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Chow rings of vector space matroids

Thomas Hameister, Sujit Rao, and Connor Simpson

The Chow ring of a matroid (or more generally, atomic lattice) is
an invariant whose importance was demonstrated by Adiprasito,
Huh and Katz, who used it to resolve the long-standing Heron-
Rota-Welsh conjecture. Here, we make a detailed study of the
Chow rings of uniform matroids and of matroids of finite vector
spaces. In particular, we express the Hilbert series of such ma-
troids in terms of permutation statistics; in the full rank case, our
formula yields the maj-exc q-Eulerian polynomials of Shareshian
and Wachs. We also provide a formula for the Charney-Davis quan-
tities of such matroids, which can be expressed in terms of either
determinants or q-secant numbers.
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1. Introduction

Since Stanley’s 1975 proof of the upper bound conjecture for simplicial
spheres via the Stanley-Reisner ring, the study of graded rings associated
to combinatorial objects has yielded many deep insights into combinatorics
(and vice versa). The usefulness of combining the two subjects has again
been made evident by the Chow ring of an atomic lattice, defined by Feicht-
ner and Yuzvinsky in [10].

The power of Feichtner and Yuzvinsky’s construction was demonstrated
by Adiprasito, Huh, and Katz, who applied it to the lattice of flats of a
matroid in order to resolve the long-standing Heron-Rota-Welsh conjecture.
Along the way, they also show that Chow rings arising from geometric lat-
tices satisfy versions of Poincaré duality, the hard Lefschetz theorem, and
the Hodge-Riemann relations. Here, we explore some of the combinatorial
structure of the Chow ring of a matroid.

Organization In the remainder of this section, we summarize our main
results; Section 2 contains the definitions of matroids and Chow rings. In
Section 3, we derive an explicit form (in terms of permutation statistics)
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for the Hilbert series of the Chow ring of the matroid associated to a finite
vector space. The Charney-Davis quantities of such matroids are computed
in Section 4. In Section 5 we state the specializations of our main results to
the case of uniform matroids. Finally, in Section 6 we present conjectures
and ideas for further work.

1.1. Summary of main results

Let Fq be the finite field of order q. Associated to the finite vector space
Fn
q is the matroid Mr(F

n
q ) whose independent sets are linearly independent

subsets of Fn
q of size at most r. The lattice of flats of Mr(F

n
q ) is given by

the collection of subspaces of Fn
q of dimension at most r − 1 ordered by

inclusion together with the maximal subspace Fn
q . In other words, Mr(F

n
q )

is the n− rth truncation of Mn(F
n
q ) (see [6] §7.4).

In addition, let Un,r denote the uniform matroid of rank r on ground set
[n] := {1, 2, . . . , n}. The lattice of flats of Un,r consists of all subsets of [n]
of size at most r, together with [n], all ordered by inclusion. Finally, for any
matroid M , let A(M) be the Chow ring of M , and let H(A(Mr(F

n
q )), t) be

the Hilbert series of A(Mr(F
n
q )) (defined in Section 2.1).

Theorem 1.1. For r = 1, . . . , n the Hilbert series H
(
A(Mr(F

n
q )), t

)
of

A
(
Mr(F

n
q )
)
is given by

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) −
n−1∑
j=r

∑
σ∈Fn,n−j

qmaj(σ)−exc(σ)tj−exc(σ)(1)

where Fn,n−j is the set of permutations in Sn with at least n−j fixed points.

In particular, when r = n, the Hilbert series of A
(
Mn(F

n
q )
)
is

H
(
A
(
Mn(F

n
q )
)
, t
)
=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) = An(q, t),

the n-th maj-exc q-Eulerian polynomial considered by Shareshian andWachs
in [22].

We also study the Charney-Davis quantity of A(Mr(F
n
q )), defined as

(−1)
r−1

2 H(A(Mr(F
n
q )),−1) for odd r (see Section 2.1). When r is even,

the Charney-Davis quantity vanishes (see Remark 4.2). When r is odd, the
Charney-Davis quantity has an interpretation in terms of the signature of
a quadratic form on the Chow ring (see Remark 2.6), and in this case, we
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derive two formulas for the for the Charney-Davis quantity, one in terms of
determinants and one in terms of the q-secant numbers.

Theorem 1.2. (a) For odd r, the Charney-Davis quantity of A
(
Mr(F

n
q )
)

is

(−1)
r−1

2

r−1

2∑
k=0

[
n

2k

]
q

E2k,q

where E2k,q is the q-analog of the k-th secant number (see Definition
2.17).

(b) More explicitly, for odd r the Charney Davis quantity in part (a) is
equal to

(−1)
r−1

2

⎛
⎝1 + [n]q!

r−1

2∑
a=1

(−1)a

[n− 2a]q!
Δa,q

⎞
⎠

for Δa,q the determinant

Δa,q = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1
[2]q!

1 0 · · · 0
1

[4]q!
1

[2]q!
1 · · · 0

...
...

...
. . .

...
1

[2a−2]q!
1

[2a−4]q!
1

[2a−6]q!
· · · 1

1
[2a]q!

1
[2a−2]q!

1
[2a−4]q!

· · · 1
[2]q!

⎞
⎟⎟⎟⎟⎟⎟⎠

.

All of the invariants above specialize to the corresponding invariants for
the Chow ring of the uniform matroid when we take q = 1; that is, if we
formally define Mr(F

n
1 ) := Un,r to be the uniform matroid, then all results

above remain valid.

2. Definitions and background

In this section, we first define the Charney-Davis quantity. We then define
Chow rings and state some salient results on them. Finally, we give a brief
review of some permutation statistics, which we use to establish notation
and introduce some of the q-analogs that will later appear. We refer the
reader to [18] for information on matroids.

2.1. Hilbert series and the Charney-Davis quantity

Let R be an N-graded Z-algebra with the property that for all d ∈ N, the
degree-d homogeneous component Rd of R is a torsion-free Z-module. We
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can then define the Hilbert function of R by h(R, d) := dimZ Rd and the
Hilbert series of R by H(R, t) :=

∑
d∈N h(R, d)td.

The Hilbert series of some rings, including those that we will study, are
symmetrical, meaning that there exists an r ≥ 0 such that h(R, d) = 0 for
d > r, h(R, r) �= 0, and h(R, d) = h(R, r − d) for all 0 ≤ d ≤ r.

When the Hilbert series of R is a polynomial of degree r, we call the
number

CD(R) :=

{
(−1)r/2H(R,−1), r even

H(R,−1), r odd

the Charney-Davis quantity of R. In particular, if R has symmetric Hilbert
series of odd degree, then CD(R) = 0. The Charney-Davis quantity was
introduced in [7] and is related to a conjecture of Charney and Davis for
posets associated to flag simplicial complexes. Namely, the Charney-Davis
quantity of the h-polynomial of a flag simplicial complex coming from a
sphere (or more generally, from a Gorenstein complex) is conjectured to
be nonnegative. See [3] for a more recent framework towards approaching
questions stemming from Charney and Davis’ original conjecture. For an
alternative interpretation of the Charney-Davis quantity in the context of
the Chow ring of a matroid, see Remark 2.6.

2.2. Chow rings of matroids

Let M be a finite matroid on ground set E; that is, a pair (E, I) where
∅ � I ⊆ 2E is the collection of independent sets of M and satisfies

1. A ∈ I =⇒ 2A ⊆ I, and
2. if A,B ∈ I with #A > #B then there exists x ∈ A \ B such that

B ∪ {x} ∈ I.
The rank of S ⊆ E is the size of any maximal independent subset of S, and
the closure of S is cl(S) := {x ∈ E : rank(S ∪ {x}) = rank(S)}. We will call
S a flat if cl(S) = S. The flats of M , ordered by inclusion, form a geometric
lattice L = L(M) called the lattice of flats of M . We will write ⊥ for the
minimal flat of M , and 
 for the maximal flat of M .

Definition 2.1. The Chow ring of M on ground set E with lattice of flats
L is

A(L) := A(M) := Z[xF : F ∈ L(M) \ {⊥}]/(I1 + I2)

where I1 and I2 are the ideals with generators

I1 = (xFxG : F and G are incomparable)
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I2 =

⎛
⎝ ∑

i∈F∈L(M)

xF : i ∈ E

⎞
⎠

Each homogeneous component of a Chow ring is a torsion-free Z-module
(this can be seen from Theorem 2.4), so we may speak of its Hilbert function
and Hilbert series as a Z-algebra, as defined in Section 2.1.

Remark 2.2. Real coefficients are needed in [1] for continuity arguments to
prove that the Chow ring of a matroid satisfies versions of the hard Lefschetz
theorem and the Hodge-Riemann relations. For us, Z coefficients are enough,
as we require only Poincaré duality (Theorem 2.4).

We now state some results on Chow rings of matroids that we will make
use of later in the paper.

2.2.1. Gröbner basis and Hilbert series Feichtner and Yuzvinsky
found a Gröbner basis for this ring and proved the following theorem about
its Hilbert series in [10].

Theorem 2.3 ([10] Corollary 2). The Hilbert series of A(L) is

H(A(L), t) = 1 +
∑

⊥=F0<F1<···<Fm

m∏
i=1

t(1− trankFi−rankFi−1−1)

1− t
.

where the sum is taken over all chains of flats ⊥ = F0 < F1 < · · · < Fm in
L. In particular, the Hilbert function is given combinatorially as follows.

dimA(L)k = #
{
xα1

F1
· · ·xα�

F�
: 1≤αi≤rank(Fi)−rank(Fi−1)−1∑

αi=k

}
where the set on the right ranges over all flats ⊥ = F0 < F1 < · · · < F� in
L(M).

2.2.2. Poincaré duality Adiprasito, Huh, and Katz show Chow rings of
matroids satisfy a form of Poincaré duality.

Theorem 2.4 (Poincaré duality; [1] Theorem 6.19). Let M be a matroid of
rank r. For q ≤ r − 1, the multiplication map

Aq(M)×Ar−1−q(M) → Ar−1(M)

defines an isomorphism

Ar−1−q(M) ∼= HomZ(A
q(M), Ar−1(M))
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Remark 2.5. It is an immediate consequence of Corollary 6.11 of [1] that

Ar−1(M) ∼= Z. Hence, from Theorem 2.4 it follows that dimZA
r−1−q(M) =

dimZ A
q(M). This shows that A(M) has a symmetrical Hilbert series. If we

speak of the Hilbert series or Charney-Davis quantity of a matroid M , then

we are referring to that of its Chow ring A(M).

Remark 2.6. Since Ar−1(M) ∼= Z, when r is odd, the squaring map Q :

A(r−1)/2(M)×A(r−1)/2(M) → Ar−1(M) with Q(x) = x2 defines a quadratic

form on A(r−1)/2(M). By Theorem 1.1 of [15], the fact that the Hodge-

Riemann relations hold for A(M) implies that the signature of this quadratic

form is equal to the Charney-Davis quantity of A(M).

2.3. Permutation statistics and polynomials

In this section, we will establish notation for permutation statistics. We will

also discuss Eulerian polynomials, which will appear when we examine the

Hilbert series of Chow rings, and the tangent-secant numbers, which will

appear when we examine the Charney-Davis quantities.

Let Sn denote the symmetric group on n letters.

Definition 2.7. Let σ ∈ Sn be a permutation. Then, define the statistics

inv(σ) = # {(i, j) : σ(i) > σ(j)}
des(σ) = # {i ∈ [n− 1] : σ(i+ 1) < σ(i)}
exc(σ) = # {i ∈ [n] : σ(i) > i}
maj(σ) =

∑
i, σ(i)<σ(i+1)

i

We also recall the definitions of some standard q-analogs.

Definition 2.8. For natural numbers k ≤ n, define

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1

[n]q! = [n]q[n− 1]q · · · [2]q[1]q[
n

k

]
q

=
[n]q!

[k]q![n− k]q!

which are all elements of N[q].
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2.3.1. Eulerian polynomials Both the Eulerian polynomials and cer-
tain q-analogs of them appear as Hilbert series of the matroids that we
study. To motivate the q-analogs, we first review the classical Eulerian poly-
nomials.

Definition 2.9. The Eulerian polynomial An(t) is the polynomial

An(t) =
∑
ω∈Sn

texc(ω)

These polynomials have many interesting applications; see [19] for fur-
ther exposition. The polynomials An(t) satisfy the following

Proposition 2.10 ([19] Theorem 1.6). The exponential generating function
of the polynomials An(t) is

∑
n≥0

An(t)
xn

n!
=

t− 1

t− ez(t−1)
.

The coefficient of tk in An(t) is the n-th Eulerian number and is written

A(n, k) :=

〈
n

k

〉
:= # {σ ∈ Sn : exc(σ) = k} .

Next, we discuss q-analogs of the classical objects above. Analogs for n! and

the binomial coefficient
(
n
k

)
are [n]q! :=

1−qn

1−q and
[
n
k

]
q
:= [n]q!

[k]q![n−k]q!
, respec-

tively. Shareshian and Wachs define a q-analog for the Eulerian polynomials
as follows.

Definition 2.11. The n-th maj-exc q-Eulerian polynomial (or merely q-
Eulerian polynomial) An(q, t) is the polynomial

An(q, t) := Amaj,exc
n (q, tq−1) =

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

The non-negativity of maj(σ) − exc(σ) follows from Lemma 2.2 of [23]. As
above, define the q-Eulerian number

〈
n
j

〉
q
to be the coefficient of tj

〈
n

j

〉
q

:=
∑
σ∈Sn

exc(σ)=j

qmaj(σ)−exc(σ) =
∑
σ∈Sn

exc(σ)=j

qmaj(σ)−j

The following theorem gives a q-analog of Proposition 2.10.
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Theorem 2.12 ([22], Thm 1.1). The q-Eulerian polynomials An(q, t) are
the unique polynomials with q-exponential generating function

∑
n≥0

An(q, t)
xn

[n]q!
=

(t− 1)eq(x)

teq(x)− eq(tx)

where eq(x) :=
∑

n≥0
xn

[n]q!
is the q-exponential function.

2.3.2. Tangent-secant numbers The tangent-secant numbers and a q-
analog of them will appear in our investigation of Charney-Davis quantities.

Definition 2.13. The n-th tangent-secant number En is the coefficient of
xn

n! in the exponential generating function

tanh(x) + sech(x) =
∑
n≥0

En
xn

n!

Remark 2.14. In the literature, the numbers E2n are often referred to as
the Euler numbers. To avoid confusion with the Eulerian numbers, we will
refrain from using this language. Instead, we call the numbers E2n the secant
numbers and the numbers E2n+1 the tangent numbers. The nomenclature
that we use is justified by the observation that, since tanh(x) is odd and
sech(x) even,

tanh(x) =
∑
n≥0

E2n+1
x2n+1

(2n+ 1)!
and sech(x) =

∑
n≥0

E2n
x2n

(2n)!
.

Hence,

tan(x) =
∑
n≥0

(−1)nE2n+1
x2n+1

(2n+ 1)!
and sec(x) =

∑
n≥0

(−1)nE2n
x2n

(2n)!
.

In Section 4, we will also prove q-analogs of the following.

Proposition 2.15 ([28], equation 1.8). For all n, we have E2n =
(−1)n(2n)!Δn for the following determinant

Δn = det

⎛
⎜⎜⎜⎜⎜⎝

1
2! 1 0 · · · 0
1
4!

1
2! 1 · · · 0

...
...

...
. . .

...
1

(2n−2)!
1

(2n−4)!
1

(2n−6)! · · · 1
1

(2n)!
1

(2n−2)!
1

(2n−4)! · · · 1
2!

⎞
⎟⎟⎟⎟⎟⎠
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Proposition 2.16 (cf. [30]). For all n, E2n = −
n−1∑
k=0

(
2n

2k

)
E2k.

To define the q-tangent-secant numbers, let

sinhq(t) :=
∑
n≥0

t2n+1

(q; q)2n+1
coshq(t) :=

∑
n≥0

t2n

(q; q)2n

sechq(t) :=
1

coshq(t)
tanhq(t) :=

sinhq(t)

coshq(t)

where (t; q)n = (1− t)(1− tq) · · · (1− tqn−1) is the Pochhamer symbol.

Definition 2.17. The n-th q-tangent-secant number, En,q, is the coefficient
of tn in the generating function

sechq(t) + tanhq(t) =
∑
n≥0

En,q
tn

(q; q)n
.

Up to signs, the tangent-secant numbers in Definition 2.17 agree with
those studied in the work of Foata and Han and of Josuat-Vergès in [11] and
[14], respectively.

Remark 2.18. In the case q = 1, En,q = En is the classical n-th tangent-
secant number, and in this case, our results involving En,q specialize to
results about uniform matroids involving the classical tangent-secant num-
bers.

3. Hilbert series of vector space matroids

The main result of this section will be Theorem 1.1, the expression of the
Hilbert series in terms of q-Eulerian polynomials, and the resulting special-
ization to uniform matroids.

3.1. Method for calculating Hilbert series of Chow rings

We begin by deriving a useful recurrence for the Hilbert series of the Chow
ring of a matroid. The technique we present below makes use of Theorem
2.3 covered above to give a formula for the Hilbert series of any geometric
lattice L of rank r + 1 with the property

(∗) [Z,
] ∼= [Z ′,
] for all Z,Z ′ ∈ L with rank(Z) = rank(Z ′).
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In the following, we assume that L is such a lattice. There are lattices beyond
those that we consider that satisfy (∗): for example, any product of lattices
satisfying (∗) also satisfies (∗).
Proposition 3.1. If L is a geometric lattice such that property (∗) holds
and (Z1, . . . , Zr) is a sequence of elements of L with rank(Zi) = i for all i,
then

H(A(L), t) = [r + 1]t + t

r∑
i=2

#Li [i− 1]tH(A([Zi,
]), t).

Proof. From Theorem 2.3, we have

dimZ A
q(L) = #

{
xα1

F1
· · ·xα�

F�
: 1≤αi≤rank(Fi)−rank(Fi−1)−1∑

αi=q

}
where F1 < F2 < · · · < F� ranges over all chains of elements of L (and
F0 = ⊥ has rank 0). For each 2 ≤ j ≤ r, define

Nq,j := #
{
xα1

F1
· · ·xα�

F�
: 1≤αi≤rank(Fi)−rank(Fi−1)−1∑

αi=q, rank(F1)=j

}
Then dimZ A

q(L) =
∑r+1

j=2 Nq,j . Now for each 2 ≤ j ≤ r, property (∗) implies

Nq,j = #Lj ·#
{
xα1

Zj
xα2

F2
· · ·xα�

F�
:

Zj=F1<F2<···<F�,
1≤αi≤rank(Fi)−rank(Fi−1)−1,

∑
αi=q

}

= #Lj ·
j−1∑
p=1

#
{
xpZj

xα2

F2
· · ·xα�

F�
:

Zj=F1<F2<···<F�

1≤αi≤rank(Fi)−rank(Fi−1)−1,
∑�

i=2 αi=q−p

}

= #Lj ·
j−1∑
p=1

dimZ A
q−p([Zj ,
])

While Nq,r+1 = #{xq�} = 1. Hence, we have

dimZ A
q(L) = 1 +

r∑
i=2

#Li

i−1∑
p=1

dimZ A
q−p([Zi,
]).

This recurrence for the dimension of a homogeneous component can be lifted
to a recurrence for the Hilbert series of A(L) in the following manner. For
a fixed 0 ≤ k ≤ r − 1, let (Z1, . . . , Zr) be a sequence of elements of L with
rank(Zi) = i for all i. Then

H(L, t) =

r∑
q=0

dimZ A
q(L) tq
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=

r∑
q=0

⎛
⎝1 +

r∑
i=2

#Li ·
i−1∑
p=1

dimZ A
q−p([Zi,
])

⎞
⎠ tq

= [r + 1]t +

r∑
i=2

#Li ·
i−1∑
p=1

r∑
q=0

dimZ A
q−p([Zi,
]) tq

Since dimZA
q−p([Zi,
]) = 0 when q − p < 0 by convention, the innermost

sum above really only runs from q = p to q = r. Making this change and
setting k = q − p, we can rewrite the above as

[r + 1]t +

r∑
i=2

#Li ·
i−1∑
p=1

tp
r−p∑
k=0

dimZ A
k([Zi,
]) tk.

Now, observe that rank([Zi,
]) = r + 1 − i and that p ≤ i − 1, so r − p ≥
r − i+ 1. Hence,

∑r−p
k=0 dimZ A

k([Zi,
])tk = H([Zi,
], t) for every p and i,
so we obtain the proposition.

We will now state the recurrence for the Hilbert series that one gets by
applying Proposition (3.1) to matroids of special interest.

Uniform matroids Each upper interval of L(Un,r+1) is the lattice of flats
of a uniform matroid on a smaller ground set and of lower rank. Hence

H(A(Un,r+1), t) = [r + 1]t + t

r∑
i=2

(
n

i

)
[i− 1]tH(A(Un−i,r+1−i), t).

In particular, if we define A(U0,0) = Z, then for the case r = n− 1 we have

H(A(Un,n), t) = [n]t + t

n−1∑
i=2

(
n

i

)
[i− 1]tH(A(Un−i,n−i), t)

= 1 + t

n∑
i=1

(
n

i

)
[i− 1]tH(A(Un−i,n−i), t).

Subspaces of vector spaces over finite fields The formula for vector
spaces over finite fields is a q-analog of the one for the uniform matroid.

H
(
A
(
Mr+1(F

n
q )
)
, t
)
= [r + 1]t + t

r∑
i=2

[i− 1]t

[
n

i

]
q

H
(
A
(
Mr+1−i(F

n−i
q )
)
, t
)
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In particular, if we write M(Fn
q ) = Mn(F

n
q ) and set A(M(F0

q)) = Z, then
similar to the uniform case, for r = n− 1,

(2) H
(
A
(
M(Fn

q )
)
, t
)
= 1 + t

n∑
i=1

[i− 1]t

[
n

i

]
q

H
(
A
(
M(Fn−i

q )
)
, t
)

3.2. Full-rank vector space matroid

Write M(Fn
q ) = Mn(F

n
q ). The main result of this section is a proof that the

Hilbert series of A
(
M(Fn

q )
)
is the maj-exc q-Eulerian polynomial of [22]. We

also find a new recurrence for the q-Eulerian polynomials.
To characterize the Hilbert series of A

(
M(Fn

q )
)
, we compute its q-expo-

nential generating function.

Lemma 3.2. Define h0 := 1. The q-exponential generating function of

hn(t) := H
(
A
(
M(Fn

q )
)
, t
)
is given by

F (t, x) :=
∑
n≥0

hn(t)
xn

[n]q!
=

(t− 1)eq(t)

teq(t)− eq(tx)

where eq denotes the q-exponential function eq(x) :=
∑

n≥0
xn

[n]q!
.

Proof. By equation (2), we have the relation

hn = 1 + t

n∑
i=1

[i− 1]t

[
n

i

]
q

hn−i

Then, the generating function F (t, x) satisfies

F (t, x) = 1 +
∑
n≥1

xn

[n]q!
+ t
∑
n≥1

n∑
i=1

(
[i− 1]t

[
n

i

]
q

hn−i

)
xn

[n]q!

= eq(x) + t
∑
n≥1

n∑
i=1

(
[i− 1]t

xi

[i]q!

)(
hn−i

xn−i

[n− i]q!

)

= eq(x) + tF (t, x)G(t, x)

for G(t, x) =
∑

i≥1[i− 1]t
xi

[i]q!
. We can rewrite G(t, x) as

G(t, x) =
1

t− 1

∑
i≥1

(ti−1 − 1)
xi

[i]q!
=

1

t− 1

(
eq(tx)− 1

t
− eq(x) + 1

)
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=
1

t2 − t

(
eq(tx)− teq(x) + t− 1

)

Substituting into the equation above and solving for F , we get

F (t, x) =
eq(x)

1− 1
t−1

(
eq(tx)− teq(x)

) =
(t− 1)eq(x)

teq(x)− eq(tx)

Corollary 3.3. The Hilbert series of A(M(Fn
q )) is equal to An(q, t).

Proof. The q-exponential generating function of the Hilbert series hn(t) =

H(A(M(Fn
q )), t) is the same as the one for the q-Eulerian polynomials given

in Theorem 2.12.

As a corollary, we find an interpretation of the q-Eulerian numbers.

Corollary 3.4.

〈
n

k

〉
q

= #
{
xα1

V1
. . . xα�

V�
:
0=V0�V1�···�V� are subspaces of Fn

q

1≤αi≤dimVi−dimVi−1−1,
∑

i αi=k

}

Proof. By Theorem 2.3 and Corollary 3.4, both sides of the equality are

dimA(M(Fn
q ))k.

Remark 3.5. In the notation of Subsection 3.3, Corollary 3.4 states that

〈
n

k

〉
q

= #Mn,n,k

Remark 3.6. In the course of proving the results above, we discovered the

following recurrence for the q-Eulerian polynomials.

Proposition 3.7. Let Hn(t) = H(A(M(Fn
q )), t) denote the Hilbert series of

A(M(Fn
q )), and let (a; q)n := (1−a)(1−aq) · · · (1−aqn−1) be the Pochhammer

symbol. Then hn satisfies the recurrence

hn(t) =

n−1∑
k=0

[
n

k

]
q

hk(t)

n−1−k∏
i=1

(t− qi)(3)

=

n−1∑
k=0

[
n

k

]
q

tn−1−k · hk(t) · (q/t; q)n−1−k.
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To the authors’ knowledge, the recurrence in Proposition 3.7 does not

yet appear in the literature, and it provides a q-analog for the following

well-known recurrence for the Eulerian polynomials

An(t) =

n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k.

For a proof of Proposition 3.7, see our REU report [12].

3.3. Lower rank vector space matroids

Next, we find an explicit form for the Hilbert series of lower rank vector space

matroids Mr(F
n
q ) with r < n. The main result of this section is Theorem

1.1.

We will first give a brief overview of our methodology and set up some

notation. We study the Hilbert series of A
(
Mr(F

n
q )
)
by descending induc-

tion on the rank r; in particular, we consider the differences Δn,r,q(t) :=

H
(
A
(
Mr+1(F

n
q ), t
))

−H
(
A
(
Mr(F

n
q ), t
))

for 1 ≤ r ≤ n. Write

Δn,r,q(t) = a(r)n,r,qt
r + a(r−1)

n,r,q tr−1 + · · ·+ a(0)n,r,q

for a
(k)
n,r,q ∈ Z. We will show that a

(k)
n,r,q is a q-analog of the number

# {σ ∈ Fn,n−r : exc(σ) = r − k} .

where Fn,n−r := {σ ∈ Sn : # fix(σ) ≥ n− r}. In particular, we will express

a(k)n,r,q =

r∑
i=0

[
n

i

]
q

Di,r−k,q =

r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q

where Dn ⊆ Sn is the set of derangements, and Dn,k,q is a q-analog of the

number

# {σ ∈ Dn : exc(σ) = r − k} .

Define
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Nn,r :=Nn,r(q) :=
{
xi�x

α1

V1
· · ·xα�

V�
:

V1�···�V��Fn
q are subspaces of Fn

q of rank ≤r,

i≤r−dim(V�) and 1≤αi≤dim(Vi)−dim(Vi−1)−1

}
Mn,r,k := Mn,r,k(q) :=

{
xi�x

α1

V1
· · ·xα�

V�
∈ Nn,r : deg xi�x

α1

V1
· · ·xα�

V�
= k
}

Tn,k,q :=
{
xi�x

α1

V1
· · ·xα�

V�
∈ Mn,n,k : i ≥ 1

}
Dn,k,q := #Tn,k,q.

For notational convenience, we suppress the dependence on q in Nn,r(q)

and Mn,r,k(q). By Theorem 2.3, dim
(
A(Mr(Fq))

)
k
= #Mn,r,k. Note that we

have inclusions Mn,r,k ⊆ Mn,r+1,k and the complement of Mn,r,k in Mn,r+1,k

is the set

Mn,r+1,k\Mn,r,k =
{
xi�x

α1

V1
· · ·xα�

V�
∈ Mn,r+1,k : 0 ≤ i ≤ r, dim(V�) = r − i

}
Identifying V� = Fr−i

q and setting Wn,r−i :=
{
V� � Fn

q : dim(V�) = r − i
}
,

we obtain for each fixed 0 ≤ i ≤ r, a bijection

{
xi�x

α1

V1
· · ·xα�

V�
∈ Nn,r,k : dim(V�) = r − i

}
→ Wn,r−i × Tr−i,k−i,q

xi�x
α1

V1
· · ·xα�

V�
�→ (V�, x

α1

V1
· · ·xα�

V�
)

Hence, summing over possible values of the exponent i of x� gives

(4) #(Mn,k,r+1 \Mn,k,r) =

r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q.

We will now give a combinatorial description ofDn,k,q in terms of elementary

statistics on Sn. To do so, we establish some notation. For σ ∈ SA for A =

{a1 < · · · < ak} an ordered set, let the reduction of σ be the permutation

σ in Sk such that σ(ai) = aσ(i). For σ ∈ Sn, its derangement part dp(σ) is

the reduction of σ along its nonfixed points. The following lemma of Wachs

will be essential.

Lemma 3.8 ([31] Corollary 3). For all γ ∈ Dk and n ≥ k,

∑
dp(σ)=γ
σ∈Sn

qmaj(σ) = qmaj(γ)

[
n

k

]
q

From this lemma, another useful identity follows.
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Corollary 3.9. For any integers n, q, k ≥ 0,

∑
σ∈Dn−i

exc(σ)=k

qmaj(σ)−exc(σ)

[
n

n− i

]
q

=
∑
σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ)

Proof. From Lemma 3.8, we have the identity

∑
γ∈Dn−i

exc(γ)=k

qmaj(γ)−exc(γ)

[
n

n− i

]
q

=
∑

γ∈Dn−i

exc(γ)=k

q− exc(γ)
∑
σ∈Sn

dp(σ)=γ

qmaj(σ)

=
∑
σ∈Sn

exc(σ)=k
#fix(σ)=i

qmaj(σ)−exc(σ).

We now make use of this identity to give a combinatorial interpretation

to both Dn,k,q and a
(k)
n,r,q.

Lemma 3.10. For Dn,k,q as above,

Dn,k,q =
∑
σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)

Proof. We proceed by induction on k. For k = 0, the result is vacuously

true. For k > 0, set

Si :=
{
xi�x

α1

V1
· · ·xα�

V�
∈ Mn,n,k−1 : dim(V�) = n− i− 1

}
S := Mn,n,k−1.

Then, the map on monomials taking xi�x
α1

1 · · ·xα�

� �→ xi−1
� xα1

1 · · ·xα�

� gives

an injective map

ϕ : Tn,k,q → S.

Moreover, S is the disjoint union S = Im(ϕ) �
∐

a≥0 Sa. Considering the

choice of the second largest subspace,

#Sa =

[
n

n− a− 1

]
q

Dn−a−1,k−a−1,q
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While from Remark 3.5,

#S =

〈
n

k − 1

〉
q

=

〈
n

n− k

〉
q

where the latter equality follows from Poincaré duality forA
(
M(Fn

q )
)
. There-

fore, by induction,

Dn,k,q = #Tn,k,q = #S −
∑
a≥0

#Sa =

〈
n

n− k

〉
q

−
n∑

b=1

[
n

n− b

]
q

Dn−b,k−b,q

=
∑
σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
n∑

b=1

∑
γ∈Dn−b

exc(γ)=n−k

qmaj(γ)−exc(γ)

[
n

n− b

]
q

(5)

Then applying Corollary 3.9, the right-hand side of equation (5) can be
expanded as

∑
σ∈Sn

exc(σ)=n−k

qmaj(σ)−exc(σ) −
n∑

b=1

∑
σ∈Sn

exc(σ)=n−k
#fix(σ)=b

qmaj(σ)−exc(σ)

=
∑
σ∈Dn

exc(σ)=n−k

qmaj(σ)−exc(σ)

completing the induction.

Lemma 3.11. Let Fn,k = {σ ∈ Sn : # fix(σ) ≥ k}. The difference of
Hilbert series Δn,r,q(t) is given by

Δn,r,q(t) = H
(
A
(
Mr+1(F

n
q ), t
))

−H
(
A
(
Mr(F

n
q ), t
))

=
∑

σ∈Fn,n−r

tr−exc(σ)qmaj(σ)−exc(σ)

In particular, the coefficients a
(k)
n,r,q satisfy

(6) a(k)n,r,q =
∑

σ∈Fn,n−r

exc(σ)=r−k

qmaj(σ)−exc(σ)



72 Thomas Hameister et al.

Proof. Applying Lemma 3.10 and Corollary 3.9 to equation (4) gives

a(k)n,r,q =

r∑
i=0

[
n

r − i

]
q

Dr−i,k−i,q =

r∑
i=0

[
n

r − i

]
q

∑
σ∈Dr−i

exc(σ)=r−k

qmaj(σ)−exc(σ)

=

r∑
i=0

∑
σ∈Sn

#fix(σ)=n−r+i
exc(σ)=r−k

qmaj(σ)−exc(σ)

=
∑

σ∈Fn,n−r

exc(σ)=r−k

qmaj(σ)−exc(σ).

These two lemmas yield the main result.

Proof of Theorem 1.1. Equation (1) follows from a direct substitution of (6)
into the formula

H
(
A(Mr(F

n
q ), t
)
= H

(
A(Mr+1(F

n
q )), t

)
−Δn,r,q(t)

= · · · = H
(
A(M(Fn

q )), t
)
−

n−1∑
j=r

Δn,j,q(t)

When r = n− 1, the Hilbert series assumes a more pleasing form.

Corollary 3.12. If r = n− 1, the Hilbert series of A
(
Mn−1(F

n
q )
)
is

H
(
A
(
Mn−1(F

n
q )
)
, t
)
=
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

Proof. For the case r = n − 1, the coefficient of tk in (1) can be simplified
as follows. ∑

σ∈Sn

exc(σ)=k

qmaj(σ)−exc(σ) −
∑

σ∈Fn,1

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

=
∑
σ∈Sn

exc(σ)=n−k−1

qmaj(σ)−exc(σ) −
∑

σ∈Fn,1

exc(σ)=n−k−1

qmaj(σ)−exc(σ)

=
∑
σ∈Dn

exc(σ)=n−k−1

qmaj(σ)−exc(σ)
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Then,

H
(
A
(
Mr(F

n
q )
)
, t
)
=
∑
σ∈Dn

qmaj(σ)−exc(σ)tn−1−exc(σ)

=
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1

where the last equality follows from Poincaré duality of A(Mn−1(F
n
q )).

Remark 3.13. The proof presented in the previous section can be reformu-

lated in terms of strong maps of Chow rings. Namely, consider the graded,

surjective ring homomorphisms

πn,r,q : A(Mr+1

(
Fn
q )
)
→ A

(
Mr(F

n
q )
)

defined by taking variables xV ∈ A(Mr+1

(
Fn
q )
)
to zero if dim(V ) = r + 1

and to the corresponding variable xV ∈ A
(
Mr(F

n
q )
)
otherwise. Then, if

Kn,r,q = ker(πn,r,q), additivity of Hilbert series gives

H(Kn,r,q, t) = H
(
A
(
Mr+1(F

n
q ), t
))

−H
(
A
(
Mr(F

n
q ), t
))

= Δn,r,q(t)

Therefore, Lemma 3.11 gives a formula for the Hilbert series of the ker-

nel of the map of Chow rings induced by a certain strong map on ma-

troids.

Remark 3.14. Note that the characterization of the Hilbert series of

A(Mr(F
n
q )) for r = n− 1, n together with the results of [1] give an alternate

proof of the unimodality and symmetry of the polynomials

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ) and
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ)−1.

However, it should be noted that in [24], Shareshian and Wachs prove more

general statements. Namely, they prove that the coefficients of the above

polynomials are q-unimodal and, in fact, q-γ-nonnegative. That is, a dif-

ference of consecutive coefficients lies in N[q] as a polynomial in q, and

moreover, its γ-vector has coordinates in N[q]. See Theorems 4.4 and 6.1 of

[24] for more explicit formulae and a proof.
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4. Charney-Davis quantities of vector space matroids

The main result of this section is a proof of Theorem 1.2, which gives two

formulas for the Charney-Davis quantity of A
(
Mr(F

n
q )
)
, one in terms of

determinants and one in terms of q-tangent-secant numbers. We prove the

formula that is in terms of determinants immediately; we will prove the

formula in terms of q-tangent-secant numbers later.

Proof of Theorem 1.2 (b). If r = 1, then H
(
A
(
Mr(F

n
q )
)
, t
)

= 1, and the

theorem follows trivially. Now suppose that r > 1 is odd, and let CD(n, r) =

H
(
A
(
Mr(F

n
q )
)
,−1
)
be the unsigned Charney-Davis quantity of A

(
Mr(F

n
q )
)
.

Substituting t = −1 into Theorem 2.3, the formula for the Hilbert series from

[10] is

CD(n, r) = 1 +
∑

r, rk<r
∀i,ri−ri−1 is even

(−1)|r|
|r|∏
i=1

[
n− ri−1

ri − ri−1

]
q

.

where |r| is the number of entries in the tuple r and the sum ranges over

all tuples of integers r = (r1 < · · · < rk) with r1 > 0, rk < r, and such that

ri−ri−1 is even for all i (with r0 = 0). Breaking into cases based on whether

r = (r1 < · · · < rk) has rk = r − 1, we get a decomposition of the above

as ⎛
⎜⎜⎝1 +

∑
r, rk<r−2

∀i,ri−ri−1 even

(−1)|r|
|r|∏
i=1

[
n− ri−1

ri − ri−1

]
q

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝ ∑

r, rk=r−1
∀i,ri−ri−1 even

(−1)|r|
|r|∏
i=1

[
n− ri−1

ri − ri−1

]
q

⎞
⎟⎟⎠

where the former term is CD(n, r− 2) and the latter we denote by Tn,q(r−
1). Then, considering terms in the sum with rk−1 = b, one obtains the

recurrence

Tn,q(2a) = −
a−1∑
b=0

[
n− 2b

2a− 2b

]
q

Tn,q(2b) with initial condition Tn,q(0) = 1
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Solving this linear recurrence with Cramer’s rule gives

(7) Tn,q(2a) = (−1)a det

⎛
⎜⎜⎜⎜⎜⎜⎝

[
n
2

]
q

1 0 · · · 0[
n
4

]
q

[
n−2
2

]
q

1 · · · 0
...

...
...

. . .
...[

n
2a−2

]
q

[
n−2
2a−4

]
q

[
n−4
2a−6

]
q

· · · 1[
n
2a

]
q

[
n−2
2a−2

]
q

[
n−4
2a−4

]
q

· · ·
[
n−2a+2

2

]
q

⎞
⎟⎟⎟⎟⎟⎟⎠

Rewriting the determinant in (7) by pulling out common factors in the nu-
merator, resp. denominators, of each column, resp. row, gives

Tn,q(2a) = (−1)a
[n]q!

[n− 2a]q!
det

⎛
⎜⎜⎜⎜⎜⎜⎝

1
[2]q!

1 0 · · · 0
1

[4]q!
1

[2]q!
1 · · · 0

...
...

...
. . .

...
1

[2a−2]q!
1

[2a−4]q!
1

[2a−6]q!
· · · 1

1
[2a]q!

1
[2a−2]q!

1
[2a−4]q!

· · · 1
[2]q!

⎞
⎟⎟⎟⎟⎟⎟⎠

= (−1)a
[n]q!

[n− 2a]q!
Δa,q,

where Δa,q is defined to be the determinant that appears above, as in the
statement of Theorem 1.2. Then the unsigned Charney-Davis quantity for
odd r is

CD(n, r) = CD(n, r − 2) + Tn,q(2k) = · · · = CD(n, 1) +

r−1

2∑
a=1

Tn,q(2a)

= 1 + [n]q!

r−1

2∑
a=1

(−1)a

[n− 2a]q!
Δa,q.

The final result follows from multiplication by the appropriate sign.

Example 4.1. For the case n = r = 5, Theorem 1.2 becomes the following
identity

q8 + 2q7 + 3q6 + 4q5 + 3q4 + 2q3 + q2

= 1 + [5]q!

[
− 1

[3]q!
det

(
1

[2]q!

)
+ det

(
1

[2]q!
1

1
[4]q!

1
[2]q!

)]

which one can directly verify.
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Remark 4.2. For even r, Theorem 6.19 of [1] implies the Hilbert series of
A(Mr(F

n
q )) is symmetric of even degree. Consequently,H

(
A(Mr(F

n
q )),−1

)
=

0 and the Charney-Davis quantity vanishes.

Having the determinantal formula above, we now work towards a more
compact formula using the q-tangent-secant numbers.

Proposition 4.3. Let En,q denote the n-th q-tangent-secant number. The
following identities hold:

E2n,q = (−1)n[2n]q!Δn,q

E2n+1,q = CD(2n+ 1, 2n+ 1) = 1 + [2n+ 1]q!

n∑
a=1

(−1)a

[2n− 2a+ 1]q!
Δa,q

Proof. Let

E2n,q := (−1)n[2n]q!Δn,q

E2n+1,q := CD(2n+ 1, 2n+ 1) = 1 + [2n+ 1]q!

n∑
a=1

(−1)a

[2n− 2a+ 1]q!
Δa,q.

Consider the generating functions

F (t) =
∑
n≥0

E2n,q
t2n

(q; q)2n
and G(t) =

∑
n≥0

E2n+1,q
t2n+1

(q; q)2n+1

It suffices to show F (t) = sechq(t) and G(t) = tanhq(t). Observe that by
expanding by minors in the first column, Δn,q satisfies the recurrence

Δn,q =

n∑
k=1

(−1)k+1

[2k]q!
Δn−k,q

Then since (q; q)2n = [n]q!
(1−q)n ,

F (t) =
∑
n≥0

(−1)n
(
t(1− q)

)2n
Δn,q

= 1 +
∑
n≥1

(−1)n
(
t(1− q)

)2n n∑
k=1

(−1)k+1

[2k]q!
Δn−k,q

= 1 +
∑
r≥0

∑
k≥1

(−1)r+1Δr,q

(
t(1− q)

)2(r+k)

[2k]q!
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= 1 +

⎛
⎝∑

k≥1

(
t(1− q)

)2k
[2k]q!

⎞
⎠
⎛
⎝∑

r≥0

(−1)r+1Δr,q

(
t(1− q)

)2r⎞⎠

= 1−

⎛
⎝∑

k≥1

t2k

(q; q)2k

⎞
⎠F (t) = 1− (coshq(t)− 1)F (t)

Therefore, solving for F (t) gives

F (t) = 1/ coshq(t) = sechq(t)

Since F (t) = sechq(t) as power series in Q(q)[[t]], it follows that E2n,q = E2n,q.

Now consider G(t). Set Δ0,q = 1. We have

G(t) =
∑
n≥0

(
[2n+ 1]q!

n∑
a=0

(−1)a

[2n− 2a+ 1]q!
Δa,q

)
t2n+1

(q; q)2n+1

=
∑
n≥0

n∑
a=0

(−1)aΔa,q

[2n− 2a+ 1]q!

(
t(1− q)

)2n+1

=
∑
k≥0

∑
a≥0

(−1)aΔa,q

[2k + 1]q!

(
t(1− q)

)2(a+k)+1

=

⎛
⎝∑

k≥0

t2k+1

(q; q)2k+1

⎞
⎠
⎛
⎝∑

a≥0

(−1)aΔa,qt
2a

⎞
⎠

= sinhq(t) sechq(t) = tanhq(t)

Remark 4.4. With notation as in the proof above, equation (2.6) of [28]

immediately implies that E2n,q = E2n,q. See equation (2.7) of the same article

for a determinantal formula for E2n+1,q and other formulae.

Remark 4.5. Proposition 4.3 implies that the numbers En,q are the q-secant

and q-tangent numbers studied in [11] and [14]. In particular, we have

En,q =
∑
σ∈In

qexc(σ)

where In denotes the number of alternating permutations of size n.

Theorem 1.2(a) now follows from Thm 1.2(b) and Prop 4.3.
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5. Invariants of uniform matroids

Recall that the uniform matroid Un,r is the matroid whose independent sets
consist of all subsets of [n] of cardinality at most r. Theorem 2.3 gives a
formula for the Hilbert series of A

(
M(Fn

q )
)
,

H
(
A
(
Mr(F

n
q )
)
, t
)
= 1 +

∑
r

|r|∏
i=1

t(1− tri−ri−1−1)

1− t

[
n− ri−1

ri − ri−1

]
q

where the sum is over all tuples of dimensions r = (0 = r0 < r1 < · · · < r|r| ≤
r). In particular, when q = 1 the formula above specializes to what Theorem

2.3 gives forH
(
A(Un,r), t

)
. From this it follows that any invariant of A(Un,r)

that can be computed in terms of its Hilbert series can be computed by
instead considering the corresponding invariant of A(Mr(F

n
q )) and setting

q = 1. We record a number of results obtained this way below.

Theorem 5.1 (see Theorem 1.1). For r = 0, 1, . . . , n, the Hilbert series of
A
(
Un,r

)
is given by

H
(
Un,r, t

)
=
∑
σ∈Sn

texc(σ) −
n−1∑
j=r

∑
σ∈Fn,n−j

tr−exc(σ)

where Fn,k := {σ ∈ Sn : # fix(σ) ≥ k}. In particular, if r = n, the Hilbert
series of A(Un,n) is the n-th Eulerian Polynomial and if r = n − 1, the
Hilbert series of A

(
Un,n−1

)
is

H
(
A
(
Un,n−1

)
, t
)
=
∑
σ∈Dn

texc(σ)−1

Theorem 5.2 (see Theorem 1.2). For odd r, the Charney-Davis quantity
for the uniform matroid, Un,r, of rank r and dimension n is

r−1

2∑
k=0

(
n

2k

)
E2k

where E2� is the �-th secant number, i.e.

sech(t) =
∑
�≥0

E2�
t2�

(2�)!
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Remark 5.3. For r = n odd, a standard recurrence shows

n−1

2∑
k=0

(
n

2k

)
E2k = En

In particular, Theorem 5.2 specializes to those in page 275 of [21] and page
52 of [9].

Remark 5.4. Those interested in the γ-polynomial of A(Un,r) for r = n, n−1
should see Theorem 11.1 of [20] and Theorem 4.1 of [2]. The former gives
the γ-vector of A(Un,n) in the context of the γ-vector of the permutohedron.
Since H

(
A(Un,n−1), t

)
is the local h-vector of the barycentric subdivision of

the permutohedron, Athanasiadis’ survey [2] gives the analogous interpreta-
tion of the γ-vector of H

(
A(Un,n−1), t

)
.

6. Conjectures and future work

Our data points to a possible relationship between order complexes and
Chow rings. Let Δ(P ) be the order complex of a poset P , and for any
simplicial complex S, denote the h-polynomial of S by

h(S, t) :=

dim(S)∑
i=0

fi−1(x− 1)dim(S)−i

where fj is the number of j-dimensional faces of S and f−1 = 1 by conven-
tion.

Proposition 6.1 ([19] Theorem 9.1, https://oeis.org/A008292). For all
n ≥ 1,

h
(
Δ(L(Un,n)), t

)
= H

(
A(Un,n), t

)
The corresponding statement for the uniform matroids Un,r with r < n

has small counterexamples, but can be modified as follows.

Conjecture 6.2. For r < n, we have

h
(
Δ(L(Un,r)), t

)
= t2

r∑
i=1

(
n− i− 1

r − i

)
H(A(Un,i), t).

Since it is relatively simple to compute the f -vector of Δ(L(Un,r)), this
would also give a formula for H(A(Un,i+1), t).

https://oeis.org/A008292
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Remark 6.3. Conjecture 6.2 is equivalent to the equality Fn(t, u) = Hn(t, u+

1) for the polynomials

Fn(t, u) =

n−2∑
r=0

h(Δ(L(Un,r+1 \ {
,⊥})), t)un−2−r

Hn(t, u) =

n−2∑
r=0

H(A(Un,r+1), t)u
n−2−r

For more conjectures and some other results pertaining to Chow rings

of general atomic lattices, see [12].
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