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Partite Turán-densities for complete r-uniform
hypergraphs on r + 1 vertices

Klas Markström and Carsten Thomassen

In this paper we investigate density conditions for finding a com-

plete r-uniform hypergraph K
(r)
r+1 on r + 1 vertices in an (r + 1)-

partite r-uniform hypergraph G. First we prove an optimal con-
dition in terms of the densities of the (r + 1) induced r-partite
subgraphs of G. Second, we prove a version of this result where we
assume that r-tuples of vertices in G have their neighbours evenly
distributed in G. Third, we also prove a counting result for the

minimum number of copies of K
(r)
r+1 when G satisfies our density

bound, and present some open problems.
A striking difference between the graph, r = 2, and the hy-

pergraph, r ≥ 3, cases is that in the first case both the existence
threshold and the counting function are non-linear in the involved
densities, whereas for hypergraphs they are given by a linear func-
tion. Also, the smallest density of the r-partite parts needed to
ensure the existence of a complete r-graph with (r + 1) vertices is
equal to the golden ratio τ = 0.618 . . . for r = 2, while it is r

r+1 for
r ≥ 3.
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1. Introduction

One of the classical problems in extremal graph theory is that of finding the
maximum density of a graph G which does not contain some fixed graph
H. This density is known as the Turán density for H and is defined as

π(H) = limn→∞
ex(n,H)

(n2)
, where the Turán number ex(n,H) is the maximum

number of edges in a graph on n vertices which does not have H as a
subgraph. Mantel proved that π(K3) =

1
2 and later Turán gave a complete

answer for H = Kt [Tur41].
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Motivated by a question of Erdős regarding the maximum density of a
triangle free subgraph of a graph [BSTT06] investigated a modified version
of the Turán density, namely that of finding the maximum density of a
3-partite graph which does not contain a K3. The problem was given a
complete solution in terms of the three bipartite graphs induced by each pair
of vertex classes of the 3-partition. Later [BJT10] investigated the number
of K3s as a function of these densities, and a sharp result was given for
large enough densities. Enumeration of triangles in general graphs has a
long history and was finally solved by Razborov [Raz08].

Our aim in this paper is to investigate generalisations of these ques-
tions to uniform hypergraphs. In particular we will determine the maximal
density of an (r + 1)-partite r-uniform hypergraph which does not contain
the complete hypergraph Kr

r+1. We will also present a sharp bound on the
number of copies of Kr

r+1. These results demonstrate a qualitative difference
between graphs and hypergraphs with r ≥ 3, where interestingly enough the
extension to the hypergraph case is less complex than the graph case. The
existence condition found in [BSTT06] for graphs is non-linear in terms of
the involved densities, as are the counting results from [BJT10], but as our
results show the corresponding condition, and counting function, for r ≥ 3
are given by simple linear functions.

For hypergraphs far less is known in the non-partite case than for graphs.
Turán conjectured that π(K3

4 ) =
5
9 , and gave a matching construction for the

lower bound. Using flag-algebra Razborov [Raz10] has proven that π(K3
4 ) ≤

0.56167. For r = 4 Giraud [Gir90] gave a construction which shows that
π(K4

5 ) ≥ 11
16 , and Sidorenko [Sid95] conjectured that this is in fact the correct

value. The best current upper bound π(K4
5 ) ≤ 1753

2380 was given by the first
author in [Mar09]. For r ≥ 5 much less is known. De Caen [dC83] proved
that π(Kr

r+1) ≤ (1 − 1
r ), and this was later sharpened somewhat for odd r

in [CL99] and even r in [LZ09]. As a corollary to one of our results we will
get a short proof of de Caen’s bound.

Mubayi and Talbot [MT08] investigated the global density of a 4-partite

3-graphG such thatK3
4 �⊂G. and proved the sharp result |E(G)| ≤ 8

17

(|V (G)|
3

)
.

One of the few counting results for hypergraphs is by Mubayi [Mub13]
who used the hypergraph removal lemma [Gow07, NRS06, RS06, Tao06]
to prove lower bounds on the number of copies of H in a hypergraph
with ex(n,H) + q edges. These bounds apply to certain forbidden hyper-
graphs H with the property that there is a unique H-free hypergraph on
ex(n,H) edges, and the bounds are of the form qc(n,H), where c(n,H) is
the minimum number of copies of H in any n-vertex r-graph on ex(n,H)+1
edges.
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1.1. Definitions

For r ≥ 2 we will refer to an r-uniform hypergraph as an r-graph. An r-
graph G is t-partite if its vertex has a partition in vertex classes V1, . . . , Vt,
such that each edge has at most one vertex in any class Vi.

Definition 1.1. Given a t-partite r-graph G with vertex classes V1, . . . , Vt

and a set of indices I we let PI denote the (t− |I|)-partite r-graph induced
by the classes with indices not in I. If I = {i} then we abbreviate this as Pi.

As in [BSTT06] and [BJT10] we are going to work with vertex weighted
r-graphs. We assume that G has a weight-function w defined on its vertices.
The weight of a set S of vertices is w(S) =

∑
v∈S w(v).

We define the weight of an edge e = {v1, . . . , vr} to be the product∏r
i=1w(vi), and the weight of a set of edges as the sum of their weights.
An unweighted r-graph will here be seen as the same graph with a weight

function w(v) = 1 for all vertices v.

Definition 1.2. Given an (r+1)-partite r-graph G we let ρ(i) be the density

of the r-partite graph induced by Pi, which is w(E(Pi))∏
j �=i w(Vj)

, and ρ is the vector

of these densities.

2. Threshold and the minimum number of Kr
r+1 in an

(r + 1)-partite r-graph

Given an (r + 1)-partite r-graph we want to count the number of Kr
r+1s it

contains. It will be convenient to do this in terms of the density of Kr
r+1s.

Definition 2.1. Given an (r + 1)-partite r-graph G we define the density
of Kr

r+1s in G to be

C(G) =

⎛
⎝ ∑

S=Kr
r+1⊂G

∏
v∈S

w(s)

⎞
⎠ /

r+1∏
i=1

w(Vi)

We define the minimum density of Kr
r+1s as

C(ρ) = inf
G

C(G),

where the infimum is taken over all (r + 1)-partite r-graphs with density ρ.

We will need the following polynomial from [BJT10].

Definition 2.2. Δ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc+ 4abc.
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The proof of the following lemma is a routine, but somewhat lengthy,
calculus exercise.

Lemma 2.3. If a, b, c are real numbers in the interval [0, 1] and a+b+c ≥ 9
4

then Δ(a, b, c) ≥ 0, and ab+ c > 1, ac+ b > 1, and bc+ a > 1.

In particular if each if each of a, b and c is at least 3
4 then Δ(a, b, c) ≥ 0.

The following theorem was proven in [BJT10].

Theorem 2.4. The minimum density of triangles in a tripartite graph with
edge densities given by (a, b, c) such that Δ(a, b, c) ≥ 0, ab+c > 1, ac+b > 1,
and bc+ a > 1, is given by a+ b+ c− 2.

We will first extend the lower bound given by this theorem to larger
values of r.

Lemma 2.5. If ρ is a vector with rational numbers between 0 and 1, such
that

r+1∑
i=1

ρ(i)− r ≥ 0

then there exists a weighted (r + 1)-partite r-graph G with rational weights
such that ρ is the density vector of G and C(G) =

∑r+1
i=1 ρ(i)− r.

Proof. We will prove the statement by induction on r. For r = 2 the state-
ment is true by Theorem 2.4 of [BJT10], which is also Theorem 2.4 in
the present paper. By that theorem there is an optimal graph which is a
weighted 3-partite graph on six vertices whose 3-partite complement is a
perfect matching. Hence we only need to prove the statement for r ≥ 3.

Without loss of generality we assume that ρ(i) ≥ ρ(i+ 1) for 1 ≤ i ≤ r
and hence, by averaging, that ρ(1)+ρ(2)+ρ(3) ≥ 3r

r+1 ≥ 9
4 . Thus, by Lemma

2.3, we know that the conditions of Theorem 2.4 are satisfied by these three
values.

We now assume that the statement is true for r−1. In order to build an
r-graph H2 which satisfies the statement in the Lemma we take an r-partite
(r − 1)-graph H1, with the first r parts of ρ as its density vector, which
satisfies the statement for r− 1, and build an (r+ 1)-partite r-graph H2 by
adding one new class Vr+1 which contains a single vertex v, with weight 1.

For every edge e in H1 we let e∪{v} be an edge of H2. This means that
for i �= r+1 the density contributed to ρ(i) by these edges will be the same
as in H1. Hence H2 has the desired density ρ(i) for these classes, and the
edges added so far do not give rise to a Kr

r+1.
We will now add edges among the first r classes. One of these edges will

be part of a weighted Kr+1 in H2 if the corresponding r-tuple in H1 is a

K
(r−1)
r in H1, and by induction we know the density of such K

(r−1)
r .
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As pointed out in [BJT10] we may assume that H1 is in fact a simple
unweighted hypergraph, since a hypergraph with rational weights can be
modified by a suitable blow-up into an equivalent unweighted hypergraph
on a larger number of vertices.

In H1 the density of partite r-tuples which do not span a K
(r−1)
r is

1−(
∑r

i=1 ρ(i)− (r − 1)), and all these tuples can be added as edges without
creating a Kr

r+1 in H2. Each additional edge added after these form a unique
Kr+1r together with the vertex in Vr+1, so if we add enough edges to reach
the desired density ρ(r + 1) we will have

ρ(r + 1)−
(
1−

(
r∑

i=1

ρ(i)− (r − 1)

))
=

r+1∑
i=1

ρ(i)− r

density of Kr
r+1 in H2.

Our next step will to prove a lower bound for the density of Krs.

Theorem 2.6. Let G be an (r+1)-partite r-graph, then the density of Kr
r+1s

satisfies the following inequalities

1. C(ρ) ≥
(∑r+1

i=1 ρ(i)
)
− r.

2. If ρ satisfies the conditions of Lemma 2.5 then C(ρ) =
(∑r+1

i=1 ρ(i)
)
−r.

Proof. 1. Let 1(e), where e is a set of size r, be 1 if e is an edge of G and
0 otherwise, let 1(H) be 1 if H is the vertex set of a Kr+1 contained
in G, and 0 otherwise.
Now ∑

H

w(H)(
∑
i∈H

1(H \ i)) ≤
∑
H

w(H)(r + 1(H))

But the left hand side is the sum of the densities in G and the right
hand side is r plus the density of Kr

r+1s so∑
i

ρ(i) ≤ r + C(ρ)

and so C(ρ) ≥
∑

i ρ(i)− r, and we have proven part 1.
2. Lemma 2.5 shows that the bound in Theorem 2.6 is sharp, and that

for rational densities satisfying the inequality in Lemma 2.5 equality
is achieved for some finite r-graph.

Corollary 2.7. If all densities ρ(i) > r
r+1 in G then Kr

r+1 ⊂ G.
If r ≥ 3 and ρ(i) = ρ(j), for all i, j and ρ(i) ≤ r

r+1 then there exists G
with these densities such that Kr

r+1 �⊂ G.
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We note that the graph which achieves the minimum number of copies
of Kr

r+1s is not unique, i.e. the (r + 1)-partite Turán-problem for Kr
r+1 is

not stable. Byt the existing results for r = 2 we know that there is not a
unique graph which minimizes the number of triangles and Lemma 2.5 gives
distinct extensions to higher values of r.

3. Balanced codegrees

Our second result concerns degrees rather than densities, and for r-graph we
have found it natural to consider the degrees of the (r−1)-tuples of vertices
in G.

Definition 3.1. Given a multipartite r-graph G, with V (G) partitioned
into at least r classes, we say that a t-tuple g of vertices from G is partite if
it has at most one vertex in each class of G.

Definition 3.2. Given a partite t-tuple g we say that an (r − t)-tuple h is
completing g if (g ∪ h) ∈ E(G). We call the set of completing (r − t)-tuples
for g the neighbourhood N(g) of g. The neighbourhood of g in a set I of
classes is the set of completing (r − t)-tuples in I, and is denoted N(I, g)

The degree of g is d(g) = |N(g)| and the degree in an (r − t)-tuple I of
classes is d(I, g) = |N(I, g)|.

By the minimum codegree of an (multipartite) r-graph G we refer to the
minimum degree of all (partite) (r − 1)-tuples of vertices in V (G).

Definition 3.3. We say that a partite t-tuple g of vertices in G has strictly
balanced degree if it has the same number of completing (r − t)-tuples in
each of the (r − t)-tuples of classes which g does not intersect.

Theorem 3.4. If the partite (r−1)-tuples of G have strictly balanced degrees
and maxj

∑
i �=j ρ(i) > (r − 1) then Kr

r+1 ⊂ G.

Note that the condition on the partite (r − 1)-tuples means that such a
tuple splits its neighbourhood equally between each of the two parts which
the tuple does not intersect, but the sizes of those neighbourhoods may differ
between different tuples.

Proof. We will first look at the case j = 1. Let e be an edge of P1 and
let g2, . . . , gr+1 be the (r − 1)-tuples which are subsets of e. If G does not
contain Kr

r+1 we must have that

S(e) =

r+1∑
i=2

d(V1, gi) ≤ (r − 1),
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since otherwise there would be a common vertex in the neighbourhoods of
the (r − 1)-tuples, and we would have a Kr

r+1.

If we sum over all edges in P1 we find that

∑
e∈E(P1)

S(e) ≤ (r − 1)ρ(1)
∏
k �=1

|Vk|

or equivalently

r+1∑
i=2

∑
g∈P{1,i}

d(V1, g)d(Vi, g) ≤ (r − 1)ρ(1)
∏
k �=1

|Vk|

where the inner sum is over all partite (r − 1)-tuples g.

Using the fact that each g has strictly balanced degree we rewrite this
as

r+1∑
i=2

∑
g∈P{1,i}

d(V1, g)
2 ≤ (r − 1)ρ(1)

∏
k �=1

|Vk|

Using the Cauchy-Schwarz inequality we get

r+1∑
i=2

(
∑

g∈P{1,i}
d(V1, g))

2∏
k �=1,i |Vk|

≤ (r − 1)ρ(1)
∏
k �=1

|Vk|

By definition ∑
g∈P{1,i}

d(V1, g) = ρ(i)
∏
k �=i

|Vk|.

Substituting this we find that

r+1∑
i=2

ρ(i)2
∏
k �=i

|Vk| ≤ (r − 1)ρ(1)
∏
k �=1

|Vk|

But ρ(i)
∏

k �=i |Vk| is independent of i so we can divide both sides by
ρ(1)

∏
k �=1 |Vk| to get

r+1∑
i=2

ρ(i) ≤ (r − 1)

The results follows for other values of j in the same way.
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As shown in [BSTT06] this result is sharp for r = 2, but we do not have
a matching lower bound for larger r.

Relating to the case where all densities are equal we get the following

Corollary 3.5. If all partite (r−1)-tuples of G have strictly balanced degree
and ρ(i) > 1− 1

r for all i then Kr
r+1 ⊂ G.

This can be compared to the minimum codegree which forces a Kr
r+1 in

the non-partite case. In [LM14] it was proven that there are r-graph with
minimum (r − 1)-degree 1

2(n− 2) which do not contain a Kr
r+1, and it was

conjectured that this is an optimal bound. This in turn implies that the
global density is at least 1

2 .
Another simple corollary of this result is de Caen’s upper bound on the

Turán-density of Kr
r+1.

Corollary 3.6 (de Caen [dC83]). If G is an r-graph and |E(G)| > (1− 1
r )

nr

r!
then Kr

r+1 ⊂ G.

Proof. Given a labelled r-graph G with vertex set V we will form a new
(r+ 1)-partite r-graph H. The vertex set of H is the disjoint union of r+ 1
copies V1, . . . , Vr+1 of V .

Given an edge e = {v1, v2, ..., vr} of G, a choice of r of the classes Vi,
and a permutation π ∈ Sr, we let eπ = {vπ(1), vπ(2), . . . , vπ(r)), where the
jth vertex in the tuple is the vertex in the jth of the r vertex classes, be
an edge in the r-partite subgraph of H induced by those classes. Note that
in this way each edge e of G gives rise to r! edges in each of the r-partite
subgraphs of H. (So if we look at ordinary graphs and let G be a single edge
(1,2) then H would become a 6-cycle which winds twice through the three
parts.)

The r-graph H has strictly balanced codegrees, since the number of
neighbours in Vi, of a partite (r− 1)-tuple t in H, only depends on whether
t intersects Vi or not, and the number of neighbours of t in G.

By the assumptions each ρ(i) in H is strictly greater than (1 − 1
r ), so

H contains a copy of Kr
r+1, and the corresponding vertices form a Kr

r+1

in G.

In fact the proof of Theorem 3.4 can easily be modified to give a bound
for the degree required to give a copy of (Kr

r+1 − k), the r-graph obtained
by deleting any k edges from Kr

r+1, we just need to modify the first bound
for S(e) to be less than r − k − 1. This gives

Theorem 3.7. If the partite (r − 1)-tuples of G have strictly balanced de-
grees, k ≤ r − 1, and maxj

∑
i �=j ρ(i) > r − k − 1 then (Kr

r+1 − k) ⊂ G.
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For k ≥ r − 1 the graph (Kr
r+1 − k) is in fact r-partite, and the strictly

balanced degree condition means that if G has at least one edge then any
edge will be part of a (Kr

r+1−(r−1)), which is simply two edges overlapping
on an (r − 1)-tuple.

Using this theorem as in the proofs of Corollaries 3.5 and 3.6 we get

Corollary 3.8. If all partite (r − 1)-tuples of G have balanced degree, k ≤
(r − 1), and ρ(i) > 1− k+1

r for all i then (Kr
r+1 − k) ⊂ G.

Corollary 3.9. If G is an r-graph, k ≤ (r − 1), and |E(G)| > (1− k+1
r )n

r

r!
then (Kr

r+1 − k) ⊂ G.

The case r = 3 of the latter result was proven by de Caen in [dC83].

4. Open problems

Following [BSTT06] and the results in this paper concerning the codegree it
is natural to ask what happens for general degrees in r-graphs with r > 2.
The first open case is vertex degrees for 3-graphs.

Question 4.1. Let G be a 4-partite 3-graph with balanced vertex degrees.
Which densities force a K3

4 in G?

For r > 3 the corresponding question is open for balanced l-degrees for
all l < r − 1.

Question 4.2. Let G be an r-partite r-graph with 4 ≤ r. Which densities
forces a Kr+1 if the partite l-tuples have balanced degrees, where 1 ≤ l < r−1.

Let G be a t-partite r-graph with all densities at least α. Given an r-
graph H, we can ask for the minimum density α which forces a copy of H
in G. We call this density dt(H).

Question 4.3. Does there exist a finite t0 such that dt(H) = dt0(H) for
t ≥ t0?

For r = 2 and H = Kt the answer is yes by [Pfe12].
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Thomassen, Density conditions for triangles in multipartite
graphs, Combinatorica 26 (2006), no. 2, 121–131. MR2223630

[CL99] Fan Chung and Linyuan Lu, An upper bound for the Turán num-
ber t3(n, 4), J. Combin. Theory Ser. A 87 (1999), no. 2, 381–389.
MR1704268

[dC83] Dominique de Caen, Extension of a theorem of Moon and
Moser on complete subgraphs, Ars Combin. 16 (1983), 5–10.
MR734038 (85d:05132)

[Gir90] Guy R. Giraud, Remarques sur deux problèmes extrémaux, Dis-
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