Maximum H -free subgraphs

DHRUV MUBAYI^{*} AND SAYAN MUKHERJEE^{[†](#page-0-1)}

Given a family of hypergraphs H , let $f(m, H)$ denote the largest size of an H -free subgraph that one is guaranteed to find in every hypergraph with m edges. This function was first introduced by Erdős and Komlós in 1969 in the context of union-free families, and various other special cases have been extensively studied since then. In an attempt to develop a general theory for these questions, we consider the following basic issue: which sequences of hypergraph families $\{\mathcal{H}_m\}$ have bounded $f(m, \mathcal{H}_m)$ as $m \to \infty$? A variety of bounds for $f(m, \mathcal{H}_m)$ are obtained which answer this question in some cases. Obtaining a complete description of sequences $\{\mathcal{H}_m\}$ for which $f(m, \mathcal{H}_m)$ is bounded seems hopeless.

AMS 2000 subject classifications: 05D05, 05C35, 05C65. Keywords and phrases: Extremal set theory, family of hypergraphs, hypergraphs.

1. Introduction

A hypergraph H on vertex set $V(H)$ is a subset of $2^{V(H)}$. H is an ℓ -uniform hypergraph, or simply, an ℓ -graph, if $H \subseteq \binom{V(H)}{\ell}$ $\binom{H}{\ell}$. All hypergraphs in this paper have finitely many vertices (and edges). Given a family of hypergraphs H , a hypergraph F is said to be H-free if F contains no copy of any member of H as a (not necessarily induced) subgraph. Given a hypergraph F and a family H , let $ex(F,H)$ be the maximum size of an H-free subgraph of F. Define

$$
f(m, \mathcal{H}) := \min_{|F| = m} \text{ex}(F, \mathcal{H}).
$$

arXiv: [1905.01709](https://arxiv.org/abs/1905.01709)

[∗]Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago. Research partially supported by NSF grants DMS-1300138 and 1763317.

[†]Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago.

Note that $f(m, \mathcal{H}) \geq c$ means that every F with m edges contains an \mathcal{H} free subgraph $F' \subseteq F$ with $|F'| = c$. When the family H consists of a single hypergraph H, we abuse notation and write $f(m, H)$ instead of $f(m, {H})$.

This function was introduced by Erdős and Komlós in 1969 [\[1\]](#page-27-0), who considered the case when $\mathcal H$ is the (infinite) family of hypergraphs A, B, C with $A \cup B = C$. The problem was further studied by Kleitman [\[2\]](#page-27-1), and later by Erdős and Shelah [\[3](#page-27-2)], and finally settled by Fox, Lee and Sudakov [\[4](#page-27-3)] who proved that

$$
f(m, \mathcal{H}) = \left\lfloor \sqrt{4m+1} \right\rfloor - 1.
$$

Erdős and Shelah also considered the case when $\mathcal H$ is the family of hypergraphs A_1 , A_2 , A_3 , A_4 with $A_1 \cup A_2 = A_3$ and $A_1 \cap A_3 = A_4$. They called this family B_2 , proved that $f(m, B_2) \leq (3/2)m^{2/3}$ and conjectured that this bound is asymptotically tight. This conjecture was settled by Barát, Füredi, Kantor, Kim and Patkós in 2012 $[5]$, who also considered more general problems (see [\[4\]](#page-27-3) for further work).

The same problem has been studied in the special case when $\mathcal H$ is a family of graphs. Let $f_2(m, \mathcal{H})$ denote the maximum size of an \mathcal{H} -free subgraph that every graph with m edges is guaranteed to contain. These investigations began with a question of Erdős and Bollobás [\[6](#page-28-1)] in 1966 about $f_2(m, C_4)$, followed up by a conjecture of Erdős in [\[7\]](#page-28-2). Consequently the problem of determining $f_2(m, H)$ for various graphs has received considerable attention in the recent years $[8, 9, 10]$ $[8, 9, 10]$ $[8, 9, 10]$ $[8, 9, 10]$ $[8, 9, 10]$. The authors of $[9, 10]$ $[9, 10]$ also considered the problem in the case of ℓ -graphs.

In the hope of obtaining a general theory for these problems, we investigate the following basic question:

(1) For which sequence of families
$$
\{\mathcal{H}_m\}_{m=1}^{\infty}
$$

is $f(m, \mathcal{H}_m)$ bounded (as $m \to \infty$)?

Question [\(1\)](#page-1-0) is too general to solve completely, so we focus on special cases. In subsection 2.1 we state our results for constant $\{\mathcal{H}_m\}_{m=1}^{\infty}$, and in subsection 2.2 we consider non-constant $\{\mathcal{H}_m\}_{m=1}^{\infty}$.

2. Our results

2.1. Constant sequences

Suppose $\{\mathcal{H}_m\}_{m=1}^{\infty}$ is a sequence such that $\mathcal{H}_m = \mathcal{H}$ for every m. First, we note that if H consists of finitely many members, then the answer to Question (1) is given by the following characterization. A q-sunflower is a hypergraph $\{A_1, \ldots, A_q\}$ such that $A_i \cap A_j = \bigcap_{s=1}^q A_s$ for all $i \neq j$. This common intersection is referred to as the core of the sunflower.

Theorem 2.1. Fix a family of hypergraphs H with finitely many members. If H contains a q-sunflower with sets of equal size, then $f(m, H) \leq q - 1$. Otherwise, $f(m, \mathcal{H}) \rightarrow \infty$ as $m \rightarrow \infty$.

Next, in the same spirit as the properties of being union-free and having no B_2 , if the (infinite) family H specifies the intersection type of k sets (i.e. whether they are empty or not), then a characterization can be obtained in the form of Theorem [2.3.](#page-2-0) Before stating the theorem, we first define what we call an ℓ -even hypergraph and an ℓ -uneven hypergraph. A k-edge hypergraph is a hypergraph with k edges.

Definition 2.2 (ℓ -even and ℓ -uneven hypergraphs). A k-edge hypergraph $H = \{A_1, \ldots, A_k\}$ is said to be ℓ -even for some $1 \leq \ell \leq k$ if for every subset $I\subseteq[k],$

$$
\bigcap_{i\in I} A_i \neq \varnothing \text{ iff } |I| \leq \ell.
$$

It is said to be ℓ -uneven if there exist $I, J \in \binom{[k]}{\ell}$ $_{\ell}^{\kappa}$) such that

$$
\bigcap_{i\in I} A_i \neq \varnothing \text{ but } \bigcap_{j\in J} A_j = \varnothing.
$$

Theorem 2.3. Let $1 \leq \ell < k$. Let H be the (infinite) family of all ℓ -uneven k-edge hypergraphs. Then, $f(m, \mathcal{H}) \rightarrow \infty$ as $m \rightarrow \infty$. Conversely, if H is the family of all ℓ -even k -edge hypergraphs, we have $f(m, \mathcal{H}) = k - 1$.

2.2. Non-constant sequences

As a first step towards understanding the general problem in [\(1\)](#page-1-0), we focus on the case when for every $m \geq 1$, $\mathcal{H}_m = \{H_m\}$ for a single hypergraph H_m , and further assume that all these hypergraphs H_m have the same number of edges. Thus we ask the following question:

(2) For which sequence of k-edge hypergraphs
$$
\{H_m\}_{m=1}^{\infty}
$$
 is $f(m, H_m)$ bounded (as $m \to \infty$)?

We are unable to answer question [\(2\)](#page-2-1) completely, even for $k = 3$. Our main results provide several necessary, or sufficient conditions that partially answer [\(2\)](#page-2-1). Before presenting them, we introduce the following crucial definition:

Definition 2.4 (Equal Intersection Property). For $k \geq 2$, Let \mathbf{EIP}_k denote the set of all k-edge hypergraphs $H = \{A_1, \ldots, A_k\}$ such that for every $1 \leq \ell \leq k$ and $I, J \in \binom{[k]}{\ell}$ $_{\ell}^{k}$), we have $\left| \bigcap_{i \in I} A_i \right| = \left| \right|$ $\bigcap_{j\in J}A_j\Big|$.

Since every two edges of a hypergraph form a 2-sunflower, we observe that the case $k = 2$ follows immediately from the construction in Theorem [2.1.](#page-2-2)

Proposition 2.5. Let H_m be a 2-edge hypergraph for each $m \geq 1$. Then $f(m, H_m)$ is bounded as $m \to \infty$ if and only if $H_m \in \mathbf{EIP}_2$ for all but finitely many m.

We may therefore assume in what follows that $k \geq 3$.

Let us now fix a hypergraph $H = \{A_1, \ldots, A_k\}$ in \mathbf{EIP}_k . H can be encoded by k parameters (b_1,\ldots,b_k) , corresponding to the k distinct sizes appearing in the Venn diagram of H. More precisely, for $1 \leq \ell \leq k$, and for all $I \in \binom{[k]}{\ell}$ $_{\ell}^{\kappa}$), let

$$
b_{\ell} := \left|\bigcap_{i \in I} A_i \setminus \bigcup_{i \in [k] \setminus I} A_i\right|.
$$

Figure 1: An example: $H(1, 2, 3) \in EIP_3$.

By inclusion-exclusion, b_1, \ldots, b_k are well-defined for hypergraphs in **EIP**_k. We denote $H \in \mathbf{EIP}_k$ with parameters $b_1, \ldots, b_k \geq 0$ by $H(b)$, where $\vec{b} = (b_1, \ldots, b_k)$. We shall see later (Lemma [4.1\)](#page-9-0) that every sequence of k-edge hypergraphs ${H_m}$ such that $f(m, H_m)$ is bounded can only have finitely many members not in EIP_k . For sequences ${H_m}_{m=1}^{\infty}$ such that $H_m \in \text{EIP}_k$ for every $m \geq 1$, we obtain a sequence of length k vectors $\{\vec{b}(m)\}_{m=1}^{\infty}$, where $\vec{b}(m) = (b_1(m), \ldots, b_k(m))$. We use boldface and write **b** for the sequence $\{\vec{b}(m)\}_{m=1}^{\infty}$.

Definition 2.6 $(\alpha(\vec{b}))$. For every sequence of length k vectors \vec{b} = ${\lbrace \vec{b}(m) \rbrace_{m=1}^{\infty}}$ and $m \geq 1$, let

$$
\alpha(\vec{\mathbf{b}})(m) := \min_{1 \leq i \leq k-2} \left(\frac{b_i(m)}{mb_{i+1}(m)} \right).
$$

Now we state our main results. To simplify notation we will often write b_i instead of $b_i(m)$ and $\alpha(\vec{b})$ instead of $\alpha(\vec{b})(m)$.

Theorem 2.7. Let $k \geq 3$. Suppose the sequence of length k vectors \vec{b} satisfies $b_1,\ldots,b_{k-2} > 0$, $b_{k-1},b_k \geq 0$ for every m. Then, for $m \geq 6$,

$$
\left(\frac{1}{2\left(\alpha(\vec{\mathbf{b}})+\frac{1}{m}\right){b_{k-1}+b_{k}}}\right)^{\frac{1}{k}} \leq f(m,H(\vec{\mathbf{b}})) \leq \frac{k(k-1)}{\alpha(\vec{\mathbf{b}})}+k-1.
$$

Theorem [2.7](#page-4-0) implies that when $\binom{b_{k-1}+b_k}{b_k}$ is bounded from above, $f(m, H(\vec{b}))$ is bounded from above if and only if the sequence $\alpha(\vec{b})$ is bounded away from zero.

We also have the following additional lower bound on $f(m, H(\vec{b}))$:

Theorem 2.8. Fix $k \geq 3$. Let $\vec{b} = {\{\vec{b}(m)\}}_{m=1}^{\infty}$ be such that $b_k(m) = b_k$ for every m. Then, for $m \geq 6$,

$$
f(m, H(\vec{b})) \ge \begin{cases} m^{\frac{1}{k(b_k+1)}} \left(\frac{b_{k-1}}{4(b_{k-2}+2b_{k-1})} \right)^{\frac{1}{k}}, & k \ge 4, \\ m^{\frac{1}{b_3+2}} \left(\frac{b_2}{4(b_1+2b_2)} \right)^{\frac{b_3+1}{b_3+2}}, & k = 3. \end{cases}
$$

We now focus on $k = 3$. In this case $\alpha(\vec{b}) = b_1/m b_2$ and Theorem [2.7](#page-4-0) reduces to

(3)
$$
\left(\frac{1}{2\left(\frac{b_1}{mb_2} + \frac{1}{m}\right)\binom{b_2+b_3}{b_3}}\right)^{\frac{1}{3}} \le f(m, H(\vec{b})) \le \frac{6mb_2}{b_1} + 2.
$$

When $b_3 = 0$, [\(3\)](#page-4-1) implies that $f(m, H_3(b_1, b_2, 0))$ is bounded if and only if $b_1 = \Omega(m b_2)$. We now turn to $b_3 = 1$ which already seems to be a very interesting special case that is related to an open question in extremal graph theory (see Problem [7.3](#page-24-0) in Section [7\)](#page-23-0). Here [\(3\)](#page-4-1) and Theorem [2.8](#page-4-2) yield the following.

Corollary 2.9. Let $m \to \infty$. Then $f(m, H_3(b_1, b_2, 1))$ is bounded when $b_1 =$ Coronary 2.3. Let $m \to \infty$. Then $f(m, H_3(\sigma_1, \sigma_2, 1))$ is bounded when $\sigma_1 = \Omega(m b_2)$ and it is unbounded when either $b_1 + b_2 = o(m)$ or $b_1 = o(\sqrt{m} b_2)$.

Corollary [2.9](#page-5-0) can be summarized in Figure [2.](#page-5-1) The light region corresponds to a bounded $f(m, H(\vec{b}))$, and the dark region corresponds to unbounded $f(m, H(\vec{b}))$. White regions correspond to areas where we do not know if $f(m, H(\vec{b}))$ is bounded or not.

Figure 2: Theorems [2.7](#page-4-0) and [2.8](#page-4-2) for $\vec{b} = (b_1, b_2, 1)$.

We are able to refine our results slightly via the following result. **Theorem 2.10.** For every odd prime power q we have

$$
f(q^2 + 1, H(q^2 - q - 1, q, 1)) = 2.
$$

For functions $f(m)$ and $g(m)$, we write $f \gg g$ iff $g = o(f)$. Later, we shall show that Theorem [2.10](#page-5-2) implies the following.

Corollary 2.11. When $b_1 \geq b_2^2$, $b_2 \geq \sqrt{m}$ and b_2 is a prime power,

(4)
$$
f(m, H_3(b_1, b_2, 1)) = 2.
$$

Further, when $b_1 \gg b_2^2$ and $b_2 \geq m^{0.68}$,

(5)
$$
f(m, H_3(b_1, b_2, 1)) = 2.
$$

Corollary [2.11](#page-5-3) yields the following improvement on Figure [2.](#page-5-1) Note that we are using the parabola $b_1 = b_2^2$ as an asymptotic approximation of Corol-lary [2.11.](#page-5-3) By [\(4\)](#page-5-4), $f(m, H_3(b_1, b_2, 1)) = 2$ infinitely often on this parabola, figuratively represented by vertical stripes in the interval $\sqrt{m} \le b_2 \le m^{0.68}$. We shall see later, by virtue of Theorem [7.2,](#page-23-1) that in the white region to the we shall see later, by virtue of Theorem 1.2, that in the white region to the right of $b_1 = b_2^2$ and between the lines $b_1 = mb_2$ and $b_1 = \sqrt{m} b_2$, we have $f(m, H_3(b_1, b_2, 1)) > 2.$

Figure 3: $\vec{b} = (b_1, b_2, 1)$.

3. Proofs of Theorems [2.1](#page-2-2) and [2.3](#page-2-0)

In this section, we prove Theorems [2.1](#page-2-2) and [2.3,](#page-2-0) which answer question [\(1\)](#page-1-0) for constant sequences. We use the following well-known facts about sunflowers and diagonal hypergraph Ramsey numbers.

Recall that a q-sunflower is a hypergraph $\{A_1,\ldots,A_q\}$ such that $A_i \cap$ $A_j = \bigcap_{s=1}^q A_s$. The celebrated Erdős-Rado sunflower Lemma [\[11](#page-28-6)] states the following.

Lemma 3.1 (Erdős-Rado). Let H be an r-graph with $|H| = r!(\alpha - 1)^r$. Then, H contains an α -sunflower.

Next, recall that the hypergraph Ramsey number $r_{\ell}(s, t)$ is the minimum N such that any ℓ -graph on N vertices, admits a clique of size s or an independent set of size t . The following is a well-known theorem of Erdős, Hajnal and Rado $|12|$:

Theorem 3.2. There are absolute constants $c(\ell), c'(\ell)$ such that

$$
twr_{\ell-1}(c't^2) < r_{\ell}(t,t) < twr_{\ell}(ct).
$$

Here the tower function $twr_k(x)$ is defined by $twr_0(x)=1$ and $twr_{i+1}(x) =$ $2^{twr_i(x)}$.

The right side of this theorem can be rewritten as follows:

Let F be any ℓ -graph on n vertices. Then there is an absolute constant c_{ℓ} such that there is a subgraph $F' \subset F$ with

(6) $|V(F')| \geq c_{\ell} \cdot \log_{(\ell)}(n)$, which is either a clique or an independent set. Here $log_{(\ell)}$ denotes iterated logarithms.

Now we are prepared to prove Theorems [2.1](#page-2-2) and [2.3.](#page-2-0) Recall that a hypergraph is uniform if all its edges have the same size, otherwise it is non-uniform.

Proof of Theorem [2.1.](#page-2-2) Fix a family of hypergraphs H with n members, $\mathcal{H} =$ $\{H_1,\ldots,H_n\}$. Let $H_i \in \mathcal{H}$ be an r-uniform q-sunflower with core W. For every $m \geq q$, let F be an r-uniform m-sunflower with core W. Then every subset of F of size q is isomorphic to H_i , thus proving $f(m, \mathcal{H}) \leq q - 1$.

Suppose now that H consists of ℓ many uniform hypergraphs labeled H_1, \ldots, H_ℓ (none of which are sunflowers), and $(n - \ell)$ many non-uniform hypergraphs labeled $H_{\ell+1},\ldots,H_n$. For $1 \leq i \leq \ell$, let r_i be the uniformity of H_i . Given any hypergraph F with m edges, we find a large H -free subgraph as follows. First, since H_n is non-uniform, it contains a set of size a and a set of size $b \neq a$. Clearly, at least half of the edges of F have size $\neq a$, or at least half of them have size $\neq b$. Take the appropriate subgraph $F_1 \subset F$ of size $\geq \frac{m}{2}$. By successively halving the sizes, we obtain a chain of hypergraphs $F_{n-\ell} \subset F_{n-\ell-1} \subset \cdots \subset F_1 \subset F$ such that $F_{n-\ell}$ is $\{H_{\ell+1},\ldots,H_n\}$ -free, and $|F_{n-\ell}|\geq \frac{m}{2^{n-\ell}}.$

We now deal with the uniform part of H . Notice that by Lemma [3.1,](#page-7-0) any r-graph G with $|G| = m$ contains an α -sunflower, as long as $m > r! \alpha^r$. Taking $\alpha = \lfloor c_r m^{1/r} \rfloor$ where $c_r = ((2r)!)^{-1/r}$, satisfies the required condition. So, every r-graph G of size m contains a sunflower of size $|c_r m^{1/r}|$.

Since H_{ℓ} is r_{ℓ} -uniform, we note that either $F_{n-\ell}$ contains a subgraph of size $\frac{1}{2} |F_{n-\ell}|$ which has no sets of size r_{ℓ} (and hence is H_{ℓ} -free), or there is a subgraph of size $\frac{1}{2} |F_{n-\ell}|$ which is r_{ℓ} -uniform. In the second case, using Lemma [3.1](#page-7-0) on this subgraph, we obtain an H_{ℓ} -free subgraph of $F_{n-\ell}$ of size at least $c_{r_\ell} \left(\frac{m}{2^{n-\ell}} \right)$ $\frac{m}{2^{n-\ell+1}}$, $\frac{1}{r_{\ell}}$. Thus, in either case, we conclude that there exists an H_{ℓ} -free subgraph $F'_{n-\ell+1} \subset F_{n-\ell}$ such that

$$
|F'_{n-\ell+1}| \ge \min\left\{\frac{m}{2^{n-\ell+1}}, c_{r_\ell}\left(\frac{m}{2^{n-\ell+1}}\right)^{\frac{1}{r_\ell}}\right\} \ge c_H' \cdot m^{\frac{1}{r_\ell}}.
$$

We iterate the same argument $\ell - 1$ more times, to finally obtain a constant $C_{\mathcal{H}}$ and a subgraph $F'_{\ell} \subset F_{n-\ell}$ such that F'_{ℓ} is \mathcal{H} -free, and

$$
|F'_{\ell}| \geq C_{\mathcal{H}} \cdot m^{\frac{1}{r_1 \dots r_{\ell}}}.
$$

Proof of Theorem [2.3.](#page-2-0) Let $F = \{F_1, \ldots, F_m\}$ have size m. Suppose $1 \leq \ell <$ k, and H is the family of all ℓ -uneven k-graphs. Then, there are distinct subsets $I, J \in \binom{[k]}{\ell}$ $\mathcal{L}^{[k]}_{\ell}$, such that for every $H = \{A_1, \ldots, A_k\} \in \mathcal{H}, \bigcap_{i \in I} A_i = \varnothing$ and $\bigcap_{j\in J} A_j \neq \emptyset$. Then, we construct an ℓ -graph G with vertex set F, and hyperedges $\{\{F_1,\ldots,F_\ell\}: F_1 \cap \cdots \cap F_\ell = \varnothing\}$. By [\(6\)](#page-7-1), there is a a constant c_{ℓ} and a subset $F' \subseteq F$ of size $\geq c_{\ell} \cdot \log_{(\ell)}(m)$, such that F' is either a clique or an independent set in G. In either case, F' is H -free.

On the other hand, suppose H is such that for some $1 \leq \ell \leq k$ and any $I \subseteq [k], \bigcap_{i \in I} A_i \neq \emptyset$ iff $|I| \leq \ell$. For every $m \geq k$, we construct a hypergraph $F = \{F_1, \ldots, F_m\}$ in the following manner. Consider the bipartite graph $B=\left([m],\binom{[m]}{\ell}\right)$ $\binom{m}{\ell}$ where $x \in [m]$ is adjacent to $y \in \binom{[m]}{\ell}$ $\binom{n}{\ell}$ iff $x \in y$. Let F_i be the set of neighbors in B of the vertex $i \in [m]$. Notice that for any $I \subseteq [k]$,

$$
\bigcap_{i\in I} F_i = \begin{cases} \varnothing, & |I| > \ell, \\ \neq \varnothing, & |I| \leq \ell. \end{cases}
$$

This construction therefore shows that $f(m, \mathcal{H}) = k - 1$.

4. Proof of Theorem [2.7](#page-4-0)

In this section, we prove Theorem [2.7.](#page-4-0) We begin with some preliminary analysis of the family \mathbf{EIP}_k .

 \Box

First, we make the crucial observation regarding question [\(2\)](#page-2-1) that every sequence of k-edge hypergraphs ${H_m}$ such that $f(m, H_m)$ is bounded, can only have finitely many members not in EIP_k . This follows immediately from Lemma [4.1.](#page-9-0) Furthermore, for any $H(b) \in EIP_k$, one can explicitly determine the relation between the intersection sizes and the parameters b_1,\ldots,b_k by inclusion-exclusion. We state this relation in Lemma [4.2.](#page-9-1)

Lemma 4.1. Suppose $H = \{A_1, \ldots, A_k\}$ satisfies the following for some $1 \leq \ell \leq k$: there are two sets of indices $I, J \in \binom{[k]}{\ell}$ $\binom{k}{\ell}$ such that $\left| \bigcap_{i \in I} A_i \right| =$ a and $|\bigcap_{j\in J} A_j| = b$ with $a \neq b$. Then there is a constant c_{ℓ} such that $f(m, H) \geq c_{\ell} \cdot \log_{(\ell)}(m).$

Proof of Lemma [4.1.](#page-9-0) Let F be any hypergraph with m edges. Construct an ℓ -graph G with F as its vertex set, and hyperedges

$$
\{\{B_1,\ldots,B_\ell\}:|B_1\cap\cdots\cap B_\ell|=a\}\,.
$$

By [\(6\)](#page-7-1), there exists a subset $F' \subseteq F$ of size $c_{\ell} \cdot \log_{(\ell)}(m)$ which is either a clique or an independent set in G. In either case, H cannot be contained in F' . . -

Lemma [4.1](#page-9-0) implies that if there are infinitely many m such that $H_m \notin$ **EIP**_k, then for each such non-EIP hypergraphs we have $f(m, H_m) \geq c'$. $\log_{(k)}(m)$, where c' is the absolute constant $c' = \min\{c_1, \ldots, c_k\}$. This is an infinite subsequence of ${H_m}$. Therefore, if $f(m, H_m)$ is bounded, then by looking at the tail of $\{H_m\}$, we may assume WLOG that $H_m \in \mathbf{EIP}_k$ for every $m \geq 1$.

Recall that hypergraphs $H \in EIP_k$ are characterized by the length k-vector \vec{b} , and for every sequence of hypergraphs ${H_m}_{m=1}^{\infty}$, we have a corresponding sequence of length k vectors \vec{b} .

We now state the relation between the intersection sizes and the parameters b_1, \ldots, b_k for $H(\vec{b}) \in \mathbf{EIP}_k$.

Lemma 4.2. Let $H(\vec{b}) \in \mathbf{EIP}_k$, and $a_i = |A_1 \cap \cdots \cap A_i|$, for each $1 \leq i \leq k$. Then,

(7)
$$
b_i = a_i - {k-i \choose 1} a_{i+1} + {k-i \choose 2} a_{i+2} - \dots + (-1)^{k-i} {k-i \choose k-i} a_k.
$$

Before proving Theorem [2.7,](#page-4-0) we prove an auxiliary upper bound in Lemma [4.3,](#page-10-0) which provides a better upper bound on $f(m, H(\vec{b}))$ with tighter constraints on \vec{b} .

Lemma 4.3. Suppose $\vec{b} = (b_1, \ldots, b_k)$ is such that $b_i \geq 0$, and for every $1 \leq i \leq k-1$,

(8)
$$
\sum_{j=i}^{k-1} (-1)^{j-i} \binom{m-k+j-i-1}{j-i} b_j \ge 0.
$$

Then $f(m, H(b_1, \ldots, b_k)) = k - 1$.

Proof of Lemma [4.3.](#page-10-0) Let \vec{b} satisfy the restrictions given in [\(8\)](#page-10-1). Note that we need to construct a hypergraph sequence ${F_m}_{m=1}^{\infty}$, such that every kedge subgraph of F_m is isomorphic to $H(\vec{b})$. To achieve this, we define the following general construction:

Construction 4.4 $(F_m^{d_1,\ldots,d_k})$. Given $d_1,\ldots,d_k \geq 0$ and $m \geq k$, let $B =$ $([m], Y)$ be the bipartite graph with parts $[m]$ and Y, where Y is defined as follows. For $1 \leq \ell \leq k$ and $1 \leq j \leq d_{\ell}$, let

$$
Y_j^{\ell} = \left\{ \begin{array}{l} \{v_j^S : S \in \binom{[m]}{\ell}\}, & \ell < k \\ \{w_j\}, & \ell = k \end{array} \right\},
$$

where $v_j^S \neq v_{j'}^{S'}$ for every $(j, S) \neq (j', S')$ and $w_j \neq w_{j'}$ for every $j \neq j'$. Then

$$
Y = \bigcup_{\ell=1}^k \bigcup_{j=1}^{d_\ell} Y_j^{\ell}.
$$

For $x \in [m]$ and $v_j^S \in Y$, let $(x, v_j^S) \in E(B)$ iff $x \in S$, and let $(x, w_j) \in E(B)$ for every $x \in [m]$ and $w_j \in Y$. Then, define $F_m^{d_1,...,d_k} = \{A_1,...,A_m\}$, where $A_i = N_B(i) \subset Y$ for $i = 1, \ldots, m$.

For example, the construction $F_4^{1,2,3}$ is given by:

$$
\left\{\n\begin{array}{l}\nA_1 = \left\{v_1^1; v_1^{12}, v_2^{12}, v_1^{13}, v_2^{13}, v_1^{14}, v_2^{14}; w_1, w_2, w_3\right\} \\
A_2 = \left\{v_1^2; v_1^{12}, v_2^{12}, v_1^{23}, v_2^{23}, v_1^{24}, v_2^{24}; w_1, w_2, w_3\right\} \\
A_3 = \left\{v_1^3; v_1^{13}, v_2^{13}, v_1^{23}, v_2^{23}, v_1^{34}, v_2^{34}; w_1, w_2, w_3\right\} \\
A_4 = \left\{v_1^4; v_1^{14}, v_2^{14}, v_1^{24}, v_2^{24}, v_1^{34}, v_2^{34}; w_1, w_2, w_3\right\}\n\end{array}\n\right\}
$$

.

Informally, in this example, A_i consists of one vertex v_1^i corresponding to $\{i\}$, two vertices v_1^{ij} and v_2^{ij} corresponding to two-element subsets $\{i, j\}$, and three vertices w_1, w_2, w_3 that are in the common intersection of all the A_i 's, $1 \leq i \leq 4$.

We observe the following property of the intersection sizes of the edges of $F_m^{d_1,\ldots,d_k}$.

Claim 4.5. For $1 \leq i \leq k$ and any *i*-edge subgraph $\{A_{r_1}, \ldots, A_{r_i}\}\subset \emptyset$ $F_m^{d_1,\dots,d_k}$, the size of the common intersection $a_i := |A_{r_1} \cap \cdots \cap A_{r_i}|$ is given by

(9)
$$
a_i = d_i + \binom{m-i}{1} d_{i+1} + \dots + \binom{m-i}{k-1-i} d_{k-1} + d_k.
$$

Proof of Claim [4.5](#page-11-0). Suppose $G = \{A_{r_1}, \ldots, A_{r_i}\} \subset F_m^{d_1, \ldots, d_k}$. We shall now count $|A_{r_1} \cap \cdots \cap A_{r_i}|$. For a fixed hypergraph $F_m^{d_1,\ldots,d_k} \supseteq G' \supseteq G$, let $U_{G'}$ denote the set of all vertices of $F_m^{d_1,\dots,d_k}$ which are in all the edges of G' but none of the edges of $F_m^{d_1,...,d_k} \setminus G'$. Notice that $A_{r_1} \cap \cdots \cap A_{r_i}$ is a disjoint union of $U_{G'}$'s, $G' \supseteq G$. Therefore,

(10)
$$
a_i = |A_{r_1} \cap \cdots \cap A_{r_i}| = \sum_{G' \supseteq G} |U_{G'}| = \sum_{G' \supseteq G} \left| \bigcap_{X \in G'} X \setminus \bigcup_{X \notin G'} X \right|.
$$

Fix a $G' \supseteq G$. Let $G' = \{A_{r_1}, \ldots, A_{r_i}, A_{s_1}, \ldots, A_{s_{|G'|-i}}\}$. We observe that,

• For $i \leq |G'| < k$, $U_{G'}$ consists exactly of the vertices

$$
\left\{v_j^{\{r_1,\dots,r_i,s_1,\dots,s_{|G'|-1}\}}: 1\leq j\leq d_{|G'|}\right\}.
$$

• For $k \leq |G'| < m$, $\bigcap_{X \in G'} X = \{w_1, \ldots, w_{d_k}\} \subseteq \bigcup_{X \notin G'} X$, thus

$$
U_{G'}=\varnothing.
$$

• For
$$
|G'| = m
$$
, $U_{G'} = \bigcap_{X \in G'} X = \{w_1, \dots, w_{d_k}\}.$

Therefore,

$$
|U_{G'}| = \begin{cases} d_{|G'|}, & i \le |G'| < k, \\ 0, & k \le |G'| < m, \\ d_k, & |G'| = m. \end{cases}
$$

Plugging back these values into [\(10\)](#page-11-1), we get

$$
a_i = d_i + \binom{m-i}{1} d_{i+1} + \dots + \binom{m-i}{k-1-i} d_{k-1} + d_k
$$

for every $1 \leq i \leq k$.

Now we return to the proof of Lemma [4.3.](#page-10-0) Given a length k vector $\vec{b} \geq 0$ which satisfies [\(8\)](#page-10-1) for $1 \leq i \leq k-1$, let d_i be the left hand side of (8), i.e.,

$$
d_i := \sum_{j=i}^{k-1} (-1)^{j-i} \binom{m-k+j-i-1}{j-i} b_j,
$$

and let $d_k = b_k$. Now, we look at the construction $F_m = F_m^{d_1, ..., d_k}$, and pick any k-edge subgraph $G \subset F_m$. Observe that $G \in EIP_k$, and therefore there is a length k vector \vec{q} such that $G = H(\vec{q})$. It suffices to check that $\vec{q} = b$.

Suppose $G = \{A_1, \ldots, A_k\}$. For $1 \leq i \leq k$, let $a_i := |A_1 \cap \cdots \cap A_i|$. Recall that Lemma [4.2](#page-9-1) gave us a way of computing \vec{g} in terms of \vec{a} , and Claim [4.5](#page-11-0) computes \vec{a} in terms of \vec{d} . In order to precisely write down these relations, we introduce a few matrices.

Notation. Let us define the following quantities for arbitrary $m \geq k \geq 1$.

• Let $a_{ij}^{(m)} = \binom{m-i}{j-i}$ $_{j-i}^{m-i}$) and $b_{ij}^{(m)} = (-1)^{j-i} \binom{m-i}{j-i}$ $_{j-i}^{n-i}$).^{[1](#page-12-0)} Then, denote by $A_{k,m}$ and $B_{k,m}$ the upper triangular matrices

$$
A_{k,m} = (a_{ij}^{(m)})_{1 \le i,j \le k}, \text{ and } B_{k,m} = (b_{ij}^{(m)})_{1 \le i,j \le k},
$$

- \bullet Let $\vec{1}$ denote the all-one vector, and $\vec{0}$ the all-zero vector.
- Define $D_{k-1,m} := \begin{bmatrix} A_{k-1,m} & \vec{\mathbf{1}} \\ \vec{\mathbf{0}} \vec{\mathbf{1}} & 1 \end{bmatrix}$ $\vec{0}^{\intercal}$ 1 " .
- Let $W_{k-1,m}$ be the $(k-1) \times (k-1)$ matrix given by

$$
W_{k-1,m} = (w_{ij}^{(m)})_{1 \le i,j \le k-1},
$$

where $w_{ij}^{(m)} = (-1)^{j-i} \binom{m-k+j-i-1}{j-i}$ $j-i}^{(+j-i-1)}$. • Define $W'_{k-1,m} := \begin{bmatrix} W_{k-1,m} & \vec{\mathbf{0}} \\ \vec{\mathbf{0}}^{\mathsf{T}} & 1 \end{bmatrix}$ $\vec{0}^{\intercal}$ 1 1 . -

First, we observe that the assertion of Lemma [4.2](#page-9-1) can be rephrased as,

$$
(11) \t\t\t \vec{g} = B_{k,k}\vec{a}.
$$

Next, in terms of matrices, equality [\(9\)](#page-11-2) reads

$$
(12) \qquad \qquad \vec{a} = D_{k-1,m}\vec{d}.
$$

¹ By our convention, $\binom{x}{y} = 0$ if $y < 0$. Thus $a_{ij}^{(m)} = b_{ij}^{(m)} = 0$ whenever $j < i$.

Finally, by the definition of \vec{d} , we have

$$
\vec{d} = W'_{k-1,m}\vec{b}.
$$

Putting together Equations [\(11,](#page-12-1) [12,](#page-12-2) [13\)](#page-13-0), we obtain:

$$
\vec{g} = B_{k,k} D_{k-1,m} W'_{k-1,m} \cdot \vec{b}.
$$

By Proposition $A.2$ from the Appendix, we know that the product matrix $B_{k,k}D_{k-1,m}W'_{k-1,m}$ is I_k , and this concludes the proof of Lemma [4.3.](#page-10-0) \blacksquare

We now have gathered all the equipment required to complete the proof of Theorem [2.7.](#page-4-0)

Proof of Theorem [2.7.](#page-4-0) Recall that $\alpha = \min_{1 \le i \le k-2}$ $\left(\frac{b_i(m)}{mb_{i+1}(m)}\right)$, and we wish to prove that

$$
f(m, H(\vec{\mathbf{b}})) \le \frac{k(k-1)}{\alpha} + k - 1.
$$

Note that this bound is trivial if $\frac{k(k-1)}{\alpha} \geq m$, therefore we may assume that $\alpha m > k(k-1)$. From the definition of α , note that $b_i \geq \alpha m b_{i+1}$ for each $1 \leq i \leq k-2$. By successively applying these inequalities we obtain $b_i \geq \alpha m b_{i+1} \geq \alpha^2 m^2 b_{i+2} \geq \cdots \geq \alpha^{k-i-1} m^{k-i-1} b_{k-1}$. Thus,

$$
b_i \ge \alpha m b_{i+1} \ge \sum_{r=i+1}^{k-1} \frac{\alpha m}{k} \cdot b_{i+1}
$$

$$
\ge \sum_{r=i+1}^{k-1} \frac{\alpha^{r-i} m^{r-i}}{k} \cdot b_r
$$

$$
\ge \sum_{r=i+1}^{k-1} \left(\frac{\alpha m}{k}\right)^{r-i} b_r
$$

$$
\ge \sum_{r=i+1}^{k-1} \left(\frac{\lfloor \frac{\alpha m}{k} \rfloor}{r-i} \right) b_r.
$$

The last inequality follows from $X^t \geq {\binom{[X]}{t}}$. Observe that the assumption $\frac{\alpha m}{k} > k - 1$ implies $\left\lceil \frac{\alpha m}{k} \right\rceil \geq k$. Therefore, for $1 \leq i \leq k - 2$ and $i + 1 \leq r \leq k$ $k - 1$, we have

$$
\left\lfloor\frac{\alpha m}{k}\right\rfloor \geq \left\lceil\frac{\alpha m}{k}\right\rceil - k + r - i - 1 \geq 0.
$$

Thus, [\(14\)](#page-13-1) gives us

$$
b_i \geq \sum_{r=i+1}^{k-1} {\binom{\lfloor \frac{\alpha m}{k} \rfloor}{r-i}} b_r \geq \sum_{r=i+1}^{k-1} {\binom{\lceil \frac{\alpha m}{k} \rceil - k + r - i - 1}{r-i}} b_r
$$

$$
\geq \sum_{r=i+1}^{k-1} (-1)^{r-i+1} {\binom{\lceil \frac{\alpha m}{k} \rceil - k + r - i - 1}{r-i}} b_r,
$$

implying

$$
b_i + \sum_{r=i+1}^{k-1} (-1)^{r-i} \binom{\left\lceil \frac{\alpha m}{k} \right\rceil - k + r - i - 1}{r - i} b_r \ge 0.
$$

This is exactly the condition [\(8\)](#page-10-1), with m replaced by $\left\lceil \frac{\alpha m}{k} \right\rceil$, so Lemma [4.3](#page-10-0) gives us a hypergraph K on $\left\lceil \frac{\alpha m}{k} \right\rceil$ edges such that every k sets of K are isomorphic to $H(\vec{b})$.

Figure 4: Constructing F_m from copies of K.

Now, consider a $\lceil \frac{k}{\alpha} \rceil$ -fold disjoint union of K's. This hypergraph F_m has $\left\lceil \frac{k}{\alpha} \right\rceil \cdot \left\lceil \frac{\alpha m}{k} \right\rceil \ge m$ edges, and note that as long as we pick $1 + \left\lceil \frac{k}{\alpha} \right\rceil \cdot (k-1)$ edges, some k of them fall in the same copy of K. These k edges create a $H(\vec{b})$ by construction of K. This shows $f(m, H(\vec{b})) \leq \lceil \frac{k}{\alpha} \rceil \cdot (k-1)$, completing the proof of the upper bound.

Now we prove the lower bound. Recall that we are aiming to prove

(15)
$$
f(m, H(\vec{b})) \ge \max_{1 \le i \le k-2} \left(\frac{mb_{i+1}}{2(b_i + b_{i+1})(b_{k-1} + b_k)} \right)^{\frac{1}{k}}.
$$

Suppose F is a hypergraph on m edges. Either F has a subgraph F_1 of size $\frac{m}{2}$ which is of the same uniformity as $H(\vec{b})$, or it has a subgraph of size $\frac{m}{2}$ which is not of this uniformity. If the latter is true, then $\exp(F, H(\vec{b})) \geq \frac{m}{2}$. Otherwise, we focus on the subgraph F_1 . Let T be a $H(\vec{b})$ -free subgraph in F_1 of maximum size, say $|T| = t$. Then, for every $S \in F_1 \setminus T$, there exist distinct $A_1, \ldots, A_{k-1} \in T$ such that $\{A_1, \ldots, A_{k-1}, S\}$ forms a $H(\vec{b})$. Therefore, there are fixed $A_1, \ldots, A_{k-1} \in T$ and a subgraph $F_2 \subseteq F_1 \setminus T$ such that $\{A_1,\ldots,A_{k-1},S\}$ forms a $H(\vec{b})$ for every $S \in F_2$, where

$$
|F_2| \ge \frac{\frac{m}{2} - t}{\binom{t}{k-1}}.
$$

Further, note that $|A_1 \cap \cdots \cap A_{k-1} \cap S| = b_k$ for every $S \in F_2$, therefore there is a subgraph $F_3 \subseteq F_2$ such that every element $S \in F_3$ intersects $A_1 \cap \cdots \cap A_{k-1}$ in the exact same set, and

$$
|F_3| \geq \frac{\frac{m}{2}-t}{\binom{t}{k-1}\binom{b_{k-1}+b_k}{b_k}}.
$$

Finally, for any $1 \leq i \leq k-2$, let $X_i := A_1 \cap \cdots \cap A_i \setminus (A_{i+1} \cup \cdots \cup A_{k-1}),$ and

$$
h_i := |\{(x, B): x \in X_i, B \in F_3, x \in B\}|.
$$

Let $D := \max_{x \in V(F_3)} \deg_{F_3}(x)$. As $\{A_1, \ldots, A_{k-1}, B\}$ is an $H(\vec{b})$ for each $B \in F_3$,

(16)
$$
|F_3| \cdot b_{i+1} = h_i \le D \cdot |X_i|.
$$

Now, for a fixed $S \in F_3$,

$$
\begin{aligned} |X_i| &= |S \cap X_i| + |X_i \setminus S| \\ &= \left| S \cap \bigcap_{j=1}^i A_j \setminus \left(\bigcup_{j=i+1}^{k-1} A_j \right) \right| + \left| \bigcap_{j=1}^i A_j \setminus \left(\bigcup_{j=i+1}^{k-1} A_j \cup S \right) \right| \\ &= b_{i+1} + b_i, \end{aligned}
$$

Therefore [\(16\)](#page-15-0) implies

$$
D \ge \frac{|F_3| \cdot b_{i+1}}{b_i + b_{i+1}} \ge \frac{(\frac{m}{2} - t)b_{i+1}}{\binom{t}{k-1}\binom{b_{k-1} + b_k}{b_k}(b_i + b_{i+1})}
$$

.

Note that the sets in F_3 that achieve the maximum degree D is $H(b)$ -free. This is because if I is the common intersection of any set from F_3 with $A_1 \cap \cdots \cap A_{k-1}$, and if x is a vertex of degree D in F_3 , then every edge through x contains $\{x\} \cup I$. This leads us to the inequality

$$
t \geq \frac{(\frac{m}{2} - t)b_{i+1}}{\binom{t}{k-1}(b_i + b_{i+1})\binom{b_{k-1} + b_k}{b_k}},
$$

i.e.,

$$
t\binom{t}{k-1} \ge \frac{(\frac{m}{2}-t)b_{i+1}}{(b_i+b_{i+1})\binom{b_{k-1}+b_k}{b_k}}.
$$

Since $m \geq 6$, note that if $t \geq \frac{m}{4}$, then $t \geq \left(\frac{m}{2}\right)$ $\left(\frac{m}{2}\right)^{\frac{1}{3}} \geq \left(\frac{m}{2}\right)$ $\left(\frac{m}{2}\right)^{\frac{1}{k}}$, which is larger than the right side of [\(15\)](#page-14-0). So we may assume $t < \frac{m}{4}$, which would lead us to

(17)
$$
t^{k} \geq 2t \binom{t}{k-1} \geq \frac{mb_{i+1}}{2(b_{i}+b_{i+1})\binom{b_{k-1}+b_{k}}{b_{k}}}.
$$

As [\(17\)](#page-16-0) holds for every $1 \leq i \leq k-2$, this gives the bound that we seek. \Box

5. Proof of Theorem [2.8](#page-4-2)

In this section we prove Theorem [2.8.](#page-4-2) The proof is by induction on b_k , starting from $b_k = 0$. Notice that the lower bound of Theorem [2.7](#page-4-0) gives us the following corollary, which serves as the base case for our induction argument:

Corollary 5.1. For $m \geq 6$,

$$
f(m, H(b_1, ..., b_{k-1}, 0)) \ge \max_{1 \le i \le k-2} \left(\frac{mb_{i+1}}{2(b_i + b_{i+1})} \right)^{\frac{1}{k}}.
$$

Further, one can asymptotically improve this bound when $k = 3$:

Proposition 5.2. For $m \geq 4$,

$$
f(m, H(b_1, b_2, 0)) \ge \sqrt{\frac{mb_2}{2(b_1 + 2b_2)}}.
$$

Proof. Let $|F| = m$ and $H = H(b_1, b_2, 0)$. Either F has a $(b_1 + 2b_2)$ -uniform subgraph F_1 of size $\frac{m}{2}$, or it has a subgraph of size $\frac{m}{2}$ in which none of the edges have size (b_1+2b_2) . If the latter is true, then $ex(F,H) \geq \frac{m}{2}$. Otherwise let us focus on F_1 . Let T be an H-free subset of maximum size in F_1 , and suppose $|T| = t$. Note that for any $B \in F_1 \setminus T$, there are sets $A_1, A_2 \in T$ such that (B, A_1, A_2) is a $H(b_1, b_2, 0)$. Suppose $V = \bigcup_{A \in \mathcal{T}} A$, then we have $|B \cap V| \ge 2b_2$, and $|V| \le t(b_1 + 2b_2)$. Let $D = \max_{x \in V} \deg_{F_1}(x)$. Then,

$$
2b_2 \cdot |F_1 \setminus T| \leq |\{(x, B) : x \in V, B \in F_1 \setminus T, x \in B\}| \leq D \cdot |V|,
$$

and

$$
D \ge \frac{(m-2t)b_2}{t(b_1+2b_2)}.
$$

Let $x \in V$ have the maximum degree in F. Since the subgraph of size D containing x is H -free, we obtain

$$
t \ge \frac{(m-2t)b_2}{t(b_1+2b_2)}.
$$

If $t \geq \frac{m}{4}$, then $t \geq \frac{1}{2}\sqrt{m} \geq \sqrt{\frac{mb_2}{2(b_1+2b_2)}}$. So assume $t < \frac{m}{4}$, and therefore $t^2 \ge \frac{mb_2}{2(b_1+2b_2)}$, as desired. □

Before we prove Theorem [2.8](#page-4-2) we require the following lemma from [\[13](#page-28-8)]: **Lemma 5.3.** Let $H = (V, E)$ be a k-graph on m vertices, and let $\alpha(H)$ denote the independence number of H. Then,

$$
\alpha(H) \ge \frac{k-1}{k} \cdot \left(\frac{m^k}{k|E(H)|}\right)^{\frac{1}{k-1}}.
$$

Now we are prepared to prove Theorem [2.8.](#page-4-2)

Proof of Theorem [2.8.](#page-4-2) Fix k and \vec{b} . Recall that b_k is fixed, and we wish to show that for $m \geq 6$,

$$
(18) \qquad f(m, H(b_1, \ldots, b_k)) \geq \begin{cases} m^{\frac{1}{k(b_k+1)}} \left(\frac{b_{k-1}}{4(b_{k-2}+2b_{k-1})} \right)^{\frac{1}{k}}, & k \geq 4, \\ m^{\frac{1}{b_3+2}} \left(\frac{b_2}{4(b_1+2b_2)} \right)^{\frac{b_3+1}{b_3+2}}, & k = 3. \end{cases}
$$

Suppose $|F| = m$. Then, either F has a subgraph F_1 of size at least $\frac{m}{2}$ which has uniformity the same as that of $H(\vec{b})$, or it does not. When the latter is true, we have $\mathrm{ex}(F, H(\vec{b})) \geq \frac{m}{2}$. Since $\frac{m}{2} \geq m^{\frac{1}{4}} \cdot (\frac{1}{8})$ $\frac{1}{8}$ and $\frac{m}{2} \geq m^{\frac{1}{2}} \cdot (\frac{1}{8})^{\frac{1}{2}}$, we may assume that the former is true. We wish to show that F_1 contains a $H(\vec{b})$ -free subgraph of large size.

We proceed by induction on b_k . Notice that we already established the results for $b_k = 0$ in Corollary [5.1](#page-16-1) (using $b_{k-1} \leq 2b_{k-1}$) and Proposition [5.2.](#page-16-2)

Construct a k-graph G with vertex set F_1 and call $\{A_1, \ldots, A_k\}$ an edge in G iff $\{A_1,\ldots,A_k\} \cong H(\vec{b})$. Clearly, $t = \alpha(G)$ is a lower bound to our problem. By Lemma [5.3,](#page-17-0)

$$
k|E(G)| \ge \left(\frac{k-1}{k}\right)^{k-1} \cdot \frac{(m/2)^k}{t^{k-1}}.
$$

Given $1 \leq i \leq k$ and $B_1, \ldots, B_i \in F_1$, denote by $\deg_G(B_1, \ldots, B_i)$ the number of edges of G containing $\{B_1,\ldots,B_i\}$. As

$$
\sum_{A_1,\ldots,A_{k-2}\in F_1} \deg_G(A_1,\ldots,A_{k-2}) = {k \choose 2} |E(G)|,
$$

we obtain

$$
\sum_{A_1,\dots,A_{k-2}\in F_1} \deg_G(A_1,\dots,A_{k-2}) \ge \frac{\binom{k}{2}}{k} \cdot \frac{(k-1)^{k-1}}{k^{k-1}} \cdot \frac{(m/2)^k}{t^{k-1}}
$$

$$
= \frac{(k-1)^k}{2k^{k-1}} \cdot \frac{(m/2)^k}{t^{k-1}}.
$$

The sum on the left side has at most $\binom{m/2}{k-2}$ $\binom{m/2}{k-2} \leq \frac{(m/2)^{k-2}}{(k-2)!}$ terms, therefore there exist distinct $A_1, \ldots, A_{k-2} \in F_1$ such that

$$
\deg_G(A_1,\ldots,A_{k-2}) \ge \frac{(k-2)!(k-1)^k}{2k^{k-1}} \cdot \frac{(m/2)^2}{t^{k-1}}.
$$

Note that $\frac{(k-2)!(k-1)^k}{2k^{k-1}} > \frac{1}{4}$ for every $k \geq 3$. Let B denote the set of all edges $B \in F_1$ which are covered by an edge through $\{A_1, \ldots, A_{k-2}\}\$ in G. Then, $|\mathcal{B}|^2 \ge \deg_G(A_1,\ldots,A_{k-2}),$ and so

(19)
$$
|\mathcal{B}|^2 \ge \frac{1}{4} \cdot \frac{(m/2)^2}{t^{k-1}} = \frac{1}{16} \cdot \frac{m^2}{t^{k-1}}.
$$

As $\{A_1,\ldots,A_{k-2}\}\$ is a subgraph of $H(\vec{b})$, we have

$$
|A_1 \cap \cdots \cap A_{k-2}| = b_{k-2} + 2b_{k-1} + b_k.
$$

Also, for every $B \in \mathcal{B}, \{A_1, \ldots, A_{k-2}, B\}$ is a subgraph of $H(\vec{b})$. Thus,

$$
|A_1 \cap \cdots \cap A_{k-2} \cap B| = b_{k-1} + b_k.
$$

Now,

$$
|\mathcal{B}| \cdot (b_{k-1} + b_k) = |\{(x, B) : x \in A_1 \cap \dots \cap A_{k-2}, B \in \mathcal{B}, x \in B\}|
$$

=
$$
\sum_{x \in A_1 \cap \dots \cap A_{k-2}} \deg_{\mathcal{B}}(x).
$$

Let D be the maximum degree of a vertex in F_1 . Then, by [\(19\)](#page-18-0),

$$
(20) \qquad D \cdot (b_{k-2} + 2b_{k-1} + b_k) \geq |\mathcal{B}| \cdot (b_{k-1} + b_k) \geq \frac{1}{4}(b_{k-1} + b_k) \cdot \frac{m}{t^{\frac{k-1}{2}}}.
$$

Also, note that

$$
\frac{b_{k-1} + b_k}{b_{k-2} + 2b_{k-1} + b_k} \ge \frac{b_{k-1}}{b_{k-2} + 2b_{k-1}} \iff b_k(b_{k-2} + b_{k-1}) \ge 0.
$$

Therefore [\(20\)](#page-19-0) gives us,

(21)
$$
D \geq \frac{1}{4} \cdot \frac{b_{k-1}}{b_{k-2} + 2b_{k-1}} \cdot \frac{m}{t^{\frac{k-1}{2}}}.
$$

Now, we notice that if x is a vertex of degree D , then deleting it from the edges through x gives us a family of uniformity one less than that of F_1 . By induction on b_k , this subfamily already contains a $H(b_1,\ldots,b_{k-1},b_k-1)$ -free family of size $f(D, H(b_1, \ldots, b_{k-1}, b_k - 1))$, which is a natural lower bound to our problem. Therefore,

$$
t \ge f(D, H(b_1, \ldots, b_{k-1}, b_k-1))
$$

We now split into two cases.

• **Case I:** $k \geq 4$. Now we use the inductive lower bound given by [\(18\)](#page-17-1):

$$
t \ge D^{\frac{1}{kb_k}} \left(\frac{b_{k-1}}{4(b_{k-2} + 2b_{k-1})} \right)^{\frac{1}{k}} \iff D \le \left(\frac{4(b_{k-2} + 2b_{k-1})}{b_{k-1}} \right)^{b_k} \cdot t^{kb_k}.
$$

Combining this bound with (21) , we get

$$
\left(\frac{4(b_{k-2}+2b_{k-1})}{b_{k-1}}\right)^{b_k} \cdot t^{kb_k} \ge \frac{b_{k-1}}{4(b_{k-2}+2b_{k-1})} \cdot \frac{m}{t^{\frac{k-1}{2}}},
$$

Which, on invoking $t^{\frac{k-1}{2}} \leq t^k$, leads us to

$$
t^{k(b_k+1)} \ge m \left(\frac{b_{k-1}}{4(b_{k-2}+2b_{k-1})}\right)^{b_k+1},
$$

finishing off the induction step.

• **Case II:** $k = 3$. In this case we use the inductive lower bound in (18) of

$$
t \ge D^{\frac{1}{b_3+1}}\left(\frac{b_2}{4(b_1+2b_2)}\right)^{\frac{b_3}{b_3+1}} \iff D \le \left(\frac{4(b_1+2b_2)}{b_2}\right)^{b_3} \cdot t^{b_3+1}.
$$

Again, combining this bound with [\(21\)](#page-19-1), we obtain

$$
\left(\frac{4(b_1+2b_2)}{b_2}\right)^{b_3} \cdot t^{b_3+1} \ge \frac{b_2}{4(b_1+2b_2)} \cdot \frac{m}{t}.
$$

This implies $t \geq m^{\frac{1}{b_3+2}} \left(\frac{b_2}{4(b_1+2b_2)} \right)^{\frac{b_3+1}{b_3+2}}$, completing the induction step.

 \Box

6. Proof of Theorem [2.10](#page-5-2)

In this section, we prove Theorem [2.10.](#page-5-2) For the proof, we rely upon the incidence structure of Miquelian inversive planes $\mathbf{M}(q)$ of order q. An inversive plane consists of a set of points P and a set of circles C satisfying three axioms [\[14](#page-28-9)]:

- Any three distinct points are contained in exactly one circle.
- If $P \neq Q$ are points and c is a circle containing P but not Q, then there is a unique circle b through P, Q and satisfying $b \cap c = \{P\}.$
- P contains at least four points not on the same circle.

Every inversive plane is a $3-(n^2+1, n+1, 1)$ -design for some integer n, which is called its order. An inversive plane is called Miquelian if it satisfies Miquel's theorem [\[14](#page-28-9)]. The usefulness of Miquelian inversive planes lies in the fact that their automorphism groups are sharply 3-transitive (cf. pp 274–275, Section 6.4 of [\[15\]](#page-28-10)). There are a few known constructions of $\mathbf{M}(q)$, one such construction is outlined here. The points of $\mathbf{M}(q)$ are elements of

 \mathbb{F}_q^2 and a special point at infinity, denoted by ∞ . The circles are the images of the set $K = \mathbb{F}_q \cup \{\infty\}$ under the permutation group $PGL_2(q^2)$, given by

$$
x \mapsto \frac{ax^{\alpha} + c}{bx^{\alpha} + d}, \ ad - bc \neq 0, \alpha \in \text{Aut}(\mathbb{F}_q^2).
$$

For further information on inversive planes and their constructions, the reader is referred to [\[15,](#page-28-10) [16](#page-28-11), [17\]](#page-28-12).

Now, we prove Theorem [2.10.](#page-5-2)

Proof of Theorem [2.10.](#page-5-2). Recall that for every odd prime power q, we are required to demonstrate a hypergraph on $q^2 + 1$ edges with the property that every three edges form an $H(q^2 - q - 1, q, 1)$. Let **M**(q) be a Miquelian inversive plane, with points labeled $\{1, 2, \ldots, q^2 + 1\}$. Then, we consider the $(q^2 + q)$ -graph $F = \{A_1, \ldots, A_{q^2+1}\}\$, whose vertex set $V(F)$ is the circles of $\mathbf{M}(q)$, and A_i is the collection of circles containing i. By the inversive plane axiom, any three distinct points have a unique circle through them. It suffices to show that any two distinct points P, Q in $\mathbf{M}(q)$ have $q + 1$ distinct circles through them. By 2-transitivity of the Automorphism group, we know that any two points have the same number a_2 of circles through them. Now, for any $P \neq Q$,

$$
(q^2 + 1 - 2) \cdot 1 = |\{(R, c) : R \text{ is a point}, c \text{ is a circle through } P, Q, R\}|
$$

= $a_2 \cdot (q + 1 - 2)$,

Thus $a_2 = q + 1$. So, F is $(q^2 + q)$ -uniform, every two edges of F have an intersection of size $q + 1$, and every three edges of F have an intersection of size 1. By inclusion-exclusion, they form a $H(q^2-q-1, q, 1)$. \Box

Now, we prove Corollary [2.11.](#page-5-3)

Proof of Corollary [2.11.](#page-5-3) First, we prove (4) , which asserts that whenever $b_1 \geq b_2^2 \geq m$ and b_2 is a prime power, $f(m, H_3(b_1, b_2, 1)) = 2$. Initially we start with an inversive plane construction, which gives gives us $b_2^2 + 1$ sets such that any three of them are an isomorphic copy of $H(b_2^2 - b_2 - 1, b_2, 1)$. As long as $b_2^2 + 1 \ge m$, we can take a subgraph of the construction and still obtain m sets satisfying the same property. Also note that as $b_1 \geq b_2^2$, we can create a $H_3(b_1, b_2, 1)$ -construction by first creating an inversive plane F, which is a $H_3(b_2^2 - b_2 - 1, b_2, 1)$ -construction, and then adding $(b_1 - b_2^2 + b_2 + 1)$ new distinct points to each set in F . This proves (4) .

To prove [\(5\)](#page-5-5), we shall use the result of Baker, Harman and Pintz [\[18](#page-28-13)] on the density of primes, which states that for sufficiently large x there is a prime p such that

$$
x - x^{0.525} < p < x.
$$

Let $g(x)$ be the inverse of $x - x^{0.525}$ for large x. Then, $x < g(p)$. Using monotonicity of g, it can be shown that $g(p) < p + p^{0.529}$ for large p. Thus, for large enough m , there exists a prime p such that

(22)
$$
p < x < p + p^{0.529}.
$$

Now, let $b_1 \gg b_2$ and $b_2 \geq m^{0.68}$, as in the hypothesis. From [\(22\)](#page-22-0), we get a prime number p with $p < b_2 < p + p^{0.529}$. Let $F = \{A_1, \dots, A_{p^2+1}\}\$ be the $H_3(p^2 - p - 1, p, 1)$ -construction obtained from Theorem [2.10.](#page-5-2) Note that $m < b_2^{0.68^{-1}} = b_2^{1.4706} < p^2 + 1$. Let $F' = \{A_1, \dots, A_m\}$. For every $1 \leq i < j \leq m$, add $b_2 - p$ many new vertices $v_1^{ij}, \ldots, v_{b_2-p}^{ij}$ to the sets A_i and A_i , i.e, let

$$
B_i = A_i \sqcup \bigcup_{j \neq i} \{v_r^{ij} : 1 \leq r \leq b_2 - p\}.
$$

Suppose $K = \{B_i : 1 \le i \le m\}$. Observe that for every *i*,

$$
|B_i| = p^2 + p + m(b_2 - p),
$$

and for every $i \neq j$,

$$
|B_i \cap B_j| = p + b_2 - p = b_2.
$$

Hence, K is a hypergraph such that any three edges form a $H_3(p^2 + p +$ $m(b_2 - p), b_2, 1)$. Since

$$
p^{2} + p + m(b_{2} - p) < p^{2} + p + p^{1.4706 + 0.529}
$$
\n
$$
= p^{2} + p^{1.9996} + p
$$
\n
$$
< 3b_{2}^{2} \ll b_{1},
$$

we can add adequately many new vertices to every edge of K in order to get a hypergraph whose any three edges form a $H_3(b_1, b_2, 1)$. \Box

7. Further problems

We discuss a few further problems that are of interest. Of course, the main open question is (2) , which asks to characterize all sequences of k-edge hypergraphs H_m for which $f(m, H_m)$ is bounded. As we discussed, even the case $k = 3$ turns out to be quite challenging..

Let us focus on the case $k = 3$ and $\vec{b} = (b_1, b_2, 1)$. The current state of affairs was summarized in Figure [3.](#page-6-0) Observe that all the upper bounds in the lightly shaded regions are actually upper bounds of 2. Therefore, one may ask the following question:

Problem 7.1. Characterize all values of (b_1, b_2) such that

$$
f(m, H_3(b_1, b_2, 1)) = 2.
$$

We cannot solve this problem completely. However, we can derive a necessary condition on b_1, b_2, b_3 for which $f(m, H_3(b_1, b_2, b_3)) = 2$ as follows. Suppose F is a hypergraph with $V(F) = \{1, \dots, n\}$ such that any three edges of F form a $H_3(b_1, b_2, b_3)$. Let d_i denote the degree of vertex i in F. By double-counting arguments,

$$
\sum_{i=1}^{n} {d_i \choose 3} = {m \choose 3} b_3, \sum_{i=1}^{n} {d_i \choose 2} = {m \choose 2} (b_2 + b_3), \sum_{i=1}^{n} d_i = m(b_1 + 2b_2 + b_3).
$$

After algebraic manipulation of these expressions and using the Cauchy-Schwarz inequality $\sum_{i=1}^n d_i \cdot \sum_{i=1}^n d_i^3 \ge (\sum_{i=1}^n d_i^2)^2$ and large m, we obtain Theorem [7.2.](#page-23-1)

Theorem 7.2. Suppose $f(m, H_3(b_1, b_2, b_3)) = 2$. Then, for large enough m,

$$
b_1b_3 + \frac{b_1b_2}{m} + \frac{b_2b_3}{m} \ge b_2^2.
$$

In particular, when $b_3 = 1$,

$$
b_1 + \frac{b_1 b_2}{m} \ge b_2^2.
$$

Theorem [7.2](#page-23-1) gives more insight into Figure [3.](#page-6-0) Basically, there are two cases to consider. When b_1 is asymptotically larger than $\frac{b_1b_2}{m}$, i.e. when $b_2 =$ $o(m)$, this means that $b_1 \geq b_2^2$ is necessary for $f = 2$. When $b_2 \geq m$, this gives us $b_1 \geq mb_2$, which is exactly the construction in Lemma [4.3.](#page-10-0) Further, note that this transition occurs exactly at the intersection of the line $b_1 = mb_2$ and the parabola $b_1 = b_2^2$.

As a further special case of Problem [7.1,](#page-23-2) one can look at $\vec{\mathbf{b}} = (m, b_2, 1)$ where $1 \ll b_2 \ll \sqrt{m}$. We expect this range to be solvable via a construction, since there are constructions for $b_2 = 1$ (Theorem [2.7\)](#page-4-0) and $b_2 = \sqrt{m}$ (Theorem [2.10\)](#page-5-2). The problem is equivalent to constructing bipartite graphs with certain properties, as stated below.

Problem 7.3. Suppose $1 \ll b_2 \ll \sqrt{m}$. Is there a bipartite graph G with parts A, B, such that $|A| = m$, the degree of every vertex in A is asymptotic to m, the size of the common neighborhood of every pair in A is asymptotic to b_2 , and every three vertices in A have a unique common neighbor in B ?

If such a bipartite graph can be constructed, then we can let $F =$ ${N_G(u) : u \in A}$. This hypergraph will testify for $f(m, H(m, b_2, 1)) = 2$. From the proof of Theorem [7.2,](#page-23-1) we know that if such a bipartite graph exists, it cannot be regular from B : a regular construction from B implies equality in the Cauchy-Schwarz inequality, which would imply $b_2 = \Theta(\sqrt{m})$. Therefore if such a graph is constructed, B needs to have vertices of different degrees.

Notice also that if the answer to Problem [7.3](#page-24-0) is affirmative, then we can shade the small triangle in Figure [3](#page-6-0) light. This is courtesy of the fact that any (b_1, b_2) in that region can be written as a sum $(x, y) + (m, z)$, with $x \ge my$. We can then take a $H_3(x, y, 0)$ -construction $\{A_1, \ldots, A_m\}$ and a $H_3(m, z, 1)$ -construction $\{A'_1, \ldots, A'_m\}$, and merge them together to obtain the $H_3(b_1, b_2, 1)$ -construction $\{A_1 \cup A'_1, \ldots, A_m \cup A'_m\}.$

Appendix A

Our goal in this section is to prove the matrix identity asserted in Proposition [A.2.](#page-25-0) Recall that the binomial coefficient $\binom{-a}{s}$ ${s^{-a}\choose s}$ is interpreted as $(-1)^s\overbrace{{}}^{a+s-1}_{s}$ $_{s}^{s-1}$). Observe that with this definition, the generalized binomial coefficients also satisfy Pascal's identity $\binom{a}{s}$ ${s\choose s} = {a-1 \choose s}$ ${s-1 \choose s-1} + {a-1 \choose s-1}$ $_{s-1}^{a-1}$). Before seeing the proof of Proposition [A.2,](#page-25-0) we establish a useful identity in Lemma [A.1.](#page-24-1)

Lemma A.1. For integers $x \geq 0, y \geq z \geq 0$, we have

(23)
$$
\sum_{t=0}^{z} (-1)^{t} {x \choose t} {y-t \choose z-t} = (-1)^{z} {x-y+z-1 \choose z}.
$$

Proof of Lemma [A.1.](#page-24-1) One can prove this identity using induction on y. Note that when $y = z$, the identity becomes

$$
\sum_{t=0}^{z} (-1)^{t} \binom{x}{t} = (-1)^{z} \binom{x-1}{z},
$$

which follows from applying Pascal's identity $\binom{x}{t}$ $\binom{x}{t} = \binom{x-1}{t}$ $\binom{-1}{t} + \binom{x-1}{t-1}$ $_{t-1}^{x-1}$) to each term and telescoping.

Now suppose that (23) holds for some y. Then,

$$
\sum_{t=0}^{z} (-1)^{t} {x \choose t} {y-t+1 \choose z-t} = \sum_{t=0}^{z} (-1)^{t} {x \choose t} {y-t \choose z-t} + \sum_{t=0}^{z-1} (-1)^{t} {x \choose t} {y-t \choose z-t-1}.
$$

By induction hypothesis, the first term is $(-1)^z\binom{x-y+z-1}{z}$ $\binom{+z-1}{z}$ and the second term is $(-1)^{z-1} \binom{x-y+z-2}{z-1}$ $_{z-1}^{y+z-2}$). Their sum is $(-1)^z {x-y+z-2 \choose z}$ n is $(-1)^{z-1}\binom{x-y+z-2}{z-1}$. Their sum is $(-1)^z\binom{x-y+z-2}{z}$, as desired. \blacksquare
We are now going to state and prove Proposition [A.2.](#page-25-0) Recall the follow-

ing notation:

$$
a_{ij}^{(m)} = {m-i \choose j-i}, \ b_{ij}^{(m)} = (-1)^{j-i} {m-i \choose j-i},
$$

$$
w_{ij}^{(m)} = (-1)^{j-i} {m-k+j-i-1 \choose j-i},
$$

$$
A_{k,m} = (a_{ij}^{(m)})_{1 \le i,j \le k}, \ B_{k,m} = (b_{ij}^{(m)})_{1 \le i,j \le k}, W_{k-1,m} = (w_{ij}^{(m)})_{1 \le i,j \le k-1},
$$

and,

$$
D_{k-1,m} = \begin{bmatrix} A_{k-1,m} & \vec{\mathbf{1}} \\ \vec{\mathbf{0}}^{\mathsf{T}} & 1 \end{bmatrix}, W'_{k-1,m} = \begin{bmatrix} W_{k-1,m} & \vec{\mathbf{0}} \\ \vec{\mathbf{0}}^{\mathsf{T}} & 1 \end{bmatrix}.
$$

Proposition A.2.

$$
B_{k,k} \cdot D_{k-1,m} \cdot W'_{k-1,m} = I_k.
$$

Proof. Note that $B_{k,k} = \begin{bmatrix} B_{k-1,k} & \bar{v} \\ \vec{\sigma} \cdot \vec{v} \end{bmatrix}$ $\vec{0}$ ^T 1 , where $v_i = (-1)^{k-i}$, and therefore

$$
B_{k,k}D_{k-1,m}W'_{k-1,m} = \begin{bmatrix} B_{k-1,k}A_{k-1,m}W_{k-1,m} & B_{k-1,k}\vec{\mathbf{1}} + v \\ \vec{\mathbf{0}}^{\mathsf{T}} & 1 \end{bmatrix}.
$$

We verify that $B_{k-1,k}\vec{\mathbf{1}} + v = \vec{\mathbf{0}}$ and $B_{k-1,k}A_{k-1,m}W_{k-1,m} = I_{k-1}$ in Claims [A.3](#page-26-0) and [A.4,](#page-26-1) respectively.

Claim A.3. $B_{k-1,k}\vec{1} + v = \vec{0}$.

Proof of Claim [A.3.](#page-26-0) Note that the *i*'th row of $B_{k-1,k}\vec{1}$ is

$$
\sum_{j=1}^{k-1} b_{ij}^{(k)} = \sum_{j=i}^{k-1} (-1)^{j-i} \binom{k-i}{j-i} = \sum_{j=0}^{k-i-1} (-1)^j \binom{k-i}{j} = 0 - (-1)^{k-i} = -v_i,
$$

as desired.

Claim A.4. $B_{k-1,k}A_{k-1,m}W_{k-1,m}=I_{k-1}.$

Proof of Claim [A.4.](#page-26-1) Note that the (i, j) th entry of the product matrix is given by

$$
\sum_{r=1}^{k-1} \sum_{s=1}^{k-1} b_{ir}^{(k)} a_{rs}^{(m)} w_{sj}^{(m)}
$$
\n
$$
(24) \qquad = \sum_{r=1}^{k-1} \sum_{s=1}^{k-1} (-1)^{r-i+j-s} {k-i \choose r-i} {m-r \choose s-r} {m-k+j-s-1 \choose j-s}
$$
\n
$$
= \sum_{s=1}^{k-1} (-1)^{j-s} {m-k+j-s-1 \choose j-s} \sum_{r=1}^{k-1} (-1)^{r-i} {k-i \choose r-i} {m-r \choose s-r}.
$$

Observe that, using Lemma [A.1](#page-24-1) for $x = k - i$, $y = m - i$, $z = s - i$, we get

$$
\sum_{r=1}^{k-1} (-1)^{r-i} {k-i \choose r-i} {m-r \choose s-r} = \sum_{r=i}^{s} (-1)^{r-i} {k-i \choose r-i} {m-r \choose s-r}
$$

$$
= \sum_{r=0}^{s-i} (-1)^r {k-i \choose r} {m-i-r \choose s-i-r}
$$

$$
= (-1)^{s-i} {k-m+s-i-1 \choose s-i}.
$$

Plugging this back into (24) , we get that the (i, j) th entry of the product matrix is

(25)
$$
\sum_{s=1}^{k-1} (-1)^{j-i} \binom{m-k+j-s-1}{j-s} \binom{k-m+s-i-1}{s-i}
$$

 \blacksquare

Notice that the sum in [\(25\)](#page-26-3) only runs from $s = i$ to $s = j$, and therefore after the change of variable $s \mapsto s + i$, the expression reduces to

(26)
$$
(-1)^{j-i}\sum_{s=0}^{j-i} \binom{m-k+j-s-i-1}{j-i-s} \binom{k-m+s-1}{s}.
$$

Note that $\binom{s-(m-k)-1}{s}$ ${s-k-1 \choose s} = (-1)^s {m-k \choose s}$ s^{-k} , so (26) is the sum

$$
(-1)^{j-i}\sum_{s=0}^{j-i}(-1)^s \binom{m-k}{s} \binom{m-k+j-i-1-s}{j-i-s},
$$

which, on invoking Lemma [A.1](#page-24-1) for $x = m-k$, $y = m-k+j-i-1$, $z = j-i$, reduces to

$$
(-1)^{j-i}\cdot(-1)^{j-i}\cdot\binom{m-k-m+k-j+i+1+j-i-1}{j-i}=\binom{0}{j-i}.
$$

Clearly, this is 0 when $j \neq i$ and 1 when $j = i$.

This completes the proof of Proposition [A.2.](#page-25-0)

Acknowledgements

 \Box

The authors are thankful to a referee whose comments not only helped improve the presentation, but also fixed an error in Corollary [2.11](#page-5-3) in an earlier version of the manuscript.

References

- [1] P. Erdős and J. Komlós. On a problem of Moser. *Combinatorial theory* and its applications, I (Proc. Colloq., Balatonfüred, 1969), pages $365-$ 367, 1970. [MR0297582](https://www.ams.org/mathscinet-getitem?mr=0297582)
- [2] D. Kleitman. Review of the article [\[1](#page-27-0)].
- [3] P. Erdős and S. Shelah. On problems of Moser and Hanson. *Graph* theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pages 75–79. Lecture Notes in Math., Vol. 303, 1972. [MR0337646](https://www.ams.org/mathscinet-getitem?mr=0337646)
- [4] Jacob Fox, Choongbum Lee, and Benny Sudakov. Maximum union-free subfamilies. Israel J. Math., 191(2):959–971, 2012. [MR3011503](https://www.ams.org/mathscinet-getitem?mr=3011503)
- [5] J´anos Bar´at, Zolt´an F¨uredi, Ida Kantor, Younjin Kim, and Bal´azs Patkós. Large B_d -free and union-free subfamilies. SIAM J. Discrete Math., 26(1):71–76, 2012. [MR2902633](https://www.ams.org/mathscinet-getitem?mr=2902633)
- [6] Paul Erdős. Problems. In Theory of Graphs (Proc. Collog., Tihany, 1966), pages 361–362, 1968.
- [7] P. Erd˝os. Some unsolved problems in graph theory and combinatorial analysis. In Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), pages 97–109. Academic Press, London, 1971. [MR0277392](https://www.ams.org/mathscinet-getitem?mr=0277392)
- [8] F. Foucaud, M. Krivelevich, and G. Perarnau. Large subgraphs without short cycles. SIAM J. Discrete Math., 29(1):65–78, 2015. [MR3295686](https://www.ams.org/mathscinet-getitem?mr=3295686)
- [9] David Conlon, Jacob Fox, and Benny Sudakov. Large subgraphs without complete bipartite graphs. arXiv preprint arXiv:1401.6711, 2014.
- [10] David Conlon, Jacob Fox, and Benny Sudakov. Short proofs of some extremal results II. J. Combin. Theory Ser. B, 121:173–196, 2016. [MR3548291](https://www.ams.org/mathscinet-getitem?mr=3548291)
- $[11]$ P. Erdős and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc., 35:85–90, 1960. [MR0111692](https://www.ams.org/mathscinet-getitem?mr=0111692)
- [12] P. Erdős, A. Hajnal, and R. Rado. Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hungar., 16:93–196, 1965. [MR0202613](https://www.ams.org/mathscinet-getitem?mr=0202613)
- [13] Joel Spencer. Turán's theorem for k-graphs. Discrete Math., 2:183–186, 1972. [MR0297614](https://www.ams.org/mathscinet-getitem?mr=0297614)
- [14] P. Dembowski and D. R. Hughes. On finite inversive planes. J. London Math. Soc., 40:171–182, 1965. [MR0172156](https://www.ams.org/mathscinet-getitem?mr=0172156)
- [15] Peter Dembowski. Finite Geometries: Reprint of the 1968 edition. Springer Science & Business Media, 2012. [MR0233275](https://www.ams.org/mathscinet-getitem?mr=0233275)
- [16] Mauro Biliotti and Alessandro Montinaro. On the automorphism group of inversive planes of odd order. J. Algebra, 354:49–70, 2012. [MR2879222](https://www.ams.org/mathscinet-getitem?mr=2879222)
- [17] Gloria Rinaldi. Inversive planes, Minkowski planes and regular sets of points. European J. Combin., 22(3):357–363, 2001. [MR1822723](https://www.ams.org/mathscinet-getitem?mr=1822723)
- [18] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes. II. Proc. London Math. Soc. (3), 83(3):532–562, 2001. [MR1851081](https://www.ams.org/mathscinet-getitem?mr=1851081)

DHRUV MUBAYI Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago IL - 60607, USA E-mail address: mubayi@uic.edu

Sayan Mukherjee Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago IL - 60607, USA E-mail address: smukhe2@uic.edu

Received May 21, 2019