 1, by a recursive construct SM,B′,ρ that glues together P�(M,k +
ρ − 2) disjoint copies of SM,B′,ρ−1 starting with B′, a subdivision of star
K1,P�(M,k)−1. This allows us to give recursive constructions of large chro-
matic-choosable graphs.

2. Strongly chromatic-choosable graphs

In this section we introduce the notion of strongly chromatic-choosable
graphs. We refer to a list assignment, L, for graph G as a bad k-assignment
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forG if L is a k-assignment andG is not L-colorable. A list assignment, L, for
a graph G is called constant if L(v) is the same list for each v ∈ V (G). Now,
we define a graph G to be strong k-chromatic-choosable if χ(G) = k and
every bad (k− 1)-assignment for G is constant. One will note that strong 1-
chromatic-choosable graphs are graphs with at least one vertex and no edges
which is rather uninteresting. Therefore, unless otherwise noted, we will fo-
cus our attention on strong k-chromatic-choosable graphs with k ≥ 2. It is
easy to see that when k ≥ 2, a graph, G, is strong k-chromatic-choosable
if and only if χ(G) > k − 1 and and every bad (k − 1)-assignment for G
is constant. We will often use this characterization of strongly chromatic-
choosable in the proofs below.

We introduce some terminology that will be useful here as well as later in
the paper. Suppose that G1 and G2 are two arbitrary vertex disjoint graphs.
The disjoint union of the graphs G1 and G2, denoted G1 +G2, is the graph
with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The join of the
graphs G1 and G2, denoted G1 ∨G2, is the graph consisting of G1, G2, and
additional edges added so that each vertex in G1 is adjacent to each vertex
in G2. It is well known that χ(G1∨G2) = χ(G1)+χ(G2). Dirac [10] showed
if χ(Gi) = ki for i = 1, 2, then G1 ∨G2 is (k1 + k2)-critical if and only if Gi

is ki-critical for i = 1, 2.

Proposition 2. Suppose G is a strong k-chromatic-choosable graph. Then,
(i) χ�(G) = k (i.e., G is chromatic-choosable);
(ii) If L is a list assignment for G with |L(v)| ≥ k − 1 for each v ∈ V (G)
and L is not a constant (k − 1)-assignment, then G is L-colorable;
(iii) G ∨Kp is strong (k + p)-chromatic-choosable for any p ∈ N;
(iv) For any v ∈ V (G), χ(G− {v}) ≤ χ�(G− {v}) < k;
(v) k = 2 if and only if G is K2;
(vi) k = 3 if and only if G is an odd cycle.

Proof. For all 6 of the statements, we have that k ≥ 2 and hence χ(G) > 1.
So, G has at least one edge, and we let V (G) = {v1, . . . , vn} where n ≥ 2
throughout.

For (i), suppose that L is an arbitrary k-assignment for G. We form a
new list assignment, L′, for G by deleting one color from L(v1) and one color
from L(v2) so that L′(v1) �= L′(v2). We then arbitrarily delete one color from
each list associated with any remaining vertices. Now, L′ is a non-constant
(k−1)-assignment for G, and since G is strong k-chromatic-choosable, there
must be a proper L′-coloring for G. This coloring is also a proper L-coloring
for G, and we have that: k = χ(G) ≤ χ�(G) ≤ k.

For (ii), note that we are immediately done if L is a (k − 1)-assignment
since in this case L cannot be constant. If L is not a (k − 1)-assignment we
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proceed as we did in the proof of statement (i), that is, we delete colors from
lists so as to obtain a non-constant (k − 1)-assignment.

For (iii), one can follow the proof of a similar statement found in [33].
We will present a slightly longer proof that is similar in flavor to some of the
arguments we make later on in the paper. Let G′ = G∨Kp and suppose that
{w1, . . . , wp} is the vertex set of the copy of Kp joined to G to form G′. We
know that χ(G′) = χ(G) + p = k + p. Now, suppose that L is an arbitrary
non-constant (k + p − 1)-assignment for G′. We will prove that there is a
proper L-coloring for G′ in two cases: (1) There exists w, u ∈ V (G) such that
L(w) �= L(u) and (2) L(v) = A for each v ∈ V (G). In (1) for each i we color
wi with ci so that ci ∈ L(wi) and ci �= cj whenever i �= j (this is possible
since each list contains at least p colors). Now, for each v ∈ V (G) we let
L′(v) = L(v) − {c1, . . . cp}. We note that L′ is a list assignment for G with
the property that |L′(v)| ≥ k − 1 for each v ∈ V (G). Since L(w) �= L(u),
L′ is not a constant (k − 1)-assignment. Statement (ii) then implies that
we can find a proper L′-coloring for G. Thus, we can complete a proper
L-coloring for G′. For case (2), we note that since L is non-constant, there
must be some c1 ∈

⋃p
i=1 L(wi)−A. Without loss of generality, suppose that

c1 ∈ L(w1)−A. We color w1 with c1. Then, for each i ≥ 2 we color wi with
ci so that ci ∈ L(wi) and ci �= cj whenever i �= j. Now, for each v ∈ V (G)
we let L′(v) = L(v)−{c1, . . . cp}. We note that L′ is a list assignment for G
with the property that |L′(v)| ≥ k for each v ∈ V (G). Statement (ii) then
implies that we can find a proper L′-coloring for G, and this means we can
complete a proper L-coloring for G′.

For (iv), the first inequality is obvious. So, we need only show the second
inequality. Suppose v is an arbitrary vertex of G. Let G′ = G − {v}, and
suppose that L′ is an arbitrary (k− 1)-assignment for G′. Now, let L be the
(k−1)-assignment for G obtained by letting L(x) = L′(x) for each x ∈ V (G′)
and letting L(v) be a list of (k − 1) colors such that L(v) �= L(y) for some
y ∈ V (G′). Then, L is a non-constant (k−1)-assignment for G, and we know
there is a proper L-coloring, c, for G. Then, we define a coloring, c′, for G′

by letting c′(x) = c(x) for each x ∈ V (G′). Clearly c′ is a proper L′-coloring
for G′. Since L′ was arbitrary, it follows that χ�(G

′) ≤ k − 1 < k.
For (v), note that if G = K2, then G is strong 2-chromatic-choosable

since χ(G) = 2, and G is L-colorable whenever L is a non-constant 1-
assignment for G. Conversely, if G is strong 2-chromatic-choosable, the fact
that G must be a copy of K2 follows from Statement (iv). The proof of
Statement (vi) is similar to the proof of Statement (v).

As discussed in Section 1.2, this notion of strongly chromatic-choosable
graphs is in fact an extension of an older notion of criticality defined by
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Stiebitz, Tuza, and Voigt [33]. They define a graph G to be strong k-critical
if G is k-critical and every bad (k−1)-assignment for G is constant. One will
immediately note that every strong k-critical graph is strong k-chromatic-
choosable. Moreover, a graph is strong k-critical if and only if the graph
is k-critical and strong k-chromatic-choosable. The strong k-critical graphs
are the same as the strong k-chromatic-choosable graphs when k = 2, 3. We
will show below that there exist strong k-chromatic-choosable graphs that
are not strong k-critical for all k ≥ 4.

Stiebitz et al. [33] show that the complete graph, Kk, is strong k-critical,
and that odd cycles are strong 3-critical. Like Proposition 2(iii) above, they
also showed that: IfG is a strong k-critical graph, then the graphG′ = G∨Kp

is strong (k + p)-critical. They also construct two other types of strongly
critical graphs. For k ≥ 3 a Dk-graph is a graph, G, whose vertex set consists
of three non-empty pairwise disjoint sets X, Y1, and Y2 with |Y1| + |Y2| =
|X|+1 = k−1 and two additional vertices, x1 and x2, such thatX and Y1∪Y2
are cliques in G not joined by any edge and xi is adjacent to each vertex in
X ∪Yi for i = 1, 2. We write G = Dk(X,Y1, Y2, x1, x2). Similarly, for k ≥ 3 a
Ek-graph is a graph, G, whose vertex set consists of four non-empty pairwise
disjoint sets X1, X2, Y1, and Y2 with |Y1| + |Y2| = |X1|+ |X2| = k − 1 and
|X2| + |Y2| ≤ k − 1, and one additional vertex, z, such that X = X1 ∪ X2

and Y = Y1 ∪ Y2 are cliques in G, z is adjacent to each vertex in X1 ∪ Y1,
and x ∈ X is adjacent to y ∈ Y if and only if x ∈ X2 and y ∈ Y2. We write
G = Ek(X1, X2, Y1, Y2, z). See examples 7 and 8 of [33] for a proof of: For
k ≥ 3, all Dk graphs and Ek graphs are strong k-critical.

2.1. Constructions

Let’s start with a simple construction based on the Dirac-Hajós construction
(see [32]). Specifically, suppose that G1 and G2 are vertex disjoint copies of
Kk with k ≥ 3, V (G1) = {v1, . . . , vk}, and V (G2) = {u1, . . . , uk}. For i
satisfying 1 ≤ i ≤ k − 2, we form a copy, G, of KkΔ

(i)Kk by identifying
v1 with u1, v2 with u2, . . ., and vi with ui, deleting the edges v1vi+1 and
u1ui+1, and adding the edge ui+1vi+1. One should note that for i ≥ 2, G is
a copy of (Kk−i+1Δ

(1)Kk−i+1) ∨Ki−1. Also, for i = 1,

G = Ek({v3, . . . , vk}, {v2}, {u3, . . . , uk}, {u2}, u1).

So, G is strong k-critical when i = 1. Then, applying the join procedure,
KkΔ

(i)Kk is strong k-critical when i ≥ 2.
So we have several large families of graphs, such as odd cycles, complete

graphs, Dk graphs, Ek graphs, and KkΔ
(i)Kk, that are strongly critical
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graphs, and hence, are also strongly chromatic-choosable. We will now focus
on constructing some nontrivial examples of strongly chromatic-choosable
graphs that are not strongly critical. We begin with a lemma that is a useful
tool for such constructions.

Lemma 3. Let G be a strong k-chromatic-choosable graph. Let A,B ⊆ V (G)
such that A ∪ B = V (G) and C = A ∩ B with |A|, |B| > |C|, 0 < |C| ≤ 3
when k is even and 0 < |C| ≤ 4 when k is odd. Form G′ by adding vertices
u and s to G, and edges so that u is adjacent to every vertex in A and s
is adjacent to every vertex in B. If χ(G′) > k, then G′ is strong (k + 1)-
chromatic-choosable.

Note that for this Lemma we must have k ≥ 3. This is because finding
such an A and B would be impossible in the case that k = 2 since G would
only have two vertices in this case by Proposition 2 (v).

Proof. For this proof we will let C = {v1, . . . , vm}. Suppose that L is an
arbitrary non-constant k-assignment for G′. In order to show that G′ is
strong (k + 1)-chromatic-choosable, we must show G′ is L-colorable. We
know that G = G′ − {u, s}. Now, we know that exactly one of the following
two cases must hold: (1) L(u) ∩ L(s) �= ∅ or (2) L(u) ∩ L(s) = ∅. We will
construct a proper L-coloring of G′ in each of these cases. In both cases our
general strategy is the same: first color u and s, then use the fact that G is
strong k-chromatic-choosable to complete a proper coloring.

For case (1) suppose that c1 ∈ L(u) ∩ L(s). We color both u and s with
c1. Now, for each vertex v ∈ V (G), let

L′(v) = L(v)− {c1}.

We notice that |L′(v)| ≥ k − 1 for each v ∈ V (G). Also, we know that L′ is
either a constant (k − 1)-assignment for G or it is not. In the case that L′

is not a constant (k − 1)-assignment for G, we know that we can complete
a proper L-coloring for G′ by Proposition 2 Statement (ii). Now, consider
the case that L′ is a constant (k − 1)-assignment for G. In this case, L(v)
must be the same for each v ∈ V (G). Let W = L(v) for each v ∈ V (G).
Since L is a non-constant k-assignment, this means that L(u) or L(s) must
be different from W . Without loss of generality suppose c2 ∈ L(u)−W . We
recolor vertex u with c2. Now, for each vertex v ∈ V (G), let

L′′(v) =

{
L(v)− {c1} if v is a neighbor of s in G

L(v) if v is not a neighbor of s in G
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We note that |L′′(v)| ≥ k − 1 for each v ∈ V (G). Since |A| ≥ |C|+ 1, there
is at least one vertex in V (G) that is not a neighbor of s. So, we have that
L′′ is not a constant (k − 1)-assignment for G. Thus, there is a proper L′′

coloring for G by Proposition 2 Statement (ii), and we can complete a proper
L-coloring for G′.

Now, we turn our attention to case (2). For this case let I =
⋂m

i=1 L(vi).
We consider two sub-cases: (a) |I| ≥ k − 1 and (b) |I| < k − 1. (Note:
when m = 1, |I| = k and we are in sub-case (a).) For (a), suppose U =
{c1, . . . , ck−1} ⊆ I. Since L(u) and L(s) are disjoint and have at least k
elements we know that each of these lists contain a color not in U , and at
least one of the lists contains at least two colors not in U . Without loss of
generality suppose that c′, c′′ ∈ L(u)− U and c′′′ ∈ L(s)− U . Now, for each
v ∈ V (G) let

L′(v) =

⎧⎪⎨
⎪⎩
L(v)− {c′} if v ∈ A− C

L(v)− {c′′′} if v ∈ B − C

L(v)− {c′, c′′′} if v ∈ C

and

L′′(v) =

⎧⎪⎨
⎪⎩
L(v)− {c′′} if v ∈ A− C

L(v)− {c′′′} if v ∈ B − C

L(v)− {c′′, c′′′} if v ∈ C.

We note that |L′(v)| ≥ k − 1 and |L′′(v)| ≥ k − 1 for each v ∈ V (G).
Moreover, since |A| ≥ |C|+1, we know that at least one of L′ and L′′ is not
a constant (k− 1)-assignment. Without loss of generality suppose that L′ is
not a constant (k − 1)-assignment for G. Then, color u with c′ and s with
c′′′, and since there is a proper L′ coloring for G by Proposition 2 Statement
(ii), we can complete a proper L-coloring for G′.

Now, consider sub-case (b). Suppose L(u) = {c1, . . . , ck} and L(s) =
{ck+1, . . . , c2k}. We notice that if we are to find an L-coloring of G′, then
we have k2 possible ways to color u and s. We can think of each of these
k2 possibilities as an ordered pair in the set P = {(ci, cj)|i ∈ {1, . . . , k}, j ∈
{k + 1, . . . , 2k}}. We refer to each of the k2 possibilities in this set as a
color pair. We say that a list of colors contains a color pair if it contains
both colors that make up the coordinates of the pair. Now, we claim that
there must be some color pair that is not contained in any of the lists:
L(v1), . . . , L(vm). To see why this is so, note that for any i (1 ≤ i ≤ m)
L(vi) contains at most �k2�


k
2� color pairs. We note that �k2�


k
2� <

k2

3 when

k is even and �k2�

k
2� <

k2

4 when k is odd. So, since |C| ≤ 3 when k is even
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and |C| ≤ 4 when k is odd, we have that there must be some color pair
that is not contained in any of the lists: L(v1), . . . , L(vm). Without loss of
generality suppose that (c1, ck+1) is not contained in any of these lists. We
color u with c1 and s with ck+1 and for each v ∈ V (G) we let

L′(v) =

⎧⎪⎨
⎪⎩
L(v)− {c1} if v ∈ A− C

L(v)− {ck+1} if v ∈ B − C

L(v)− {c1, ck+1} if v ∈ C.

Since no list associated with a vertex in C contains the color pair (c1, ck+1),
we have that |L′(v)| ≥ k − 1 for each v ∈ V (G). Also, since |I| < k − 1, we
know that L′ is not a constant (k − 1)-assignment. Thus, there is a proper
L′ coloring for G by Proposition 2 Statement (ii), and we can complete a
proper L-coloring for G′.

We will now use this Lemma to produce some examples of strong k-
chromatic-choosable graphs.

Proposition 4. Suppose C is an odd cycle with vertices (in cyclic order):
v1, v2, v3, v4, . . . , v2l+1 where l ≥ 2. Suppose m ∈ N is such that m ≤ 2l − 2.
We construct the graph Gl,m,1 as follows: Add vertices u1 and s1 to C, and
add edges so that u1 is adjacent to each vertex in {vj |1 ≤ j ≤ 2+m} and so
that s1 is adjacent to each vertex in V (C)− {v1, v2}. Then, Gl,m,1 is strong
4-chromatic-choosable whenever m ≤ 4.

At this point it may seem strange that we attach an additional parameter
of “1” to Gl,m,1. The reason for this will be made clear shortly.

Proof. Throughout this proof we assume m ≤ 4. We first note that for any
proper coloring of C, the path P1 given by v1, v2, v3 or the path P2 given by
v3, v4, . . . , v2l+1 must be colored with at least three colors. To see why this
is so note that if P1 and P2 were both colored with only two colors v1 and
v2l+1 would receive the same color as v3. So, we have that χ(Gl,m,1) > 3.
Now, let A = {vj |1 ≤ j ≤ 2 +m} and B = V (C) − {v1, v2}. We note that
A ∪ B = V (C), |A ∩ B| = m ≤ 4. Also, since v1 /∈ A ∩ B, |A| > |A ∩ B|.
Since m ≤ 2l − 1, we know v2l+1 /∈ A ∩ B and |B| > |A ∩ B|. Thus,
Lemma 3 immediately implies that Gl,m,1 is strong 4-chromatic-choosable
when m ≤ 4.

It is easy to verify that Gl,1,1 is 4-critical. Thus, Gl,1,1 is strong 4-critical.
Since Gl,2,1, Gl,3,1, and Gl,4,1 contains Gl,1,1 as a subgraph, we have that
these three graphs are not 4-critical. Thus, we have our first examples of
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strongly chromatic-choosable graphs that are not strongly critical. For p ≥
1 and 2 ≤ m ≤ 4, note that Proposition 2 Statement (iii) implies that

Gl,m,1 ∨ Kp is strong (4 + p)-chromatic-choosable, yet Gl,m,1 ∨ Kp is not

(4+p)-critical. So, there exist strong k-chromatic-choosable graphs that are

not strong k-critical for k ≥ 4. We will now illustrate one more application

of Lemma 3 by inductively extending the idea of Proposition 4. We postpone

its proof until the appendix.

Proposition 5. For k ∈ N and m ∈ {1, 2, 3} we construct Gl,m,k inductively

as follows. For k = 1, Gl,m,k is the graph constructed in the statement of

Proposition 4. For k ≥ 2 we construct Gl,m,k from Gl,m,k−1 as follows. We

add vertices uk and sk to Gl,m,k−1 and we add edges so that uk is adjacent

to {uj |1 ≤ j ≤ k − 1} ∪ {vj |1 ≤ j ≤ 2 + m} and so that sk is adjacent

to {sj |1 ≤ j ≤ k − 1} ∪ (V (C) − {v1, v2}). Then, Gl,m,k is strong (3 + k)-

chromatic-choosable. Moreover, Gl,m,k is not strong (3 + k)-critical when

m = 2, 3.

Historical Remarks:We have defined strongly chromatic-choosable graphs

using the language of list coloring. Researchers have studied questions closely

related to list coloring via amenable colorings (see [8] and [25]). In fact, we

could have defined strong k-chromatic-choosable graph by using the lan-

guage of amenable colorings for k ≥ 2. We briefly explain how this would

work by following the definitions in [25]. Suppose that G is a graph and

suppose that m > j > 0. For every v ∈ V (G), let R(v) be a j-element

subset of {1, 2, . . . ,m}, and suppose that R is not constant. Such an R is

called a (j,m)-restraint. An R-amenable coloring of G is a proper coloring,

f : V (G) → {1, 2, . . . ,m}, such that f(v) ∈ {1, 2, . . . ,m} − R(v) for each

v ∈ V (G). We say that G is (j,m)-amenable if there is an R-amenable col-

oring of G for every possible (j,m)-restraint, R. For k ∈ N we let Jk(G)

be a nonnegative integer or ∞ such that if j is a positive integer, G is

(j, j + k)-amenable if and only if j ≤ Jk(G). Now, we have that G is strong

k-chromatic-choosable if and only if χ(G) > k − 1 and Jk−1(G) = ∞.

In July 2001 Mohar [26] made an interesting conjecture that can be

stated in terms of strong chromatic-choosability. Suppose G is a graph with

maximum degree Δ(G). We say G is k-edge-colorable if its edges can be

colored with k colors such that any two incident edges receive different colors.

We say that G is (Δ(G) + 1)-edge-critical if it is (Δ(G) + 1)-edge-colorable

but every subgraph of G in which at least one edge of G is not present

is Δ(G)-edge-colorable. In terms of strong chromatic-choosability Mohar’s

conjecture may be stated as follows.
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Conjecture 6 ([26]). Suppose G is a (Δ(G) + 1)-edge-critical graph, and
let L(G) be the line graph of G. Then, L(G) is strong (Δ(G)+1)-chromatic-
choosable.

3. Non-unique list colorability and the edge condition

We begin with a standard definition. Suppose G is a graph, and consider a
function f : V (G) → N. We say that G is f -choosable if G is L-colorable
whenever |L(v)| ≥ f(v) for each v ∈ V (G). Akbari, Mirrokni, and Sadjad [1]
extended some of the ideas of Alon and Tarsi [3] and proved the following
two results.

Theorem 7 ([1]). Suppose that G is a graph with n vertices and m edges
and assume that f : V (G) → N is a function with

∑
v∈V (G) f(v) = m+n. If

there is a list assignment, L, for G such that |L(v)| = f(v) for each v ∈ V (G)
and there is a unique proper L-coloring for G, then G is f -choosable.

Corollary 8 ([1]). Suppose that G is a graph with n vertices and m edges
and assume that f : V (G) → N is a function with

∑
v∈V (G) f(v) > m + n.

Then, there is no list assignment, L, for G such that |L(v)| = f(v) for each
v ∈ V (G) and G has a unique proper L-coloring.

Generally speaking, the key to proving some of our list coloring results
is that certain types of strong k-chromatic-choosable graphs have at least
two proper colorings for non-constant (k − 1)-assignments.

Lemma 9. Suppose that G is a strong k-chromatic-choosable graph with n
vertices and m edges. Suppose that L is a list assignment for G such that
|L(v)| ≥ k−1 for each v ∈ V (G) and L is not a constant (k−1)-assignment
for G. If m ≤ n(k− 2), then there are at least two proper L-colorings for G.

Proof. Suppose that L is a non-constant (k− 1)-assignment for G and m ≤
n(k−2). It suffices to show that there are at least two proper L-colorings for
G. By the definition of strong k-chromatic-choosable we know that there is
a proper L-coloring for G which we will call c. For the sake of contradiction
suppose that c is the unique proper L-coloring for G. We assume f : V (G) →
N is given by the rule f(v) = k− 1. Note that if we have m+ n < n(k− 1),
Corollary 8 implies that there is not a unique proper L-coloring for G which
is a contradiction. So, we may assume m+n = n(k−1). Since c is the unique
proper L-coloring for G, we have that G is f -choosable by Theorem 7. This
implies χ(G) ≤ χ�(G) ≤ k − 1. This is a contradiction, and the proof is
complete.
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For the remainder of this paper, we say that a strong k-chromatic-
choosable graph, G, with n vertices and m edges satisfies the edge condition
if m ≤ n(k − 2). Notice that the edge condition is violated for all strong k-
chromatic-choosable graphs with k ≤ 2. It is easy to verify that odd cycles
and complete graphs on at least three vertices satisfy the edge condition.
This means that all strong 3-chromatic-choosable graphs satisfy the edge
condition. The strong k-chromatic-choosable graphs described in Section 2
all satisfy the edge condition.

Proposition 10. For k ≥ 3, Dk and Ek graphs satisfy the edge condition.

The proof follows by careful calculation. The two recipes for construction
that we gave in Section 2 also preserve the edge condition.

Proposition 11. Suppose that G is a strong k-chromatic-choosable graph
with n vertices and m edges that satisfies the edge condition. Then, the
following two statements hold.
(i) For p ≥ 1, G ∨Kp satisfies the edge condition, and
(ii) If G′ is constructed from G so that it satisfies the hypotheses of Lemma 3,
then G′ satisifes the edge condition.

Proof. We know that m ≤ n(k − 2). For (i), we know from Proposition 2
Statement (iii) that G∨Kp is strong (k+p)-chromatic-choosable, and G∨Kp

has n+p vertices and m+np+ p(p−1)
2 edges. It is easy to show that p(p+1)

2 ≤
kp+ p2 − p. Then, if we combine this fact with the fact that m ≤ n(k − 2),

it is easy to obtain m+ np+ p(p−1)
2 ≤ (n+ p)(k + p− 2).

For (ii), we know from Lemma 3 that G′ is strong (k + 1)-chromatic-
choosable and k ≥ 3. Moreover, G′ has n+2 vertices and at most m+n+4
edges. Since k ≥ 3 and m ≤ n(k − 2), we can easily obtain: m + n + 4 ≤
(n+ 2)(k − 1).

The above Proposition shows that any strongly chromatic-choosable
graph constructed using Proposition 2 Statement (iii) or Lemma 3 from
a graph satisfying the edge condition satisfies the edge condition. Thus,
Lemma 9 applies to such graphs. Also note Proposition 13 below shows that
even a strongly chromatic-choosable graph that does not satisfy the edge
condition can be made to satisfy the edge condition by taking a join with a
large enough complete graph.

We now show that there are examples of strongly chromatic-choosable
graphs that do not satisfy the edge condition. In order to do this, we will
show that Lemma 3 can be extended in the case where our starting graph
is an odd cycle.
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Lemma 12. Let G be an odd cycle C2l+1. Suppose we can find sets A,B ⊆
V (G) such that A ∪ B = V (G). Let C = A ∩ B and suppose 0 < |C| ≤ 8,
and |A|, |B| > |C|. Form G′ by adding vertices u and s to G, and add edges
so that u is adjacent to every vertex in A and s is adjacent to every vertex
in B. If χ(G′) > 3, then G′ is strong 4-chromatic-choosable.

Proof. The proof is postponed to the Appendix to save space.

One will note that it is easy to construct examples where u and s have
at least 10 neighbors in common and the resulting graph is not strong
4-chromatic-choosable. This leads to an interesting question: In Lemma 12
can the condition |C| ≤ 8 be replaced with |C| ≤ 9? We suspect that
the answer is yes. More importantly, using the notation of Proposition 4,
Lemma 12 shows that Gl,5,1, Gl,6,1, Gl,7,1, and Gl,8,1 are all strong 4-chro-
matic-choosable. We note that Gl,5,1, Gl,6,1, Gl,7,1, and Gl,8,1 all do not sat-
isfy the edge condition since Gl,m,1 has 4l+m+2 edges and 2l+3 vertices.
Thus, the are infinitely many strong 4-chromatic-choosable graphs that do
not satisfy the edge condition. Also, Gl,8,1 ∨ K1 is a strong 5-chromatic-
choosable graph not satisfying the edge condition.

There also exist strongly critical graphs that do not satisfy the edge
condition. Specifically, a tedious argument shows that C5 ∨ C2n+1 is strong
6-critical for n = 1, 2, 3, 4, 5 [27]. It is easy to see that C5 ∨C9 and C5 ∨C11

do not satisfy the edge condition. Then, (C5 ∨C11) ∨K1 is strong 7-critical
and does not satisfy the edge condition. Note this also implies that there
are strong k-chromatic-choosable graphs violating the edge condition for all
k satisfying 4 ≤ k ≤ 7.

We suspect that there are infinitely many strong k-chromatic-choosable
graphs that do not satisfy the edge condition for k ≥ 8. However, whenever
we have a strongly chromatic-choosable graph, G, that does not satisfy the
edge condition, we can obtain a strongly chromatic-choosable graph from G
that satisfies the edge condition by taking the join of G with a sufficiently
large complete graph. The following proposition makes this idea precise.

Proposition 13. Suppose that G is a strong k-chromatic-choosable graph
with n vertices and m edges that does not satisfy the edge condition. Let
d = m−n(k− 2) > 0. Then, if p is such that d ≤ p(2k+ p− 3)/2, G∨Kp is
a strong (k+ p)-chromatic-choosable graph that satisfies the edge condition.

Proof. By Proposition 2 Statement (iii), we know that G ∨ Kp is a strong

k+p-chromatic-choosable. Also, G∨Kp has m+ p(p−1)
2 +np edges and n+p

vertices. It is easy to show that d ≤ p(2k+p−3)/2 implies m+ p(p−1)
2 +np ≤

(n+ p)(k+ p− 2) which shows that G∨Kp satisfies the edge condition.
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So, Gl,m,1 ∨ Kp is strong (4 + p)-chromatic-choosable and satisfies the
edge condition for m ≤ 7 and p ≥ 1. Moreover, Gl,8,1 ∨Kp is strong (4+ p)-
chromatic-choosable and satisfies the edge condition for p ≥ 2.

4. List coloring cartesian product of graphs

In this section we will prove the following theorem.

Theorem 14. Let M be a strong k-chromatic-choosable graph that satis-
fies the edge condition, and H be a graph that contains a Hamilton path,
w1, w2, . . . , wm, such that wi has at most ρ ≥ 1 neighbors among w1, . . . ,
wi−1. Let G = M�H. Then, χ�(G) ≤ k + ρ− 1.

We present a lemma that will immediately yield this Theorem. Our proof
of the lemma will be by induction, and we will load the induction hypothesis
so that we prove something stronger. Before stating the lemma, we introduce
some terminology. Suppose that G is a graph and U ⊆ V (G), the subgraph
of G induced by U is the graph with U as its vertex set and all the edges
in E(G) with both endpoints in U , and we write G[U ]. Suppose that H is a
graph that contains a Hamilton path, w1, w2, . . . , wm, and G = M�H. For
j = 1, 2, . . . ,m let Vj be the set of vertices in V (G) with second coordinate
wj . We refer to G[Vj ] as the jth copy of M in G.

Lemma 15. Let M be a strong k-chromatic-choosable graph that satis-
fies the edge condition, and H be a graph that contains a Hamilton path,
w1, w2, . . . , wm, such that wi has at most ρ ≥ 1 neighbors among w1, . . . ,
wi−1. Let G = M�H. Suppose that L is an arbitrary (k+ρ−1)-assignment
for G. There exist two proper L-colorings for G, c1 and c2, with the prop-
erty that there exists a vertex, v, in the mth copy of M in G such that
c1(v) �= c2(v), and for any vertex u not in the mth copy of M in G we have
that c1(u) = c2(u).

Proof. We will prove this by induction on m, the number of vertices in H.
We also suppose that V (M) = {v1, . . . , vn}. We know by Lemma 9 that the
claim holds for any ρ ≥ 1 when m = 1.

The general idea for the induction is as follows. As we color the copies
of M inductively, we will always have fixed colors for the first m− 2 copies
of M in G. We then use the inductive hypothesis to possibly modify how we
will color the (m − 1)st copy of M in G to make our coloring for the final
copy work out. We now present the details for the induction step.

Now, suppose that m ≥ 2 and the desired result holds for all natural
numbers less than m. By the induction hypothesis we know that there are
two proper L-colorings of G′ = M�(H − wm) (when L is restricted to G′),
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c1 and c2, with the property that there exists a vertex, v, in the (m − 1)st

copy of M in G′ such that c1(v) �= c2(v), and for any vertex u not in the
(m− 1)st copy of M in G′ we have that c1(u) = c2(u). The strategy of the
proof is to extend c1 or c2 into two proper L-colorings for G that have the
desired properties.

Now for i = 1, . . . , n, let:

Ai = {v ∈ V (G)|v = (vi, wj) with j < m− 1 and v(vi, wm) ∈ E(G)}.

Intuitively, Ai consists of the neighbors of (vi, wm) that are in the first (m−2)
copies of M in G. We immediately note that |Ai| ≤ (ρ − 1) for each i. For
i = 1, . . . , n and j = 1, 2 let:

Bi,j = {cj(v)|v ∈ Ai}.

We see that |Bi,j | ≤ (ρ−1) for each i and j. Also by the induction hypothesis
we know that for each i, Bi,1 = Bi,2. So, we let Bi = Bi,1 = Bi,2. Now, for
each i let:

L′(vi, wm) = L(vi, wm)− (Bi ∪ {c1(vi, wm−1)})

and

L′′(vi, wm) = L(vi, wm)− (Bi ∪ {c2(vi, wm−1)}).
We immediately note that |L′(vi, wm)| ≥ k − 1 and |L′′(vi, wm)| ≥ k − 1 for
each i. Now, we claim that L′ or L′′ is not a constant (k− 1)-assignment for
the mth copy of M in G.

Suppose for the sake of contradiction that both L′ and L′′ are constant
(k − 1)-assignments for the mth copy of M in G. Since both L′ and L′′ are
constant (k− 1)-assignments, we know that for each i we must have deleted
exactly ρ colors when we formed L′(vi, wm) and L′′(vi, wm). We note that
|Bi| is at most ρ− 1 for each i. So, in order for ρ colors to be deleted when
L′(vi, wm) and L′′(vi, wm) are formed, for each i we must have:

|Bi| = ρ− 1 and |Bi ∪ {c2(vi, wm−1)}| = |Bi ∪ {c1(vi, wm−1)}| = ρ.

Moreover, we know that for each i, Bi must be a subset of L(vi, wm) which
implies

|L(vi, wm)−Bi| = k.

Furthermore, since there is a vertex v in the (m − 1)st copy of M in G
such that c1(v) �= c2(v), we know that there is an i such that L′′(vi, wm) �=
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L′(vi, wm). Since L′ and L′′ are constant (k − 1)-assignments, this implies
that L′′(vi, wm) �= L′(vi, wm) for all i. Since the union of two distinct (k−1)
element subsets of a k element set must equal the k element set, we have
that for each i, L(vi, wm)−Bi = L′′(vi, wm) ∪ L′(vi, wm). Thus,

L(v1, wm)−B1 = L(v2, wm)−B2 = · · · = L(vn, wm)−Bn.

This means that in order for L′ to be a constant (k − 1)-assignment, c1
assigned the same color to every vertex in the (m−1)st copy of M in G. This
contradicts the fact that c1 is a proper L-coloring of G′ since χ(M) = k > 1.
Thus, L′ or L′′ is not a constant (k − 1)-assignment for the mth copy of M
in G.

Without loss of generality, suppose that L′ is not a constant (k − 1)-
assignment. We know by Lemma 9 that we can find at least 2 distinct proper
L′-colorings of the mth copy of M in G. So, using these distinct L′-colorings,
we can extend c1 into 2 distinct proper L-colorings of G. We know that these
two distinct L-colorings will satisfy the needed conditions since the vertices
not in the mth copy of M in G will be colored as they are by c1 in both
colorings. This completes the induction step, and we are done.

There are a couple of remarks worth making regarding Theorem 14. It
is an improvement on the bound from Theorem 1 if and only if ρ < col(H)
and k + ρ < col(M) + χ�(H). We know that k = χ�(M) ≤ col(M). So,
when ρ < χ�(H) Theorem 14 is certainly an improvement on Theorem 1.
It is also easy to see that ρ ≥ col(H) − 1. This means that Theorem 14 is
an improvement on Theorem 1 if and only if ρ = col(H) − 1 and col(H) −
χ�(H) ≤ col(M) − χ�(M). (Note: Since we know χ�(M) ≤ col(M) for any
M , we can drop the second condition when col(H) = χ�(H).)

There are many examples of graphs, M and H, that satisfy these condi-
tions. An easy way to produce such examples is to force H to be such that
col(H) = χ�(H) and ρ = col(H)−1 (examples of graphs where both of these
conditions are satisfied include paths, cycles, complete graphs, and powers
of paths). Then, we are free to let M be any strong k-chromatic-choosable
graph that satisfies the edge condition. The next corollary illustrates this
idea. First, we mention a definition. We let the kth power of graphG, denoted
Gk, be the graph with vertex set V (G) where two vertices are adjacent if
their distance in G is at most k. It is easy to see that P r

n where 1 ≤ r ≤ n−1
satisfies χ(P r

n) = χ�(P
r
n) = col(P r

n) = r + 1.

Corollary 16. Suppose that M is a strong k-chromatic-choosable graph that
satisfies the edge condition. Then, M�Pn is chromatic-choosable. Moreover,
if n ≥ 2, r ≤ n− 1 then max{k, r + 1} ≤ χ�(M�P r

n) ≤ k + r − 1
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Proof. Let G1 = M�Pn and G2 = M�P r
n . Note χ(G1) = max{χ(M), 2} =

k. By Theorem 14 we have that χ�(G1) ≤ k + 1 − 1 = k. Thus, G1 is
chromatic-choosable. Similarly since G2 contains a copy of both M and P r

n ,
we have that max{k, r + 1} = max{χ�(M), χ�(P

r
n)} ≤ χ�(G2). Notice that

any copy of P r
n contains a Hamilton path: the underlying Pn used to form

P r
n . If we order the vertices based upon this Hamilton path, each vertex has

at most r neighbors preceding it in the ordering. So, by Theorem 14 we have
that χ�(G2) ≤ k + r − 1.

One will note that Corollary 16 shows that the bound given by Theo-
rem 14 is sharp for the graph M�Pn. Suppose that G = M�H is a graph
satisfying the hypotheses of Theorem 14. It is easy to show that the bound
from Theorem 14 is sharp when ρ = 1. However, when ρ > 1 it is more
difficult to determine if the bound from Theorem 14 is best possible. This
is because in general the obvious lower bound on χ�(G) is max{k, χ�(H)},
and the largest we can ever expect this lower bound to be is: max{k, ρ+1}.
We see this in Corollary 16 with the graph G2. Specifically, since k ≥ 3 the
obvious lower bound on the list chromatic number does not tell us whether
the upper bound we obtain from Theorem 14 is best possible. In fact, there
is a large gap between the lower and upper bound on χ�(G2) when both k
and r are large.

In the next section we will concentrate on developing ideas to extend the
proof technique used for Lemma 15 to allow for a more general second factor.
This will then allow us to state a more general version of Theorem 14 and
construct examples where our more general Theorem produces sharp bounds
for any ρ ∈ N.

5. The list color function and moving beyond Hamiltonicity

We begin by considering how we might generalize Lemma 15. First, let us
consider the case where we are taking the Cartesian product of an odd cycle
(i.e. a strong 3-chromatic-choosable graph satisfying the edge condition) and
a path. Intuitively speaking, when our first factor is an odd cycle and our
second factor is a path, we have a lot of freedom in the proof of Lemma 15
when we color our first copy of M . In particular, we suspect that there are
a lot more than just two ways to color our first copy of M , and we suspect
that this extra freedom will allow our second factor to be more complicated.
On the other hand, when it comes to an odd cycle with arbitrarily many
vertices, it is possible to find a non-constant 2-assignment, L, such that there
are exactly 2 proper L-colorings for the odd cycle. So, intuitively speaking,
we may not have a lot of freedom when it comes to coloring the second copy
of M and onwards.
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5.1. The list color function

In order to study the number of list colorings for a strongly chromatic-
choosable graph, we need a concept that is a generalization of the chromatic
polynomial. If L is a list assignment for G, we use P (G,L) to denote the
number of proper L-colorings of G. The list color function P�(G, k) is the
minimum value of P (G,L) where the minimum is taken over all possible
k-assignments L for G1. The list color function is not well-understood and
in general is hard to calculate. The main theme of the results from previous
work, as in [21], [22], [35], [38], is to show that P�(G, k) = P (G, k) for some
special G and all k ∈ N, or for all G with k large enough. In this section
our focus is the list color function of strongly chromatic-choosable graphs.
We begin with a general lower bound for the list color function of a strongly
chromatic-choosable graph.

Theorem 17. If M is a strong k-chromatic-choosable graph, then

P�(M,m) ≥ m max
v∈V (M)

P�(M − {v},m− 1) ≥ m

whenever m ≥ k.

Proof. Suppose that L is an arbitrary m-assignment for M , and suppose v
is an arbitrary element of V (M). We claim that for any α ∈ L(v), there is
a proper L-coloring, c, for M such that c(v) = α.

We construct c as follows. We begin by letting c(v) = α and M ′ =
M − {v}. Then, for each u ∈ V (M ′), we let L′(u) = L(u) − {α}. Clearly,
|L′(u)| ≥ m − 1 ≥ k − 1 for each u ∈ V (M ′). We can complete our proper
L-coloring, c, for M if there is a proper L′-coloring of M ′. The fact that there
is a proper L′-coloring of M ′ follows from Proposition 2 Statement (iv).

Since there are m colors in L(v), we have that

P (M,L) ≥ mP�(M − {v},m− 1) ≥ m.

Since L and v were arbitrary, the desired result follows.

It is well known (see [31]) that P (Cn, k) = (k − 1)n + (−1)n(k − 1)
and P (Kn, k) =

∏n−1
i=0 (k − i). It is easy to see that for each n, k ∈ N,

P (Kn, k) = P�(Kn, k), and it was recently shown in [21] that for each n, k ∈
N, P (Cn, k) = P�(Cn, k). So, if M is a strongly chromatic-choosable graph
isomorphic to a complete graph or odd cycle, then P (M,k) = P�(M,k) for

1We will allow negative integer inputs into P�(G, k), and just take P�(G, k) = 0
when k < 0. This will make one of our results easier to state.
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all k ∈ N and we can easily compute P�(M,k). We now show that this also
holds when M is the join of an odd cycle and complete graph.

Using a classic result on the chromatic polynomial of the join of two
graphs (see for example [4]), it is easy to see that for any graph G and n ∈ N,
P (G ∨ Kn, k) = P (G, k − n)P (Kn, k). We now can prove some bounds on
the list color function of an arbitrary graph joined with a complete graph.

Proposition 18. For any graph G and n, k ∈ N,

P�(G, k−n)P (Kn, k) ≤ P�(G∨Kn, k) ≤ P (G∨Kn, k) = P (G, k−n)P (Kn, k).

In particular, when P�(G,m) = P (G,m) for all m ∈ N, P�(G ∨ Kn, k) =
P (G ∨Kn, k) for all k ∈ N.

Proof. The second inequality is trivial. So, we just prove the first inequality.
Suppose H = G ∨ Kn, G1 is the copy of Kn used to form H, and G2 is
the copy of G used to form H. The result is trivial when k < n + χ�(G).
So, assume that k ≥ n + χ�(G) and L is an arbitrary k-assignment for H.
Suppose we find a proper L-coloring of H by first coloring G1 then coloring
G2. Notice that there are at least P (Kn, k) possible proper L-colorings of
G1. After we color G1, there are at least k−n possible color choices in L(v)
that may be used on each v ∈ V (G2). Thus, there are at least P�(G, k − n)
possible proper L-colorings of G2. So, P�(G, k−n)P (Kn, k) ≤ P (H,L). The
result follows since L was arbitrary.

Combining results mentioned thus far, we have the following corollary.

Corollary 19. For n, l, k ∈ N, P�(C2l+1 ∨ Kn, k) = P (C2l+1 ∨ Kn, k) =[
(k − n− 1)2l+1 − (k − n− 1)

]∏n−1
i=0 (k − i).

5.2. Chromatic-choosability with stars

We will now prove a result in the spirit of Lemma 15. The idea driving
the following lemma is that if we take the Cartesian product of a strongly
chromatic-choosable graph and a copy of K1,s (i.e. a star graph), we should
be able to prove the graph is chromatic-choosable for certain s > 1. For the
lemma it is useful to note that P�(G, k) ≥ 2 when G is a strong k-chromatic-
choosable graph by Theorem 17 (this is under the usual assumption that
k ≥ 2).

Lemma 20. Let M be a strong k-chromatic-choosable graph with V (M) =
{u1, . . . , un}. Suppose s < P�(M,k), and B = K1,s with partite sets X =
{v0} and Y = {v1, . . . , vs}. Let G = M�B, and for 0 ≤ i ≤ s let Vi be
the subset of V (G) that consists of all the vertices with second coordinate
vi. Suppose that L is an arbitrary k-assignment for G. Then, there exists a
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proper coloring, c, for G[V0] such that c(v) ∈ L(v) for each v ∈ V0 and if
L′ is the list assignment for the vertices in V (G)− V0 given by L′(uj , vi) =
L(uj , vi) − {c(uj , v0)} for each (uj , vi) ∈ V (G) − V0, then we obtain the
following results depending on whether M satisfies the edge condition.
(i) In the case M satisfies the edge condition, for each 1 ≤ i ≤ s there exists
two distinct proper colorings, ci,1 and ci,2, for G[Vi] such that ci,t(v) ∈ L′(v)
for each v ∈ Vi and t = 1, 2.
(ii) In the case M does not satisfy the edge condition, for each 1 ≤ i ≤ s
there exists a proper coloring, ci, for G[Vi] such that ci(v) ∈ L′(v) for each
v ∈ Vi.

Proof. We first note that by definition, there are at least P�(M,k) proper
colorings for G[V0] that assign a color in L(v) to v for each v ∈ V0. Let C
be the set of all these colorings. For each i ≥ 1, we refer to c ∈ C as a bad
coloring for G[Vi] if the list assignment L′′ for G[Vi] given by L′′(uj , vi) =
L(uj , vi)− {c(uj , v0)} for each (uj , vi) ∈ Vi is a constant (k− 1)-assignment
for G[Vi]. By the argument in the inductive step of the proof of Lemma 15
we know that for each i ≥ 1 there is at most one bad coloring for G[Vi] in
C. Now, we know that:

s < P�(M,k) ≤ |C|.
So, we may conclude that there exists a c ∈ C such that c is not a bad coloring
for G[Vi] for any i satisfying 1 ≤ i ≤ s. Now, let L′ be the list assignment
for the vertices in V (G)− V0 given by L′(uj , vi) = L(uj , vi)−{c(uj , v0)} for
each (uj , vi) ∈ V (G) − V0. It is easy to see that |L′(v)| ≥ k − 1 for each
v ∈ V (G)− V0. Moreover, when L′ is restricted to G[Vi] for each i, we get a
list assignment for G[Vi] that is not a constant (k− 1)-assignment for G[Vi].
So, by Lemma 9, when M satisfies the edge condition, there must be at least
2 distinct proper colorings for G[Vi] that assign a color in L′(v) to v for each
v ∈ Vi. By Proposition 2 Statement (ii), when M does not satisfy the edge
condition, there is at least 1 proper coloring for G[Vi] that assigns a color in
L′(v) to v for each v ∈ Vi.

We are now in a position to give the list chromatic number of the Carte-
sian product of a strongly chromatic-choosable graph and a star. One should
note that, intuitively speaking, a star with many leaves is far from contain-
ing a Hamilton path. So, we see that the result of Lemma 20 is a start in
generalizing Theorem 14.

Theorem 21. Let M be a strong k-chromatic-choosable graph. Then,

χ�(M�K1,s) =

{
k if s < P�(M,k)

k + 1 if s ≥ P�(M,k).
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Proof. The fact that χ�(M�K1,s) = k when s < P�(M,k) follows from
Lemma 20 and the fact that χ(M) = k. So, suppose that s ≥ P�(M,k). As
in the proof of Lemma 20, let V (M) = {u1, u2, . . . , un}. Suppose B = K1,s

with partite sets X = {v0} and Y = {v1, . . . , vs}. Let G = M�B, and for
0 ≤ i ≤ s let Vi be the subset of V (G) that consists of all the vertices with
second coordinate vi. We need to show that χ�(G) = k+1. Since col(B) = 2,
Theorem 1 implies that χ�(G) ≤ k+2− 1 = k+1. So, we need to construct
a k-assignment, L, for G such that there is no proper L-coloring for G.

In order to construct L, we begin by assigning to the vertices in V0 lists
of size k such that there are precisely P�(M,k) proper list colorings of G[V0].
We let t = P�(M,k) and we let C = {c1, c2, . . . , ct} be the set of proper list
colorings of G[V0]. Now, let B be a set of (k − 1) elements each of which is
not in ∪n

i=1L(ui, v0). For, 1 ≤ j ≤ t and 1 ≤ i ≤ n, let

L(ui, vj) = B ∪ {cj(ui, v0)}.

If s > t complete the list assignment, L, by arbitrarily assigning k-element
lists to any vertices in V (G) that have second coordinate vj where j > t.

Now, for the sake of contradiction assume that c is a proper L-coloring
for G. It must be that there is a cr ∈ C such that c(v) = cr(v) for each
v ∈ V0 (since c must properly color G[V0]). This means that c restricted to
Vr is a proper L′-coloring of G[Vr] where L′ is the list assignment given by:

L′(ui, vr) = L(ui, vr)− {cr(ui, v0)} = B

for each (ui, vr) ∈ Vr. So, L
′ is a constant (k − 1)-assignment for G[Vr].

We now have a contradiction since G[Vr] is a copy of M , and by definition,
it is impossible to obtain a proper coloring of M from a constant (k − 1)-
assignment.

Lemma 3 in [6] implies (among other things) that χ�(C2l+1�K1,s) = 4
when s ≥ 32l+1 and χ�(Kn�K1,s) = n + 1 when s ≥ nn. The following
corollary, which immediately follows from the results mentioned in Subsec-
tion 5.1 and Theorem 21, improves upon these results, and completely solves
the problem of finding the list chromatic number of the Cartesian product of
an odd cycle and star, the list chromatic number of the Cartesian product of
a complete graph and star, and the list chromatic number of the Cartesian
product of a star and the join of a complete graph with an odd cycle.

Corollary 22. For any n, l ∈ N, we have that:

χ�(C2l+1�K1,s) =

{
3 if s < 22l+1 − 2

4 if s ≥ 22l+1 − 2.
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χ�(Kn�K1,s) =

{
n if s < n!

n+ 1 if s ≥ n!.

χ�((Kn ∨ C2l+1)�K1,s) =

{
n+ 3 if s < 1

3(n+ 3)!(4l − 1)

n+ 4 if s ≥ 1
3(n+ 3)!(4l − 1).

For any graph G we say that H is a subdivision of G if H is a graph

obtained from G by replacing the edges of G with pairwise internally disjoint

paths. By using the proof idea of Lemma 15 and the result of Lemma 20

Statement (i), we can obtain the following corollary.

Corollary 23. Let M be a strong k-chromatic-choosable graph that sat-

isfies the edge condition, and B′ be a subdivision of the star K1,s with

s < P�(M,k). Then, χ�(M�B′) = k, that is, M�B′ is chromatic-choosable.

5.3. Generalizing Theorem 14 with sharpness for ρ > 1

With Corollary 23 in mind, we are ready to observe a generalization of

Theorem 14 that allows for more general second factors. The proof relies

on combining the proof ideas of Lemmas 15 and 20. Specifically, we will

introduce the concept of (M,ρ)-Cartesian accommodating, and we will prove

the following theorem.

Theorem 24. Suppose that M is a strong k-chromatic-choosable graph that

satisfies the edge condition, and suppose that H is a (M,ρ)-Cartesian ac-

commodating graph. Then, χ�(M�H) ≤ k + ρ− 1.

We will see that graphs that contain a Hamilton path, w1, w2, . . . , wm,

such that ρ ≥ 1 and wi has at most ρ neighbors among w1, . . . , wi−1 are

(M,ρ)-Cartesian accommodating along with many other classes of graphs.

So, Theorem 24 truly generalizes Theorem 14. We will now introduce the

concept of (M,ρ)-Cartesian accommodating.

Let M be a given strong k-chromatic-choosable graph. Suppose H is a

graph such that V (H) can be partitioned into independent sets: I1, I2, . . . , Is.

Let η : V (H) → Z be the function defined so that for each v ∈ Iλ, 1 ≤ λ ≤ s,

η(v) is the number of neighbors v has in ∪λ−1
i=1 Ii (we take this union to be

the empty set when λ = 1). Let ρ ≥ max{1,maxv∈V (H) η(v)}, and F = {v ∈
V (H)|η(v) = ρ}. Suppose that H satisfies:

(1) For each λ ≥ 2, every v ∈ Iλ ∩ F is adjacent to at least one vertex in

Iλ−1, and
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(2) For each λ satisfying 1 ≤ λ ≤ s− 1, each v ∈ Iλ − F , v is adjacent to
less than P�(G, (k + ρ− 1)− η(v)) vertices in Iλ+1 ∩ F . Also for each
v ∈ Iλ ∩ F , v is adjacent to at most 1 vertex in Iλ+1 ∩ F .

We call H (M,ρ)-Cartesian accommodating when it satisfies these condi-
tions. Note that we can ensure condition (1) is satisfied by placing a vertex
in the independent set Iλ with smallest index possible when there is a choice
(though there is no guarantee that after this is done condition (2) will be
satisfied). As with the proof of Theorem 14, we will prove a lemma which
will immediately imply Theorem 24.

Suppose that M is a strong k-chromatic-choosable graph that satis-
fies the edge condition with V (M) = {v1, . . . , vn}. Suppose H is a (M,ρ)-
Cartesian accommodating graph (we use the same notation as in the defini-
tion). Let G = M�H. For each u ∈ V (H), let Vu represent the vertices in
V (G) with u as the second coordinate. Now, the following lemma immedi-
ately implies Theorem 24.

Lemma 25. Let L be an arbitrary (k+ρ−1)-assignment for G. There exists
a proper L-coloring, c, of M�(H−Is) that satisfies the following conditions.
For each v ∈ ∪u∈IsVu, let L′(v) be the list obtained from L(v) by deleting
any colors used by c on vertices adjacent to v in V (M�(H − Is)). For each
u ∈ Is ∩ F there are at least 2 proper L′-colorings of G[Vu], and for each
u ∈ Is − F there are at least P�(M,k + ρ− 1− η(u)) proper L′-colorings of
G[Vu].

Proof. The proof is by induction on s. For the base case suppose that s = 1.
Note M�(H − Is) is empty, η(u) = 0 for each u ∈ V (H), and there are at
least P�(M,k+ρ−1) ways to properly color G[Vu] for each u ∈ V (H) (since
ρ ≥ 1). Thus, the base case is complete.

For the induction step assume that s ≥ 2. Also assume there exists a
proper L-coloring, c, of M�(H − (Is ∪ Is−1)) that satisfies the following
conditions. For each v ∈ ∪u∈(Is−1∪Is)Vu, let L′(v) be the list obtained from
L(v) by deleting any colors used by c on vertices adjacent to v in V (M�(H−
(Is ∪ Is−1))). For each u ∈ Is−1 ∩ F there are at least 2 proper L′-colorings
of G[Vu], and for each u ∈ Is−1−F there are at least P�(M,k+ρ−1−η(u))
proper L′-colorings of G[Vu]. We note that since w ∈ Is ∩ F is adjacent to
at least one vertex in Is−1, each v ∈ ∪u∈IsVu satisfies:

|L′(v)| ≥ k.

Now, suppose that |Is−1| = a and Is−1 = {w1, . . . , wa}. For each u ∈ Is−1

we will pick a proper L′-coloring of G[Vu] that will allow us to prove the
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desired. We will do this “in order” by picking a proper L′-coloring of G[Vw1
],

followed by G[Vw2
], . . ., and finally G[Vwa

].
We first describe how we pick a proper L′-coloring of G[Vw1

]. In the case
that w1 ∈ Is−1 ∩ F , we know that, in H, w1 is adjacent to at most 1 vertex
in Is ∩F , and there are at least 2 proper L′-colorings for G[Vw1

]. Suppose A
is the set of vertices in Is ∩ F adjacent to w1 in H. So, we choose a proper
coloring for G[Vw1

] that will not lead to a constant (k − 1)-assignment for
the copy of M corresponding to G[Vu]. In the case where w1 is adjacent to
no vertices in Is ∩ F we arbitrarily pick a proper L′-coloring for G[Vw1

].
Now, consider the case that w1 ∈ Is−1−F . In this case we know that in

H, w1 is adjacent to less than P�(M,k+ρ−1−η(w1)) vertices in Is∩F , and
there are at least P�(M,k + ρ − 1 − η(w1)) proper L′-colorings for G[Vw1

].
Suppose w1 is adjacent to all the vertices in A ⊆ Is ∩ F . Then, we pick
a proper L′-coloring for G[Vw1

] that does not lead to a constant (k − 1)-
assignment for any copy of M of the form G[Vu] where u ∈ A.

After choosing a proper L′-coloring of G[Vw1
], let L(2) be the list assign-

ment obtained in the following way. For each v ∈ ∪u∈IsVu, let L(2)(v) be
the list obtained from L′(v) by deleting any colors used by the proper L′-
coloring chosen for G[Vw1

] on any vertices in Vw1
that are neighbors of v in

G. We continue coloring the copies of M by following the outline for coloring
G[Vw1

] described above. At each stage, for each v ∈ ∪u∈IsVu, we let L(t)(v)
be the list obtained from L(t−1)(v) by deleting any colors used by the proper
L′-coloring chosen for G[Vwt−1

] on any vertices in Vwt−1
that are neighbors

of v. Note that for any t ≥ 2, if |L(t)(v)| = k− 1, then v has no neighbors in
the yet to be colored copies of M since in this case ρ colors must have been
deleted from L(v) to get L(t)(v), and v has at most ρ neighbors with second
coordinate in V (H)− Is. Also, if L(t) restricted to G[Vu] for some u ∈ Is is
a (k − 1)-assignment, it must be a non-constant (k − 1)-assignment.

After we have colored all the copies of M we are left with a list assign-
ment, L(a+1), for each v ∈ ∪u∈IsVu. We notice that for each u ∈ Is ∩ F , we
have that for each v ∈ V (G[Vu]),

|L(a+1)(v)| ≥ k − 1

and L(a+1) restricted to G[Vu] is not a constant (k − 1)-assignment. Thus,
there are at least two proper L(a+1)- colorings of G[Vu] by Lemma 9. Also,
for each u ∈ Is − F we have that for each v ∈ V (G[Vu]),

|L(a+1)(v)| ≥ k + ρ− 1− η(u) ≥ k.

Thus, there are at least P�(M,k + ρ− 1− η(u)) proper L(a+1)- colorings of
G[Vu]. Hence the induction is complete.
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It is worth mentioning that if F ⊆ Is we do not need M to satisfy the

edge condition in order to obtain the upper bound on the list chromatic

number of Theorem 24.

We now show that Theorem 24 generalizes Theorem 14. To see this

suppose that H is a graph that contains a Hamilton path, w1, w2, . . . , wm,

such that ρ ≥ 1 and wi has at most ρ neighbors among w1, . . . , wi−1. If

for 1 ≤ λ ≤ m, we let Iλ = {wλ}, we see that for any strong k-chromatic-

choosable graph that satisfies the edge condition, M , H is (M,ρ)-Cartesian

accomodating.

Not only does Theorem 24 generalize Theorem 14, but we can also show

that there exist examples of M and H where Theorem 24 gives a tight

bound for any ρ ∈ N. Specifically, suppose that M is a strong k-chromatic-

choosable graph that satisfies the edge condition. Let B′ be some subdivision

of K1,P�(M,k)−1. For each t ∈ N we define the SM,B′,t graph inductively.

Let SM,B′,1 = B′. Then, for t ≥ 2 we construct SM,B′,t as follows. Take

P�(M,k+ t− 2) disjoint copies of SM,B′,t−1 and join a single vertex to these

copies. The reason we use P�(M,k + t − 2) copies will become clear in a

moment.

Several properties of SM,B′,t are immediate. In particular for each t ∈ N,

χ(SM,B′,t) = t + 1 and col(SM,B′,t) = t + 1. Moreover, SM,B′,t is (M, t)-

Cartesian accommodating. So, by Theorem 24, χ�(M�SM,B,t) ≤ k + t− 1.

We now show that this upper bound is best possible.

Proposition 26. Let M be a strong k-chromatic-choosable graph that sat-

isfies the edge condition. Then, for any t ∈ N, χ�(M�SM,B′,t) = k + t− 1.

Proof. For each t ∈ N we need only show that there exists a bad (k+ t− 2)-

assignment for M�SM,B′,t. We will show what is required by induction on

t. The statement when t = 1 is obvious since we could simply associate a

constant (k − 1)-assignment with each copy of M in M�SM,B′,1.

Now, suppose that t ≥ 2 and the desired statement holds for all natural

numbers less than t. Let H1, H2, . . . , HP�(M,k+t−2) represent the P�(M,k +

t − 2) disjoint copies of SM,B′,t−1 used to form SM,B′,t. We suppose that

each of these copies have l vertices. Let v represent the single vertex joined

to these copies to form SM,B′,t. Let v1,i, . . . , vl,i represent the vertices in

V (Hi) for 1 ≤ i ≤ P�(M,k + 2 − t). Let u1, u2, . . . , un be the vertices in

V (M). By the inductive hypothesis we know that there is a bad (k+ t− 3)-

assignment, L, for each of the copies of M�SM,B′,t−1 in M�SM,B′,t. Let L
′

be a (k+ t−2)-assignment for M such that M has precisely P�(M,k+ t−2)

proper L′-colorings. We choose the colors in L′ such that none of the colors
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are in any of the lists associated with L. Suppose that the proper L′-colorings
of M are c1, c2, . . . , cP�(M,k+t−2).

We form a (k + t − 2)-assignment, L′′, for M�SM,B′,t as follows. First,
we define L′′ for the copy of M corresponding to v. For each 1 ≤ r ≤ n let

L′′(ur, v) = L′(ur).

Now, as i varies from 1 to P�(M,k+t−2) we define L′′ for the vertices in each
copy of M�Hi in M�SM,B′,t. Specifically, for each 1 ≤ i ≤ P�(M,k+ t−2),
1 ≤ j ≤ l, and 1 ≤ r ≤ n let

L′′(ur, vj,i) = L(ur, vj,i) ∪ {ci(ur)}.

Finally, suppose there is a proper L′′-coloring of M�SM,B′,t. This proper
coloring contains a proper L′-coloring, assume it is cm, of the copy of M
in M�SM,B′,t corresponding to v. Now, in order for there to be a proper
L′′-coloring of M�SM,B′,t, there must be a proper L-coloring of the M�Hm

in M�SM,B′,t since L′′(ur, vj,m)−{cm(ur)} = L(ur, vj,m) for each 1 ≤ j ≤ l
and 1 ≤ r ≤ n. However, this is impossible. Thus, L′′ is a bad (k + t − 2)-
assignment for M�SM,B′,t and our proof is complete.

We will now conclude this section with an illustrative example. We know
that C3 is strong 3-chromatic-choosable graph that satisfies the edge condi-
tion. We also know that P�(C3, k) = P (C3, k) = k(k − 1)(k − 2). Suppose
that H1 = K1,5. Since P�(C3, 3) = 6, it is immediately clear that H1 is
(C3, 1)-Cartesian accommodating. Now, for m ≥ 2, suppose that Hm is
graph obtained by taking P�(C3,m + 1) disjoint copies of the graph Hm−1

and join a single vertex to these copies. So, H2 = K1∨6H1, H3 = K1∨24H2,
H4 = K1∨60H3, etc. We have thatHm is (C3,m)-Cartesian accommodating.
The following facts are also clear: χ(Hm) = m+1 and col(Hm) = m+1. So,
Theorem 1 implies that χ�(C3�Hm) ≤ 3+m+1−1 = m+3. However, The-
orem 24 implies that χ�(C3�Hm) ≤ 3+m− 1 = m+2, and Proposition 26
implies that χ�(C3�Hm) = m+ 2.

Appendix

We begin with a proof of Proposition 5.

Proposition (5). For k ∈ N and m ∈ {1, 2, 3} we construct Gl,m,k induc-
tively as follows. For k = 1, Gl,m,k is the graph constructed in the statement
of Proposition 4. For k ≥ 2 we construct Gl,m,k from Gl,m,k−1 as follows.
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We add vertices uk and sk to Gl,m,k−1 and we add edges so that uk is ad-
jacent to {uj |1 ≤ j ≤ k − 1} ∪ {vj |1 ≤ j ≤ 2 + m} and so that sk is
adjacent to {sj |1 ≤ j ≤ k − 1} ∪ (V (C) − {v1, v2}). Then, Gl,m,k is strong
(3 + k)-chromatic-choosable. Moreover, Gl,m,k is not strong (3 + k)-critical
when m = 2, 3.

Proof. The proof is by induction on k. Notice that the base case is the
result of Proposition 4. Now, suppose that the desired result holds for all
natural numbers less than k where k ≥ 2. So, we know that Gl,m,k−1 is
strong (2 + k)-chromatic-choosable. Note that {uj |1 ≤ j ≤ k} is a clique in
Gl,m,k adjacent to all the vertices in the path P1 given by v1, v2, v3. Similarly,
{sj |1 ≤ j ≤ k} is a clique in Gl,m,k adjacent to all the vertices in the path P2

given by v3, v4, . . . , v2l+1. Since we know that for any proper coloring of C, P1

or P2 must be colored with at least 3 colors, we have that χ(Gl,m,k) > k+2.
Now, let A = {uj |1 ≤ j ≤ k− 1} ∪ {vj |1 ≤ j ≤ 2+m} and B = {sj |1 ≤ j ≤
k−1}∪(V (C)−{v1, v2}). We note thatA∪B = V (Gl,m,k−1), |A∩B| = m ≤ 3,
|A| > |A∩B|, and |B| > |A∩B|. Thus, Lemma 3 immediately implies that
Gl,m,k is strong (3+k)-chromatic-choosable. It is also easy to see that Gl,2,k

and Gl,3,k are not (3 + k)-critical since they contain a copy of Gl,1,k as a
proper subgraph.

Now we prove that Lemma 3 can be extended in the case where our
starting graph is an odd cycle. The proof of this extension relies on the
following proposition.

Proposition 27. Let G=C2l+1 with vertices (in cyclic order): v1, . . . , v2l+1.
Let f : V (G) → N be a function such that there exists i and j with: f(vi) = 1,
f(vj) = 3, and f(vt) = 2 whenever t �= i and t �= j. Then, G is f -choosable.

Proof. Without loss of generality, suppose that i = 1. Suppose that L is an
arbitrary list assignment for G such that |L(v)| = f(v) for each v ∈ V (G).
To prove the desired result we need only show that G is L-colorable. Suppose
we order the vertices of G as follows:

v1, v2, . . . vj−1, v2l+1, v2l, v2l−1, . . . , vj .

One should note that it is possible j − 1 = 1 or j = 2l + 1. We notice that
in the above ordering v1 has no neighbors preceding it, vj has 2 neighbors
preceding it, and each other vertex has one neighbor preceding it. Thus, we
can use the vertex ordering to greedily find a proper L-coloring for G.

Lemma (12). Let G be an odd cycle C2l+1. Suppose we can find sets A,B ⊆
V (G) such that A ∪ B = V (G). Let C = A ∩ B and suppose 0 < |C| ≤ 8,
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and |A|, |B| > |C|. Form G′ by adding vertices u and s to G, and add edges
so that u is adjacent to every vertex in A and s is adjacent to every vertex
in B. If χ(G′) > 3, then G′ is strong 4-chromatic-choosable.

Proof. Note that when |C| ≤ 4 the desired result immediately follows from
Lemma 3. So, we assume that 5 ≤ |C| ≤ 8. We let C = {v1, . . . , vm}. Suppose
that L is an arbitrary non-constant 3-assignment for G′. In order to show
that G′ is strong 4-chromatic-choosable, we must show G′ is L-colorable.
We know that G = G′ − {u, s}. We may assume that L(u)∩L(s) = ∅, since
the idea of the proof of case (i) in the proof of Lemma 3 proves the desired
when L(u) ∩ L(s) �= ∅. As in the proof of Lemma 3, let I =

⋂m
i=1 L(vi). We

can assume that |I| < 2 since following the idea presented for sub-case (a)
in the proof of Lemma 3 yields the desired when |I| ≥ 2.

Suppose that L(u) = {c1, c2, c3} and L(v) = {c4, c5, c6}. The 9 possible
ways to color u and s are represented by the 9 color pairs in the set P =
{(ci, cj)|i ∈ {1, 2, 3}, j ∈ {4, 5, 6}}. Since m ≤ 8 and each list contains at
most 2 color pairs, there must be a color pair in P that is contained in at
most one of the lists L(v1), . . . , L(vm). Without loss of generality suppose
(c1, c4) is contained in at most one of these lists. Note that if any of the color
pairs in P are contained in none of the lists L(v1), . . . , L(vm), we can find a
proper L-coloring for G′ by following the idea of sub-case (b) in the proof
of Lemma 3. So, we may assume that (c1, c4) appears in exactly one of the
lists: L(v1), . . . , L(vm). We now consider two cases. Specifically, we consider
the cases: (1) there is some j (1 ≤ j ≤ m) such that L(vj) contains neither
c1 nor c4 and (2) Each list: L(v1), . . . , L(vm) contains c1 or c4.

For (1) we color u with c1 and s with c4, and for each v ∈ V (G) we let

L′(v) =

⎧⎪⎨
⎪⎩
L(v)− {c1} if v ∈ A− C

L(v)− {c4} if v ∈ B − C

L(v)− {c1, c4} if v ∈ C.

We note that there is exactly one vertex in G to which L′ assigns one color,
and all other vertices in G have at least two colors assigned to them by L′.
Moreover, |L′(vj)| = 3. So, Proposition 27 immediately implies that we can
complete a proper L-coloring of G′.

For (2) we let P ′ = {(ci, cj)|i ∈ {2, 3}, j ∈ {5, 6}}. We consider the lists
L(v1), . . . , L(vm). Of these lists, the list containing (c1, c4) must contain no
color pairs in P ′, and since all these lists contain c1 or c4, the remaining
lists contain at most one color pair in P ′. Now, suppose that every color
pair in P ′ occurs in at least two of the lists: L(v1), . . . , L(vm). Since each
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L(v2), . . . , L(vm) can accommodate at most one pair in P ′ we need m ≥ 9.
Thus, there must be a color pair in P ′ that is contained in at most one of
these lists. Without loss of generality, suppose that (c2, c5) is such a color
pair. We may assume each list: L(v1), . . . , L(vm) contains c2 or c5 since
otherwise we may obtain a proper L-coloring for G′ by proceeding as we
did in case (1). Since each list contains c2 or c5 and we already know each
list contains c1 or c4, we know that none of the lists contain the color pair
(c3, c6). This completes case (2) and we are finished.
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sian products of graphs, Discrete Mathematics 306 (2006), 1955–1958.
MR2251575

[7] O. V. Borodin, A. V. Kostochka, D. R. Woodall, List edge and list total
colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997), no. 2,
184–204. MR1483474

[8] J. I. Brown, D. Kelly, J. Schőnheim, R. E. Woodrow, Graph col-
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