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Restricted color n-color compositions

Brian Hopkins and Hua Wang

Agarwal introduced n-color compositions in 2000 and most subse-
quent research has focused on restricting which parts are allowed.
Here we focus instead on restricting allowed colors. After three
general results, giving recurrence formulas for the cases of given al-
lowed colors, given prohibited colors, and colors satisfying modular
conditions, we consider several more specific conditions, establish-
ing direct formulas and connections to other combinatorial objects.
Proofs are combinatorial, mostly using the notion of spotted tilings
introduced by the first named author in 2012.
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1. Introduction

A composition of a given positive integer n is an ordered sequence of pos-
itive integers with sum n. For instance, there are four compositions of 3,
namely (3), (2, 1), (1, 2), and (1, 1, 1). The summands are called parts of the
composition. Compositions are sometimes referred to as ordered partitions.

Agarwal [2] introduced the concept of n-color compositions, where a part
κ has one of κ possible colors, denoted by a subscript 1, . . . , κ. There are
eight n-color compositions of 3, namely

(31), (32), (33), (21, 11), (22, 11), (11, 21), (11, 22), (11, 11, 11).

There has been much research on these objects, often with restrictions on
part sizes [3, 6, 8, 9, 10, 15]. Related color compositions have arisen in many
places, e.g., Andrews’s k-compositions [4] where every part but the last has k
possible colors, [12] where odd parts have two possible colors, and [5] where
a part κ has

(
κ+d−1

d

)
potential colors.

The combinatorial tool called spotted tilings were introduced by the first
named author in [10]. The tiling for a composition of n is a 1× n rectangle
broken into smaller rectangles (tiles) whose lengths correspond to the part
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Figure 1: The 8 spotted tilings for the n-color compositions of 3.

sizes. With colors, a part κi corresponds to a 1 × κ rectangle with a spot
in square i. Spotted tilings for the n-color compositions of 3 are shown in
Figure 1. Spotted tiling were subsequently used in [6, 7]. Other combinatorial
interpretations of n-color compositions are based on binary sequences [15],
lattice paths [3], and rooted trees [14].

In this paper, we consider n-color compositions with restrictions on col-
ors rather than part sizes. Even and odd colors and some variations were
considered in 2017 [14], and certain of what we call modular color restric-
tions (see Theorem 2.3 below) were considered in 2019 [1]; the current work
adds significantly to these explorations. Section 2 gives general results on
the enumeration of color restricted n-color compositions in terms of allowed
or prohibited colors. Section 3 treats many particular cases, adding combi-
natorial interpretations to several integer sequences and establishing various
identities in terms of n-color compositions. Proofs throughout are combina-
torial, usually based on spotted tilings.

2. Main results

We have the following very general results giving recurrence relations for
the number of n-color compositions when a set of colors (finite or infinite)
is allowed or prohibited. There is also a result for colors satisfying certain
modular conditions.

We follow the convention that there is an empty composition with sum
zero, so that a(0) = 1 in most of our recursively defined sequences. Also, in
this section only, we use superscripts to index a list of numbers in order to
avoid confusion with the subscripts denoting colors. The sequence c1, c2, . . .
is abbreviated {ci}. Let c− = min({ci}) and c+ = max({ci}). We also use
A \B for the complement of B inside A.

2.1. Allowed colors

We begin with the situation where only specified colors are allowed.
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Theorem 2.1. For allowed colors {ci}, the number of color restricted
n-color compositions of n is given by

a(n) = a(n− 1) +
∑
i

a(n− ci)

with a(n) = 0 for n ≤ −1, a(0) = 1, a(1) = · · · = a(c− − 1) = 0 (if c− �= 1),
and a(c−) = 1.

Proof. We build all allowed compositions of n from the compositions counted
by the summands in the right-hand side of the equation.

1. For a composition of n − 1, increase its last part, say κc, to (κ + 1)c
to obtain an allowed composition of n.

2. For a composition of n − c for some c ∈ {ci}, add a part cc to make
an allowed composition of n.

These compositions are distinct since those from (1) have an empty last
square while those from (2) have a spot in the last square, and the compo-
sitions from (2) are distinct since the added last part is different for each ci.

The reverse map is clear: If the last tile has a spot in the last square,
then remove that tile. Otherwise, decrease the last tile by one square.

The initial values through a(c−) = 1 are clear. For other n = c ∈ {ci},
the sequence term a(n) calls step (2) of the bijection, generating (nn) from
the empty composition in addition to any compositions consisting of parts
with smaller colors.

See Section 3.1 for several examples.
Note that when c− = 1, there will be two a(n − 1) terms on the right-

hand side: The bijection step (1) produces a(n− 1) compositions of n with
empty last squares while (2) applied to 1 ∈ {ci} produces the a(n − 1)
compositions of n ending in 11.

2.2. Prohibited colors

For situations where certain colors are prohibited, Theorem 2.1 would suffice
using the complementary set of allowed colors. However, for a finite list
of prohibited colors, that would give an infinite recurrence. Theorem 2.2
establishes a finite recurrence given a finite list of prohibited colors.

Theorem 2.2. For prohibited colors {di}, the number of color restricted
n-color compositions of n is given by

a(n) = 3a(n− 1)− a(n− 2) +
∑
i

(
−a(n− di) + a(n− di − 1)

)
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with initial values a(0), . . . , a(d+) provided by Theorem 2.1 applied to the

colors {1, . . . , d+} \ {di}.

Proof. For the bijection, we rewrite the recurrence as

a(n) + a(n− 2) +
∑
i

a(n− di) = 3a(n− 1) +
∑
i

a(n− di − 1).

We proceed from the compositions counted by terms in the left-hand side.

1a. For a composition of n whose last part is κj for some j < κ, decrease

the last part to (κ− 1)j to obtain an allowed composition of n− 1.

1b. For a composition of n with last part 11, remove 11 to obtain an allowed

composition of n− 1.

1c. For a composition of n whose last part is κκ for some κ ≥ 2 with

κ �= di + 1 for any i, replace κκ with (κ− 1)κ−1 to obtain an allowed

composition of n− 1.

1d. For compositions of n whose last part is κκ for some κ ≥ 2 with

κ = di + 1 for some i, remove κκ to obtain an allowed composition of

n− di − 1.

2. For a composition of n−2, increase its last part κj to (κ+1)j to obtain

an allowed composition of n− 1.

3. For any i and a composition of n−di, add a part (di−1)di−1 to obtain

an allowed composition of n− 1.

Figure 2 illustrates these aspects of the bijection.

As suggested by the labels, maps (1a) through (1d) treat all allowed

compositions of n, map (2) treats all allowed compositions of n − 2, and

map (3) handles all allowed compositions of n− di for the prohibited colors

{di}. Note that (1b) addresses the case d− �= 1; see the note following the

proof for the simplified bijection when d− = 1.

Over all allowed compositions of n, (1a) produces a complete set of

allowed compositions of n − 1, as does (1b). The third set of allowed com-

positions of n − 1 comes from (1c), (2), and (3): All compositions with an

empty final square are produced by (2) applied to all allowed compositions

of n−2. For compositions with a spot in the final square, for all i, (3) applied

to all allowed compositions of n − di produces the compositions with final

part (di−1)di−1 while (1c) produces all the others. (Note that the κ �= di+1

restriction in (1c) guarantees that the replacement part (κ− 1)κ−1 uses an

allowed color and, since κ /∈ {di}, it does not duplicate the output of (3).)

Finally, (1d) produces all allowed compositions of n− di − 1 over all i.
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�. . .(1a) �. . .

� �. . .(1b) �. . .

�(1c) . . . �. . .

�(1d) . . . . . . . . . . . .

�(3) . . . . . . ... . . . . . ..

�(2) . . . �. . .

Figure 2: The n-color compositions with the spotted tilings on the left-hand
side are mapped to the corresponding compositions on their right by the
bijection in the proof of Theorem 2.2, demonstrating each case when d1 = 2.

For the initial values, for 1 ≤ n ≤ d+, prohibiting the colors {di} is
equivalent to allowing the complementary colors {1, . . . , d+} \ {di}, so that
the initial sequence generated by Theorem 2.1 is valid. In the case that
{di} = {1, . . . , d+}, this leads to a(0) = 1, a(1) = · · · = a(d+) = 0. In any
case, the sequence term for n = d+ + 1 involves step (1d) of the bijection,
connecting (nn) and the empty composition.

See Section 3.2 for further examples.
If d− = 1, then the recurrence becomes

a(n) + a(n− 2) +
∑
i �=1

a(n− di) = 2a(n− 1) +
∑
i

a(n− di − 1)

and the bijection simplifies: Step (1b) never occurs, leaving two sets of al-
lowed compositions counted by n− 1. Also note that the d− = 1 case is ex-
cluded from (3) to avoid producing compositions of n−1 with last part “00.”

Also, whenever there are sequential forbidden colors, terms in the recur-
rence relation of Theorem 2.2 cancel out. For instance, for forbidden colors
k, k + 1, . . . , k + d, the recurrence relation reduces to

a(n) = 3a(n− 1)− a(n− 2)− a(n− k) + a(n− k − d− 1).

2.3. Modular colors

When there are infinitely many colors both allowed and prohibited, there can
still be a finite recurrence relation for the number of resulting compositions.
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�(1a) . . . . . . .. �. . . . . . ..

�(1b) . . . . . . . . . . . .. . . . . . . . . . . . ..

�(1c) . . . . . . �. . . . . .

�(2) . . . �. . .

Figure 3: Demonstration of each case of the bijection in the proof of Theorem
2.3, with m = 3 and m1 = 2.

Our final main theorem addresses such a situation, where all colors having
the same modulus are either all allowed or all prohibited.

Theorem 2.3. For allowed colors congruent to {mi} modulo m, the number
of color restricted n-color compositions of n is given by

a(n) = a(n− 1) + a(n−m)− a(n−m− 1) +
∑
i

a(n−mi)

where 1 ≤ mi ≤ m for each i. The initial values a(0), . . . , a(m + 1) are
provided by Theorem 2.1 applied to the colors {mi} if m− �= 1, to colors
{mi} ∪ {m+ 1} if m− = 1.

Proof. For the bijection, we rewrite the recurrence as

a(n) + a(n−m− 1) = a(n− 1) + a(n−m) +
∑
i

a(n−mi).

We proceed from the compositions counted by terms in the left-hand
side.

1a. For a composition of n whose last part is κj for some j < κ, decrease
the last part to (κ− 1)j to obtain an allowed composition of n− 1.

1b. For a composition of n whose last part is κκ with κ ≤ m, then κ = mi

for some i; remove κκ to obtain an allowed composition of n−mi.
1c. For a composition of n whose last part is κκ with κ ≥ m+ 1, replace

κκ with (κ−m)(κ−m) to obtain an allowed composition of n−m.
2. For a composition of n−m−1, increase its last part, say κj , to (κ+1)j

to obtain an allowed composition of n−m.

Figure 3 illustrates these aspects of the bijection.



Restricted color n-color compositions 361

Similar to before, maps (1a), (1b), and (1c) treat all allowed compositions
of n and map (2) treats all allowed compositions of n−m− 1.

Over all allowed compositions of n, (1a) produces all allowed composi-
tions of n− 1, (1b) produces all allowed compositions of n−mi for all {mi}
with 1 ≤ mi ≤ m, and (1c) produces all allowed compositions of n − m
with a spot in the last square (note that if κ is an allowed colors, then so is
κ−m). Finally, over all allowed compositions of n−m− 1, (2) produces all
allowed compositions of n−m with empty last squares.

For the initial values, for 1 ≤ n ≤ m + 1, allowing colors congruent to
{mi} modulo m is just allowing the colors {mi} with 1 ≤ mi ≤ m for each i
if m− �= 1, or the colors {mi}∪{m+1} if m− = 1. Larger colors are handled
by the bijection.

The special treatment of color m+1 in the proof, should it be included,
comes from step (2) of the bijection which at n = m + 1 would call for
sending “00” to “10.” Addressing n = m + 1 in the setting of Theorem 2.1
means that the bijection here will only be applied to colors n = m + 2 or
greater where compositions of n −m − 1 have nonzero parts with nonzero
colors.

See Section 3.3 for additional examples.

3. Examples and additional results

The majority of this article is dedicated to establishing further results for
particular classes of allowed or prohibited colors, such as direct formulas and
bijections to other classes of compositions or various combinatorial objects.
The three subsections mirror the three theorems above. Most results are
general cases. There are also a handful of more specific results, e.g., pro-
hibiting the color 2; see [11] for additional specific results. We will use the
following definitions in describing several of the bijections.

Definition 3.1. Given a tile κc of an n-color composition, the c-block con-
sists of the first c squares: starting from the left, c − 1 empty squares and
the spotted square indicating the tile’s color. The c-block is followed by a
tail of κ− c empty squares; if κ = c then we say the tail is empty.

3.1. Allowed colors

We begin with the examples having a finite number of allowed colors. The
recurrences follow from Theorem 2.1. In each of the following general cases,
we derive a closed formula and, in most, present bijections to other combi-
natorial objects. See [11] for further particular examples.
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3.1.1. Single color compositions First we consider allowing parts of
only one color. The direct formula in the next result is a generalization of
the following classical result: The number of regular compositions of n with
m parts is the binomial coefficient

(
n−1
m−1

)
. The binomial theorem then gives

one way (of many) to conclude that there are 2n−1 regular compositions of n.
Note that only allowing the color c = 1 is equivalent to regular compositions;
simply ignore the color/spot.

Proposition 3.2. The number of n-color compositions of n with only the
one color c > 1 allowed is given by the recurrence relation

a(n) = a(n− 1) + a(n− c)

with a(n) = 0 for n ≤ −1, a(0) = 1, and a(1) = · · · = a(c− 1) = 0. Also,

a(n) =

n∑
m=1

(
n− (c− 1)m− 1

m− 1

)
.

Proof. The recurrence comes from Theorem 2.1.

For the direct formula, consider the compositions (and hence the corre-
sponding spotted tiling representations) of n, allowing color c, with m parts.
The entire tiling is an arrangement of m c-blocks and n−mc empty squares
that constitute the tails. The number of ways to assign n−mc empty squares
to the tails of m tiles is

(
n−mc+m− 1

m− 1

)
,

equivalent to the binomial coefficient above. Summing over possible values
of m gives the formula.

The counting sequences for small cases include the Fibonacci numbers
for c = 2, the “tribonacci” numbers for c = 3, [13, A003269] for c = 4, and
[13, A003520] for c = 5. Such sequences also enumerate compositions with
constraints on part sizes as detailed in the next result.

Proposition 3.3. Given positive integers n and c, the following three com-
binatorial objects are equinumerous.

(i.) n-color compositions of n with only color c allowed,
(ii.) regular compositions of n with parts c or greater,
(iii.) regular compositions of n with parts 1 or c and first part c.
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Figure 4: An example of the bijection in Proposition 3.3 for n = 12 and
c = 3. The spotted tiling of the n-color composition (53, 33, 43) is mapped
to the regular composition tiling for (3, 1, 1, 3, 3, 1) below it.

Proof. We relate each type of restricted uncolored compositions to (i). The
connection with (ii) is clear: A part with color c has size at least c, so
removing the color from the parts of the n-color composition (equivalently,
removing the spots from the corresponding spotted tiling) leaves a regular
composition of the desired type. For the reverse direction, simply add the
color c to each part/add a spot in square c of each tile.

To connect (i) and (iii), consider the spotted tiling of a composition with
color c and the following bijection.

1. In each tile, map the c-block to a part c.
2. Map each square in the tail to a part 1.

For the reverse map, combine each c with any subsequent parts 1 to make
a tile κc. Figure 4 shows an example.

It is interesting to consider Proposition 3.3 when c = 1. This allows one
possibility for every part size which is equivalent to regular compositions
(simply erase the spots), so the connection between (i) and (ii) is clear.
What is described by (iii) in this case? There is only one composition of
n − 1 where every part is a 1, namely (1, . . . , 1) with n − 1 parts. Here we
need to understand “1 or c” with c = 1 as indicating two types of 1s, say 1
and 1. Indeed, there are 2n−1 compositions of n − 1 with each part 1 or 1,
as there are two choices for each of the n− 1 parts.

3.1.2. Compositions with two colors Next, we consider cases where
two arbitrary colors are allowed. We give two results analogous to, but a
little more complicated than, Propositions 3.2 and 3.3 above. In the following
proposition, we follow the convention that

(
m
x

)
= 0 for noninteger x.

Proposition 3.4. The number of n-color compositions of n with colors b
and c (where b < c) is given by

a(n) = a(n− 1) + a(n− b) + a(n− c)
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with a(n) = 0 for n ≤ −1, a(0) = 1, and a(1) = · · · = a(b− 1) = 0 if b > 1.
Also,

a(n) =

n∑
m=1

n−bm∑
i=0

(
i+m− 1

m− 1

)(
m

(n− bm− i)/(c− b)

)
.

Proof. The recurrence follows directly from Theorem 2.1.

For the direct formula, let m be the number of parts. Since only colors
b and c are allowed, each spot is preceded by at least b − 1 empty squares;
these and the spots account for bm squares. These are either b-blocks or
incomplete c-blocks in need of additional empty squares. The remaining
n− bm squares either contribute to tails (empty squares after spots to make
greater parts) or complete c-blocks (empty squares before the spot).

More precisely, let i be the total number of squares in the tails of parts.
There are

(
i+m−1
m−1

)
ways of partitioning these i squares into the tails of m

tiles. The remaining n−bm−i squares need to be distributed before spots in
some tiles. For each tile, we have already accounted for b− 1 empty squares
before the spot; if additional empty squares are added, then there must be
exactly c− b of them (to make the part have color c rather than b). This is
only possible when n− bm− i is divisible by c− b, in which case there are(

m
(n−bm−i)/(c−b)

)
ways to select the tiles to extend to c-blocks. (Note that, by

the binomial coefficient convention, nonzero contributions to the sum arise
only arise when n− bm− i is a multiple of c− b.)

Proposition 3.5. Given positive integers n and b, c with b < c, the following
three combinatorial objects are equinumerous.

(i.) n-color compositions of n with only colors b and c allowed,
(ii.) regular compositions of n with parts b or greater where there are two

types of parts c and greater,
(iii.) regular compositions of n with parts 1, b, or c with first part b or c.

Proof. The proof is fairly similar to that of Proposition 3.3.

To connect the n-color compositions of (i) to the regular compositions of
(ii), it suffices to note that every part must be at least b (since the smallest
allowed color is b), and parts c or greater each have two possible types
corresponding to the allowed colors b and c.

The following bijection connects the n-color compositions of (i) to the
union of regular compositions given in (iii).

1. In each tile, map the b- or c-block to a part b or c, respectively.
2. Map each square in the tail to a part 1.
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For the reverse map, combine each b or c with any subsequent parts 1

to make a tile κb or κc, respectively.

There are further results for the case of consecutive colors (c = b + 1)

and several connections to well known integer sequences for small values

of b; see [11] for details. The interested reader could formulate and prove

analogous statements to Propositions 3.4 and 3.5 for three or more arbitrary

colors.

3.1.3. Compositions with colors 1, 2, . . . , c We conclude this subsec-

tion by considering consecutive allowed colors starting with 1 and contin-

uing to an arbitrary c ≥ 1, a case considered in the first paper on n-color

compositions [2, §3]. The formula in the following enumeration result com-

bines to c nested summations; after the proof we expand the formulas for

small c.

Proposition 3.6. The number of n-color compositions of n allowing colors

1, 2, . . . , c is given by

a(n) = 2a(n− 1) + a(n− 2) + · · ·+ a(n− c)

with a(0) = a(1) = 1. Also,

a(n) =

n∑
ic=1

n−ic∑
�=0

(
�+ ic − 1

ic − 1

)
Gc(nc, ic)

where

Gj(nj , ij) =

ij∑
ij−1=0

(
ij

ij − ij−1

)
Gj−1(nj−1, ij−1)

for 3 ≤ j ≤ c and G2(n2, i2) =
(
i2
n2

)
, nc = n− ic − � and, for 2 ≤ j ≤ c− 1,

nj = nj+1 − j(ij+1 − ij).

Proof. The recurrence follows directly from Theorem 2.1.

For the direct formula, let ic be the number of parts, equivalently, the

number of spotted squares in the tiling. Also, let � be the total number
of squares in the tails of the tiles. There are

(
�+ic−1
ic−1

)
ways of partitioning

these � squares into the tails of ic tiles. It remains to distribute the other

nc = n − ic − � squares as the empty squares preceding spotted squares in

the k-blocks for tiles with color k (with k ≤ c); suppose there are Gc(nc, ic)
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ways to do this. Then the number of n-color compositions of n allowing

colors 1, 2, . . . , c is

a(n) =

n∑
ic=1

n−ic∑
�=0

(
�+ ic − 1

ic − 1

)
Gc(nc, ic).

Determining Gc(nc, ic) essentially involves an inductive process. We de-

tail the next step, a general step, and the last step (which can be considered

the base case).

Let ij be the number of parts with color at most j (so that, in our

setting, ic is the total number of parts). Now ic− ic−1 is the number of parts

with color c and there are
(

ic
ic−ic−1

)
ways to select which parts have color c.

Since each color c part requires c− 1 empty squares in its c-block, we have

nc−1 = nc − (c − 1)(ic − ic−1) other squares left to assign to the ic−1 parts

with colors at most c − 1. Suppose there are Gc−1(nc−1, ic−1) ways to do

this. Then

Gc(nc, ic) =

ic∑
ic−1=0

(
ic

ic − ic−1

)
Gc−1(nc−1, ic−1).

In general, suppose Gj(nj , ij) is the number of ways to distribute nj

empty squares preceding spots to form k-blocks for ij parts with colors at

most j. There are ij − ij−1 parts of color j chosen among all the ij parts in(
ij

ij−ij−1

)
ways leaving nj−1 = nj−(j−1)(ij−ij−1) other squares left to assign

to the ij−1 parts with color at most j−1; suppose there are Gj−1(nj−1, ij−1)

ways to do this. Then

Gj(nj , ij) =

ij∑
ij−1=0

(
ij

ij − ij−1

)
Gj−1(nj−1, ij−1).

For j = 2, the formula simplifies considerably. The i2 parts have color

1 or 2. Each of the n2 = n3 − 2(i3 − i2) empty squares precedes a spot to

make the 2-block of a color 2 part. Therefore G2(n2, i2) =
(
i2
n2

)
.

As illustrations of the proposition, we detail the formulas for small values

of c. As mentioned above, the c = 1 case corresponds to regular composi-

tions. In terms of the proposition formula, it is easy to see that � = n − i1
where i1 is the number of parts. Then there are

(
�+i1−1
i1−1

)
ways to distribute
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the empty squares among the i1 tails. Summing over i1 gives

n∑
i1=1

(
�+ i1 − 1

i1 − 1

)
=

n∑
i1=1

(
n− 1

i1 − 1

)
= 2n−1.

For c = 2, we have G2(n2, i2) =
(
i2
n2

)
with n2 = n− i2 − �, therefore

n∑
i2=1

n−i2∑
�=0

(
�+ i2 − 1

i2 − 1

)(
i2

n− i2 − �

)

gives the number of n-color compositions of n allowing colors 1 and 2.

When c = 3, we have G3(n3, i3) =
∑i3

i2=0

(
i3

i3−i2

)
G2(n2, i2) with n3 =

n− i3− � and n2 = n3−2(i3− i2). Thus the number of n-color compositions
of n allowing colors 1, 2, and 3 is

n∑
i3=1

n−i3∑
�=0

i3∑
i2=0

(
�+ i3 − 1

i3 − 1

)(
i3

i3 − i2

)(
i2

n− 3i3 − 2i2 − �

)
.

3.2. Prohibited colors

Our primary applications of Theorem 2.2 concern the case where colors
1, . . . , d are prohibited for an arbitrary d ≥ 1. The section also includes
results for the specific case where the color 2 is prohibited.

3.2.1. Compositions prohibiting colors 1, 2, . . . , d Analogous to
Proposition 3.6, the next proposition gives a (simpler) counting formula. We
also provide a connection to certain regular compositions with some notes
on the case d = 1, as usual. First, we recall a result on the enumeration of
n-color compositions by number of parts.

Theorem 3.7. The number of n-color compositions of n with m parts is(
n+m−1
2m−1

)
.

See [2, Thm. 1] for the original proof and [10, Thm. 4] for a combinatorial
proof.

Proposition 3.8. Given d ≥ 1, the number of n-color compositions of n
prohibiting colors 1, 2, . . . , d is given by

a(n) = 2a(n− 1)− a(n− 2) + a(n− d− 1)
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with a(0) = 1 and a(1) = · · · = a(d) = 0. Also,

a(n) =

�n/(d+1)�∑
m=1

(
n− (d− 1)m− 1

2m− 1

)
.

Proof. The recurrence follows directly from Theorem 2.2.

For the direct formula, we determine the number of desired length n
compositions having m parts. Note that m can range from 1 to �n/(d+ 1)�
since each part must be at least d+ 1.

With the color prohibition, each part κc begins with d empty squares.
Disregarding these leaves (κ− d)c−d where the color c− d is restricted only
by the part length. Together, ignoring the dm necessarily empty squares
of a composition of n with colors 1, . . . , d prohibited leaves an unrestricted
n-color composition of n − dm with m parts. By Theorem 3.7, there are(
n−dm+m−1

2m−1

)
of these. Summing over possiblem values gives the formula.

Notice that the d = 1 case has recurrence a(n) = 2a(n − 1) and direct
formula

(
n− 1

1

)
+

(
n− 1

3

)
+ · · · =

(
n− 2

0

)
+

(
n− 2

1

)
+

(
n− 2

2

)
+ · · · = 2n−2

by the binomial theorem. See also the notes for the d = 1 case of the next
proposition.

Proposition 3.9. There is a bijection between

(i.) n-color compositions of n+ d prohibiting colors 1, 2, . . . , d and
(ii.) regular compositions of n with parts congruent to 1, 2, . . . , d mod 2d

where any part i for 2 ≤ i ≤ d − 1 must either be the first part or be
followed by an odd number of parts d.

Proof. Apply the following map to the spotted tiling of an n-color compo-
sition of n+ d with colors 1, 2, . . . , d prohibited.

1. Remove the first d squares (necessarily empty), changing the first part
κc to (κ− d)c−d.

2. Convert each part κc to c followed by k − c parts 1 in the regular
composition, i.e., the c-block becomes a part c and each square of the
tail becomes a part 1.

3. In the resulting regular composition, replace any part j with d+ 1 ≤
(j mod 2d) ≤ 2d by the parts j − d, d.
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� � � �

Figure 5: An example of the bijection in Proposition 3.9 for n = 16 and d = 2,
which associates the spotted tiling of the n-color composition (53, 33, 44, 64)
and the regular composition tiling for (2, 1, 1, 2, 2, 2, 4, 1, 1) below it.

Note that step (1) makes a composition with sum n and step (3) guaran-

tees that each part is congruent to 1, 2, . . . , d mod 2d. In the resulting regular

composition, the only time a part i with 2 ≤ i ≤ d − 1 can be generated is

either from the conversion of the shortened part in (1), in which case i is

the first part, or from the j − d in step (3), in which case it is followed by

a d. The only way for i to be followed by additional parts d is subsequent

applications of (3) to 2d which each yield two parts d, thus i is followed by

an odd number of parts d.

For the reverse map, begin with a specified regular composition of n.

1. Working from right to left, every time we have a part d, we add it

to the next part to the left � to make a part � + d. Also, change the

leftmost part k to k + d.

2. Starting again from the right, merge runs of parts 1 (possibly empty)

with the larger part to the left into n-color parts. Specifically, a length b

run of parts 1 and the part d+� to its left becomes the part (�+d+b)�+d,

that is, a (�+ d)-block with tail length b.

By the restriction on the compositions given in the proposition state-

ment, step (1) produces compositions of n + d with each part 1 or greater

than d whose first part is not 1. Step (2) then converts these into n-color

compositions with colors 1, 2, . . . , d prohibited. See Figure 5 for an example

of the bijection.

In the case of d = 1, the restriction about parts i in the regular com-

positions is vacuous; the bijection is between n-color compositions of length

n + 1 with color 1 prohibited and all regular compositions of length n. In

the first mapping, step (3) does not arise. In the reverse map, ignore step

(1) except to add an initial part 1 to the composition. See Figure 6 for the

complete n = 3, d = 1 case.
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Figure 6: Complete bijection of Proposition 3.9 for n = 3 and d = 1, which
associates the spotted tilings of (44), (43), (42), (22, 22) with the regular
tilings of (3), (2, 1), (1, 1, 1), (1, 2), respectively.

3.2.2. Prohibiting color 2 We conclude this subsection with an illustra-
tion of the specific results that can be found for particular restrictions, here,
prohibiting the color 2. See [11] for further examples of this type. We be-
gin with enumeration results, including a combinatorial proof for a formula
listed in [13, A034943].

Proposition 3.10. The number of n-color compositions of n prohibiting
color 2 is given by

a(n) = 3a(n− 1)− 2a(n− 2) + a(n− 3)

with a0 = a1 = 1 and a2 = 2. Also,

�n/2�∑
k=0

(
n+ k

3k

)
.

Proof. The recurrence follows directly from Theorem 2.2.
For the direct formula, we show that there are

(
n+k
3k

)
compositions of n

prohibiting color 2 that have k parts greater than 1. Summing over possible
values of k, from 0 to �n/2�, will establish the formula.

Here is a bijection between the n-color compositions of n prohibiting
color 2 and with k greater than 1, and 1× (n+k) rectangles with 3k marked
squares.

Given a 1×(n+k) rectangle, label its squares 1, 2, . . . , n+k with marked
squares in positions a1 < a2 < · · · < a3k. For i = 1, . . . , k, form a spotted
tile from the squares a3i−2, . . . , a3i−1, . . . , a3i as follows.

1. Let a3i−1 be the spotted square.
2a. If a3i−1 = a3i−2 + 1, then remove the square a3i−2.
2b. If a3i−1 �= a3i−2 + 1, then remove the square a3i.
3. Map any square not in {a3i−2, . . . , a3i−1, . . . , a3i} for any i to a spotted

tile corresponding to 11.
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Figure 7: An example of the bijection of Proposition 3.10. The 1×20 rectan-
gle with indicated 12 marked squares corresponds to the n-color composition
(41, 11, 33, 11, 31, 43) of 16 which has four parts greater than 1.

Steps 1 and 2 create a spotted tile corresponding to an n-color composition
part of length a3i − a3i−2 (which is at least 2) with color a3i−1 − a3i−2 + 1
unless that would give a 2, in which case the color is 1. Removing k squares
and erasing marked squares that did not become spots leaves a desired color
composition of n. See Figure 7 for an example.

For the reverse map, given an n-color composition of n prohibiting color
2 with k parts greater than 1, we modify each of those k parts.

1a. Change κ1 with κ ≥ 2 to (κ+ 1)2.
1b. Change κc with κ ≥ 2 and c ≥ 2 to (κ+ 1)c.
2. Mark the first square, spotted square, and last square of these resulting

k parts.
3. Erase the spots of any parts 11.
4. Erase any lines separating parts.

Note that step 1 produces parts with no color 1 and with each part having a
positive length tail (i.e., no last square is spotted). Extending each of these
k parts by one gives an n-color composition of n+ k. Also, for each of these
k parts, step 2 describes three distinct squares. Steps 2 through 4 give a
1× (n+ k) rectangle with 3k marked squares.

Next, we prove a connection between n-color compositions prohibiting
the color 2 and certain regular compositions. To present this bijection, we
introduce the notions of left open, right open, and open parts in a composi-
tion. A left open part of size k, denoted by ·k, is a part of size k that can be
joined with its adjacent part (on the left) if that part is right open or open;
the definition for right open part k· or open part ·k· are similar. Standard
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Figure 8: A representation of (3·, ·2·, 4·, ·3, ·1·, ·5) leading to (5, 7, 6).

parts may be called closed for clarity. For example, (3·, ·2·, 4·, ·3, ·1·, ·5) cor-
responds to the regular composition (5, 7, 6) where 5 is a result of 3· and ·2·,
7 is a result of 4· and ·3, and 6 is a result of ·1· and ·5; see Figure 8.

Proposition 3.11. There is a bijection between

(i.) n-color compositions of n with color 2 prohibited and
(ii.) regular compositions of 3n+ 2 with parts congruent to 2 modulo 3.

Proof. Note that the regular compositions described in (ii) must each have
3m+1 parts for some nonnegative integer m in order for the parts congruent
to 2 modulo 3 to sum to 3n+ 2.

Given an n-color composition of n with color 2 prohibited, we triple each
part size and build a regular composition as follows.

1. Change any 11 to ·3· (an open 3).
2a. Change any κ1 with κ ≥ 2 to ·2, 2, 3κ− 4 (a left open 2 followed by a

closed 2 and a closed 3κ− 4).
2b. Change any κc with κ ≥ 2 and c ≥ 3 to ·2, 3c− 4, 3κ− 3c+ 2.
3. Add ·2 at the end of the composition.
4. Combine any open and left open parts as described in their definition.

There are several characteristics of the map to verify.

Since each part of the n-color composition is tripled in length and step
3 adds a length 2 part, the resulting composition sums to 3n+ 2.

The parts are all 2 modulo 3: The closed parts generated in step 2 all
have that form, and any run of ·3· terms (possibly empty) combines with a
subsequent ·2 (guaranteed by step 3) to give a part of length 2 modulo 3.

Finally, for the constraint on the number of parts, suppose that there are
m parts in the n-color composition of length 2 or more. For each of these m
parts, step 2 creates three parts: an initial part which is the merger of any
previous ·3· terms with ·2, and two closed parts specified by (2a) or (2b).
Step 3 results in one additional part, giving 3m+ 1 in total.

For the reverse map, consider a regular composition of 3n+2 with parts
congruent to 2 modulo 3 that has 3m+ 1 parts.
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1. For the first part and every third part after that, i.e., for each of the

(3k + 1)st parts for k = 0, . . . ,m, change it from 3a+ 2 to a copies of

11 followed by a 2;

2. Remove the final 2.

3. Every remaining 2 from step 1 is followed by the (3k+2)nd and (3k+

3)rd parts of the regular composition. Write these three consecutive

parts as (2, x, y).

3a. If x = 2, then change (2, x, y) to ((2 + x+ y)/3)1;

3b. If x > 2, then change (2, x, y) to ((2 + x+ y)/3)(x+4)/3.

Step 2 is valid since the last part is the (3m+ 1)st which was converted in

step 1 to a sequence ending in 2. The various part lengths and colors in step

3 are all integers since x, y ≡ 2 mod 3.

For the composition sums, each application of step 3 replaces 2 + x+ y

towards the sum of the regular composition with a part (2 + x + y)/3 in

the n-color composition, and step 1 takes a 3a contribution to the regular

composition to a copies of 11, so that the composition has sum n.

Note that the colors assigned are either 1 or (x + 4)/3 with x > 2, i.e.,

a color 3 or greater.

Towards seeing that this is the inverse of the previous map, step 3 applies

to m triples (2, x, y) so that the resulting n-color composition has m parts

of length 2 or greater.

For example, the n-color composition (21, 11, 11, 33, 44, 11) of 12, with 3

parts 2 or greater, corresponds the regular composition (2, 2, 2, 8, 5, 2, 2, 8, 2, 5)

of 38, with 3 · 3 + 1 = 10 parts, as follows.

(21, 11, 11, 33, 44, 11) −→ (·2, 2, 2; ·3·; ·3·; ·2, 5, 2; ·2, 8, 2; ·3·; ·2)

−→ (2, 2, 2, 8, 5, 2, 2, 8, 2, 5)

(2, 2, 2, 8, 5, 2, 2, 8, 2, 5) −→ ([2, 2, 2], 11, 11, [2, 5, 2], [2, 8, 2], 11, 2)

−→ (21, 11, 11, 33, 44, 11)

3.3. Colors under modular conditions

Certain cases of modular color conditions have been considered recently.

Odd and even colors are aspects of many combined restrictions in [14]. The

focus of [1] is allowing colors within a singular modular class i mod m. In

this section, we give results that expand on this work.
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3.3.1. Compositions with colors of a single modular congruence
Most of [1] considers n-color compositions with colors restricted to those of
the form am + i for positive m, i and a ≥ 0. This is slightly more general
than our i mod m since, for example, m = 2 and i = 5 gives allowed colors
5, 7, 9, . . . rather than all odd colors. Acosta et al. give further results for the
case i = m + 1, including a combinatorial proof involving binary words [1,
Thm. 10]. We give a related proof for all i in the range 2 ≤ i ≤ m.

Proposition 3.12. Given a modulus m ≥ 2 and an i such that 2 ≤ i ≤ m,
there is a bijection between

(i.) n-color compositions of n with colors congruent to i mod m and
(ii.) length n − 1 binary strings that start with 1 where runs of 1’s have

length congruent to i− 1 mod m.

Proof. Given an n-color composition of n with all colors congruent to i mod
m,

1a. In each part, map each empty square of the c-block (i.e., squares before
the spot) to 1.

1b. In each part, map the spotted square and each square of the tail to 0.
2. Remove a 0 at the end.

Since allowed colors satisfy c ≥ 2, the first binary digit is 1. Because c ≡
i mod m and each run of 1’s begins with a corresponding part, the length
of each run of 1’s is congruent to i− 1 mod m. And since the tiling for an
n-color composition ends in a spot or an empty square after a spot, the last
binary digit is 0 (before it is removed in step 2).

The reverse map is clear: Given a specified binary string, add a 0 at
the end and convert alternating runs of 1’s and 0’s into tilings of an n-color
composition.

See Figure 9 for an example with even colors. We note that the proposi-
tion statement holds for i = 1, but neither the combinatorial proof here nor
the related one in [1] cover that case.

3.3.2. Connecting compositions with odd colors andwith no parts 1
The first new restriction considered in [14] is n-color compositions with just
odd colors [13, A006054]. Sachdeva and Agarwal also consider a restriction
due to Guo [9], n-color compositions where the part 11 is prohibited [13,
A219788]. We conclude with a new connection between these two types of
n-color compositions.
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1 1 1 0 0 1 0 0 1 1 1

Figure 9: The bijection of Proposition 3.12 for m = i = 2 where the
composition (54, 32, 44) of 12 corresponds to the length 11 binary string
11100 100 111 (spaces corresponding to parts are only for clarity).

Proposition 3.13. Let a(n) be the number of n-color compositions of n with
only odd colors allowed and let b(n) be the number of n-color compositions
of n where the part 11 is prohibited. Then a(n) = b(n) + b(n− 1).

Proof. Write A(n) for the set of n-color compositions of n with only odd
colors allowed and B(n) for the set of n-color compositions of n where the
part 11 is prohibited. We give a bijection between A(n) and B(n)∪B(n−1).

Starting from B(n) ∪B(n− 1),

1. Create the set B′(n) by adding a 11 at the end of each composition in
B(n− 1).

2. In the compositions of B(n) ∪ B′(n), change each even part κ2c to
11, (κ− 1)2c−1.

Note that B′(n) from step 1 is disjoint from B(n) which contains no parts 11.
An alternative description of step 2 is to make the first square (empty since
the color is even) spotted corresponding to a new part; note that the spot
for κ2c stays in the same position. See Figure 10 for an example. Clearly,
step 2 results in compositions with only odd colors.

For the reverse map, given a composition in A(n),

1. Working left to right, any 11 having a successor κ2c−1 becomes the
part (κ+ 1)2c.

2. Any terminal 11 is removed.

� � �

� � � �

� � � � � �

Figure 10: The bijection of Proposition 3.13 where (44, 21, 22) ∈ B(8) corre-
sponds to (11, 33, 21, 11, 11, 11) ∈ A(9).
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Note that the spot indicating the color of κ2c−1 does not move in the merger
giving (κ+1)2c. Clearly, the procedure leaves no parts 11. The compositions
with a 11 at the end become elements of B(n−1); those with other terminal
parts become elements of B(n).
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