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On typical triangulations of a convex n-gon

Toufik Mansour and Reza Rastegar

Let fn be a function assigning weight to each possible triangle
whose vertices are chosen from vertices of a convex polygon Pn of n
sides. Suppose Tn is a random triangulation, sampled uniformly out
of all possible triangulations of Pn. We study the sum of weights of
triangles in Tn and give a general formula for average and variance
of this random variable. In addition, we look at several interesting
special cases of fn in which we obtain explicit forms of generating
functions for the sum of the weights. For example, among other
things, we give new proofs for already known results such as the
degree of a fixed vertex and the number of ears in Tn, as well
as, provide new results on the number of “blue” angles and refined
information on the distribution of angles at a fixed vertex. We note
that our approach is systematic and can be applied to many other
new examples while generalizing the existing results.
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1. Introduction

We consider a convex polygon Pn with n vertices and label the vertices
Vn := {vn,j}{1≤j≤n} in clockwise order. A triangulation is a set of n−3 non-
crossing diagonals vn,ivn,j with 1 ≤ i �= j ≤ n which partitions Pn into n−2
triangles. Euler showed the number of possible triangulations for Pn is Cn−2

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number. Triangulation has been

extended to general point sets residing in various spaces and manifolds and
also found many applications in computer science, computer graphics, and
mathematics. We refer to [6, 10] and references within for a comprehensive
review. The theme of this paper is with respect to the properties of a typical
triangulation Tn of Pn. Studying Tn was initiated in a paper of Polyá [13]
published in American Math Monthly in 1956. Among of large literature
published on the subject, we refer to [1, 2, 5, 7, 8, 15] where, among other
things, several aspects of Tn including the maximum degree of vertices, the
longest diagonal, the number of ears, the number of triangles with a side
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parallel to a fix side of Pn are studied. Our objective in this paper is to de-

velop a somewhat systematic approach to address similar questions on Tn.
To that end, we first formalize the property of interest by defining a function

that assigns weights to the triangles of each triangulation. Through a simple

constructive algorithm that samples a uniform triangulation of Pn, we next

derive a system of recursive equations for the generating functions corre-

sponding to that function. We then leverage certain invariance properties of

the function of interest to reduce the generating functions to solvable forms.

By obtaining explicit information on these generating functions, we are fi-

nally able to describe the random triangulation with respect to the property

of interest. To elaborate our approach, we give new proofs for already known

results, and in addition, discuss a few new examples.

We start with stating a few notations. Throughout this paper, R and C

refer to the set of all real and complex numbers. Let Pn,l,r be the convex-

hull of vertices Vn,l,r := {vn,j}{l≤j≤r}. With this notation, Pn := Pn,1,n is

the polygon of interest with n vertices and Pn,l,r is a convex polygon with

m := r − l + 1 sides. Let

Tn,l,r := {Tn,l,r,1, · · · , Tn,l,r,Cm−2
}

be the set of all triangulations of Pn,l,r. Suppose that we choose a triangu-

lation Tn out of Cn−2 triangulations in the set Tn (set Tn := Tn,1,n) with

uniform probability P : Tn → [0, 1]. In the following, we use E and Var to

refer to the expectation and the variance with respect to P. Let Γn be the

set of all triangles whose vertices are in Vn. Define fn : Γn → C to be a

function assigning weights to triangles in Γn. See Figure 1 for an example

of Tn and how fn assigns weights.

Figure 1: A random triangulation of an irregular P9. The function f9 assigns
weights to all the triangles in T9.
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Let Tn,l,r be a random triangulation drawn from Tn,l,r with probability
C−1
r−l−1 and

Sn,l,r =
∑

Δ∈Tn,r,l

fn(Δ),

to be the sum of weights of triangles in Tn,l,r. We define the generating
function of Sn,l,r as

gn,l,r(z) = E(zSn,l,r) for z ∈ C.

Clearly, Tn is Tn,1,n. In the following, we set Sn := Sn,1,n, gn(z) := gn,1,n(z),
and fn,l,j,r := fn(Δn,l,j,r) where we use Δn,l,j,r to refer to the triangle with
three vertices vn,l, vn,j , vn,r ∈ Vn. In our presentation, we always sort the
indexes such that l < j < r.

Our first result gives the expectation E(Sn) and variance Var(Sn) for a
large class of functions fn.

Theorem 1. Suppose fn is a function where fn,l,j,r depends only on r − j,
r − l, j − l and possibly n. For all n ≥ 2,

1. E(Sn,l,n) =
1

Cn−l−1

∑n−2
j=l βn,j

(
2j−2l
j−l

)
, where

βn,j =

n−1∑
s=j+1

fn,j,s,nCs−j−1Cn−j−1.(1)

When l = 1, (1) gives us E(Sn).

2. Var(Sn) = 1
Cn−2

∑n−2
j=1 λn,j

(
2j−2
j−1

)
− 1

Cn−2

(∑n−2
j=1 βn,j

(
2j−2
j−1

))2
, where

βn,j is given by (1) and

λn,s =

n−1∑
j=s+1

Cj−s−1Cn−j−1

(
f2
n,s,j,n + 2fn,s,j,n(E(Sn,s+n−j,n)

(2)

+ E(Sn,j,n)) + 2E(Sn,s+n−j,n)E(Sn,j,n)

)
.

This general result can be applied to various interesting geometrical
examples including the cases where fn is the perimeter, the area, or the
radius of the inscribed circle of the input triangle. In the first case, Sn is
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related to the minimum-weight triangulation problem also known as opti-
mal triangulation in computational geometry. Optimal triangulation is the
problem of finding a triangulation of minimal total edge length where an in-
put polygon must be subdivided into triangles that meet edge-to-edge and
vertex-to-vertex, in such a way as to minimize the sum of the perimeters of
the triangles [10, 19]. The two later cases are related to Japanese theorem
[9] (See Chapter 4, p. 193), which indicates that if fn is radius of inscribed
circle of the input triangle, then Sn is constant. In addition, when n grows
to infinity this sum approaches the diameter of circumscribed circle of the
circular polygon Pn.

We remark that it is easy to show that Sn is a constant if and only if
for all quadrilateral components vn,lvn,jvn,ivn,r with 1 ≤ l < j < i < r ≤ n
we have fn,l,j,i + fn,l,i,r = fn,l,j,r + fn,j,i,r. This follows by a repeated appli-
cation of the rule, which “flips” one diagonal, will generate all the possible
triangulations from any given triangulation, with each “flip” preserving the
sum. See Figure 2, where the triangulation (Left) is flipped to (Right) by
flipping v9,2v9,9 to v9,1v9,6.

Figure 2: (Left) can be flipped to the (Right) by flipping v9,2v9,9 to v9,1v9,6.

We now present our examples. For these examples we will not apply
Theorem 1. We instead show most of our results by deriving an explicit
form for generating function gn(z). We remark, however, that application
of Theorem 1, when appropriate, can provide a different expression for E

and Var which may result in new identities for Catalan numbers in par-
ticular. For the first two examples, the results hold true for all convex
polygons. For the rest of examples, we assume, in addition, the polygon
is regular.

1.0.0.1. Triangles with one side on Pn One would ask how many of the
triangles in the random triangulation Tn have exactly one side in common
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with perimeter of Pn. To answer this question we define fn,l,j,r as follows:

fn,l,j,r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if l > 1, j = l + 1, r > j + 1, r ≤ n
1 if l > 1, j > l + 1, r = j + 1, r ≤ n
1 if 2 < j < n− 1, l = 1, r = n
1 if l = 1, j = 2, 3 < r < n
1 if l = 1, j > 2, r = j + 1, r < n
0 o.w.

(3)

With this function, Sn counts the number of triangles of interest. The fol-
lowing lemma provides some information for Sn.

Lemma 2. We have
(I) For all n ≥ 4,

gn(z) =
1

Cn−2

n−2∑
j=0

Cj

[
2

(
j + 2

n− 2− j

)
−
(

j + 1

n− 2− j

)]
z2j+4−n(1− z2)n−2−j .

(II) For all n ≥ 4, E(Sn) =
n(n−4)
2n−5 .

(III) For all n ≥ 5, Var(Sn) =
2n(n−1)(n−4)(n−5)

(2n−5)2(2n−7) .

In the next result, we extend the previous example to slightly more
general case where fn is define as

fn,l,j,r =
1

2
(wj−l + wr−j)× Eq (3).(4)

In particular, we have

Lemma 3.

E(Sn) = −(n− 1)(2wn−2 + 3w)

2(2n− 5)

+
3w

Cn−2

n−3∑
j=0

wjCj

(
2n− 6− 2j

n− 3− j

)
− w

2Cn−2

n−3∑
j=0

wjCj

(
2n− 4− 2j

n− 2− j

)
,

for all n ≥ 4.

We remark that by using simple identities

n−3∑
j=0

Cj

(
2n− 6− 2j

n− 3− j

)
=

(
2n− 5

n− 2

)
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and
n−3∑
j=0

Cj

(
2n− 4− 2j

n− 2− j

)
=

(
2n− 3

n− 1

)
− Cn−2.

we can show this Lemma gives the same result when w = 1 as Lemma 2.

This is another example

1.0.0.2. Triangles with two sides on Pn (Ears) Next example is similar to

the previous case with the exception that, in this example, we would ask how
many of the triangles in Tn have at least two sides residing on the perimeter

of Pn. To that end, we let fn,l,j,r to be as follows:

fn,l,j,r =

⎧⎪⎪⎨
⎪⎪⎩

1 if 1 ≤ l, j = l + 1, r = l + 2, r < n
1 if l = 1, j = n− 1, r = n
1 if l = 1, j = 2, r = n
0 o.w.

(5)

Next lemma provides detailed information on Sn which counts the number

of triangles of interest in Tn:

Lemma 4. For all n ≥ 4, we have

(I) gn(z) = 1 + 1
Cn−2

∑n−3
j=0 Cj

((
j+1

n−2−j

)
+ 2

(
j+1

n−3−j

))
(z − 1)n−2−j.

(II) E(Sn) =
n(n−1)
2(2n−5) .

(III) Var(Sn) =
n(n−1)(n−4)(n−5)
2(2n−5)2(2n−7) for n ≥ 6.

Recall that there is a well-known bijection between binary trees with n−2

nodes and triangulations of Pn. See [10] for a review of various interesting

bijections of similar nature. In [8], Hurtado and Noy use this bijection to

give a combinatorial proof for section (I) and (II) of Lemma (4). We remark
that our method has the capability of generalizing this result to cases such as

the one described in (4), while it is not clear how a combinatorial argument

can provide such extension in a straightforward manner. Having the last

two examples, one can also provide the exact distribution on the number of

triangles with no side on the perimeter of Pn also know as internal triangles.

One final remark is that Lemma 4-(II) and Lemma 2-(II) imply that the
average number of nodes with degree two (resp. one) in a uniformly sampled

binary trees of n − 2 nodes is n(n−4)
2n−5 (resp. n(n−1)

2(2n−5)). See Figure 3 for an

example.
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Figure 3: (left) A triangulation of an irregular P9. The triangles with one
side (resp. two sides) on the perimeter of Pn are marked by ‘O’ (resp. ‘T’).
There is also one internal triangle marked with I. (right) A triangulation of
P8 with marked angles.

In the next few examples, we assume vn,j := (cos θn,j , sin θn,j), where

θn,i := 2π(i−1)
n for 1 ≤ i ≤ n. In other words, Pn is a regular polygon

inscribed in the unit circle.

1.0.0.3. Degree of a vertex Our objective in this example is to obtain some

information on how a typical vertex of Tn looks. Let Dn,i be the number

diagonals incident with i-th vertex in Tn. As it was shown in [7], any trian-

gulation can be fully characterized by the sequence of degrees of the polygon

vertices. Note that (a) by symmetry all Dn,i have identical distributions. (b)∑n
i=1Dn,i = 2(n−3). Therefore, we have E(Dn,1) = · · · = E(Dn,n) =

2(n−3)
n .

By item (b), however, Dn,i are dependent. Hence, in order to obtain the full

description of Dn,1, we need to do a bit more work. Note that Bernasconi

et al. [1] provided an elegant means to study the vertices of Tn in a very

general sense. This is done by designing a Boltzmann sampler that re-

duces the study of Dn,is to properties of sequences of independent and

identical distributed random variables. At this point we are not able to

extend their approach to our model, however, we believe that the pro-

posed approach in [1] and [3] might be proven to be useful in our case

as well.

To that end, we let

fn,l,j,r =

{
1 if l = 1
0 o.w.

With this function, Sn is indeed Dn,1 + 1. Then, we get
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Lemma 5. For n ≥ 4, we have

1. gn(z) =
1

Cn−2

∑n−2
s=1

s(2n−s−5)!
(n−s−2)!(n−2)!z

s.

2. E(Sn) =
3(n−2)

n for n ≥ 2.

3. Var(Sn) =
2(2n−3)(n−2)(n−3)

n2(n+1) for n ≥ 2.

In addition to [1], Devroye et al. [2] also studied the maximum of this
sequence namely max1≤i≤nDn,i where they obtained same result for Dn,1

(See Lemma 1 of [2]). Their proof is purely combinatorial while ours is
based on derivation of the generating function gn(z).

Our main result for this example is to characterize the distribution of
the portfolio of angles at the vertex 1. More precisely,

Theorem 6. Let An,i be the number of angles of size 2πi
n at vertex 1 of Tn.

Then, for a fix sequence 0 ≤ k1, · · · , kn−2 ≤ n − 2 with
∑n−2

i=1 iki = n − 2,
we have

P(An,1 = k1, · · · ,An,n−2 = kn−2)

=
K(2n−K − 5)!

Zn,KCn−2(n−K − 2)!(n− 2)!

(
K

k1, · · · , kn−2

)
Ck1

0 Ck2

1 · · ·Ckn−2

n−3 ,

where K :=
∑n−2

i=1 ki and

Zn,K :=
∑

∑n−2
j=1 jpj=n−2
∑n−2

j=1 pj=K
0≤pj≤n−2

(
K

p1, · · · , pn−2

)
Cp1

0 · · ·Cpn−2

n−3 .(6)

1.0.0.4. Blue angles Suppose for all 1 ≤ l < j < r ≤ n we mark the
triangle Δn,l,j,r such that ∠vn,lvn,jvn,r is red, ∠vn,jvn,lvn,r is green, and
∠vn,jvn,rvn,l is blue. In the next two examples we focus on various properties
of blue angles. Similar results hold for the other two colors by symmetrical
arguments therefore we will not present them. See Figure 3 for an example
on how the marking process works. We note that the total sum of blue angles
in Tn can be studied by defining

fn,l,j,r = j − l.(7)

Then it is easy to show

Lemma 7. E(Sn) =
22n−5−(2n−5

n−2 )
Cn−2

.
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Next, we count the number of blue angles equal to 2πp
n for a fixed 1 ≤

p ≤ n− 1. To that goal, we define

fn,l,j,r =

{
1 if j − l = p
0 o.w.

(8)

Here, we only report the result for p = 1 and leave the general case to reader
with an understanding the general case follows from the same argument with
a slight modification in the initial conditions.

Theorem 8. Fix p = 1. For n ≥ 4, we have

1. gn(z) =
1

Cn−2

∑n−2
j=1 Nn−2,jz

j, where Nn,k := 1
n

(
n
k

)(
n

k−1

)
s are Narayana

numbers.
2. E(Sn) =

n−1
2 .

3. Var(Sn) =
(n−1)(n−2)(n−3)

2(2n−5) .

For more information on Narayana numbers, see the sequence A001263
in [16] and Exercise 6.36 in [17].

This paper is organized as follows. In Section 2 we introduced the main
tools and prove Theorem 1. Section 3 includes the proof of results for the
examples.

2. An algorithm and structure of gn(z)

We begin this section with describing an algorithm that generates a uni-
formly sampled random triangulation of Pn. We note that are currently
various paradigms in the literature for sampling of a random triangulation.
We refer to [2] and [4] for algorithmic instances, to [11, 12, 14] for random
walk based samplers, and to [1] and [3] for Boltzmann samplers. Due to
its constructive recursive nature, we choose the following simple algorithm
belonging to the community folklore. For a given 1 ≤ l < r ≤ n, we define
the function μn,l,r such that

μn,l,r(j) =
Cj−l−1Cr−j−1

Cr−l−1
.(9)

Note μn,l,r is indeed a probability distribution on integer numbers between
l and r since by Catalan recursive identity we have

C0 = 1, and Cm+1 =

m∑
s=0

CsCm−s for m ≥ 0.
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Next, we define our sampling algorithm. With an abuse of notation we refer

to this algorithm also as Tn,l,r. It should be clear from the context whether

we intend the algorithm or the triangulation itself.

2.0.0.1. Sampling algorithm: Tn,r,l

1. Generate random integer J = j between l and r with probability

μn,l,r.

2. If r > l + 2, then return Tn,l,j ∪ Tn,j,r ∪Δn,l,j,r.

3. If r = l + 2, then return Δn,l,l+1,l+2.

4. If r < l + 2, then return empty.

Note that for each fixed triangle Δn,l,j,r there are exactly Cl−j−1Cr−j−1

triangulations with Δn,l,j,r among their triangles. Therefore, the probability

that a uniformly sampled triangulation from Tn,l,r has the triangle Δn,l,j,r

is exactly Cl−j−1Cr−j−1C
−1
r−l−1. Given that Tn,l,j and Tn,j,r are independent,

an inductive argument implies that Tn is uniformly distributed on Tn.

We are now ready to study gn(z) as the main tool in this paper. To that

end, we note that by the algorithm Tn,l,r, we have

Sn,l,r = fn,l,J ,r + Sn,l,J + Sn,J ,r,(10)

for r, l ∈ [n] with r − l > 2. Similarly,

Sn,l,l+2 = fn,l,l+1,l+2, and Sn,l,l+1 = 0.(11)

Recall (1) and (9). Define hn,l,r(z) = Cr−l−1gn,l,r(z). By the recursive equa-

tions (10) and (11), we have

hn,l,r(z) =

r−1∑
j=l+1

zfn,l,j,rhn,l,j(z)hn,j,r(z)(12)

with hn,l,l+1(z) = 1 and hn,l,l+2(z) = zfn,l,l+1,l+2 .

We first give the following lemma 9 that indicates, for a certain class of

functions fn, rotation and shifts do not effect the form of hn,l,r(z).

Lemma 9. Suppose fn,l,j,r is a function of r − j, r − l, j − l and possibly

n. Then

(I) For all 1 ≤ l < r ≤ n− 1, hn,l,r(z) = hn,l+1,r+1(z).
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(II) Suppose n ≥ 4. Additionally, assume fn,l,j,r is independent of n. Then

hn,l,n(z) = hn−1,l−1,n−1(z)

for all l = 3, 4, . . . , n− 1.

Proof of (I). Since fn,l,j,r is merely a function of r − j, r − l, j − l and

possibly n, we have that fn,l+1,j+1,r+1 = fn,l,j,r for all 1 ≤ l < r ≤ n − 2.

We proceed the proof by induction on p := r − l, that is, we show that

hn,l,l+p(z) = hn,l+1,l+p+1(z) for all 1 ≤ p ≤ n−1 with an understanding that

1 ≤ l < l + p ≤ n. By (12), we have that hn,l,l+1(z) = hn,l+1,l+2(z) = 1 and

hn,l,l+2(z) = hn,l+1,l+3(z), which implies that the lemma hold for p = 1, 2.

Next, we assume that the lemma holds for p = 1, 2, · · · , s − 1 and prove it

also holds for p = s. In other words, we show hn,l+1,l+s+1(z) = hn,l,l+s(z).

To that end, by (12), we obtain

hn,l+1,l+s+1(z) =

l+s∑
j=l+2

zfn,l+1,j,l+s+1hn,l+1,j(z)hn,j,l+s+1(z)

=

l+s∑
j=l+2

zfn,l,j−1,l+shn,l,j−1(z)hn,j−1,l+s(z)

=

l+s−1∑
j=l+1

zfn,l,j,l+shn,l,j(z)hn,j,l+s(z) = hn,l,l+s(z)

where for the second equality we used the induction hypothesis.

Proof of (II). By the assumption fn,s,j,n = fn−1,s−1,j−1,n−1 for all 1 < s <

j ≤ n. We proceed the proof by induction on l = n − 1, n − 2, . . . , 3. By

(12), we have that hn,n−1,n(z) = hn−1,n−2,n−1(z) = 1 and hn,n−2,n(z) =

hn−1,n−3,n−1(z), which shows that the claim holds for l = n − 1, n − 2. We

assume that the claim holds for l = n− 1, n− 2, . . . , s+ 1 and show that it

also holds for l = s. By (12) and Lemma 9-(I), we have

hn,s,n(z) =

n−1∑
j=s+1

zfn,s,j,nhn,s,j(z)hn,j,n(z)

=

n−1∑
j=s+1

zfn,s,j,nhn,s+n−j,n(z)hn,j,n(z),
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and

hn−1,s−1,n−1(z) =

n−2∑
j=s

zfn−1,s−1,j,n−1hn−1,s−1,j(z)hn−1,j,n−1(z)

=

n−2∑
j=s

zfn−1,s−1,j,n−1hn−1,n−j+s−2,n−1(z)hn−1,j,n−1(z)

=

n−1∑
j=s+1

zfn,s,j,nhn−1,n−j+s−1,n−1(z)hn−1,j−1,n−1(z)

=

n−1∑
j=s+1

zfn,s,j,nhn,s+n−j,n(z)hn,j,n(z).

Where we used the induction hypothesis for the last equality. Therefore, we
have shown hn,s,n(z) = hn−1,s−1,n−1(z), which completes the induction.

Recall that hn(z) = Cn−2gn(z). Therefore, E and Var follow from hn(z):

(13) E(Sn) =
1

Cn−2
h′n, and Var(Sn) =

1

Cn−2
(h′n + h′′n)−

1

C2
n−2

(h′n)
2,

where

h′n :=
d

dz
hn(z) |z=1 and h′′n :=

d2

dz2
hn(z) |z=1 .

Similarly, we define h′n,l,r and h′′n,l,r.

Proof of Theorem 1. Suppose fn,l,j,r is a function of r−j, r−l, j−l and pos-
sibly n. We will calculate h′n,l,n and h′′n,l,n to prove Theorem 1. To that end,
note that Lemma 9-(I) reduces the calculation hn,l,r(z) to that of hn,l,n(z).
In other words, equation (12) is reduced to

hn,l,n(z) =
∑n−1

j=l+1 z
fn,l,j,nhn,l+n−j,n(z)hn,j,n(z)(14)

with hn,n−1,n(z) = 1 and hn,n−2,n(z) = zfn,n−2,n−1,n .

By hn,l,n(1) = Cn−l−1, we rewrite (14) as

h′n,l,n(z) =

n−1∑
j=l+1

fn,l,j,nCj−l−1Cn−j−1
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+

n−1∑
j=l+1

(h′n,l+n−j,nCn−j−1 + Cj−l−1h
′
n,j,n)(15)

with h′n,n−1,n = 0 and h′n,n−2,n = fn,n−2,n−1,n. Now, define Mn to be the

matrix (mij)1≤i,j≤n−1 where

mij =

⎧⎨
⎩

1 if 1 ≤ i = j ≤ n− 1
−2Cj−i−1 if 1 ≤ i < j ≤ n− 1
0 if 1 ≤ j < i ≤ n− 1.

Recall (1). Then, the recurrence (15) can be written as

Mn(h
′
n,1,n, . . . , h

′
n,n−1,n)

T = (βn,1, . . . , βn,n−2, 0)
T .(16)

To solve this system of equations, we define the matrix Dn = (dij)1≤i,j≤n−1,

where

dij =

{ (
2j−2i
j−i

)
if 1 ≤ i ≤ j ≤ n− 1

0 if 1 ≤ j < i ≤ n− 1.

Recall the generating function of Catalan numbers:

C(t) =
∑
n≥0

Cnt
n =

∑
n≥0

1

n+ 1

(
2n

n

)
tn =

1−
√
1− 4t

2t
.(17)

Since the matrices Mn and Dn are upper triangular with diagonal ones, we

have that
∑n−1

j=1 mijdjl = 0 for all 1 ≤ l < i ≤ n − 1 and
∑n−1

j=1 mijdji = 1

for all 1 ≤ i ≤ n− 1. Suppose 1 ≤ i < l ≤ n− 1. We observe that from the

convolution

1

2x
√
1− 4x

− 1

2x
= C(x)× 1√

1− 4x
=

∑
n≥0

n∑
j=0

Cj

(
2j

j

)
xn,

we obtain

2

n∑
j=0

Cj

(
2s− 2j

s− j

)
=

(
2s+ 2

s+ 1

)
.

Hence,
∑n−1

j=1 mijdjl = 0 for all 1 ≤ i < l ≤ n − 1. This shows that for all

n ≥ 2, MnDn = In−1, where In is the (n × n) identity matrix. Similarly,
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(14) implies

h′′n,l,n =

n−1∑
j=l+1

fn,l,j,n(fn,l,j,n − 1)Cj−l−1Cn−j−1

+

n−1∑
j=l+1

fn,l,j,n(h
′
n,l+n−j,nCn−j−1 + h′n,j,nCj−l−1)

+

n−1∑
j=l+1

(h′′n,l+n−j,nCn−j−1 + 2h′n,l+n−j,nh
′
n,l,n + h′′n,j,nCj−l−1)(18)

with h′′n,n−1,n = 0 and h′′n,n−2,n(z) = fn,n−2,n−1,n(fn,n−2,n−1,n − 1). With

notation

γn,l =

n−1∑
j=l+1

(
fn,l,j,n(fn,l,j,n − 1)Cj−l−1Cn−j−1

+2fn,l,j,n(h
′
n,l+n−j,nCn−j−1 + h′n,j,nCj−l−1)

+2h′n,l+n−j,nh
′
n,l,n

)
,

(18) can be written as

Mn(h
′′
n,1,n, . . . , h

′′
n,n−1,n)

T = (γn,1, . . . , γn,n−2, 0)
T .

By (16) and the fact that MnDn = In−1 for n ≥ 2, we obtain

(h′n,1,n, . . . , h
′
n,n−1,n)

T = Dn(βn,1, . . . , βn,n−2, 0)
T

and

(h′′n,1,n, . . . , h
′′
n,n−1,n)

T = Dn(γn,1, . . . , γn,n−2, 0)
T .

Thus, for all l = 1, 2, . . . , n− 2,

h′n,l,n =

n−2∑
j=l

βn,j

(
2j − 2l

j − l

)
and h′′n,l,n =

n−2∑
j=l

γn,j

(
2j − 2l

j − l

)
,

which complete the proof of Theorem 1.
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Example 10. If fn,l,j,r = 1 for all 1 ≤ l < j < r ≤, then

βn,j =

n−1∑
i=j+1

Ci−j−1Cn−i−1 =

n−2−j∑
i=0

CiCn−2−j−i = Cn−1−j ,

which leads to

Cn−2E(Sn) =

n−2∑
j=1

βn,j

(
2j − 2

j − 1

)

=

n−2∑
j−1

Cn−1−j

(
2j − 2

j − 1

)
=

(
2n− 3

n− 2

)
−
(
2n− 4

n− 2

)

= (n− 2)Cn−2,

as expected.

Example 11. Suppose fn is a polynomial, where for a fixed w ∈ C,

fn,l,j,r =
1

3
(wj−l + wr−j + wr−l).

Then, for all n ≥ 4, Theorem 1 implies

E(Sn) = wn−1 − (n− 1)w

3
+

2w

3Cn−2

n−3∑
j=0

wjCj

(
2n− 4− 2j

n− 2− j

)
.

3. Examples

The main idea for all the proofs in this section is as follows. We define two

generating functions

H2(t, z) =
∑
n≥3

hn,2,n(z)t
n−3 and H1(t, z) =

∑
n≥3

hn(z)t
n−3.

Our end goal is to obtain H1 as hn(z) can be easily obtained by extracting

the coefficients of tn−3. However, in most cases, we first obtain H2 and then

solve H1 with respect to H2. To that end, we first simplify (12) using certain

properties of fn at hand and then derive explicit equations for H1 and H2

through the application of recursion (12).
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3.1. Triangles with only one side on Pn

In this subsection, we give the proof of Theorem 2. We Recall (3). Note that
by (12) and Lemma 9, we have

hn,2,n(z) = 2zhn−1,2,n−1(z) +

n−2∑
j=4

hj,2,j(z)hn−j+2,2,n−j+2(z),

with h3,2,3(z) = h4,2,4(z) = 1. Multiplying by tn−3 and summing over n ≥ 5,
we obtain

H2(t, z)− t− 1 = 2zt(H2(t, z)− 1) + t(H2(t, z)− 1)2.

By solving this equation, we obtain

H2(t, z) =
1 + 2(1− z)t−

√
1− 4t(z − z2t+ t)

2t
= 1− z + (z + t− z2t)C(t(z + t− z2t)).(19)

Thus, by (17), for all n ≥ 4,

hn,2,n(z) =

n−3∑
j=0

Cj

(
j + 1

n− 3− j

)
z2j+4−n(1− z2)n−3−j .

By (12) with using Lemma 9, we have

hn,1,n(z) = 2hn,2,n(z) + z

n−2∑
j=3

hj+1,2,j+1(z)hn−j+2,2,n−j+2(z)

with h3,1,3(z) = 1. By multiplying by tn−3 and summing over n ≥ 4, we
obtain

H1(t, z) = 1 + 2(H2(t, z)− 1) + z(H2(t, z)− 1)2.

By (20), we obtain

H1(t, z) = 2tz3−3tz−z2+t
t − (2tz2−2t−z)(z+t−z2t)

t C
(
t(z + t− z2t)

)
.(20)

where C(.) is defined by (17). Hence, for all n ≥ 4,

hn(z) =

n−2∑
j=0

Cj

[
2

(
j + 2

n− 2− j

)
−
(

j + 1

n− 2− j

)]
z2j+4−n(1− z2)n−2−j .



On typical triangulations of a convex n-gon 405

This finishes the proof of Theorem 2-(I).
Next, by (20), we have

H ′
1(t, 1) :=

∂

∂z
H1(t, z) |z=1=

t

2
− 4t2 + 3t3 − t(20t2 − 10t+ 1)

2
√
1− 4t

.

The coefficient of tn−3 in H ′
1(t, 1) is

h′n =
−1

2

(
2n− 2

n− 1

)
+ 5

(
2n− 4

n− 2

)
− 10

(
2n− 6

n− 3

)
.

This completes the Proof of Theorem 2-(II). Similarly, (20) gives

∂2

∂z2
H1(t, z) |z=1= 12t3 − 4t2 +

4t2(1− 9t+ 24t2 − 14t3)

(1− 4t)3/2
,

Extracting the coefficient of tn−3 gives

1

Cn−2
h′′n =

n(n− 1)(n2 − 9n+ 20)

(2n− 5)(2n− 7)
.

Therefore, Var(Sn) is followed from (13).

3.1.0.1. A slight generalization By similar arguments as in the beginning
of this section, we have

hn,2,n(z) = (zw + zw
n−3

)hn−1,2,n−1(z) +

n−2∑
j=4

hj,2,j(z)hn−j+2,2,n−j+2(z),

hn,1,n(z) = 2hn,2,n(z) +

n−2∑
j=3

zw
j−1

hj+1,2,j+1(z)hn−j+2,2,n−j+2(z)

with h4,2,4(z) = h3,1,3(z) = 1. Differentiating hn(z) at z = 1 and using the
fact hn,l,r(1) = Cr−l−1, we obtain

h′n,2,n = (w + wn−3)Cn−4 + 2h′n−1,2,n−1 + 2

n−2∑
j=4

h′j,2,jCn−j−1,

h′n,1,n = 2h′n,2,n +

n−2∑
j=3

wj−1Cj−2Cn−j−1 + 2

n−2∑
j=3

h′j+1,2,j+1Cn−j−1

with h′4,2,4 = h′3,1,3 = 0.
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Define H ′
1(t) =

∑
n≥3 h

′
n,1,nt

n−3 and H ′
2(t) =

∑
n≥3 h

′
n,2,nt

n−3. Then,
the above recurrences can be rewritten in terms of H ′

1(t) and H ′
2(t) as

H ′
2(t) = wt(C(t)− 1) + wt(C(wt)− 1) + 2tH ′

2(t)C(t),

H ′
1(t) = w(C(wt)− 1)(C(t)− 1) + 2H ′

2(t)C(t).

Thus, H ′
2(t) =

wt(C(t)+C(wt)−2)√
1−4t

and

H ′
1(t) = w(C(wt)− 1)(C(t)− 1) +

2wtC(t)(C(t) + C(wt)− 2)√
1− 4t

=
w(1− 4t)C(wt)

2t
+

w(6t− 1)C(wt)

2t
√
1− 4t

− 3w(C(t)− 1).

Recall the generating function (17) and 1√
1−4t

=
∑

n≥0

(
2n
n

)
tn. Thus, by

extracting the coefficient of tn−3 in H ′
1(t) and by (13), we complete the

proof of Lemma 3.

3.2. Triangles with two sides on Pn

In this subsection, we give the proof of Theorem 4. The proof is very similar
to that of the previous section. Note that h3,2,3(z) = 1 and h4,2,4(z) = z. By
(12), (5), and Lemma 9, for n ≥ 5 we have

hn,2,n(z) =

n∑
j=3

hj,2,j(z)hn−j+2,2,n−j+2(z).(21)

Multiplying by tn−3 and summing over all terms, we obtain

H2(t, z)− zt− 1 = −t+ t(H2(t, z))
2.

Equivalently,

H2(t, z) =
1−

√
1− 4t+ 4(1− z)t2

2t
.(22)

Once again, (12) and Lemma 9 imply

hn,1,n(z) = 2zhn,2,n(z) +

n−1∑
j=4

hj,2,j(z)hn−j+3,2,n−j+3(z),(23)
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with h3,1,3(z) = z and h4,1,4(z) = 2z2. Multiplying by tn−3 and summing
over n ≥ 5, we obtain

H1(t, z)− 2z2t− z = 2z(H2(t, z)− zt− 1) + (H2(t, z)− 1)2.

Solving for H1(t, z), and replacing H2(z, t) from (22), we have

H1(t, z) =
1− 2(2− z)t+ 4(1− z)t2 − (1− 2(1− z)t)

√
1− 4t+ 4(1− z)t2

2t2
.

Recall the generating function (17). To extract the coefficients of H1, we
rewrite H1 using C(t) function as follows

H1(t, z) =
(1− 2(1− z)t)(1− (1− z)t)

t
C(t(1− (1− z)t))− 1− 2(1− z)t

t

= (1− 2(1− z)t)
∑
j≥0

Cjt
j−1(1− (1− z)t)j+1 − 1− 2(1− z)t

t

= (1− 2(1− z)t)
∑
j≥0

j+1∑
i=0

Cj

(
j + 1

i

)
ti+j+1(z − 1)i − 1− 2(1− z)t

t
.(24)

Extracting the coefficient of tn−3, we have completed the proof Theorem 4-
(I).

From (24), we have

H ′
1(t, 1) =

∂

∂z
H1(t, z) |z=1= −2 +

1

t
− 1− 5t

t
√
1− 4t

,

which leads to 1
Cn−2

h′n = n(n−1)
2(2n−5) , for all n ≥ 4. Moreover,

H ′′
1 (t, 1) =

∂2

∂z2
H1(t, z) |z=1=

2t(2− 7t)

(1− 4t)3/2
,

which shows 1
Cn−2

h′′n = n(n−1)(n−2)(n−3)
4(2n−5)(2n−7) for n ≥ 5. Therefore, E(Sn) and

Var(Sn) follow from (13).

3.3. Degree of vertex 1

Recall that conditions for Lemma 9 s not satisfied by fn for this exam-
ple, however, by a very similar type of argument we can show hn,l,r(z) =
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hn,2,r−l+2(z) for all 2 ≤ l < r ≤ n− 1 and n ≥ 3. Then, (12) implies

hn,1,n(z) = z

n−1∑
j=2

hj,1,j(z)hn−j+2,2,n−j+1(z),

and

hn,2,n(z) =

n−1∑
j=3

hj,2,j(z)hn−j+2,2,n−j+1(z),

where h2,1,2(z) = h3,2,3(z) = h4,2,4(z) = 1. By translating these recurrence
in terms of generating functions H1(t, z) and H2(t, z), we obtain

H1(t, z) = zH2(t, z) + ztH1(t, z)H2(t, z) and H2(t, z) = 1 + t(H2(t, z))
2.

Therefore,

H1(t, z) =
zC(t)

1− ztC(t)
and H2(t, z) = C(t).

Thus,

H1(t, z) =
∑
s≥1

zsts−1Cs(t),

By Equation 2.5.16 [18], we obtain

t3H1(t, z) =
∑
s≥0

∑
j≥0

zs
s(2j + s− 1)!

j!(j + s)!
tj+s+2,

which leads to

hn(z) =

n−2∑
s=0

zs
s(2n− s− 5)!

(n− s− 2)!(n− 2)!

In addition, E(Sn) and Var(Sn) easily follow from (13). This completes the
proof of Lemma 5.

Next, we give the proof of Theorem 6.

Proof of Theorem 6. Recall K :=
∑n−2

i=1 ki. Note that

P(An,1 = k1, · · · ,An,n−2 = kn−2)

= P (An,1 = k1, · · · ,An,n−2 = kn−2,Sn = K)

= P (An,1 = k1, · · · ,An,n−2 = kn−2 | Sn = K)P (Sn = K)
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The last term is given by Lemma 5. Hence, it is enough to calculate the first
term of the right-hand side of the equality. Given k1, · · · , kn−2 and K, we
count how many triangulations have this portfolio at vertex 1. Note that
there are

(
K

k1,··· ,kn−2

)
choices of these angles. For each of these

(
K

k1,··· ,kn−2

)
choices, we have Ck1

0 Ck2

1 · · ·Ckn−2

n−3 triangulations that fit the description.
Therefore,

P (An,1 = k1, · · · ,An,n−2 = kn−2|Sn = K)

= 1
Zn,K

(
K

k1,··· ,kn−2

)
Ck1

0 Ck2

1 · · ·Ckn−2

n−3 ,

where Zn,k is the number of triangulations with K angles at vertex “1”,
defined by (6). This completes the proof.

3.4. Blue angles

Proof of Lemma 7. Recall (8). Lemma 9 along with (12) implies

hn,1,n(z) = z

n−1∑
j=2

zj−2hj,1,j(z)hn−j+1,1,n−j+1(z),

where h2,1,2(z) = 1. Then by rewriting this recurrence in terms of the gen-
erating function H̃1 =

∑
n≥2 hn,1,n(z)t

n−2, we have

H̃1(t, z) = 1 + ztH̃1(zt, z)H̃1(t, z).

Hence H̃1 has the following form

H̃1(t, z) =
1

1− zt

1− z2t

1− z3t

. . .

.

Calculating the derivative at z = 1, we obtain E(Sn) =
22n−5−(2n−5

n−2 )
Cn−2

for n ≥ 3
as claimed in Lemma 7.

Proof of Theorem 8. Recall (7) and let p = 1. (12) along with Lemma 9
implies

hn,1,n(z) = zhn−1,1,n−1(z) +

n−1∑
j=3

hj,1,j(z)hn−j+1,1,n−j+1(z),
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where h2,1,2(z) = 1 and h3,1,3(z) = z. By multiplying by tn−3 and summing
over n ≥ 4, we obtain

tH1(t, z) = z(tH1(t, z) + 1) + t(tH1(t, z) + 1)H1(t, z).

By solving this equation, we obtain

H1(t, z) =
1− t− zt−

√
t2(1− z)2 − 2t(1 + z) + 1

2t2
.

Once again extracting the coefficient of tn−3 in H1(t, z) completes the proof
of Theorem 8.
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