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Maximum H-free subgraphs
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†

Given a family of hypergraphs H, let f(m,H) denote the largest
size of an H-free subgraph that one is guaranteed to find in every
hypergraph with m edges. This function was first introduced by
Erdős and Komlós in 1969 in the context of union-free families, and
various other special cases have been extensively studied since then.
In an attempt to develop a general theory for these questions, we
consider the following basic issue: which sequences of hypergraph
families {Hm} have bounded f(m,Hm) as m → ∞? A variety of
bounds for f(m,Hm) are obtained which answer this question in
some cases. Obtaining a complete description of sequences {Hm}
for which f(m,Hm) is bounded seems hopeless.
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1. Introduction

A hypergraph H on vertex set V (H) is a subset of 2V (H). H is an �-uniform

hypergraph, or simply, an �-graph, if H ⊆
(V (H)

�

)
. All hypergraphs in this

paper have finitely many vertices (and edges). Given a family of hypergraphs

H, a hypergraph F is said to be H-free if F contains no copy of any member

of H as a (not necessarily induced) subgraph. Given a hypergraph F and

a family H, let ex(F,H) be the maximum size of an H-free subgraph of F .

Define

f(m,H) := min
|F |=m

ex(F,H).
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Note that f(m,H) ≥ c means that every F with m edges contains an H-
free subgraph F ′ ⊆ F with |F ′| = c. When the family H consists of a single
hypergraph H, we abuse notation and write f(m,H) instead of f(m, {H}).

This function was introduced by Erdős and Komlós in 1969 [1], who
considered the case when H is the (infinite) family of hypergraphs A,B,C
with A ∪ B = C. The problem was further studied by Kleitman [2], and
later by Erdős and Shelah [3], and finally settled by Fox, Lee and Sudakov
[4] who proved that

f(m,H) =
⌊√

4m+ 1
⌋
− 1.

Erdős and Shelah also considered the case when H is the family of hy-
pergraphs A1, A2, A3, A4 with A1 ∪A2 = A3 and A1 ∩A3 = A4. They called
this family B2, proved that f(m,B2) ≤ (3/2)m2/3 and conjectured that this
bound is asymptotically tight. This conjecture was settled by Barát, Füredi,
Kantor, Kim and Patkós in 2012 [5], who also considered more general prob-
lems (see [4] for further work).

The same problem has been studied in the special case whenH is a family
of graphs. Let f2(m,H) denote the maximum size of anH-free subgraph that
every graph with m edges is guaranteed to contain. These investigations
began with a question of Erdős and Bollobás [6] in 1966 about f2(m,C4),
followed up by a conjecture of Erdős in [7]. Consequently the problem of
determining f2(m,H) for various graphs has received considerable attention
in the recent years [8, 9, 10]. The authors of [9, 10] also considered the
problem in the case of �-graphs.

In the hope of obtaining a general theory for these problems, we inves-
tigate the following basic question:

(1)
For which sequence of families {Hm}∞m=1

is f(m,Hm) bounded (as m → ∞)?

Question (1) is too general to solve completely, so we focus on special
cases. In subsection 2.1 we state our results for constant {Hm}∞m=1, and in
subsection 2.2 we consider non-constant {Hm}∞m=1.

2. Our results

2.1. Constant sequences

Suppose {Hm}∞m=1 is a sequence such that Hm = H for every m. First,
we note that if H consists of finitely many members, then the answer to
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Question (1) is given by the following characterization. A q-sunflower is a
hypergraph {A1, . . . , Aq} such that Ai ∩ Aj =

⋂q
s=1As for all i 
= j. This

common intersection is referred to as the core of the sunflower.

Theorem 2.1. Fix a family of hypergraphs H with finitely many members.
If H contains a q-sunflower with sets of equal size, then f(m,H) ≤ q − 1.
Otherwise, f(m,H) → ∞ as m → ∞.

Next, in the same spirit as the properties of being union-free and having
no B2, if the (infinite) family H specifies the intersection type of k sets (i.e.
whether they are empty or not), then a characterization can be obtained in
the form of Theorem 2.3. Before stating the theorem, we first define what we
call an �-even hypergraph and an �-uneven hypergraph. A k-edge hypergraph
is a hypergraph with k edges.

Definition 2.2 (�-even and �-uneven hypergraphs). A k-edge hypergraph
H = {A1, . . . , Ak} is said to be �-even for some 1 ≤ � ≤ k if for every subset
I ⊆ [k], ⋂

i∈I
Ai 
= ∅ iff |I| ≤ �.

It is said to be �-uneven if there exist I, J ∈
([k]

�

)
such that⋂

i∈I
Ai 
= ∅ but

⋂
j∈J

Aj = ∅.

Theorem 2.3. Let 1 ≤ � < k. Let H be the (infinite) family of all �-uneven
k-edge hypergraphs. Then, f(m,H) → ∞ as m → ∞. Conversely, if H is
the family of all �-even k-edge hypergraphs, we have f(m,H) = k − 1.

2.2. Non-constant sequences

As a first step towards understanding the general problem in (1), we focus
on the case when for every m ≥ 1, Hm = {Hm} for a single hypergraph Hm,
and further assume that all these hypergraphs Hm have the same number
of edges. Thus we ask the following question:

(2)
For which sequence of k-edge hypergraphs {Hm}∞m=1

is f(m,Hm) bounded (as m → ∞)?

We are unable to answer question (2) completely, even for k = 3. Our
main results provide several necessary, or sufficient conditions that partially
answer (2). Before presenting them, we introduce the following crucial defi-
nition:
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Definition 2.4 (Equal Intersection Property). For k ≥ 2, Let EIPk denote

the set of all k-edge hypergraphs H = {A1, . . . , Ak} such that for every

1 ≤ � ≤ k and I, J ∈
([k]
�

)
, we have

∣∣⋂
i∈I Ai

∣∣ = ∣∣∣⋂j∈J Aj

∣∣∣.
Since every two edges of a hypergraph form a 2-sunflower, we observe

that the case k = 2 follows immediately from the construction in Theorem

2.1.

Proposition 2.5. Let Hm be a 2-edge hypergraph for each m ≥ 1. Then

f(m,Hm) is bounded as m → ∞ if and only if Hm ∈ EIP2 for all but

finitely many m.

We may therefore assume in what follows that k ≥ 3.

Let us now fix a hypergraph H = {A1, . . . , Ak} in EIPk. H can be

encoded by k parameters (b1, . . . , bk), corresponding to the k distinct sizes

appearing in the Venn diagram of H. More precisely, for 1 ≤ � ≤ k, and for

all I ∈
([k]
�

)
, let

b� :=

∣∣∣∣∣∣
⋂
i∈I

Ai \
⋃

i∈[k]\I
Ai

∣∣∣∣∣∣ .

Figure 1: An example: H(1, 2, 3) ∈ EIP3.

By inclusion-exclusion, b1, . . . , bk are well-defined for hypergraphs in

EIPk. We denote H ∈ EIPk with parameters b1, . . . , bk ≥ 0 by H(�b), where
�b = (b1, . . . , bk). We shall see later (Lemma 4.1) that every sequence of k-edge

hypergraphs {Hm} such that f(m,Hm) is bounded can only have finitely

many members not in EIPk. For sequences {Hm}∞m=1 such that Hm ∈ EIPk

for every m ≥ 1, we obtain a sequence of length k vectors {�b(m)}∞m=1, where
�b(m) = (b1(m), . . . , bk(m)). We use boldface and write �b for the sequence

{�b(m)}∞m=1.
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Definition 2.6 (α(�b)). For every sequence of length k vectors �b =
{�b(m)}∞m=1 and m ≥ 1, let

α(�b)(m) := min
1≤i≤k−2

(
bi(m)

mbi+1(m)

)
.

Now we state our main results. To simplify notation we will often write
bi instead of bi(m) and α(�b) instead of α(�b)(m).

Theorem 2.7. Let k ≥ 3. Suppose the sequence of length k vectors �b satis-
fies b1, . . . , bk−2 > 0, bk−1, bk ≥ 0 for every m. Then, for m ≥ 6,

⎛
⎝ 1

2
(
α(�b) + 1

m

) (
bk−1+bk

bk

)
⎞
⎠

1

k

≤ f(m,H(�b)) ≤ k(k − 1)

α(�b)
+ k − 1.

Theorem 2.7 implies that when
(
bk−1+bk

bk

)
is bounded from above,

f(m,H(�b)) is bounded from above if and only if the sequence α(�b) is
bounded away from zero.

We also have the following additional lower bound on f(m,H(�b)):

Theorem 2.8. Fix k ≥ 3. Let �b = {�b(m)}∞m=1 be such that bk(m) = bk for
every m. Then, for m ≥ 6,

f(m,H(�b)) ≥

⎧⎪⎨
⎪⎩

m
1

k(bk+1)

(
bk−1

4(bk−2+2bk−1)

) 1

k

, k ≥ 4,

m
1

b3+2

(
b2

4(b1+2b2)

) b3+1

b3+2

, k = 3.

We now focus on k = 3. In this case α(�b) = b1/mb2 and Theorem 2.7
reduces to

(3)

⎛
⎝ 1

2
(

b1
mb2

+ 1
m

) (
b2+b3
b3

)
⎞
⎠

1

3

≤ f(m,H(�b)) ≤ 6mb2
b1

+ 2.

When b3 = 0, (3) implies that f(m,H3(b1, b2, 0)) is bounded if and only
if b1 = Ω(mb2). We now turn to b3 = 1 which already seems to be a very
interesting special case that is related to an open question in extremal graph
theory (see Problem 7.3 in Section 7). Here (3) and Theorem 2.8 yield the
following.
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Corollary 2.9. Let m → ∞. Then f(m,H3(b1, b2, 1)) is bounded when b1 =
Ω(mb2) and it is unbounded when either b1 + b2 = o(m) or b1 = o(

√
mb2).

Corollary 2.9 can be summarized in Figure 2. The light region corre-
sponds to a bounded f(m,H(�b)), and the dark region corresponds to un-
bounded f(m,H(�b)). White regions correspond to areas where we do not
know if f(m,H(�b)) is bounded or not.

Figure 2: Theorems 2.7 and 2.8 for �b = (b1, b2, 1).

We are able to refine our results slightly via the following result.

Theorem 2.10. For every odd prime power q we have

f(q2 + 1, H(q2 − q − 1, q, 1)) = 2.

For functions f(m) and g(m), we write f � g iff g = o(f). Later, we
shall show that Theorem 2.10 implies the following.

Corollary 2.11. When b1 ≥ b 22 , b2 ≥
√
m and b2 is a prime power,

(4) f(m,H3(b1, b2, 1)) = 2.

Further, when b1 � b 22 and b2 ≥ m0.68,

(5) f(m,H3(b1, b2, 1)) = 2.
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Corollary 2.11 yields the following improvement on Figure 2. Note that

we are using the parabola b1 = b 22 as an asymptotic approximation of Corol-

lary 2.11. By (4), f(m,H3(b1, b2, 1)) = 2 infinitely often on this parabola,

figuratively represented by vertical stripes in the interval
√
m ≤ b2 ≤ m0.68.

We shall see later, by virtue of Theorem 7.2, that in the white region to the

right of b1 = b 22 and between the lines b1 = mb2 and b1 =
√
mb2, we have

f(m,H3(b1, b2, 1)) > 2.

Figure 3: �b = (b1, b2, 1).

3. Proofs of Theorems 2.1 and 2.3

In this section, we prove Theorems 2.1 and 2.3, which answer question (1) for

constant sequences. We use the following well-known facts about sunflowers

and diagonal hypergraph Ramsey numbers.

Recall that a q-sunflower is a hypergraph {A1, . . . , Aq} such that Ai ∩
Aj =

⋂q
s=1As. The celebrated Erdős-Rado sunflower Lemma [11] states the

following.
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Lemma 3.1 (Erdős-Rado). Let H be an r-graph with |H| = r!(α − 1)r.
Then, H contains an α-sunflower.

Next, recall that the hypergraph Ramsey number r�(s, t) is the minimum
N such that any �-graph on N vertices, admits a clique of size s or an
independent set of size t. The following is a well-known theorem of Erdős,
Hajnal and Rado [12]:

Theorem 3.2. There are absolute constants c(�), c′(�) such that

twr�−1(c
′t2) < r�(t, t) < twr�(ct).

Here the tower function twrk(x) is defined by twr0(x) = 1 and twri+1(x) =
2twri(x).

The right side of this theorem can be rewritten as follows:

(6)

Let F be any �-graph on n vertices. Then there is an absolute
constant c� such that there is a subgraph F ′ ⊂ F with
|V (F ′)| ≥ c� · log(�)(n), which is either a clique or an independent

set. Here log(�) denotes iterated logarithms.

Now we are prepared to prove Theorems 2.1 and 2.3. Recall that a
hypergraph is uniform if all its edges have the same size, otherwise it is
non-uniform.

Proof of Theorem 2.1. Fix a family of hypergraphs H with n members, H =
{H1, . . . , Hn}. Let Hi ∈ H be an r-uniform q-sunflower with core W . For
every m ≥ q, let F be an r-uniform m-sunflower with core W . Then every
subset of F of size q is isomorphic to Hi, thus proving f(m,H) ≤ q − 1.

Suppose now that H consists of � many uniform hypergraphs labeled
H1, . . . , H� (none of which are sunflowers), and (n − �) many non-uniform
hypergraphs labeled H�+1, . . . , Hn. For 1 ≤ i ≤ �, let ri be the uniformity of
Hi. Given any hypergraph F with m edges, we find a large H-free subgraph
as follows. First, since Hn is non-uniform, it contains a set of size a and a set
of size b 
= a. Clearly, at least half of the edges of F have size 
= a, or at least
half of them have size 
= b. Take the appropriate subgraph F1 ⊂ F of size
≥ m

2 . By successively halving the sizes, we obtain a chain of hypergraphs
Fn−� ⊂ Fn−�−1 ⊂ · · · ⊂ F1 ⊂ F such that Fn−� is {H�+1, . . . , Hn}-free, and
|Fn−�| ≥ m

2n−� .

We now deal with the uniform part of H. Notice that by Lemma 3.1,
any r-graph G with |G| = m contains an α-sunflower, as long as m > r!αr.
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Taking α =
⌊
crm

1/r
⌋
where cr = ((2r)!)−1/r, satisfies the required condition.

So, every r-graph G of size m contains a sunflower of size
⌊
crm

1/r
⌋
.

Since H� is r�-uniform, we note that either Fn−� contains a subgraph
of size 1

2 |Fn−�| which has no sets of size r� (and hence is H�-free), or there
is a subgraph of size 1

2 |Fn−�| which is r�-uniform. In the second case, using
Lemma 3.1 on this subgraph, we obtain an H�-free subgraph of Fn−� of size

at least cr�
(

m
2n−�+1

) 1

r� . Thus, in either case, we conclude that there exists an
H�-free subgraph F ′

n−�+1 ⊂ Fn−� such that

|F ′
n−�+1| ≥ min

{
m

2n−�+1
, cr�

( m

2n−�+1

) 1

r�

}
≥ c′H ·m

1

r� .

We iterate the same argument � − 1 more times, to finally obtain a
constant CH and a subgraph F ′

� ⊂ Fn−� such that F ′
� is H-free, and

|F ′
�| ≥ CH ·m

1

r1...r� .

Proof of Theorem 2.3. Let F = {F1, . . . , Fm} have size m. Suppose 1 ≤ � <
k, and H is the family of all �-uneven k-graphs. Then, there are distinct
subsets I, J ∈

([k]
�

)
, such that for every H = {A1, . . . , Ak} ∈ H,

⋂
i∈I Ai = ∅

and
⋂

j∈J Aj 
= ∅. Then, we construct an �-graph G with vertex set F , and
hyperedges {{F1, . . . , F�} : F1 ∩ · · · ∩ F� = ∅}. By (6), there is a a constant
c� and a subset F ′ ⊆ F of size ≥ c� · log(�)(m), such that F ′ is either a clique
or an independent set in G. In either case, F ′ is H-free.

On the other hand, suppose H is such that for some 1 ≤ � ≤ k and any
I ⊆ [k],

⋂
i∈I Ai 
= ∅ iff |I| ≤ �. For every m ≥ k, we construct a hypergraph

F = {F1, . . . , Fm} in the following manner. Consider the bipartite graph

B =
(
[m],

([m]
�

))
where x ∈ [m] is adjacent to y ∈

([m]
�

)
iff x ∈ y. Let Fi be

the set of neighbors in B of the vertex i ∈ [m]. Notice that for any I ⊆ [k],

⋂
i∈I

Fi =

{
∅, |I| > �,

= ∅, |I| ≤ �.

This construction therefore shows that f(m,H) = k − 1.

4. Proof of Theorem 2.7

In this section, we prove Theorem 2.7. We begin with some preliminary
analysis of the family EIPk.
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First, we make the crucial observation regarding question (2) that every

sequence of k-edge hypergraphs {Hm} such that f(m,Hm) is bounded, can

only have finitely many members not in EIPk. This follows immediately

from Lemma 4.1. Furthermore, for any H(�b) ∈ EIPk, one can explicitly

determine the relation between the intersection sizes and the parameters

b1, . . . , bk by inclusion-exclusion. We state this relation in Lemma 4.2.

Lemma 4.1. Suppose H = {A1, . . . , Ak} satisfies the following for some

1 ≤ � ≤ k: there are two sets of indices I, J ∈
([k]
�

)
such that |

⋂
i∈I Ai| =

a and |
⋂

j∈J Aj | = b with a 
= b. Then there is a constant c� such that

f(m,H) ≥ c� · log(�)(m).

Proof of Lemma 4.1. Let F be any hypergraph with m edges. Construct an

�-graph G with F as its vertex set, and hyperedges

{{B1, . . . , B�} : |B1 ∩ · · · ∩B�| = a} .

By (6), there exists a subset F ′ ⊆ F of size c� · log(�)(m) which is either a

clique or an independent set in G. In either case, H cannot be contained in

F ′. �
Lemma 4.1 implies that if there are infinitely many m such that Hm 
∈

EIPk, then for each such non-EIP hypergraphs we have f(m,Hm) ≥ c′ ·
log(k)(m), where c′ is the absolute constant c′ = min{c1, . . . , ck}. This is an
infinite subsequence of {Hm}. Therefore, if f(m,Hm) is bounded, then by

looking at the tail of {Hm}, we may assume WLOG that Hm ∈ EIPk for

every m ≥ 1.

Recall that hypergraphs H ∈ EIPk are characterized by the length

k-vector �b, and for every sequence of hypergraphs {Hm}∞m=1, we have a

corresponding sequence of length k vectors �b.

We now state the relation between the intersection sizes and the param-

eters b1, . . . , bk for H(�b) ∈ EIPk.

Lemma 4.2. Let H(�b) ∈ EIPk, and ai = |A1∩· · ·∩Ai|, for each 1 ≤ i ≤ k.

Then,

(7) bi = ai −
(
k − i

1

)
ai+1 +

(
k − i

2

)
ai+2 − · · ·+ (−1)k−i

(
k − i

k − i

)
ak.

Before proving Theorem 2.7, we prove an auxiliary upper bound in

Lemma 4.3, which provides a better upper bound on f(m,H(�b)) with tighter

constraints on �b.
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Lemma 4.3. Suppose �b = (b1, . . . , bk) is such that bi ≥ 0, and for every
1 ≤ i ≤ k − 1,

(8)

k−1∑
j=i

(−1)j−i

(
m− k + j − i− 1

j − i

)
bj ≥ 0.

Then f(m,H(b1, . . . , bk)) = k − 1.

Proof of Lemma 4.3. Let �b satisfy the restrictions given in (8). Note that
we need to construct a hypergraph sequence {Fm}∞m=1, such that every k-

edge subgraph of Fm is isomorphic to H(�b). To achieve this, we define the
following general construction:

Construction 4.4 (F d1,...,dk
m ). Given d1, . . . , dk ≥ 0 and m ≥ k, let B =

([m], Y ) be the bipartite graph with parts [m] and Y , where Y is defined as
follows. For 1 ≤ � ≤ k and 1 ≤ j ≤ d�, let

Y �
j =

{
{vSj : S ∈

([m]
�

)
}, � < k

{wj}, � = k

}
,

where vSj 
= vS
′

j′ for every (j, S) 
= (j′, S′) and wj 
= wj′ for every j 
= j′.
Then

Y =

k⋃
�=1

d�⋃
j=1

Y �
j .

For x ∈ [m] and vSj ∈ Y , let (x, vSj ) ∈ E(B) iff x ∈ S, and let (x,wj) ∈ E(B)

for every x ∈ [m] and wj ∈ Y . Then, define F d1,...,dk
m = {A1, . . . , Am}, where

Ai = NB(i) ⊂ Y for i = 1, . . . ,m. �
For example, the construction F 1,2,3

4 is given by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1 =
{
v11; v

12
1 , v122 , v131 , v132 , v141 , v142 ;w1, w2, w3

}
A2 =

{
v21; v

12
1 , v122 , v231 , v232 , v241 , v242 ;w1, w2, w3

}
A3 =

{
v31; v

13
1 , v132 , v231 , v232 , v341 , v342 ;w1, w2, w3

}
A4 =

{
v41; v

14
1 , v142 , v241 , v242 , v341 , v342 ;w1, w2, w3

}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Informally, in this example, Ai consists of one vertex vi1 corresponding to

{i}, two vertices vij1 and vij2 corresponding to two-element subsets {i, j}, and
three vertices w1, w2, w3 that are in the common intersection of all the Ai’s,
1 ≤ i ≤ 4.
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We observe the following property of the intersection sizes of the edges
of F d1,...,dk

m .

Claim 4.5. For 1 ≤ i ≤ k and any i-edge subgraph {Ar1 , . . . , Ari} ⊂
F d1,...,dk
m , the size of the common intersection ai := |Ar1 ∩ · · · ∩Ari | is given

by

(9) ai = di +

(
m− i

1

)
di+1 + · · ·+

(
m− i

k − 1− i

)
dk−1 + dk.

Proof of Claim 4.5. Suppose G = {Ar1 , . . . , Ari} ⊂ F d1,...,dk
m . We shall now

count |Ar1 ∩ · · · ∩ Ari |. For a fixed hypergraph F d1,...,dk
m ⊇ G′ ⊇ G, let UG′

denote the set of all vertices of F d1,...,dk
m which are in all the edges of G′ but

none of the edges of F d1,...,dk
m \ G′. Notice that Ar1 ∩ · · · ∩ Ari is a disjoint

union of UG′ ’s, G′ ⊇ G. Therefore,

(10) ai = |Ar1 ∩ · · · ∩Ari | =
∑
G′⊇G

|UG′ | =
∑
G′⊇G

∣∣∣∣∣∣
⋂

X∈G′

X \
⋃

X �∈G′

X

∣∣∣∣∣∣ .
Fix a G′ ⊇ G. Let G′ = {Ar1 , . . . , Ari , As1 , . . . , As|G′|−i

}. We observe that,

• For i ≤ |G′| < k, UG′ consists exactly of the vertices{
v
{r1,...,ri,s1,...,s|G′|−1}
j : 1 ≤ j ≤ d|G′|

}
.

• For k ≤ |G′| < m,
⋂

X∈G′ X = {w1, . . . , wdk
} ⊆

⋃
X �∈G′ X, thus

UG′ = ∅.

• For |G′| = m, UG′ =
⋂

X∈G′ X = {w1, . . . , wdk
}.

Therefore,

|UG′ | =

⎧⎨
⎩

d|G′|, i ≤ |G′| < k,
0, k ≤ |G′| < m,
dk, |G′| = m.

Plugging back these values into (10), we get

ai = di +

(
m− i

1

)
di+1 + · · ·+

(
m− i

k − 1− i

)
dk−1 + dk

for every 1 ≤ i ≤ k. �
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Now we return to the proof of Lemma 4.3. Given a length k vector �b ≥ 0
which satisfies (8) for 1 ≤ i ≤ k − 1, let di be the left hand side of (8), i.e.,

di :=

k−1∑
j=i

(−1)j−i

(
m− k + j − i− 1

j − i

)
bj ,

and let dk = bk. Now, we look at the construction Fm = F d1,...,dk
m , and pick

any k-edge subgraph G ⊂ Fm. Observe that G ∈ EIPk, and therefore there
is a length k vector �g such that G = H(�g). It suffices to check that �g = �b.

Suppose G = {A1, . . . , Ak}. For 1 ≤ i ≤ k, let ai := |A1∩· · ·∩Ai|. Recall
that Lemma 4.2 gave us a way of computing �g in terms of �a, and Claim 4.5
computes �a in terms of �d. In order to precisely write down these relations,
we introduce a few matrices.

Notation. Let us define the following quantities for arbitrary m ≥ k ≥ 1.

• Let a
(m)
ij =

(
m−i
j−i

)
and b

(m)
ij = (−1)j−i

(
m−i
j−i

)
.1 Then, denote by Ak,m

and Bk,m the upper triangular matrices

Ak,m = (a
(m)
ij )1≤i,j≤k, and Bk,m = (b

(m)
ij )1≤i,j≤k,

• Let �1 denote the all-one vector, and �0 the all-zero vector.

• Define Dk−1,m :=

[
Ak−1,m

�1
�0ᵀ 1

]
.

• Let Wk−1,m be the (k − 1)× (k − 1) matrix given by

Wk−1,m = (w
(m)
ij )1≤i,j≤k−1,

where w
(m)
ij = (−1)j−i

(
m−k+j−i−1

j−i

)
.

• Define W ′
k−1,m :=

[
Wk−1,m

�0
�0ᵀ 1

]
. �

First, we observe that the assertion of Lemma 4.2 can be rephrased as,

(11) �g = Bk,k�a.

Next, in terms of matrices, equality (9) reads

(12) �a = Dk−1,m
�d.

1 By our convention,
(
x
y

)
= 0 if y < 0. Thus a

(m)
ij = b

(m)
ij = 0 whenever j < i.
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Finally, by the definition of �d, we have

(13) �d = W ′
k−1,m

�b.

Putting together Equations (11, 12, 13), we obtain:

�g = Bk,kDk−1,mW ′
k−1,m ·�b.

By Proposition A.2 from the Appendix, we know that the product matrix

Bk,kDk−1,mW ′
k−1,m is Ik, and this concludes the proof of Lemma 4.3. �

We now have gathered all the equipment required to complete the proof

of Theorem 2.7.

Proof of Theorem 2.7. Recall that α = min
1≤i≤k−2

(
bi(m)

mbi+1(m)

)
, and we wish to

prove that

f(m,H(�b)) ≤ k(k − 1)

α
+ k − 1.

Note that this bound is trivial if k(k−1)
α ≥ m, therefore we may assume

that αm > k(k − 1). From the definition of α, note that bi ≥ αmbi+1 for

each 1 ≤ i ≤ k − 2. By successively applying these inequalities we obtain

bi ≥ αmbi+1 ≥ α2m2bi+2 ≥ · · · ≥ αk−i−1mk−i−1bk−1. Thus,

(14)

bi ≥ αmbi+1 ≥
k−1∑

r=i+1

αm

k
· bi+1

≥
k−1∑

r=i+1

αr−imr−i

k
· br

≥
k−1∑

r=i+1

(αm
k

)r−i
br

≥
k−1∑

r=i+1

(⌊αm
k

⌋
r − i

)
br.

The last inequality follows from Xt ≥
(	X


t

)
. Observe that the assumption

αm
k > k − 1 implies

⌈
αm
k

⌉
≥ k. Therefore, for 1 ≤ i ≤ k − 2 and i+ 1 ≤ r ≤

k − 1, we have ⌊αm
k

⌋
≥
⌈αm

k

⌉
− k + r − i− 1 ≥ 0.
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Thus, (14) gives us

bi ≥
k−1∑

r=i+1

(⌊αm
k

⌋
r − i

)
br ≥

k−1∑
r=i+1

(⌈αm
k

⌉
− k + r − i− 1

r − i

)
br

≥
k−1∑

r=i+1

(−1)r−i+1

(⌈αm
k

⌉
− k + r − i− 1

r − i

)
br,

implying

bi +

k−1∑
r=i+1

(−1)r−i

(⌈αm
k

⌉
− k + r − i− 1

r − i

)
br ≥ 0.

This is exactly the condition (8), with m replaced by
⌈
αm
k

⌉
, so Lemma 4.3

gives us a hypergraph K on
⌈
αm
k

⌉
edges such that every k sets of K are

isomorphic to H(�b).

Figure 4: Constructing Fm from copies of K.

Now, consider a
⌈
k
α

⌉
-fold disjoint union of K’s. This hypergraph Fm has⌈

k
α

⌉
·
⌈
αm
k

⌉
≥ m edges, and note that as long as we pick 1+

⌈
k
α

⌉
·(k−1) edges,

some k of them fall in the same copy of K. These k edges create a H(�b) by
construction of K. This shows f(m,H(�b)) ≤

⌈
k
α

⌉
· (k − 1), completing the

proof of the upper bound.
Now we prove the lower bound. Recall that we are aiming to prove

(15) f(m,H(�b)) ≥ max
1≤i≤k−2

(
mbi+1

2(bi + bi+1)
(bk−1+bk

bk

)
) 1

k

.

Suppose F is a hypergraph on m edges. Either F has a subgraph F1 of
size m

2 which is of the same uniformity asH(�b), or it has a subgraph of size m
2

which is not of this uniformity. If the latter is true, then ex(F,H(�b)) ≥ m
2 .
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Otherwise, we focus on the subgraph F1. Let T be a H(�b)-free subgraph

in F1 of maximum size, say |T | = t. Then, for every S ∈ F1 \ T , there

exist distinct A1, . . . , Ak−1 ∈ T such that {A1, . . . , Ak−1, S} forms a H(�b).

Therefore, there are fixed A1, . . . , Ak−1 ∈ T and a subgraph F2 ⊆ F1 \ T

such that {A1, . . . , Ak−1, S} forms a H(�b) for every S ∈ F2, where

|F2| ≥
m
2 − t(

t
k−1

) .
Further, note that |A1 ∩ · · · ∩ Ak−1 ∩ S| = bk for every S ∈ F2, therefore

there is a subgraph F3 ⊆ F2 such that every element S ∈ F3 intersects

A1 ∩ · · · ∩Ak−1 in the exact same set, and

|F3| ≥
m
2 − t(

t
k−1

)(
bk−1+bk

bk

) .
Finally, for any 1 ≤ i ≤ k − 2, let Xi := A1 ∩ · · · ∩Ai \ (Ai+1 ∪ · · · ∪Ak−1),

and

hi := |{(x,B) : x ∈ Xi, B ∈ F3, x ∈ B}|.

Let D := max
x∈V (F3)

degF3
(x). As {A1, . . . , Ak−1, B} is an H(�b) for each B ∈ F3,

(16) |F3| · bi+1 = hi ≤ D · |Xi|.

Now, for a fixed S ∈ F3,

|Xi| = |S ∩Xi|+ |Xi \ S|

=
∣∣∣S ∩

⋂i
j=1Aj \

(⋃k−1
j=i+1Aj

)∣∣∣+ ∣∣∣⋂i
j=1Aj \

(⋃k−1
j=i+1Aj ∪ S

)∣∣∣
= bi+1 + bi,

Therefore (16) implies

D ≥ |F3| · bi+1

bi + bi+1
≥

(m2 − t)bi+1(
t

k−1

)(bk−1+bk
bk

)
(bi + bi+1)

.

Note that the sets in F3 that achieve the maximum degree D is H(�b)-free.

This is because if I is the common intersection of any set from F3 with

A1 ∩ · · · ∩ Ak−1, and if x is a vertex of degree D in F3, then every edge
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through x contains {x} ∪ I. This leads us to the inequality

t ≥
(m2 − t)bi+1(

t
k−1

)
(bi + bi+1)

(bk−1+bk
bk

) ,
i.e.,

t

(
t

k − 1

)
≥

(m2 − t)bi+1

(bi + bi+1)
(
bk−1+bk

bk

) .
Since m ≥ 6, note that if t ≥ m

4 , then t ≥
(
m
2

) 1

3 ≥
(
m
2

) 1

k , which is larger
than the right side of (15). So we may assume t < m

4 , which would lead us
to

(17) tk ≥ 2t

(
t

k − 1

)
≥ mbi+1

2(bi + bi+1)
(
bk−1+bk

bk

) .
As (17) holds for every 1 ≤ i ≤ k−2, this gives the bound that we seek.

5. Proof of Theorem 2.8

In this section we prove Theorem 2.8. The proof is by induction on bk,
starting from bk = 0. Notice that the lower bound of Theorem 2.7 gives
us the following corollary, which serves as the base case for our induction
argument:

Corollary 5.1. For m ≥ 6,

f(m,H(b1, . . . , bk−1, 0)) ≥ max
1≤i≤k−2

(
mbi+1

2(bi + bi+1)

) 1

k

.

Further, one can asymptotically improve this bound when k = 3:

Proposition 5.2. For m ≥ 4,

f(m,H(b1, b2, 0)) ≥
√

mb2
2(b1 + 2b2)

.

Proof. Let |F | = m and H = H(b1, b2, 0). Either F has a (b1+2b2)-uniform
subgraph F1 of size m

2 , or it has a subgraph of size m
2 in which none of the

edges have size (b1+2b2). If the latter is true, then ex(F,H) ≥ m
2 . Otherwise

let us focus on F1. Let T be an H-free subset of maximum size in F1, and
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suppose |T | = t. Note that for any B ∈ F1 \ T , there are sets A1, A2 ∈ T
such that (B,A1, A2) is a H(b1, b2, 0). Suppose V =

⋃
A∈T A, then we have

|B ∩ V | ≥ 2b2, and |V | ≤ t(b1 + 2b2). Let D = max
x∈V

degF1
(x). Then,

2b2 · |F1 \ T | ≤ |{(x,B) : x ∈ V,B ∈ F1 \ T, x ∈ B}| ≤ D · |V |,

and

D ≥ (m− 2t)b2
t(b1 + 2b2)

.

Let x ∈ V have the maximum degree in F . Since the subgraph of size D
containing x is H-free, we obtain

t ≥ (m− 2t)b2
t(b1 + 2b2)

.

If t ≥ m
4 , then t ≥ 1

2

√
m ≥

√
mb2

2(b1+2b2)
. So assume t < m

4 , and therefore

t2 ≥ mb2
2(b1+2b2)

, as desired.

Before we prove Theorem 2.8 we require the following lemma from [13]:

Lemma 5.3. Let H = (V,E) be a k-graph on m vertices, and let α(H)
denote the independence number of H. Then,

α(H) ≥ k − 1

k
·
(

mk

k|E(H)|

) 1

k−1

.

Now we are prepared to prove Theorem 2.8.

Proof of Theorem 2.8. Fix k and �b. Recall that bk is fixed, and we wish to
show that for m ≥ 6,

(18) f(m,H(b1, . . . , bk)) ≥

⎧⎪⎨
⎪⎩

m
1

k(bk+1)

(
bk−1

4(bk−2+2bk−1)

) 1

k

, k ≥ 4,

m
1

b3+2

(
b2

4(b1+2b2)

) b3+1

b3+2

, k = 3.

Suppose |F | = m. Then, either F has a subgraph F1 of size at least
m
2 which has uniformity the same as that of H(�b), or it does not. When

the latter is true, we have ex(F,H(�b)) ≥ m
2 . Since

m
2 ≥ m

1

4 ·
(
1
8

) 1

4 and
m
2 ≥ m

1

2 · (18)
1

2 , we may assume that the former is true. We wish to show

that F1 contains a H(�b)-free subgraph of large size.
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We proceed by induction on bk. Notice that we already established the
results for bk = 0 in Corollary 5.1 (using bk−1 ≤ 2bk−1) and Proposition 5.2.

Construct a k-graph G with vertex set F1 and call {A1, . . . , Ak} an edge
in G iff {A1, . . . , Ak} ∼= H(�b). Clearly, t = α(G) is a lower bound to our
problem. By Lemma 5.3,

k|E(G)| ≥
(
k − 1

k

)k−1

· (m/2)k

tk−1
.

Given 1 ≤ i ≤ k and B1, . . . , Bi ∈ F1, denote by degG(B1, . . . , Bi) the
number of edges of G containing {B1, . . . , Bi}. As

∑
A1,...,Ak−2∈F1

degG(A1, . . . , Ak−2) =

(
k

2

)
|E(G)|,

we obtain

∑
A1,...,Ak−2∈F1

degG(A1, . . . , Ak−2) ≥
(
k
2

)
k

· (k − 1)k−1

kk−1
· (m/2)k

tk−1

=
(k − 1)k

2kk−1
· (m/2)k

tk−1
.

The sum on the left side has at most
(m/2
k−2

)
≤ (m/2)k−2

(k−2)! terms, therefore there

exist distinct A1, . . . , Ak−2 ∈ F1 such that

degG(A1, . . . , Ak−2) ≥
(k − 2)!(k − 1)k

2kk−1
· (m/2)2

tk−1
.

Note that (k−2)!(k−1)k

2kk−1 > 1
4 for every k ≥ 3. Let B denote the set of all edges

B ∈ F1 which are covered by an edge through {A1, . . . , Ak−2} in G. Then,
|B|2 ≥ degG(A1, . . . , Ak−2), and so

(19) |B|2 ≥ 1

4
· (m/2)2

tk−1
=

1

16
· m2

tk−1
.

As {A1, . . . , Ak−2} is a subgraph of H(�b), we have

|A1 ∩ · · · ∩Ak−2| = bk−2 + 2bk−1 + bk.

Also, for every B ∈ B, {A1, . . . , Ak−2, B} is a subgraph of H(�b). Thus,

|A1 ∩ · · · ∩Ak−2 ∩B| = bk−1 + bk.
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Now,

|B| · (bk−1 + bk) = |{(x,B) : x ∈ A1 ∩ · · · ∩Ak−2, B ∈ B, x ∈ B}|
=

∑
x∈A1∩···∩Ak−2

degB(x).

Let D be the maximum degree of a vertex in F1. Then, by (19),

(20) D · (bk−2 + 2bk−1 + bk) ≥ |B| · (bk−1 + bk) ≥
1

4
(bk−1 + bk) ·

m

t
k−1

2

.

Also, note that

bk−1 + bk
bk−2 + 2bk−1 + bk

≥ bk−1

bk−2 + 2bk−1
⇐⇒ bk(bk−2 + bk−1) ≥ 0.

Therefore (20) gives us,

(21) D ≥ 1

4
· bk−1

bk−2 + 2bk−1
· m

t
k−1

2

.

Now, we notice that if x is a vertex of degree D, then deleting it from the

edges through x gives us a family of uniformity one less than that of F1. By

induction on bk, this subfamily already contains a H(b1, . . . , bk−1, bk−1)-free

family of size f(D,H(b1, . . . , bk−1, bk − 1)), which is a natural lower bound

to our problem. Therefore,

t ≥ f(D,H(b1, . . . , bk−1, bk − 1))

We now split into two cases.

• Case I: k ≥ 4. Now we use the inductive lower bound given by (18):

t ≥ D
1

kbk

(
bk−1

4(bk−2 + 2bk−1)

) 1

k

⇐⇒ D ≤
(
4(bk−2 + 2bk−1)

bk−1

)bk

· tkbk .

Combining this bound with (21), we get

(
4(bk−2 + 2bk−1)

bk−1

)bk

· tkbk ≥ bk−1

4(bk−2 + 2bk−1)
· m

t
k−1

2

,
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Which, on invoking t
k−1

2 ≤ tk, leads us to

tk(bk+1) ≥ m

(
bk−1

4(bk−2 + 2bk−1)

)bk+1

,

finishing off the induction step.

• Case II: k = 3. In this case we use the inductive lower bound in (18)

of

t ≥ D
1

b3+1

(
b2

4(b1 + 2b2)

) b3
b3+1

⇐⇒ D ≤
(
4(b1 + 2b2)

b2

)b3

· tb3+1.

Again, combining this bound with (21), we obtain

(
4(b1 + 2b2)

b2

)b3

· tb3+1 ≥ b2
4(b1 + 2b2)

· m
t
.

This implies t ≥ m
1

b3+2

(
b2

4(b1+2b2)

) b3+1

b3+2

, completing the induction step.

6. Proof of Theorem 2.10

In this section, we prove Theorem 2.10. For the proof, we rely upon the inci-

dence structure of Miquelian inversive planes M(q) of order q. An inversive

plane consists of a set of points P and a set of circles C satisfying three

axioms [14]:

• Any three distinct points are contained in exactly one circle.

• If P 
= Q are points and c is a circle containing P but not Q, then

there is a unique circle b through P,Q and satisfying b ∩ c = {P}.
• P contains at least four points not on the same circle.

Every inversive plane is a 3-(n2 + 1, n + 1, 1)-design for some integer n,

which is called its order. An inversive plane is called Miquelian if it satisfies

Miquel’s theorem [14]. The usefulness of Miquelian inversive planes lies in

the fact that their automorphism groups are sharply 3-transitive (cf. pp

274–275, Section 6.4 of [15]). There are a few known constructions of M(q),

one such construction is outlined here. The points of M(q) are elements of
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F
2
q and a special point at infinity, denoted by ∞. The circles are the images

of the set K = Fq ∪ {∞} under the permutation group PGL2(q
2), given by

x �→ axα + c

bxα + d
, ad− bc 
= 0, α ∈ Aut(F2

q).

For further information on inversive planes and their constructions, the

reader is referred to [15, 16, 17].

Now, we prove Theorem 2.10.

Proof of Theorem 2.10.. Recall that for every odd prime power q, we are

required to demonstrate a hypergraph on q2 + 1 edges with the property

that every three edges form an H(q2 − q− 1, q, 1). Let M(q) be a Miquelian

inversive plane, with points labeled {1, 2, . . . , q2+1}. Then, we consider the
(q2 + q)-graph F = {A1, . . . , Aq2+1}, whose vertex set V (F ) is the circles

of M(q), and Ai is the collection of circles containing i. By the inversive

plane axiom, any three distinct points have a unique circle through them.

It suffices to show that any two distinct points P,Q in M(q) have q + 1

distinct circles through them. By 2-transitivity of the Automorphism group,

we know that any two points have the same number a2 of circles through

them. Now, for any P 
= Q,

(q2 + 1− 2) · 1 = |{(R, c) : R is a point, c is a circle through P,Q,R}|
= a2 · (q + 1− 2),

Thus a2 = q + 1. So, F is (q2 + q)-uniform, every two edges of F have an

intersection of size q+1, and every three edges of F have an intersection of

size 1. By inclusion-exclusion, they form a H(q2 − q − 1, q, 1).

Now, we prove Corollary 2.11.

Proof of Corollary 2.11. First, we prove (4), which asserts that whenever

b1 ≥ b22 ≥ m and b2 is a prime power, f(m,H3(b1, b2, 1)) = 2. Initially we

start with an inversive plane construction, which gives gives us b 22 + 1 sets

such that any three of them are an isomorphic copy of H(b 22 − b2 − 1, b2, 1).

As long as b 22 +1 ≥ m, we can take a subgraph of the construction and still

obtain m sets satisfying the same property. Also note that as b1 ≥ b 22 , we

can create a H3(b1, b2, 1)-construction by first creating an inversive plane F ,

which is aH3(b
2
2 −b2−1, b2, 1)-construction, and then adding (b1−b 22 +b2+1)

new distinct points to each set in F . This proves (4).
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To prove (5), we shall use the result of Baker, Harman and Pintz [18]

on the density of primes, which states that for sufficiently large x there is a

prime p such that

x− x0.525 < p < x.

Let g(x) be the inverse of x − x0.525 for large x. Then, x < g(p). Using

monotonicity of g, it can be shown that g(p) < p+ p0.529 for large p. Thus,

for large enough m, there exists a prime p such that

(22) p < x < p+ p0.529.

Now, let b1 � b2 and b2 ≥ m0.68, as in the hypothesis. From (22), we

get a prime number p with p < b2 < p + p0.529. Let F = {A1, · · · , Ap2+1}
be the H3(p

2 − p − 1, p, 1)-construction obtained from Theorem 2.10. Note

that m < b 0.68
−1

2 = b 1.47062 < p2 + 1. Let F ′ = {A1, · · · , Am}. For every

1 ≤ i < j ≤ m, add b2 − p many new vertices vij1 , . . . , v
ij
b2−p to the sets Ai

and Aj , i.e, let

Bi = Ai �
⋃
j �=i

{vijr : 1 ≤ r ≤ b2 − p}.

Suppose K = {Bi : 1 ≤ i ≤ m}. Observe that for every i,

|Bi| = p2 + p+m(b2 − p),

and for every i 
= j,

|Bi ∩Bj | = p+ b2 − p = b2.

Hence, K is a hypergraph such that any three edges form a H3(p
2 + p +

m(b2 − p), b2, 1). Since

p2 + p+m(b2 − p) < p2 + p+ p1.4706+0.529

= p2 + p1.9996 + p

< 3b22 � b1,

we can add adequately many new vertices to every edge of K in order to get

a hypergraph whose any three edges form a H3(b1, b2, 1).



208 Dhruv Mubayi and Sayan Mukherjee

7. Further problems

We discuss a few further problems that are of interest. Of course, the main

open question is (2), which asks to characterize all sequences of k-edge hy-

pergraphs Hm for which f(m,Hm) is bounded. As we discussed, even the

case k = 3 turns out to be quite challenging..

Let us focus on the case k = 3 and �b = (b1, b2, 1). The current state of

affairs was summarized in Figure 3. Observe that all the upper bounds in

the lightly shaded regions are actually upper bounds of 2. Therefore, one

may ask the following question:

Problem 7.1. Characterize all values of (b1, b2) such that

f(m,H3(b1, b2, 1)) = 2.

We cannot solve this problem completely. However, we can derive a

necessary condition on b1, b2, b3 for which f(m,H3(b1, b2, b3)) = 2 as follows.

Suppose F is a hypergraph with V (F ) = {1, · · · , n} such that any three

edges of F form a H3(b1, b2, b3). Let di denote the degree of vertex i in F .

By double-counting arguments,

n∑
i=1

(
di

3

)
=

(
m
3

)
b3,

n∑
i=1

(
di

2

)
=

(
m
2

)
(b2 + b3),

n∑
i=1

di = m(b1 + 2b2 + b3).

After algebraic manipulation of these expressions and using the Cauchy-

Schwarz inequality
∑n

i=1 di ·
∑n

i=1 d
3
i ≥

(∑n
i=1 d

2
i

)2
and large m, we obtain

Theorem 7.2.

Theorem 7.2. Suppose f(m,H3(b1, b2, b3)) = 2. Then, for large enough m,

b1b3 +
b1b2
m

+
b2b3
m

≥ b 22 .

In particular, when b3 = 1,

b1 +
b1b2
m

≥ b 22 .
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Theorem 7.2 gives more insight into Figure 3. Basically, there are two
cases to consider. When b1 is asymptotically larger than b1b2

m , i.e. when b2 =
o(m), this means that b1 ≥ b 22 is necessary for f = 2. When b2 ≥ m, this gives
us b1 ≥ mb2, which is exactly the construction in Lemma 4.3. Further, note
that this transition occurs exactly at the intersection of the line b1 = mb2
and the parabola b1 = b 22 .

As a further special case of Problem 7.1, one can look at �b = (m, b2, 1)
where 1 � b2 � √

m. We expect this range to be solvable via a construc-
tion, since there are constructions for b2 = 1 (Theorem 2.7) and b2 =

√
m

(Theorem 2.10). The problem is equivalent to constructing bipartite graphs
with certain properties, as stated below.

Problem 7.3. Suppose 1 � b2 � √
m. Is there a bipartite graph G with

parts A, B, such that |A| = m, the degree of every vertex in A is asymptotic
to m, the size of the common neighborhood of every pair in A is asymptotic
to b2, and every three vertices in A have a unique common neighbor in B?

If such a bipartite graph can be constructed, then we can let F =
{NG(u) : u ∈ A}. This hypergraph will testify for f(m,H(m, b2, 1)) = 2.
From the proof of Theorem 7.2, we know that if such a bipartite graph
exists, it cannot be regular from B: a regular construction from B implies
equality in the Cauchy-Schwarz inequality, which would imply b2 = Θ(

√
m).

Therefore if such a graph is constructed, B needs to have vertices of different
degrees.

Notice also that if the answer to Problem 7.3 is affirmative, then we
can shade the small triangle in Figure 3 light. This is courtesy of the fact
that any (b1, b2) in that region can be written as a sum (x, y) + (m, z), with
x ≥ my. We can then take a H3(x, y, 0)-construction {A1, . . . , Am} and a
H3(m, z, 1)-construction {A′

1, . . . , A
′
m}, and merge them together to obtain

the H3(b1, b2, 1)-construction {A1 ∪A′
1, . . . , Am ∪A′

m}.

Appendix A

Our goal in this section is to prove the matrix identity asserted in Proposition
A.2. Recall that the binomial coefficient

(−a
s

)
is interpreted as (−1)s

(
a+s−1

s

)
.

Observe that with this definition, the generalized binomial coefficients also
satisfy Pascal’s identity

(
a
s

)
=
(
a−1
s

)
+
(
a−1
s−1

)
. Before seeing the proof of

Proposition A.2, we establish a useful identity in Lemma A.1.

Lemma A.1. For integers x ≥ 0, y ≥ z ≥ 0, we have

(23)

z∑
t=0

(−1)t
(
x

t

)(
y − t

z − t

)
= (−1)z

(
x− y + z − 1

z

)
.
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Proof of Lemma A.1. One can prove this identity using induction on y. Note
that when y = z, the identity becomes

z∑
t=0

(−1)t
(
x

t

)
= (−1)z

(
x− 1

z

)
,

which follows from applying Pascal’s identity
(
x
t

)
=
(
x−1
t

)
+
(
x−1
t−1

)
to each

term and telescoping.
Now suppose that (23) holds for some y. Then,

z∑
t=0

(−1)t
(
x

t

)(
y − t+ 1

z − t

)
=

z∑
t=0

(−1)t
(
x

t

)(
y − t

z − t

)

+

z−1∑
t=0

(−1)t
(
x

t

)(
y − t

z − t− 1

)
.

By induction hypothesis, the first term is (−1)z
(
x−y+z−1

z

)
and the second

term is (−1)z−1
(
x−y+z−2

z−1

)
. Their sum is (−1)z

(
x−y+z−2

z

)
, as desired. �

We are now going to state and prove Proposition A.2. Recall the follow-
ing notation:

a
(m)
ij =

(
m− i

j − i

)
, b

(m)
ij = (−1)j−i

(
m− i

j − i

)
,

w
(m)
ij = (−1)j−i

(
m− k + j − i− 1

j − i

)
,

Ak,m = (a
(m)
ij )1≤i,j≤k, Bk,m = (b

(m)
ij )1≤i,j≤k,Wk−1,m = (w

(m)
ij )1≤i,j≤k−1,

and,

Dk−1,m =

[
Ak−1,m

�1
�0ᵀ 1

]
, W ′

k−1,m =

[
Wk−1,m

�0
�0ᵀ 1

]
.

Proposition A.2.

Bk,k ·Dk−1,m ·W ′
k−1,m = Ik.

Proof. Note that Bk,k =

[
Bk−1,k �v
�0ᵀ 1

]
, where vi = (−1)k−i, and therefore

Bk,kDk−1,mW ′
k−1,m =

[
Bk−1,kAk−1,mWk−1,m Bk−1,k

�1+ v
�0ᵀ 1

]
.
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We verify that Bk−1,k
�1+ v = �0 and Bk−1,kAk−1,mWk−1,m = Ik−1 in Claims

A.3 and A.4, respectively.

Claim A.3. Bk−1,k
�1+ v = �0.

Proof of Claim A.3. Note that the i’th row of Bk−1,k
�1 is

k−1∑
j=1

b
(k)
ij =

k−1∑
j=i

(−1)j−i

(
k − i

j − i

)
=

k−i−1∑
j=0

(−1)j
(
k − i

j

)
= 0− (−1)k−i = −vi,

as desired. �

Claim A.4. Bk−1,kAk−1,mWk−1,m = Ik−1.

Proof of Claim A.4. Note that the (i, j)th entry of the product matrix is
given by

(24)

k−1∑
r=1

k−1∑
s=1

b
(k)
ir a(m)

rs w
(m)
sj

=

k−1∑
r=1

k−1∑
s=1

(−1)r−i+j−s

(
k − i

r − i

)(
m− r

s− r

)(
m− k + j − s− 1

j − s

)

=

k−1∑
s=1

(−1)j−s

(
m− k + j − s− 1

j − s

) k−1∑
r=1

(−1)r−i

(
k − i

r − i

)(
m− r

s− r

)
.

Observe that, using Lemma A.1 for x = k − i, y = m− i, z = s− i, we get

k−1∑
r=1

(−1)r−i

(
k − i

r − i

)(
m− r

s− r

)
=

s∑
r=i

(−1)r−i

(
k − i

r − i

)(
m− r

s− r

)

=

s−i∑
r=0

(−1)r
(
k − i

r

)(
m− i− r

s− i− r

)

= (−1)s−i

(
k −m+ s− i− 1

s− i

)
.

Plugging this back into (24), we get that the (i, j)th entry of the product
matrix is

(25)

k−1∑
s=1

(−1)j−i

(
m− k + j − s− 1

j − s

)(
k −m+ s− i− 1

s− i

)



212 Dhruv Mubayi and Sayan Mukherjee

Notice that the sum in (25) only runs from s = i to s = j, and therefore
after the change of variable s �→ s+ i, the expression reduces to

(26) (−1)j−i
j−i∑
s=0

(
m− k + j − s− i− 1

j − i− s

)(
k −m+ s− 1

s

)
.

Note that
(
s−(m−k)−1

s

)
= (−1)s

(
m−k
s

)
, so (26) is the sum

(−1)j−i
j−i∑
s=0

(−1)s
(
m− k

s

)(
m− k + j − i− 1− s

j − i− s

)
,

which, on invoking Lemma A.1 for x = m−k, y = m−k+j− i−1, z = j− i,
reduces to

(−1)j−i · (−1)j−i ·
(
m− k −m+ k − j + i+ 1 + j − i− 1

j − i

)
=

(
0

j − i

)
.

Clearly, this is 0 when j 
= i and 1 when j = i. �
This completes the proof of Proposition A.2.
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