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Consecutive permutation patterns in trees and
mappings

Alois Panholzer

We initiate an enumerative study of consecutive permutation pat-
terns in rooted labelled trees by analysing the number of trees
of a certain size that avoid a single consecutive permutation pat-
tern of length 3, and the corresponding number of trees that con-
tain this pattern a specified number of times. Using a generating
functions approach based on combinatorial decompositions with
respect to the node with smallest label in the tree, we are able to
characterize for all three classes of permutation patterns of length
3 the corresponding generating functions solutions. Via methods
of analytic combinatorics applied to these generating functions we
can provide asymptotic results for the number of trees avoiding
a certain pattern and central limit theorems for the number of
occurrences of a pattern. Moreover, we extend our analysis from
trees to mappings and carry out corresponding enumerative studies
concerning avoidance and occurrence of a single consecutive per-
mutation pattern of length 3 for functional digraphs of mappings
f : {1, . . . , n} → {1, . . . , n}. Close connections between the study
of certain patterns in trees and mappings are also shown bijectively.
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1. Introduction

In the combinatorial and probabilistic literature various studies of quantities
related to the labelling of trees, where the vertices of objects of size n are
labelled with distinct integers of [n] := {1, 2, . . . , n}, can be found. As two
examples, we mention here work on rooted labelled trees or forests concern-
ing proper vertices [12] (also called leaders, i.e., nodes x with largest label
in the whole subtree rooted at x) and records [14] (i.e., nodes x with largest
label amongst all vertices on the path from x to the root). Very recently,
studies concerning avoidance [2] or occurrence [1] of classical permutation
patterns in families of labelled trees and forests have been initiated.
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Analyses of certain consecutive permutation patterns also appear in lit-
erature, in particular, occurrences of the pattern 12, i.e., ascents, in rooted
labelled trees have been treated in [6], and there are a huge number of results
for trees avoiding the pattern 21, so-called increasing trees. Furthermore, al-
ternating (or intransitive) trees, which avoid the set of patterns {123, 321},
have been treated for several tree families [3, 15, 19], and we also men-
tion the recent study [16] on ascending runs, i.e., maximal occurrences of
patterns {12 . . . k, k ≥ 1} in rooted labelled trees and mappings, i.e., func-
tions f : [n] → [n]. We further mention another line of research concerning
occurrences and avoidance of structural patterns in trees, where one con-
siders occurrences of a given contiguous tree pattern in the tree, see, e.g.,
[11, 20].

Whereas consecutive patterns in permutations have been analysed in
detail via various methods, see, e.g., [7, 17], it seems that for trees, apart from
the previously mentioned work, almost no further results on the occurrence
or avoidance of consecutive permutation patterns of length 3 or higher are
available. Here we initiate such a study by treating the enumeration problem
when avoiding a single pattern of length 3, and analysing the number of
occurrences of a single pattern of length 3, for rooted labelled unordered
trees (i.e., the subtrees of any node are not ordered from left to right),
also called Cayley-trees (the enumeration formula nn−1 for the number of
rooted labelled trees of size n is attributed to A. Cayley). We assume here
edges in the tree as oriented towards the root node and the occurrence
of a consecutive permutation pattern σ = σ(1) . . . σ(k) ∈ Sk of length k
(with Sk the symmetric group on [k]) corresponds to a directed path p =
(x1, x2, . . . , xk) of k vertices, whose sequence of labels is order-isomorphic to
σ, i.e., xi < xj ⇔ σ(i) < σ(j), for all 1 ≤ i < j ≤ k. Note that throughout
this work by tree we always mean a rooted labelled unordered tree and we
identify a node with its label.

Moreover, we consider n-mappings, i.e., functions f : [n] → [n] and the
corresponding functional digraphs Gf = (V,E), i.e., the directed graph with
vertex-set V = [n] and edge-set E = {(i, f(i)) : i ∈ [n]}, and extend the
notion of consecutive permutation pattern occurrence/avoidance to them.
Although structural properties of the functional digraphs of random map-
pings, where one of the nn n-mappings is chosen with equal probability,
have widely been studied (see, e.g., [9]), there seem to exist only few results
concerning label patterns in mappings. Besides the analysis of runs [16], we
want to mention the study [18] of alternating mappings, i.e., functions f , for
which the iteration sequences i = f0(i), f1(i), f2(i), . . . are always forming
an alternating sequence, i.e., where the functional digraph Gf avoids the
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Figure 1: A tree t of size 8 and the functional digraph Gf of an 8-mapping
f . There are 2 occurrences of 123 (paths (1, 5, 6) and (2, 4, 6)) and one of
213 (path (3, 1, 5)) in t, whereas Gf avoids these two patterns.

set of patterns {123, 321}. Note that throughout this work we consider a

function f and its functional digraph Gf as synonyms and do not strictly

distinguish between nodes i in Gf and elements i in f . Figure 1 illustrates

the occurrence and avoidance of certain consecutive permutation patterns

in a labelled tree and a mapping.

The structure of the functional digraph of a mapping is rather simple and

is well described in [10]: the weakly connected components of such graphs

are just cycles of Cayley trees. This connection, although slightly more in-

volved when taking into account the labels of the nodes, also allows one to

gain results concerning consecutive permutation patterns in mappings from

corresponding results in trees. Furthermore we want to mention that due to

the combinatorial description of forests as sets of rooted labelled trees all

results for trees immediately give corresponding results for forests, but we

omit to state them here.

Throughout this work we use X
(d)
= Y to denote equality in distribution

of random variables (r.v. for short) X and Y , whereas Xn
(d)−−→ X means

weak convergence, i.e., convergence in distribution, of the sequence of r.v.

Xn to the r.v. X. N (μ, σ2) denotes the normal distribution with mean μ

and variance σ2. With W = W (z) :=
∑

n≥1 n
n−1 zn

n! we denote the so-called

tree function, i.e., the exponential generating function of the number of

Cayley trees of size-n, which satisfies the functional equation W = zeW .

With f(n) � g(n) we denote, for sequences f(n) and g(n), that f(n) is

asymptotically smaller than g(n), i.e., f(n) = o(g(n)), for n → ∞. We

further note that in cases where this does not cause ambiguity, for a better

readability, we omit for functions and sequences the superscripts specifying

the pattern σ.
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2. Results

Due to obvious symmetry arguments, the permutation patterns σ =

σ(1) . . . σ(k) and σ̃ = σ̃(1) . . . σ̃(k), with σ̃(j) = k + 1− σ(j), for 1 ≤ j ≤ k,

are strongly consecutive-Wilf equivalent, i.e., for each m,n, the number of

objects (trees or mappings) of size n with exactly m occurrences of the pat-

tern σ always matches with the corresponding number of objects for the

pattern σ̃. For patterns σ of length 3 we thus get three equivalence classes

123 ∼= 321, 132 ∼= 312, and 231 ∼= 213, and it suffices to state only results

for the patterns 123, 132, and 231.

Results for avoiding a pattern of length 3

Theorem 1. The exponential generating functions T [σ](z) :=
∑

n≥1 T
[σ]
n

zn

n!

of the number T
[σ]
n of rooted labelled trees of size n that avoid a given consec-

utive pattern σ of length 3 are all characterized as solutions of certain func-

tional equations given below. Moreover, the exponential generating functions

M [σ](z) :=
∑

n≥0M
[σ]
n

zn

n! of the number M
[σ]
n of n-mappings that avoid the

corresponding pattern σ can be expressed via the function T [σ](z) as stated

below.

Pattern σ T := T [σ](z) M := M [σ](z)

123 z = e−T
∫ T
0

et

1+tdt M = 1
1−z(1+T )

132 z =
∫ T
0 e−t−(T−t)e−t

dt M = eT−1+e−T

1−eT
∫ T

0
e−2t−(T−t)e−tdt

231 z = e−T
∫ T
0 et−1+e−t

dt M = 1
1−ze1−e−T

Theorem 2. The numbers T
[σ]
n and M

[σ]
n of rooted labelled trees of size n

and n-mappings, respectively, that avoid a given consecutive pattern σ of

length 3 are asymptotically, for n → ∞, given as follows:

T [σ]
n ∼ cT · γn · nn−1, M [σ]

n ∼ cM · γn · nn,

with γ = 1
eρ , where ρ is the radius of convergence of the corresponding gener-

ating function T [σ](z) characterised via solutions of certain functional equa-
tions, and where cT , cM are some computable constants. Numerical values
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of the occurring constants are given below.

Pattern σ ρ γ cT cM
123 0.42718536 . . . 0.86117050 . . . 1.53000135 . . . 1.53000135 . . .

132 0.44084481 . . . 0.83448739 . . . 1.74299311 . . . 1.83550666 . . .

231 0.44922576 . . . 0.81891883 . . . 2.23735314 . . . 2.23735314 . . .

Remark 1.

• The numbers T
[σ]
n are for n ∈ [8] given as follows.

T
[σ]
n , n ∈ [8]

Pattern σ
1 2 3 4 5 6 7 8

123 1 2 8 50 426 4606 60418 932282

132 1 2 8 49 407 4280 54537 816905

231 1 2 8 49 406 4248 53740 797786

• Only the enumeration sequence of T
[123]
n occurs in OEIS as sequence

A225052, but without giving a combinatorial meaning. Now we can
provide such one as rooted labelled trees without double-ascents.

• One might compare the results for the exponential growth rates γ with
the corresponding ones for unrestricted labelled trees: γ = 1, and for
21-avoiding labelled trees (so-called recursive trees, see [10]): γ = 1/e =
0.3678 . . . , as summarized in the following table.

21 231 132 123 unrestricted

0.3678 . . . 0.8189 . . . 0.8344 . . . 0.8611 . . . 1

• According to Theorem 2 one obtains, for n → ∞, the following asymp-

totic relation for the enumeration sequences T
[σ]
n :

T [231]
n � T [132]

n � T [123]
n .

For two of the three patterns of length 3 we get a close connection be-
tween pattern avoidance in trees and mappings as subsumed in the following
corollary.

Corollary 1. For the patterns σ = 123 and σ = 231 the corresponding
numbers in trees and mappings are related via

M [σ]
n = nT [σ]

n .

Note that this relation does not hold, not even asymptotically, for the

pattern σ = 132, for which we get instead M
[σ]
n ∼ 1.0530 . . . · nT [σ]

n .
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Results for occurrences of patterns of length 3

Theorem 3. The exponential generating functions F [σ](z, v) :=∑
n≥1

∑
m≥0 F

[σ]
n,m

znvm

n! of the number F
[σ]
n,m of rooted labelled trees of size

n with m occurrences of a given consecutive pattern σ of length 3 are char-
acterized as solutions of certain functional equations given below. Moreover,

the exponential generating functions G[σ](z, v) :=
∑

n≥0

∑
m≥0G

[σ]
n,m

znvm

n! of

the number G
[σ]
n,m of n-mappings with m occurrences of the corresponding

pattern σ can be expressed via the functions F [σ](z, v) as stated below.

Pattern σ F := F [σ](z, v) G := G[σ](z, v)

123 z = e−F
∫ F
0 et(1− (v − 1)t)

1

v−1dt 1

1−z(1−(v−1)F )
− 1

v−1

132 z =
∫ F
0 e−t−(F−t)e(v−1)t

dt e
(v−1)F+1−e(v−1)F

v−1

1−eF
∫ F

0
e(v−2)t−(F−t)e(v−1)t

dt

231 z = e−F
∫ F
0 e

(1−v)t−1+e(v−1)t

1−v dt 1

1−ze
1−e(v−1)F

1−v

Theorem 4. Let X
[σ]
n and Y

[σ]
n be the random variables counting the number

of occurrences of the pattern σ of length 3 in a randomly chosen size-n tree
or n-mapping, respectively. Then mean and variance of these r.v. are given
as follows:

123 132 231

E(X
[σ]
n )

E(Y
[σ]
n )

n
6 − 1

2 + 1
3n ∼ 1

6n

V(X
[σ]
n ) n

5 − 2
3 + 1

3n
2n
15 − 1

3 + 1
3n2 − 2

15n3
7n
60 − 1

6 − 7
12n

V(Y
[σ]
n ) + 2

3n2 − 8
15n3

2n
15 − 1

4 − 1
2n + 5

4n2 − 19
30n3 + 7

6n2 − 8
15n3

Furthermore, after suitable normalization, the r.v. X
[σ]
n and Y

[σ]
n converge in

distribution to a standard normal distribution N (0, 1), i.e., X [σ]
n −E(X [σ]

n )√
V(X [σ]

n )

(d)−−→

N (0, 1), analogous for Y
[σ]
n .

Remark 2. As expected, the r.v. X
[σ]
n and Y

[σ]
n satisfy a central limit theorem

with linear mean and variance. However, interestingly the variance, and thus
the normalization constants, are different for the three pattern classes of
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length 3:

V(X [123]
n ) = V(Y [123]

n ) ∼ 1

5
n, V(X [132]

n ) ∼ V(Y [132]
n ) ∼ 2

15
n,

V(X [231]
n ) = V(Y [231]

n ) ∼ 7

60
n.

Again, for two of the three patterns of length 3 we get a close connection

between pattern occurrences in trees and mappings.

Corollary 2. For the patterns σ = 123 and σ = 231 the corresponding

numbers in trees and mappings are related via

G[σ]
n,m = nF [σ]

n,m, and thus Y [σ]
n

(d)
= X [σ]

n .

Note that for the pattern 132 this exact relation does not hold, but the

r.v. X
[σ]
n and Y

[σ]
n have the same limiting distribution behaviour.

3. Generating functions for permutation patterns in trees

3.1. Pattern 123

In order to count the number of occurrences of the consecutive pattern 123,

i.e., double-ascents, in rooted labelled trees, we will use the decomposition

of a tree with respect to the vertex labelled 1. However, to exploit this

decomposition we have to introduce an auxiliary quantity and also count

the number of occurrences of the pattern 12, thus ascents, in the tree.

Formally we will consider bicoloured trees: a node x will be coloured blue,

i.e., it gets a marker B, if x is the starting node of the consecutive pattern

12, and it will be coloured red, thus gets a marker R, if it is the starting

node of the consecutive pattern 123. Note that vertices can be coloured red

and blue simultaneously; actually, if a node is coloured red it is also coloured

blue. Let us denote by F the family of rooted labelled trees with vertices

coloured in the previously described manner. The decomposition of a tree

t ∈ F with respect to node 1 yields (after order-preserving relabellings) a

(possibly empty) set of subtrees t1, . . . , tk originally attached to node 1 and,

in case that 1 is not the root of t, a subtree t0, where node 1 is originally

linked to a node x ∈ t0. The following three cases might occur; see Figure 2.

Note that attaching the subtrees t1, . . . , tk to node 1 does not change the

number of patterns 12 and 123.
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Figure 2: Pattern 123: Decomposition of a tree t with respect to the node
with smallest label, where the three cases described below may occur. Start-
ing nodes of occurrences of the pattern 12 and 123 relevant to this decom-
position are coloured blue and red, respectively.

1. Node 1 is not the root of t and x is in t0 coloured blue: in this case,

the link from 1 to x creates a new pattern 123 and also a pattern 12

and thus node 1 will be coloured red and blue. Therefore the number

of red vertices and blue vertices in t is one plus the sum of the number

of corresponding vertices in t0, t1, . . . , tk.

2. Node 1 is not the root of t and x is not blue in t0: in that case, the link

from 1 to x only creates a new pattern 12, but no pattern 123, and

thus node 1 will be coloured blue. The number of red vertices in t is

equal to the sum of the number of red vertices in t0, t1, . . . , tk, whereas

the number of blue vertices in t is one plus the sum of the blue vertices

in these subtrees.

3. Node 1 is the root of t: here the number of blue vertices and red vertices

in t is equal to the sum of the corresponding vertices in t1, . . . , tk.

Using this decomposition we obtain a symbolic equation for the family F
by applying combinatorial constructions (see [10]). Besides basic operations

as the disjoint union +, the partition product ∗ and the set-construction Set

of labelled families, we require the boxed-product A� ∗ B of families A and

B, which only contains those objects, where the smallest label 1 is contained

in the A-component. With Z we denote an atomic element, i.e., a vertex.

Moreover, we use marking-operators: ΘZ(A) contains all structures obtained

by distinguishing (i.e., marking) one node in an object of A; to mark a blue

vertex or a red vertex we use the markers B and R, respectively, and ΘB(A)

contains all structures obtained by distinguishing a blue node in an object

of A.
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With these constructions the above decomposition can be described for-

mally as follows, where the summands in the formal equation correspond to

the cases occurring:

F = Z� ∗ΘB(F) ∗ Set(F)× {B,R}
+ Z� ∗

(
ΘZ(F) \ΘB(F)

)
∗ Set(F)× {B}+ Z� ∗ Set(F).(1)

We introduce the trivariate generating function F̃ (z, w, v) via

F̃ (z, w, v) :=
∑
t∈T

z|t|w� blue vertices in t v� red vertices in t

|t|!

=
∑
n≥1

∑
�≥0

∑
m≥0

F̃n,�,m
znw�vm

n!
,

where F̃n,�,m denotes the number of trees of size n with � occurrences of

the pattern 12 and m occurrences of the pattern 123. An application of the

so-called symbolic method (see [10]) to the formal equation (1) yields then

the following partial differential equation (PDE) for F̃ = F̃ (z, w, v):

F̃z = vw2eF̃ F̃w + weF̃ (zF̃z − wF̃w) + eF̃ .

Note that the boxed-product C = A� ∗B yields the equation Cz = Az ·B at

the level of generating functions. Moreover, since the marking operators ΘZ
and ΘB applied to F generate nF̃n,�,m and �F̃n,�,m different trees of size n

with � blue vertices and m red vertices, respectively, this leads to expressions

zF̃z and wF̃w in the equation stated.

Rearranging above equation yields the following first-order quasi-linear

PDE for F̃ (z, w, v) with initial condition F̃ (0, w, v) = 0:

(2) (1− wzeF̃ )F̃z + (1− v)w2eF̃ F̃w − eF̃ = 0.

Equation (2) can be solved by applying the method of characteristics for

first-order quasi-linear PDEs, see, e.g., [8]. Here we will omit these compu-

tations, but remark that we give a sketch of the application of this method

and of the corresponding derivations (which are very similar to the ones for

(2)) for the pattern 132 in the next section. However, it can be checked easily

by taking partial derivatives and plugging them into (2) that the solution

F̃ = F̃ (z, w, v) of the PDE (2) is given implicitly as solution of the following
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functional equation:

(3) z =

∫ F̃

0
e−s(1− (v − 1)w(F̃ − s))

1

v−1ds.

We eliminate the auxiliary parameter by setting w = 1 and introduce
the generating function

F (z, v) := F̃ (z, 1, v) =
∑
n≥1

∑
m≥0

Fn,m
znvm

n!
,

with Fn,m the number of size-n trees with m occurrences of the pattern
123. With w = 1 and the substitution t = F − s we get from (3) the
characterization of F = F (z, v) stated in Theorem 3; namely, F (z, v) satisfies
the functional equation

(4) z = e−F

∫ F

0
et(1− (v − 1)t)

1

v−1dt.

Furthermore by setting v = 0 we get the result for avoiding the pattern
123 stated in Theorem 1. To this aim we introduce the generating function

T = T (z) := F (z, 0) =
∑
n≥1

Tn
zn

n!
,

with Tn = Fn,0 the number of 123-avoiding size-n trees. Then, from (4) we
get that T (z) is given as solution of the following functional equation, which
is also stated in Theorem 1:

(5) z = e−T

∫ T

0

et

1 + t
dt.

3.2. Pattern 132

When counting the number of occurrences of the consecutive pattern 132
by a recursive approach based on the decomposition with respect to the
node labelled 1 we have to take into account as auxiliary parameter also the
number of occurrences of the consecutive pattern 21, i.e., descents, in the
tree.

Again we consider bicoloured trees, where a node x will be coloured blue,
i.e., it gets a marker B, if x is the starting node of the consecutive pattern
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Figure 3: Pattern 132: Decomposition of a tree t with respect to the node
with smallest label, where the three cases described below may occur. Start-
ing nodes of occurrences of the pattern 21 and 132 relevant to this decom-
position are coloured blue and red, respectively.

21, and it will be coloured red, thus gets a marker R, if it is the starting

node of the consecutive pattern 132. With F we denote the family of rooted

labelled trees with vertices coloured as described before. The decomposi-

tion of a tree t ∈ F with respect to node 1 yields (after order-preserving

relabellings) a (possibly empty) set of subtrees t1, . . . , tk with respective

root-nodes r1, . . . , rk originally attached to node 1 and, in case that 1 is not

the root of t, a subtree t0, where node 1 is originally linked to a node x ∈ t0.

The following three cases might occur, see Figure 3, where we also take into

account that attaching the root rj of the subtree tj , 1 ≤ j ≤ k, to node 1

creates a consecutive pattern 21 in t, thus each vertex rj will be coloured

blue, whereas attaching the subtrees to 1 does not change the number of

occurrences of the pattern 132.

1. Node 1 is not the root of t and x is in t0 coloured blue: in this case,

the link from 1 to x creates in t a new pattern 132 and node 1 will be

coloured red. Thus the number of red vertices in t is one plus the sum

of the number of red vertices in t0, t1, . . . , tk, whereas the number of

blue vertices in t is k (for each of the nodes attached to 1) plus the

sum of the number of blue vertices in t0, t1, . . . , tk.

2. Node 1 is not the root of t and x is not blue in t0: in that case, the link

from 1 to x neither creates a pattern 21 nor a pattern 132, and thus

node 1 remains uncoloured. The number of red vertices in t is equal to

the sum of the number of red vertices in t0, t1, . . . , tk, and the number

of blue vertices in t is k plus the sum of the number of blue vertices in

t0, t1, . . . , tk.
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3. Node 1 is the root of t: here the number of red vertices in t is equal to
the sum of the red vertices in t1, . . . , tk, and the number of blue vertices
in t is k plus the sum of the number of blue vertices in t1, . . . , tk.

Combining these cases leads to the following recursive description of the
family F , where we use the combinatorial constructions already defined in
Section 3.1:

F = Z� ∗ΘB(F) ∗ Set(F × {B})× {R}
+ Z� ∗

(
ΘZ(F) \ΘB(F)

)
∗ Set(F × {B}) + Z� ∗ Set(F × {B}).(6)

When introducing the trivariate generating function F̃ (z, w, v) via

F̃ (z, w, v) :=
∑
t∈T

z|t|w� blue vertices in t v� red vertices in t

|t|!

=
∑
n≥1

∑
�≥0

∑
m≥0

F̃n,�,m
znw�vm

n!
,

where F̃n,�,m denotes the number of trees of size n with � occurrences of
the pattern 21 and m occurrences of the pattern 132, an application of the
symbolic method to (6) yields the following first-order quasi-linear PDE for
F̃ = F̃ (z, w, v):

F̃z = vwewF̃ F̃w + ewF̃ (zF̃z − wF̃w) + ewF̃ ,

with initial condition F̃ (0, w, v) = 0. It can be written as follows:

(7) (1− zewF̃ )F̃z − (v − 1)wewF̃ F̃w − ewF̃ = 0.

We sketch the application of the method of characteristics yielding the
solution of (7), since later when considering the corresponding problem for
mappings we require an intermediate result. Introducing a function f =
f(z, w, F̃ ) and assuming f(z, w, F̃ (z, w)) = const. (we consider here v as a
parameter), we obtain after taking partial derivatives the following PDE for
f : (

1− zewF̃
)
fz − (v − 1)wewF̃ fw + ewF̃ fF̃ = 0.

To find solutions of the PDE we consider the system of characteristic equa-
tions (by assuming that the variables occurring are dependent on a param-
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eter t, z = z(t), w = w(t), F̃ = F̃ (t), and using the notation ż = dz
dt , etc.):

(8) ż = 1− zewF̃ , ẇ = −(v − 1)wewF̃ , ˙̃F = ewF̃ .

From the second and third characteristic equation (8) we obtain the sepa-
rable differential equation (DEQ) dw

dF̃
= −(v− 1)w, whose solution gives the

first integral

(9) we(v−1)F̃ = C1 = const.

The first and third characteristic equation (8), after substituting w =

C1e
−(v−1)F̃ , gives the first order linear DEQ dz

dF̃
= −z+e−C1F̃ e−(v−1)F̃

, and the

general solution of it leads to the first integral zeF̃ −
∫ F̃
0 et(1−we(v−1)(F̃−t))dt =

C2 = const. Considering C2 = g(C1) = const., with g(x) an arbitrary dif-
ferentiable function, we obtain the general solution of (7) in the implicit
form

zeF̃ −
∫ F̃

0
et(1−we(v−1)(F̃−t))dt = g(we(v−1)F̃ ).

Taking into account the initial condition F̃ (0, w, v) = 0 characterizes the
function g(x) as g(x) = 0 and one gets the required solution of the PDE (7)
for F̃ = F̃ (z, w, v) as solution of the functional equation

(10) z =

∫ F̃

0
e−t−w(F̃−t)e(v−1)t

dt.

Introducing the generating function

F (z, v) := F̃ (z, 1, v) =
∑
n≥1

∑
m≥0

Fn,m
znvm

n!
,

with Fn,m the number of size-n trees with m occurrences of the pattern 132,
and setting w = 1 in (10) yields the characterization of F = F (z, v) stated
in Theorem 3 as solution of the functional equation

(11) z =

∫ F

0
e−t−(F−t)e(v−1)t

dt.

Moreover, introducing the generating function

T (z) := F (z, 0) =
∑
n≥1

Tn
zn

n!
,
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with Tn = Fn,0 the number of 132-avoiding size-n trees, and evaluation (11)
at v = 0 shows the result stated in Theorem 1, namely that T = T (z) is
characterized as solution of the functional equation

(12) z =

∫ T

0
e−t−(T−t)e−t

dt.

3.3. Pattern 231

For the pattern 231 the situation is slightly different from the ones previ-
ously treated, since here the decomposition of a tree with respect to the
smallest labelled vertex 1 has an influence to the last element in the per-
mutation pattern; this requires a different auxiliary quantity and leads to
another kind of equation at the level of generating functions. Namely, for a
recursive treatment of the number of occurrences of 231 in a tree t we also
take into consideration the number of consecutive patterns 12 ending at the
root of t (i.e., ascents ending at the root). Formally we will again consider
bicoloured trees, where each starting node x of the consecutive pattern 231
is coloured red, and thus gets a marker R, and where each starting node x
of the consecutive pattern 12 ending at the root is coloured blue, thus gets a
marker B; the familiy of rooted labelled trees with vertices coloured in this
way is denoted by F .

The decomposition of a tree t ∈ F with respect to node 1 yields (after
order-preserving relabellings) a (possibly empty) set of subtrees t1, . . . , tk
with respective root-nodes r1, . . . , rk originally attached to node 1 and, in
case that 1 is not the root of t, a subtree t0, where node 1 is originally linked
to a node x ∈ t0. We will distinguish the following three cases, see Figure 4.
Of particular importance is the observation that each pattern 12 ending at
the root rj in a subtree tj , 1 ≤ j ≤ k, creates a new pattern 231 in t when
attaching the subtrees to node 1.

1. Node 1 is not the root of t and x is not the root of t0: in this case, the
number of blue vertices in t is equal to the number of blue vertices in
t0, whereas the number of red vertices in t is given by the sum of the
number of red vertices in t0, t1, . . . , tk plus the sum of the number of
blue vertices in t1, . . . , tk.

2. Node 1 is not the root of t and x is the root of t0: in that case, the link
from 1 to x creates an additional pattern 12 ending at the root of t
and thus 1 is coloured blue. Therefore, the number of blue vertices in t
is one plus the number of blue vertices in t0. Furthermore the number
of red vertices in t is given by the sum of the number of red vertices in
t0, t1, . . . , tk plus the sum of the number of blue vertices in t1, . . . , tk.
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Figure 4: Pattern 231: Decomposition of a tree t with respect to the node
with smallest label, where the three cases described below may occur. Start-
ing nodes of occurrences of the pattern 12 ending at the root (of subtrees)
and the pattern 231 relevant to this decomposition are coloured blue and
red, respectively.

3. Node 1 is the root of t: here t does not contain any pattern 12 ending
at the root of t, thus there are no blue vertices in t. Furthermore the
number of red vertices in t is given by the sum of the number of red
vertices in t1, . . . , tk plus the sum of the number of blue vertices in
t1, . . . , tk.

In order to describe this decomposition of the family F formally we
require, in addition to constructions already introduced in previous sections,
a replacement-operator for markers: let ΦB→R be the operator that when
applied to a combinatorial family replaces every marker B by a marker R in
these objects. We obtain then the following formal equation for the family
F :

F = Z� ∗
(
ΘZ(F) \ F

)
∗ Set

(
ΦB→R(F)

)
+ Z� ∗ F ∗ Set

(
ΦB→R(F)

)
× {B}+ Z� ∗ Set

(
ΦB→R(F)

)
.(13)

Let us define the trivariate generating function F̃ (z, w, v) via

F̃ (z, w, v) :=
∑
t∈T

z|t|w� blue vertices in t v� red vertices in t

|t|!

=
∑
n≥1

∑
�≥0

∑
m≥0

F̃n,�,m
znw�vm

n!
,

where F̃n,�,m denotes the number of trees of size n with � occurrences of
the pattern 12 ending at the root of the tree and m occurrences of the
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pattern 231. When applying the symbolic method to (13), we have to take
into account that at the level of generating functions the operator ΦB→R

corresponds to a replacement of the variable w (counting the marker B)
by the variable v (counting the marker R), thus ΦB→R(F) gives F̃ (z, v, v).
Therefore we get the following DEQ for the function F̃ (z, w, v), where also
evaluations at w = v, i.e., F̃ (z, v, v), occur:

F̃z(z, w, v) =
(
zF̃z(z, w, v)− F̃ (z, w, v)

)
eF̃ (z,v,v) + wF̃ (z, w, v)eF̃ (z,v,v)

+ eF̃ (z,v,v),

together with the initial condition F̃ (0, w, v) = 0. It can be rewritten as
follows:

(14) (1− zeF̃ (z,v,v))F̃z(z, w, v) + (1− w)eF̃ (z,v,v)F̃ (z, w, v)− eF̃ (z,v,v) = 0.

To solve this equation we first set w = v in (14) and study the auxiliary
function A = A(z, v) := F̃ (z, v, v), which satisfies the first-order non-linear
DEQ

(15) (1− zeA)Az − (1− (1− v)A)eA = 0,

with initial condition A(0, v) = 0. Equation (15) can be solved by standard
means, e.g., when considering it as a quasi-linear first-order PDE and apply-
ing the method of characteristics. This characterizes A = A(z, v) implicitly
as solution of the following functional equation:

(16) z = (1− (1− v)A)
1

1−v

∫ A

0
(1− (1− v)s)

v−2

1−v e−sds.

We omit these calculations, but it can be checked easily that (16) indeed sat-
isfies (15) as well as the stated initial condition. Plugging A(z, v) = F̃ (z, v, v)
into (14) yields a first-order linear DEQ for F̃ (z, w, v); however, since vari-
able w only encodes an auxiliary quantity, which is no more of further in-
terest, we set w = 1 and introduce the generating function

F (z, v) := F̃ (z, 1, v) =
∑
n≥1

∑
m≥0

Fn,m
znvm

n!
,

with Fn,m the number of size-n trees with m occurrences of the pattern 231.
This gives the following DEQ for F = F (z, v), with A = A(z, v) as in (16):

(1− zeA)Fz − eA = 0.
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Thus, together with the initial condition F (0, v) = 0, we obtain the solution

(17) F (z, v) =

∫ z

0

eA(t,v)

1− teA(t,v)
dt.

However, we want to get rid of the appearance of A(z, v) in the solution
of F (z, v), which can be done by some manipulations. First we rewrite the
integrand of (17). Namely, by partial integration of (16), we obtain

z = (1− (1− v)A)
1

1−v

×
(
(1− (1− v)s)−

1

1−v e−s
∣∣∣A
0
+

∫ A

0
(1− (1− v)s)−

1

1−v e−sds

)

= e−A − (1− (1− v)A)
1

1−v ·
(
1−

∫ A

0
(1− (1− v)s)−

1

1−v e−sds

)
(18)

and further, after simple manipulations,

(19)
eA

1− zeA
=

1

(1− (1− v)A)
1

1−v ·
(
1−

∫ A
0 (1− (1− v)s)−

1

1−v e−sds
) .

Moreover, taking derivates of (18) gives

(20)
dz

dA
= (1− (1− v)A)

v

1−v ·
(
1−

∫ A

0
(1− (1− v)s)−

1

1−v e−sds

)
.

Thus, using (19) and (20), the substitution x = A(t, v) in (17) leads to an
integral-free representation of F (z, v) in terms of A(z, v):

F (z, v) =

∫ A(z,v)

0

1

1− (1− v)x
dx =

1

1− v
ln

(
1

1− (1− v)A(z, v)

)
,

and thus to the following relation between the auxiliary function A = A(z, v)
and the required F = F (z, v):

(21) A =
1− e−(1−v)F

1− v
.

Using (21) we first obtain from (16) the equation

z = e−F

∫ A

0
(1− (1− v)s)

v−2

1−v e−sds,
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which leads after substituting s = 1−e−(1−v)t

1−v to the representation of F =
F (z, v) stated in Theorem 3 as solution of the functional equation

(22) z = e−F

∫ F

0
e

(1−v)t−1+e−(1−v)t

1−v dt.

Moreover, by setting v = 0, we get the result stated in Theorem 1 for the
generating function

T (z) := F (z, 0) =
∑
n≥1

Tn
zn

n!

of the number Tn = Fn,0 of 231-avoiding size-n trees, i.e., that T = T (z) is
given as solution of the functional equation

(23) z = e−T

∫ T

0
et−1+e−t

dt.

4. Asymptotic results for permutation patterns in trees

4.1. Pattern-avoiding trees

We will show here the asymptotic results for the number T
[σ]
n of labelled trees

avoiding a consecutive pattern σ of length 3 stated in Theorem 2. We do this
by considering the corresponding generating functions T = T [σ](z) computed
in Section 3, which are characterized implicitly via functional equations of
the form z = φ(T ). Deducing the asymptotic behaviour of the coefficients
of such implicitly given generating functions via methods of analytic com-
binatorics is well-established and nicely described in [10]; thus we may give
the computations in a somewhat condensed form. In order to characterize
the dominant singularity (or singularities, but for the generating functions
occurring in this work, the singularity of smallest modulus is always unique)
of T (z) we consider the function h(z, T ) := z − φ(T ). According to the im-
plicit function theorem, this equation cannot be resolved with respect to T
in a locally unique way for points (z, T ) = (ρ, τ) satisfying h(ρ, τ) = 0 and
hT (ρ, τ) = 0.

4.1.1. Pattern 123 Due to the functional equation (5) that satisfies T ,
we consider

h(z, T ) = z − e−T

∫ T

0

et

1 + t
dt,
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and search for points (z, T ) = (ρ, τ) solving the equations

h(ρ, τ) = ρ− e−τ

∫ τ

0

et

1 + t
dt = 0,(24a)

hT (ρ, τ) = e−τ

∫ τ

0

et

1 + t
dt− 1

1 + τ
= 0.(24b)

Equation (24b) characterizes τ as solution of

(25)
eτ

1 + τ
=

∫ τ

0

et

1 + t
dt.

Plugging this into (24a) gives the relation

(26) ρ =
1

1 + τ
.

Since the coefficients of the series T (z) =
∑

n≥1 Tn
zn

n! are all non-negative,
according to the theorem of Pringsheim (see, e.g., [10, Theorem IV.6]), a
dominant singularity of T (z) has to be located on the positive real axis.
Thus, let us proceed by defining τ as the uniquely determined positive real
solution of equation (25). Using the exponential integral, defined as the
Cauchy principal value Ei(x) := (CPV )

∫ x
−∞

et

t dt, this solution can be char-

acterized as non-negative real solution of Ei(1 + τ) − Ei(1) = e1+τ

1+τ and is
numerically given as τ = 1.34090414 . . . . The corresponding ρ obtained via
(26), which gives the dominant singularity and also the radius of convergence
of the function T (z), thus can also be described by means of the exponential

integral as positive real solution of the equation Ei(1ρ)− Ei(1) = ρe
1

ρ and is
numerically given as ρ = 0.42718536 . . . .

For such kind of problem where the function T (z) is characterized im-
plicitly by some functional equation, the only difficulty in determining the
asymptotic behaviour of the coefficients that may remain is to justify that
there are no further dominant singularities, i.e., singularities on the circle of
convergence, other than ρ. This could be done simply by a numerical search
for pairs (ρ̃, τ̃) on the compact set {(ρ̃, τ̃) ∈ C2 : |ρ̃| ≤ ρ and |τ̃ | ≤ τ} sat-
isfying equations (24a) and (24b) (see the derivation for the pattern 132);
note that indeed only τ̃ with |τ̃ | ≤ τ are of relevance, since due to the pos-
itivity of the coefficients of T (z) there holds for any ρ̃ with |ρ̃| ≤ ρ that
|τ̃ | = |T (ρ̃)| ≤ T (|ρ̃|) ≤ T (ρ) = τ . However, in the present case also an ana-
lytic argument can be used to show that ρ is the unique dominant singularity.



36 Alois Panholzer

Namely, assume that ρ̃ = ρeiϕ, with 0 < ϕ < 2π, is also a dominant singular-

ity and thus ρ̃, τ̃ , with τ̃ = T (ρ̃), are solutions of (24a) and (24b). As a con-

sequence these numbers satisfy the relation (26) and thus τ̃ = (1+τ)e−iϕ−1.

Simple manipulations show that |τ̃ |2 = τ2 + 2(τ + 1)(1 − cosϕ). Since

cosϕ < 1, for 0 < ϕ < 2π, it follows that |τ̃ | > τ , which is a contradic-

tion.

In order to apply singularity analysis we require the local behaviour of

T = T (z) in a complex neighbourhood (actually in a so-called Δ-domain,

see [10]) of the dominant singularity z = ρ. This can be obtained easily by

carrying out a series expansion of the defining equation (5) around z = ρ

and T = τ . Defining φ(x) := e−x
∫ x
0

et

1+tdt we have to consider

ρ+ (z − ρ) = φ(τ) + φ′(τ)(T − τ) + φ′′(τ)
(T − τ)2

2
+O

(
(T − τ)3

)
.

With

φ′(x) =
1

1 + x
−e−x

∫ x

0

et

1 + t
dt and φ′′(x) = − 2 + x

(1 + x)2
+e−x

∫ x

0

et

1 + t
dt,

and by using (24a) and (26), we obtain

φ(τ) = ρ, φ′(τ) = 0, and φ′′(τ) = −ρ2.

Thus, after simple manipulations, we get

T = τ ±
√

2
ρ

√
1− z

ρ
·
(
1 +O(T − τ)

)
.

Using that for real z, z → ρ−, there holds T (z) < T (ρ) = τ , thus T → τ−,
this characterizes the correct sign and we get the required local expansion

of T (z) in a slit neighbourhood of z = ρ (where we additionally used that

τ = 1−ρ
ρ ):

T (z) =
1− ρ

ρ
−
√

2
ρ ·

√
1− z

ρ
+O

(
1− z

ρ

)
.

A standard application of singularity analysis, together with Stirling’s for-

mula for the factorials,

n! =
nn

en

√
2πn ·

(
1 +O(n−1)

)
,
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for n → ∞, and by using Γ(−1
2) = −2

√
π, shows then the asymptotic

behaviour of the coefficients Tn of T (z) stated in Theorem 2:

Tn = n![zn]T (z) = −n!
√

2
ρ

n− 3

2

Γ(−1
2)

1

ρn
·
(
1 +O(n−1)

)

=
1
√
ρ
· n

n−1

(eρ)n
·
(
1 +O(n−1)

)
.

Remark 3. As mentioned earlier, the sequence Tn occurs in OEIS as se-
quence A225052, but without mentioning a concrete combinatorial interpre-
tation. There also the asymptotic behaviour of Tn, for n → ∞, as given
in Theorem 2 has been noticed. Furthermore, differentiating the functional
equation (5) with respect to z shows that T (z) satisfies the differential equa-
tion

T ′(z) =
1 + T (z)

1− z(1 + T (z))
.

From this equation one easily gets the following recurrence formula for the
numbers Tn, where we additionally set T0 := 1:

Tn+1 = Tn + n

n−1∑
k=0

(
n− 1

k

)
TkTn−k, n ≥ 0.

These results can be found also in OEIS as entries for the sequence A225052.

4.1.2. Pattern 231 This pattern can be treated completely analogous to
the previous one. Due to the functional equation (23) for T (z) we consider

h(z, T ) = z − e−T

∫ T

0
et−1+e−t

dt,

and search for points (z, T ) = (ρ, τ) solving the equations

h(ρ, τ) = ρ− e−τ

∫ τ

0
et−1+e−t

dt = 0,(27a)

hT (ρ, τ) = e−τ

∫ τ

0
et−1+e−t

dt− e−1+e−τ

= 0.(27b)

Equation (27b) characterizes τ as solution of

(28) eτ−1+e−τ

=

∫ τ

0
et−1+e−t

dt, or e =

∫ τ

0
ee

−t

dt,
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where the second equation can be obtained from the first one by partial
integration. Plugging this into (27a) gives the relation

(29) ρ = e−1+e−τ

, or τ = − ln(1 + ln ρ).

The uniquely determined positive real solution of equation (28) can be char-
acterized as follows by using the exponential integral, Ei(e−τ ) = Ei(1) − e,
and is numerically given by τ = 1.61058707 . . . . Thus also the dominant sin-
gularity ρ, related to τ via (29), can be characterized via the exponential inte-
gral, Ei(1+ln ρ) = Ei(1)−e, and is numerically given as ρ = 0.44922576 . . . .

Again it is not difficult to justify that there are no other dominant sin-
gularities than ρ. Namely, let us assume that there is also the dominant
singularity ρ̃ = ρeiϕ, with some 0 < ϕ < 2π. The corresponding values
τ = T (ρ) and τ̃ = T (ρ̃) have to satisfy, according to (29), e−τ = 1+ln ρ and
e−τ̃ = 1+ ln ρ̃ = 1+ ln ρ+ iϕ = e−τ + iϕ. From this equation we further get

|eτ̃ | = eτ√
1 + ϕ2e2τ

> eτ , for ϕ �= 0.

However, the relation |ez| > ex, for a complex z and positive real x > 0,
implies 
z > x and thus |z| > x. Therefore we get that |τ̃ | > τ , which is
a contradiction, since the coefficients of T (z) are all non-negative implying
|τ̃ | ≤ τ .

The local expansion of T (z) in a complex neighbourhood of the dominant
singularity ρ can be obtained by a series expansion of (23) around z = ρ
and T = τ , which gives (we omit these straightforward computations)

T (z) = τ −
√
2√

1 + ln ρ

√
1− z

ρ
+O

(
1− z

ρ

)
,

from which, by a standard application of singularity analysis, one gets the
required asymptotic expansion of the coefficients Tn stated in Theorem 2:

Tn = n![zn]T (z) =
1√

1 + ln ρ
· n

n−1

(eρ)n
·
(
1 +O(n−1)

)
.

Remark 4. Differentiating the functional equation (23) multiple times gives
a differential equation for T (z), from which a recurrence formula for the
coefficients Tn can be deduced. However, since the recurrence obtained is
much less appealing than the corresponding one for 123-avoiding trees, we
omit to state it here.
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4.1.3. Pattern 132 Here the functional equation (23) for T (z) leads to
a study of the function

h(z, T ) = z −
∫ T

0
e−t−(T−t)e−t

dt,

and to a search for points (z, T ) = (ρ, τ) solving the equations

h(ρ, τ) = ρ−
∫ τ

0
e−t−(τ−t)e−t

dt = 0,(30a)

hT (ρ, τ) = −e−τ +

∫ τ

0
e−2t−(τ−t)e−t

dt = 0.(30b)

The positive real solution of (30b) is numerically given by τ = 1.45820126 . . . ,
and plugging this into (30a) one gets the dominant singularity and radius
of convergence ρ of T (z), which is numerically given by ρ = 0.44084481 . . . .
Unlike for the patterns previously studied, here we are not aware of a sim-
ple analytic argument showing that there are no further singularities on the
circle of convergence. However, since we only have to examine the compact
set {(z, T ) ∈ C2 : |z| ≤ ρ, |T | ≤ τ} and since according to (30a) and (30b)
only continuous functions are involved, the absence of further singularities
can be justified easily by numerical evidence. Moreover, when considering
the image of the mapping T �→ φ(T ) =

∫ T
0 e−t−(T−t)e−t

dt = z, it is appar-
ent that this mapping is injective for |T | ≤ τ and the cusp at T = τ with
φ(τ) = ρ illustrates the unique dominant singularity of T (z); see Figure 5.

A straightforward expansion of (23) around z = ρ and T = τ leads then
to the following local expansion of T (z) around the dominant singularity ρ,

T (z) = τ −
√
κ

√
1− z

ρ
+O

(
1− z

ρ

)
, with κ = 2ρ

e−τ+e−2τ−
∫ τ

0
e−3t−(τ−t)e−tdt

,

and a standard application of singularity analysis gives the asymptotic result
for the coefficients Tn stated in Theorem 2:

Tn = n![zn]T (z) =

√
κ

2
· n

n−1

(eρ)n
·
(
1 +O(n−1)

)
.

4.2. Pattern-occurrences in trees

We prove here the results concerning the distribution of the r.v. X
[σ]
n count-

ing the number of occurrences of the consecutive pattern σ of length 3 in a
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Figure 5: A complex plot of the image of the mapping T �→ φ(T ) =∫ T
0 e−t−(T−t)e−t

dt = z for |T | ∈ {0.8, 1.0, 1.2, 1.3, 1.4, τ}.

randomly chosen labelled tree of size n stated in Theorem 4. They can be

obtained from the generating functions F = F [σ](z, v) of the number F
[σ]
n,m of

trees of size n with exactly m occurrences of the pattern σ computed in Sec-
tion 3 by methods of analytic combinatorics. First one easily gets exact and
asymptotic results for the expectation and the variance of Xn by expand-
ing the functional equations characterizing F around v = 1 and extracting
coefficients. Second in order to show a central limit theorem of Xn we use
the concept of singularity perturbation analysis, see [10], by studying the
local behaviour around the dominant singularity of the generating function
F (z, v), where one considers v as a fixed parameter chosen in a complex
neighbourhood of 1, and apply the so-called quasi-power theorem of Hwang,
see [13], that guarantees the stated limiting distribution behaviour. Again,
in order to characterize the dominant singularity of F (z, v) we consider the
function h(z, F ) := z − φ(F ) and use that, according to the implicit func-
tion theorem, this equation cannot be resolved with respect to F in a locally
unique way for points (z, F ) = (ρ(v), τ(v)) satisfying h(ρ(v), τ(v)) = 0 and
hF (ρ(v), τ(v)) = 0.

4.2.1. Pattern 123 Since F (z, v) =
∑

n≥1

∑
m≥0 n

n−1P{Xn = m} znvm

n! ,

the k-th factorial moments E(X
k
n) of Xn can be obtained by expanding

F (z, v) around v = 1. Thus, when setting u = v − 1, we get

F (z, v) =
∑
k≥0

Fk(z)
uk

k!
, with Fk(z) =

∑
n≥1

nn−1E(X
k
n)zn

n!
.
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When expanding the functional equation (4) characterizing F (z, v) we get

z = e−F0F0 +
e−F0

6

(
−F 3

0 − 6F0F1 + 6F1

)
u+

e−F0

120
· q2u2 +O(u3),

with q2 = 3F 5
0 −10F 4

0 +20F 3
0F1−60F 2

0F1+60F0F
2
1 −60F0F2−120F 2

1 +60F2.
Comparing coefficients of the powers of u characterizes F0(z) as the tree

function W = W (z) (which is known a priori), and successively

F1(z) =
W 3

6(1−W )
, F2(z) =

W 4(−4W 3 + 18W 2 − 39W + 30)

180(1−W )3
.

Extracting coefficients of F1(z) and F2(z) by using

W =
∑
n≥1

nn−1 z
n

n!
,

W

1−W
= zW ′(z) =

∑
n≥1

nn z
n

n!
,

W

(1−W )3
= z(zW ′)′ =

∑
n≥1

nn+1 z
n

n!
,

gives the exact and asymptotic results for the first and second factorial
moment, and thus also for the variance, of Xn stated in Theorem 4; we omit
these straightforward computations.

For the limiting distribution behaviour we consider again the functional
equation (4) for F = F (z, v), where we treat v as a parameter chosen in a
complex neighbourhood of 1. We study

h(z, F ) = z − e−F

∫ F

0
et(1− (v − 1)t)

1

v−1dt,

and search for points (z, F ) = (ρ, τ), with ρ = ρ(v), τ = τ(v) depending on
v, which are solutions of the equations

h(ρ, τ) = ρ− e−τ

∫ τ

0
et(1− (v − 1)t)

1

v−1dt = 0,(31a)

hF (ρ, τ) = e−τ

∫ τ

0
et(1− (v − 1)t)

1

v−1dt− (1− (v − 1)τ)
1

v−1 = 0.(31b)

Thus τ is characterized as solution of the equation

(32) eτ (1− (v − 1)τ)
1

v−1 =

∫ τ

0
et(1− (v − 1)t)

1

v−1dt,
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and ρ is related to τ via

(33) ρ = (1− (v − 1)τ)
1

v−1 .

Note that, also according to the implicit function theorem, since

hFF (ρ(1), τ(1)) = hFF (e
−1, 1) �= 0, there is a uniquely determined ana-

lytic function τ(v) (and thus also ρ(v)) around v = 1 characterized by these

equations. A series expansion of the functional equation (4) around F = τ

and z = ρ gives after easy computations the following local expansion of

F (z, v) around z = ρ(v):

(34) F = τ −
√
2 ρ

v−1

2

√
1− z

ρ
+O

(
1− z

ρ

)
.

An application of singularity analysis to (34) shows the following asymptotic

behaviour of the coefficients of F (z, v), and thus of the probability generating

function of the r.v. Xn:

E
(
vXn

)
=

n!

nn−1
[zn]F (z, v) = ρ

v−1

2 · 1

(eρ)n
·
(
1 +O(n−1)

)
.

Setting v = es we obtain an asymptotic expansion of the moment generating

function:

(35) E
(
esXn

)
= eU(s)·n+V (s) ·

(
1 +O(n−1)

)
,

with functions U and V given as follows:

U(s) = −
(
1 + ln

(
ρ(es)

))
, V (s) =

es − 1

2
· ln

(
ρ(es)

)
.

This is exactly the setting of the quasi-power theorem due to Hwang [13, 10]

from which we can deduce E(Xn) = U ′(0)n+O(1), V(Xn) = U ′′(0)n+O(1)

and a central limit theorem for the normalized r.v. Xn−E(Xn)√
V(Xn)

. Note that

from (32) and (33), via an expansion around v = 1, we easily get the local

expansion U(s) = −1 − ln ρ(es) = 1
6s +

1
10s

2 + O(s3) around s = 0, which

again gives the asymptotic behaviour of the expectation E(Xn) ∼ 1
6n and of

the variance V(Xn) ∼ 1
5 already obtained from our exact results. Altogether

this completes the proof of Theorem 4 for the pattern 123.
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4.2.2. Pattern 132 and 231 The computations for the patterns 132 and
231, where one treats the functional equations (11) and (22), respectively,
are completely analogous to the ones carried out for 123 in the previous
section; thus we may omit them here.

5. Permutation patterns in mappings

One useful aspect of the chosen treatment of pattern avoidance/occurrences
for labelled trees is that this approach can be extended without much effort
to a study of corresponding quantities in mappings. Based on a combinato-
rial decomposition of mappings with respect to the smallest element 1 after
introducing auxiliary quantities, we obtain (partial) differential equations
that relate the corresponding generating functions for trees and mappings.
Solving these equations, we are able to express the g.f. for mappings by the
corresponding ones for trees, as stated in Theorem 1 and Theorem 3. Inter-
estingly, one observes from these results that for the patterns 123 and 231
studies of pattern avoidance and pattern occurrences in trees and mappings
are closely related, which is quantified in Corollary 1 and Corollary 2. We
will provide a combinatorial explanation of these results via a concrete bi-
jection. Only for the remaining pattern 132, where the quantities in trees
and mappings do not seem to be related in a direct way, we carry out the
before-mentioned generating functions approach.

5.1. Pattern 123 and 231

In [16] the authors give a bijection ϕ from the set of pairs (t, y) consisting
of a tree t of certain size n ≥ 1 and y a node in t to the set of n-mappings
f : [n] → [n]. As we will show, the function ϕ preserves occurrences of certain
consecutive patterns, in particular of the patterns 123 and 213, from which
we may deduce Corollary 1 and Corollary 2. For the sake of completeness
we state bijection ϕ (together with a proof that it is indeed such one) also
in the appendix of the present work as Theorem 6. To state the bijection
and to prove its properties it is advantageous to consider a tree t as the
functional digraph of a certain function t : [n] → [n]. Namely, we will denote
by t(x) the out-neighbour of node x in the tree t. That is, for x a non-root
node, x �= root(t), t(x) is the unique node such that (x, t(x)) is an edge in
t. Furthermore, we define t (root(t)) := root(t), i.e., think of an additional
slope at the root of t.

The map ϕ is exemplified in Figure 6. Described in a nutshell, the nodes
in the tree t lying on the path p from y to the root root(t) correspond to
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Figure 6: An example of the bijection ϕ described in Theorem 6 applied to
the pair (t, 1), with t the tree of size 19 depicted on the left side yielding
the 19-mapping f on the right side. The unique path from 1 to the root of
t is marked by blue edges, with edges dashed that are reattached accord-
ing to the bijection. Furthermore, right-to-left-maxima on this path, which
correspond to cycle-leaders in f , are marked by purple nodes.

cyclic elements in the mapping f , i.e., elements i, such that there exists
an � ≥ 1 with f �(i) = i, and the right-to-left maxima in the sequence of
labels in p correspond to the “cycle-leaders” in f , i.e., the largest elements
amongst all cyclic elements in the respective components. Furthermore, only
outgoing edges from right-to-left maxima in p might be detached by ϕ, in
other words, t(x) �= f(x) implies that x is in t a right-to-left maximum in
the path p, or equivalently, that x is in f a cycle-leader.

We will show that ϕ preserves occurrences of a consecutive pattern σ,
where the largest element in σ is at the last position.

Theorem 5. Let σ = σ(1)σ(2) . . . σ(k − 1)k ∈ Sk be a permutation, where
the largest element is at the last position. Then the bijection ϕ presented in
Theorem 6 preserves the number of occurrences of the consecutive pattern σ,
i.e., for a pair (t, y) of a labelled tree t and a node y ∈ t, and the mapping
f = ϕ(t, y) being the image of (t, y) under the map ϕ, there holds that t and
f have the same number of occurrences of σ.

Proof. First assume that q = (x, t(x), . . . , tk−1(x)) is an occurrence of the
consecutive pattern σ in the tree t. Since q is order-isomorphic to σ, it follows
that tk−1(x) > ti(x), for all 0 ≤ i ≤ k − 2. Thus none of the nodes ti(x),
0 ≤ i ≤ k− 2, could be a right-to-left maximum on the path p from y to the
root of t, which implies that all edges (ti(x), ti+1(x)), 0 ≤ i ≤ k − 2, persist
by applying the function ϕ. Therefore f i(x) = ti(x), for 1 ≤ i ≤ k − 1, and
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thus (x, f(x), . . . , fk−1(x)) is also an occurrence of the consecutive pattern
σ in the mapping f .

Next let us assume that q′ = (x, f(x), . . . , fk−1(x)) is an occurrence of
the consecutive pattern σ in the mapping f = ϕ(t, y). Again, since q′ is
order-isomorphic to σ, we have fk−1(x) > f i(x), for all 0 ≤ i ≤ k − 2,
which implies that none of the elements f i(x), 0 ≤ i ≤ k − 2, could be a
cycle-leader, i.e., the largest element amongst cyclic elements of a connected
component of the directed digraph of f . Therefore, all edges (f i(x), f i+1(x)),
0 ≤ i ≤ k−2, already occurred in t and persisted when applying the function
ϕ. Thus ti(x) = f i(x), for 1 ≤ i ≤ k − 1, and (x, t(x), . . . , tk−1(x)) formed
an occurrence of the consecutive pattern σ in the tree t.

This yields as a corollary the following correspondence between trees
and mappings concerning avoidance and occurrences of certain consecutive
patterns.

Corollary 3. Let σ = σ(1)σ(2) . . . σ(k) ∈ Sk be a permutation, where the
largest element or the smallest element is at the last position, i.e., where
σ(k) = k or σ(k) = 1. Then we have

G[σ]
n,m = nF [σ]

n,m, and M [σ]
n = nT [σ]

n , for n ≥ 1.

Proof. If σ(k) = k then Theorem 5 immediately shows that the state-
ment is valid. If σ(k) = 1 then consider the complementary pattern σ̃ =
σ̃(1) . . . σ̃(k), defined via σ̃(j) = k + 1− σ(j), 1 ≤ j ≤ k, which satisfies the

assumptions of Theorem 5. Together with the obvious fact that G
[σ]
n,m = G

[σ̃]
n,m

and F
[σ]
n,m = F

[σ̃]
n,m, which follows again by complementing the labels of size-n

trees or n-mappings via i �→ n + 1 − i, this also shows the result for such
kind of patterns.

Corollaries 1 and 2 thus follow from Corollary 3. Note that corresponding
results also hold for sets of patterns, which either contain only patterns with
largest label at the last position or contain only patterns with smallest label
at the last position, but in general do not hold when considering sets that
contain patterns with smallest and largest label at the last position.

We further remark that at the level of generating functions this corre-
spondence between trees and mappings reads as M(z) = 1 + zT ′(z), and
G(z, v) = 1 + zFz(z, v). It can be checked easily that the g.f. M(z) and
G(z, v) presented in Theorem 1 and Theorem 3, respectively, satisfy these
relations. As stated earlier, these generating functions have been computed
first by extending the approach based on a combinatorial decomposition
with respect to element 1 from trees to mappings.
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5.2. Pattern 132

In order to study the consecutive pattern 132 in mappings we extend the
generating functions approach that has been introduced for labelled trees in
Section 3, which is based on a decomposition with respect to the smallest
element 1. First we remark that such a study can be reduced to so-called
connected mappings, i.e., it suffices to consider the weakly connected compo-
nents of the functional digraph. Namely, in combinatorial terms, mappings
and connected mappings are linked by the Set-construction and thus we
can easily transfer results from one family to the other. We start by consid-
ering connected mappings for which, analogously to our previous analysis of
labelled trees, we have to introduce as auxiliary parameter the number of
occurrences of the pattern 21. Formally we consider bicoloured structures,
where each node x is coloured blue, i.e., gets a marker B, if it is the starting
node of the pattern 21, and x is coloured red, i.e., gets a marker R, if it is
the starting node of the pattern 132. We introduce the combinatorial family
C of connected mappings with nodes coloured as described before.

The decomposition of a connected mapping c ∈ C with respect to the
node with smallest label 1 yields (after order-preserving relabellings) a (pos-
sibly empty) set t1, . . . , tk of k ≥ 0 subtrees with respective root-nodes
r1, . . . , rk originally attached to node 1 and, in case that 1 is not part of
a loop, a structure g0, where node 1 is originally linked to a node x ∈ g0.
Depending on whether 1 is contained in a cycle or not, g0 itself is a tree or a
connected mapping. Five cases might occur, see Figure 7, where we also take
into account that attaching the root rj of the subtree tj , 1 ≤ j ≤ k, to node
1 creates a consecutive pattern 21 in c, thus each vertex rj will be coloured
blue, whereas attaching the subtrees to 1 does not change the number of
occurrences of the pattern 132.

1. Node 1 is not contained in a cycle of c and x is in g0 coloured blue:
in this case, the link from 1 to x creates in c a new pattern 132 and
node 1 will be coloured red. Thus the number of red vertices in c is
one plus the sum of the number of red vertices in g0, t1, . . . , tk, whereas
the number of blue vertices in c is k (for each of the nodes attached
to 1) plus the sum of the number of blue vertices in g0, t1, . . . , tk.

2. Node 1 is not contained in a cycle of c and x is not blue in g0: in that
case, the link from 1 to x neither creates a pattern 21 nor a pattern
132, and thus node 1 remains uncoloured. The number of red vertices
in c is equal to the sum of the number of red vertices in g0, t1, . . . , tk,
and the number of blue vertices in c is k plus the sum of the number
of blue vertices in g0, t1, . . . , tk.
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Figure 7: Pattern 132: Decomposition of a connected mapping c with respect
to the node with smallest label, where the five cases described below may
occur. Starting nodes of occurrences of the pattern 21 and 132 relevant to
this decomposition are coloured blue and red, respectively.

3. Node 1 is part of a loop in c: here the number of red vertices in c is

equal to the sum of the red vertices in t1, . . . , tk, and the number of

blue vertices in c is k plus the sum of the number of blue vertices in

t1, . . . , tk.

4. Node 1 is part of a non-loop cycle of c and x is in g0 coloured blue: in

this case, the link from 1 to x creates in c a new pattern 132 and node

1 will be coloured red. Furthermore, the link from the root of g0 to

node 1 completing the cycle creates a new pattern 21 and thus the root

of g0 will be coloured blue. Summarizing, the number of red vertices

in c is one plus the sum of the number of red vertices in g0, t1, . . . , tk,

whereas the number of blue vertices in c is k+1 (for each of the nodes

linked to 1) plus the sum of the number of blue vertices in g0, t1, . . . , tk.

5. Node 1 is part of a non-loop cycle of c and x is not blue in g0: in that

case, the link from 1 to x neither creates a pattern 21 nor a pattern

132, and thus node 1 remains uncoloured. The number of red vertices

in c is equal to the sum of the number of red vertices in g0, t1, . . . , tk,

and the number of blue vertices in c is k+1 plus the sum of the number

of blue vertices in g0, t1, . . . , tk.
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Combining these cases and using the combinatorial constructions defined
in Section 3 leads to the following recursive description of the family C:

C = Z� ∗ΘB(C) ∗ Set(F × {B})× {R}
+ Z� ∗

(
ΘZ(C) \ΘB(C)

)
∗ Set(F × {B})

+ Z� ∗ Set(F × {B}) + Z� ∗ΘB(F) ∗ Set(F × {B})× {B,R}
+ Z� ∗

(
ΘZ(F) \ΘB(F)

)
∗ Set(F × {B})× {B}.(36)

We introduce the trivariate generating function

C̃(z, w, v) :=
∑
c∈C

z|c|w� blue nodes in c v� red nodes in c

|c|!

=
∑
n≥1

∑
�≥0

∑
m≥0

C̃n,�,m
znw�vm

n!
,

where C̃n,�,m denotes the number of connected n-mappings with � occur-
rences of 21 and m occurrences of 132. An application of the symbolic
method to the formal equation (36) leads to the following first-order linear
PDE for C̃ = C̃(z, w, v), with F̃ = F̃ (z, w, v) the corresponding generating
function for trees studied in Section 3.2:

C̃z = vwewF̃ C̃w + ewF̃ (zC̃z −wC̃w)+ ewF̃ + vw2ewF̃ F̃w+wewF̃ (zF̃z −wF̃w).

Taking into account (7), slight simplifications occur yielding the following
PDE together with the initial condition C̃(0, w, v) = 0:

(37)
(
1− zewF̃

)
C̃z − (v − 1)wewF̃ C̃w = wF̃z − (w − 1)ewF̃ .

In order to solve this PDE one can again apply the method of character-
istics, thus searching for a suitable substitution of variables, such that it can
be reduced to an ordinary differential equation. Since the coefficients of the
partial derivatives in the defining equations (7) and (37) of the functions F̃
and C̃, respectively, match, this suggests to choose a first integral obtained
for F̃ . Indeed, taking into account (9) and that F̃ is itself only given implic-
itly as solution of a functional equation, the following pair of substitutions
works fine (where we consider v as a parameter and with F̃ satisfying (10)):

Q̃ = Q̃(z, w) = we(v−1)F̃ , F̃ = F̃ (z, w).
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Note that this gives the inverse transform

w = w(F̃ , Q̃) = Q̃e−(v−1)F̃ , z = z(F̃ , Q̃) = e−F̃

∫ F̃

0
et(1−Q̃e−(v−1)t)dt.

After somewhat lengthy computations, which are here omitted, we obtain
the following solution of (37) involving the corresponding g.f. F̃ for trees:

C̃(z, w, v) = log

⎛
⎝ 1

1− weF̃
∫ F̃
0 e−t(2−v)−w(F̃−t)e(v−1)tdt

⎞
⎠

+ F̃ − w

v − 1

(
e(v−1)F̃ − 1

)
.(38)

We remark that it is an easy task to check that C̃(z, w, v) given by (38)
satisfies (37) and the initial condition, thus that it is indeed the required
solution.

Actually we are interested in results for arbitrary (not only connected)
mappings and thus consider the trivariate generating function

G̃(z, w, v) :=
∑
n≥0

∑
�≥0

∑
m≥0

G̃n,�,m
znw�vm

n!
,

where G̃n,�,m denotes the number of n-mappings with � occurrences of 21 and
m occurrences of 132. According to the Set-construction relating connected
mappings with arbitrary mappings, it simply holds that G̃ = eC̃ for the
respective generating functions, and we obtain the following solution for
G̃ = G̃(z, w, v):

(39) G̃ =
eF̃ e

w

v−1
(1−e(v−1)F̃ )

1− weF̃
∫ F̃
0 e(v−2)t−w(F̃−t)e(v−1)tdt

.

We remark that by differentiating (11) with respect to z and comparing with
(39) one further obtains the connection

(40) G̃ = e
w

v−1
(1−e(v−1)F̃ ) · F̃z.

Setting w = 1 in (39) gives the solution for the bivariate g.f. G(z, v) :=
G̃(z, 1, v) =

∑
n≥0

∑
m≥0Gn,m

znvm

n! of the number Gn,m of n-mappings with
exactly m occurrences of the pattern 132 stated in Theorem 3. Furthermore,
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setting v = 0 yields the g.f. M(z) := G(z, 0) =
∑

n≥0Mn
zn

n! of the number

Mn of 132-avoiding n-mappings given in Theorem 1.

Asymptotic results for the pattern 132 presented in Theorem 2 and The-

orem 4 can be deduced easily from the corresponding results for labelled

trees, by using singularity analysis and the relations

M(z) = e−(1−e−T (z)) · T ′(z) and G(z, v) = e
1

v−1
(1−e(v−1)F (z,v)) · Fz(z, v),

which follows from (40). Thus we omit these straightforward computations.

6. Outlook and open problems

The study of consecutive permutation patterns in labelled trees could be

extended in various ways. We mention a few such directions for which we

obtained some preliminary results via the method presented.

• Sets of patterns. There seem to be several interesting classes of sets

of patterns of length 3; some (but as it seems, not all) of them could

be treated by using a decomposition with respect to the largest or

smallest labelled vertex.

• Patterns of length 4 or higher. Although computations quickly get

quite involved, there is some hope to obtain at least partial results.

• Other tree families. There are other combinatorial tree families, most

notably labelled ordered trees and labelled binary trees, where the

approach presented could be applied. Again, computations are more

involved, since one has to take into account the number of possible

“attachment points” to reconstruct a tree after the decomposition.

Another line of research would concern to give combinatorial explana-

tions of the results obtained, in particular, for the generating functions

T [σ](z) avoiding a consecutive pattern σ stated in Theorem 1. Namely, it

is a very interesting observation of an anonymous referee that the compo-

sitional inverse functions T [σ](z)〈−1〉 are, for all patterns studied, the gen-

erating functions of well-known simple integer sequences with alternating

signs. More precisely, they are given as follows, as can be shown at the level

of generating functions, e.g., by characterizing them via certain differential

equations:

T̄ [σ](z) := T [σ](z)〈−1〉 =
∑
n≥1

(−1)n−1T̄ [σ]
n

zn

n!
,
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with T̄
[σ]
n given as follows.

Pattern σ T̄
[σ]
n OEIS sequence

123
∑n−1

k=0 k! A003422

132
∑n−1

k=0(n− k)k A026898

231
∑n−1

k=0 Bk,
with Bk the k-th Bell number

A005001

As pointed out by the referee a possible approach could be based on the
inversion theorem shown in the PhD thesis of Brian Drake [5] (the main
result has been obtained independently in [4]), which in many cases, where
the coefficients of the compositional inverse of an exponential generating
function have alternating signs, leads to a combinatorial explanation in terms
of rooted trees with labelled leaves and unlabelled internal nodes. However, it
seems that an application of this theorem to the problem studied, where the
labelling is on all vertices, is not completely straightforward; the author has
to leave the task of finding a combinatorial explanation for the connection

between the generating functions T [σ](z) and the sequence of numbers T̄
[σ]
n

as an open problem.

Appendix A. Bijection ϕ between marked trees and
mappings

Theorem 6 ([16]). For each n ≥ 1, there exists a bijection ϕ from the set
of pairs (t, y), with t a rooted labelled tree of size n and y ∈ t a node of t, to
the set of n-mappings f .

Proof. Given a pair (t, y), we consider the unique path y � root(t) from the
node y to the root of t. It consists of the nodes x1 = y, x2 = t(x1), . . . , xi+1 =
t(xi), . . . , xr = root(t), for some r ≥ 1. We denote by I = (i1, . . . , ik), with
i1 < i2 < · · · < ik, for some k ≥ 1, the indices of the right-to-left maxima in
the sequence x1, x2, . . . , xr, i.e.,

i ∈ I ⇐⇒ xi > xj , for all j > i.

The corresponding set of nodes in the path y � root(t) will be denoted by
VI := {xi : i ∈ I}. It follows from the definition that the root node is always
contained in VI , i.e., xr ∈ VI .
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We can now describe the function ϕ by constructing an n-mapping f .

The k right-to-left maxima in the sequence x1, x2, . . . , xr will give rise to k

connected components in the functional digraph Gf . Moreover, the nodes
on the path y � root(t) in t will correspond to the cyclic nodes in Gf . We

describe f by defining f(x) for all x ∈ [n], where we distinguish whether

x ∈ VI or not.

(a) Case x /∈ VI : We set f(x) := t(x).

(b) Case x ∈ VI : We set f(xi1) := x1 and f(xij ) := t
(
xij−1

)
, for j > 1.

This means that the nodes on the path y � root(t) in t form k cycles

C1 := (x1, . . . , xi1), . . . , Ck := (t(xik−1
), . . . , xr = xik) in Gf .

It is now easy to describe the inverse function ϕ−1. Given a mapping f ,

we sort the connected components of Gf in decreasing order of their largest

cyclic elements. That is, if Gf consists of k connected components and ci
denotes the largest cyclic element in the i-th component, we have c1 > c2 >
. . . > ck. Then, for every 1 ≤ i ≤ k, we remove the edge (ci, di) where

di = f(ci). Next we reattach the components to each other by establishing

the edges (ci, di+1), for every 1 ≤ i ≤ k−1. This leads to the tree t. Note that

the node ck is attached nowhere since it constitutes the root of t. Setting

y = d1, we obtain the preimage (t, y) of f .
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