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Multi-coloured jigsaw percolation on random graphs
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∗
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†

The jigsaw percolation process, introduced by Brummitt, Chatter-
jee, Dey and Sivakoff, was inspired by a group of people collectively
solving a puzzle. It can also be seen as a measure of whether two
graphs on a common vertex set are “jointly connected”. In this
paper we consider the natural generalisation of this process to an
arbitrary number of graphs on the same vertex set. We prove that
if these graphs are random, then the jigsaw percolation process ex-
hibits a phase transition in terms of the product of the edge proba-
bilities. This generalises a result of Bollobás, Riordan, Slivken and
Smith.

AMS 2000 subject classifications: 05C80.

1. Introduction

1.1. Jigsaw percolation

In recent years there has been significant research inspired by the observation
that certain advances are only possible as a result of the collaboration of a
group of people, rather than the work of one individual e.g. [2, 12, 13, 14].

In order to model this mathematically, Brummitt, Chatterjee, Dey and
Sivakoff [6] introduced the jigsaw percolation process. The premise is that a
group of people each have one piece of a puzzle which must be combined in a
certain way to solve the puzzle. The individuals (and their associated puzzle
pieces) are represented by a set of vertices, and there are two graphs on these
vertices: a people graph, with an edge if the two people know each other; and
a puzzle graph with an edge if the two puzzle pieces are compatible. In
the jigsaw percolation process, we begin with each vertex forming its own
cluster and we merge two clusters if there is an edge between them in both
the people and the puzzle graph – this represents these two people sharing
all their information. The new merged cluster inherits all the incident edges
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of the original clusters. (The process will be described more formally later.)
This process is iterated until either there is only one cluster remaining, in
which case we say that the process percolates indicating that the puzzle has
been solved, or no more clusters can be merged, in which case we say that
the process does not percolate. More generally, if the two graphs are G1 and
G2, we say that the double-graph (G1, G2) percolates or does not percolate
respectively.

This process was introduced by Brummitt, Chatterjee, Dey and Sivakoff
in [6] and was also studied by Gravner and Sivakoff in [11]. Bollobás, Rior-
dan, Slivken and Smith [5] considered the case when the people graph and
the puzzle graph are independent binomial random graphs, and proved that
the property of the two graphs percolating undergoes a phase transition in
terms of the product of the two associated edge probabilities. More precisely,
their result can be stated as follows. Let G(n, p) denote the Erdős-Rényi bi-
nomial random graph on vertex set [n] := {1, 2, . . . , n} in which each pair
of vertices forms an edge with probability p independently of each other.
We say that a property or event holds with high probability (abbreviated to
whp), if it holds with probability tending to 1 as n tends to infinity.

Theorem 1 ([5]). There exists a constant c such that the following holds:
let G1 = G(n, p1), G2 = G(n, p2) be independent binomial random graphs on
the same vertex set, where 0 ≤ p1 = p1(n), p2 = p2(n) ≤ 1. Then

(i) if p1p2 ≤ 1
cn lnn or min{p1, p2} ≤ lnn

cn then whp (G1, G2) does not
percolate;

(ii) if p1p2 ≥ c
n lnn and min{p1, p2} ≥ c lnn

n , then whp (G1, G2) percolates.

Note that this theorem is not quite stated as it appeared in [5], but it is
easy to derive this form from the original. We also observe that connected-
ness of each of the two graphs is a necessary (but not sufficient) condition
for percolation of the double-graph. The conditions on min{p1, p2} deter-
mine whether this necessary condition is satisfied whp, since the threshold
for connectivity is at p = lnn

n as famously proved by Erdős and Rényi in [9].

Theorem 1 was extended to hypergraphs by Bollobás, Cooley, Kang and
Koch [4], with a whole family of generalisations of the percolation process to
k-uniform hypergraphs in which the clusters consist of j-sets of vertices for
1 ≤ j ≤ k−1. Theorem 1 was also strengthened by Cooley, Kapetanopoulos
and Makai [8], who determined that the sharp threshold for jigsaw percola-
tion occurs when the product of the two probabilities is p1p2 =

1
4n lnn .

In this paper, we extend in a different direction, namely to an arbitrary
number of graphs on the same vertex set.
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Definition. An r-fold graph is an (r + 1)-tuple G := (V,E1, ..., Er), where
V := [n] is the set of vertices and Ei ⊆

(
V
2

)
for each i ∈ [r]. We will call

1, 2..., r the colours of G and the graph Gi := (V,Ei) will be said to be of
colour i for every i ∈ [r].

The multi-coloured jigsaw algorithm on an r-fold graph is the natural
generalisation of the 2-coloured version in which clusters must be joined
by an edge of each colour in order to merge. A formal description of this
algorithm is given later in Algorithm 3.

It is easy to see that percolation for r = 1 is equivalent to connectedness
of the graph. Thus, percolation of the jigsaw process is a generalised no-
tion of connectedness of multiple graphs on the same vertex set. Therefore
Theorem 1 and the main result of this paper (Theorem 2) may be seen as
generalisations of the connectedness threshold result of Erdős and Rényi [9].

1.2. Main theorem

To state the main result of the paper, we introduce the following generali-
sation of the binomial model for random graphs.

Definition. An r-fold binomial random graph G(n, p1, ..., pr) is an r-fold
graph ([n], E1, ..., En) where ([n], Ei) ∼ G(n, pi) are independent binomial
random graphs for every i ∈ [r].

The main result of this paper is a generalisation of Theorem 1 to an
arbitrary number of colours r. In fact we will even allow r to tend to infinity
sufficiently slowly as a function of n.

Theorem 2. Let 2 ≤ r = o(
√
ln lnn) and Cr := 28r

2

. Then the following
holds: suppose that p1, ..., pr are functions of n such that 0 ≤ p1 ≤ p2 ≤ ... ≤
pr ≤ 1 and G = G(n, p1, p2, ..., pr). For i ∈ [r] let Pi := p1p2...pi. Then

(i) if Pi ≤ 1
Crn(lnn)i−1 for some 2 ≤ i ≤ r or P1 ≤ lnn

Crn
then whp G does

not percolate;
(ii) if Pi ≥ Cr

n(lnn)i−1 for every 2 ≤ i ≤ r and P1 ≥ Cr lnn
n , then whp G

percolates.

Let us note that if r is dependent on n, then also Cr is explicitly de-
pendent on n. However, if r is constant, then so is Cr. Note also that both
in the proof of Theorem 1 in [5] and in the proof of Theorem 2 in this pa-
per, no attempt is made to optimise the constants c and Cr, and the value
given in Theorem 2 is probably far from best possible. In [8], Theorem 1
was strengthened by optimising the constants and thus proving the exact
location of the threshold, which is at p1p2 =

1
4n lnn .
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Remark. Given an r-fold graph G = ([n], E1, ..., Er) it is easy to see that
percolation of every i-fold graph ([n], Ej1 , ..., Eji) obtained by considering a
subset of i colours is a necessary condition for percolation of G (but not
sufficient). For i = 1, we guarantee connectedness by taking p1 = P1 ≥
Cr lnn

n . For 2 ≤ i ≤ r the inequalities Pi ≥ Cr

n(lnn)i−1 together with p1 ≤ p2 ≤
... ≤ pr ensure that every such i-fold graph percolates whp.

While much of the proof of Theorem 2 follows the proof of Theorem 1
in [5], there are important differences for the multi-coloured case which
present additional difficulty. We will point out these differences in the course
of the proof.

1.3. The multi-coloured jigsaw algorithm

The multi-coloured jigsaw process is formally described as follows.

Algorithm 3 (The multi-coloured jigsaw algorithm).
Input: r-fold graph G := ([n], E1, ..., Er).
At time t ≥ 0 there is a partition Ct = {C1

t , C
2
t , ...., C

kt

t } of the vertex set
[n], which we construct inductively as follows:

1. We take k0 = n, set Cj
0 := {j} and C0 = {{1}, . . . , {n}} for all j ∈ [n]

i.e. we begin at time 0 with the discrete partition into single vertices.
2. At time t ≥ 0, construct a graph Ht on vertex set Ct by joining Cj

t to

Cj′

t if there exist edges ei := {vj,i, vj′,i} ∈ Ei for all i ∈ [r] such that

vj,i ∈ Cj
t and vj′,i ∈ Cj′

t .
3. If E(Ht) = ∅, then STOP. Otherwise, construct the partition

Ct+1 = {C1
t+1, ..., C

kt+1

t+1 },

where C1
t+1, ..., C

kt+1

t+1 are obtained by merging the connected compo-

nents of Ht i.e. if D
j
t ⊆ Ct induces a connected component in Ht then

Cj
t+1 =

⋃
C∈Dj

t
C.

4. If |Ct+1| = 1 STOP. Otherwise, go to step 2.

Definition. • We say that the r-fold graph G = (V,E1, E2, ..., Er) per-
colates if Algorithm 3 applied to G ends with one single cluster. Oth-
erwise we say that G does not percolate.

• We say that a subset W ⊆ V is a percolating subset (or that it
percolates) in G = (V,E1, E2, ..., Er) if the induced r-fold subgraph
G[W ] := (W,E1[W ], ..., Er[W ]) percolates.

The definition of a percolating subset corresponds to the definition in [5]
of an internally spanned set.
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1.4. Intuition

Let us consider heuristically how the jigsaw process might be expected to
evolve. For simplicity we discuss the case r = 2, although the intuition is
transferrable to a larger number of colours.

We begin with n clusters each containing a single vertex. Initially clusters
can only merge if there is a double-edge (i.e. both a red and a blue edge)
between the corresponding vertices. Although such double-edges are rare, the
fact that there are many vertices will mean that some clusters will indeed
merge.

Subsequently clusters may continue to merge and grow larger. Indeed,
the larger a cluster becomes, the more likely it is to merge with other clusters
and continue growing. Thus we might expect that after a certain size we
encounter a snowball effect, and the growth of the largest cluster accelerates
until it contains all vertices.

Indeed, this intuition turns out to be correct: there is a bottleneck in
the percolation process, which occurs at size Θ(lnn) (this was observed by
Bollobás, Riordan, Slivken and Smith in [5]). More precisely, in the subcrit-
ical case we show that the largest cluster in the percolation process will not
exceed size lnn whp. On the other hand, in the proof of the supercritical pro-
cess, the hardest part is proving that there is a cluster of size slightly larger
than lnn — then it is fairly easy to prove that this cluster will eventually
merge with all other clusters whp, and therefore we have percolation.

We will ignore floors and ceilings throughout the paper whenever they
do not significantly affect the arguments (this is usually the case since we
consider graphs on n vertices, where n → ∞). We also assume that n is
sufficiently large in calculations.

2. Proof of the subcritical case

In this section we prove part (i) of Theorem 2. This proof is an obvious
generalisation of the corresponding proof for 2 colours in [5].

We first handle the case when p1 ≤ lnn
Crn

. Since the threshold for con-

nectedness in G(n, p) is at p = lnn
n as proved by Erdős and Rényi in [9],

the graph (V,E1) is disconnected whp (since Cr = 28r
2

> 1) and since con-
nectedness of each (V,Ei) is a necessary condition for percolation, whp the
r-fold graph will not percolate, as claimed.

In the case when Pi ≤ 1
Crn lni−1 n

for some 2 ≤ i ≤ r, we just need to

prove that whp the i-fold graph (V,E1, ..., Ei) does not percolate. We first
observe the following necessary condition for percolation.
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Claim 4. For every natural number k ≤ n/2 and every percolating i-fold

graph G = (V,E1, E2, ..., Ei) there is a subset W of V of size at least k but

not larger than 2k such that (W,Ej [W ]) is connected for each 1 ≤ j ≤ i.

Proof. We can modify step (3) in Algorithm 3 so that instead of merging

entire connected components of sets Cj
t (connected in Gt), we only merge

an arbitrary pair of sets Cj
t which are joined by an edge of each of the r

colours.

We begin to merge pairs of clusters and consider the first time that a

cluster W of size at least k appears. This cluster cannot be of size larger

than 2k since it is the union of two clusters of size less than k. Since G[W ]

percolates, every (W,Ej [W ]) is connected.

We define the random variable Tk to be the number of i-fold subgraphs

(W,E′
1, E

′
2, ..., E

′
i) where W ⊆ V and E′

j ⊆ Ej and the graphs (W,E′
j) are

trees with exactly k vertices. Thus, defining A to be the event that the i-fold

graph G = (V,E1, E2, ..., Ei) percolates, Claim 4 and a union bound tells us

that

P [A] ≤
2 lnn∑
k=lnn

P [Tk ≥ 1] ≤
2 lnn∑
k=lnn

E [Tk] ,

where we have also applied Markov’s inequality to obtain the final expres-

sion.

Therefore we now want to estimate E[Tk]. There are
(
n
k

)
ways of choosing

the vertices, and for each colour j, there are kk−2 possible spanning trees

and pk−1
j is the probability that the edges of such spanning tree are present.

Thus E[Tk] =
(
n
k

)∏i
j=1 k

k−2pk−1
j . Thus we obtain

P[A] ≤
2 lnn∑
k=lnn

E[Tk] =
2 lnn∑
k=lnn

(
n

k

) i∏
j=1

kk−2pk−1
j ≤

2 lnn∑
k=lnn

(en
k

)k
i∏

j=1

(kpj)
k−1

k

=

2 lnn∑
k=lnn

en

ki+1
(enki−1Pi)

k−1

≤ en

2 lnn∑
k=lnn

(
2i−1e

Cr

)k−1

≤ en

∞∑
k=lnn

(
1

e2

)k−1

= o(1),
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where the last line follows since Cr = 28r
2 ≥ 2r−1e3 ≥ 2i−1e3. This completes

the proof of the subcritical case.

3. Proof of the supercritical case

In this section we will prove part (ii) of Theorem 2. The main idea for the
proof is to construct an increasing sequence of percolating subsets V1 ⊆ V2 ⊆
V3 = V . Therefore we will divide the proof into three parts, and we aim to
prove the following:

Part I: whp there is a percolating subset V1 ⊆ V of size at least
t1 := (lnn)1+

1

r ;
Part II: conditioned on the existence of a percolating subset V1 ⊆ V
of size at least t1, whp there exists a percolating subset V2 ⊃ V1 of size
at least n

2r+2 ;
Part III: conditioned on the existence of a percolating subset V2 of size
at least n

2r+2 , whp the whole set V percolates.

The independence between the three parts of the proof is guaranteed by
independent rounds of exposure. More precisely, let

G(j) :=
(
[n], E

(j)
1 , E

(j)
2 , ..., E(j)

r

)
∼ G

(
n,

p1
3
,
p2
3
, . . . ,

pr
3

)

independently for j = 1, 2, 3. Then we will view G as the union G(1)∪G(2)∪
G(3).1

In Part j of the proof we will work only with G(j), effectively exposing
an r-fold probability of (p1/3, p2/3, . . . , pr/3) in each round.

3.1. Preliminaries

We begin with some basic observations.

Proposition 5. Suppose r, Cr, p1, p2, ..., pr satisfy the conditions of Theo-
rem 2 (ii). Then for n large enough there exist real numbers 0 ≤ p′1 ≤ p′2 ≤
... ≤ p′r ≤ 1 that also satisfy conditions of Theorem 2 (ii) and such that

• p′i ≤ pi for every i,
• p′1p

′
2...p

′
r =

Cr

n(lnn)r−1 .

1Note that this is not quite true, since the union of three independent copies of
G(n, p/3) is distributed as G(n, p∗), where p∗ = p − p2/3 + p3/27. However, since
p∗ < p we can couple G(n, p∗) with G(n, p) such that G(n, p∗) ⊆ G(n, p), and since
percolation is a monotone increasing property, this will be sufficient.
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We omit the proof of this intuitively obvious result – for details see [10].

Since percolation is a monotone property, by Proposition 5 we may as-

sume that

(1) Pr = p1...pr =
Cr

n(lnn)r−1
.

From this, and recalling that p1 ≥ Cr lnn
n , we can deduce that

(2) p2 ≤
(
p1p2p3...pr

p1

)1/(r−1)

≤
(

1

lnn

) r

r−1

.

Remark. In the two-coloured case, i.e. r = 2, we obtain the bound p1 ≤
p2 ≤ (lnn)−2. In the general case, the analogous calculation only yields

the bound pi ≤ (lnn)−1 (for i ≥ 3). This seemingly minor difference leads

to significant extra difficulties, as some approximations are no longer valid.

We will therefore have to distinguish between “small” and “large” pi (see

Lemmas 8 and 9 in Section 3.2).

3.2. Part I

We will construct a large percolating subset V1 by “trial and error”. Algo-

rithm 6 will start from a single vertex and add one vertex at a time in an

attempt to construct V1. We will make several attempts to construct V1 –

each such attempt is called a round ; each round consists of a number of

steps. We divide the proof into two stages:

I.a First, we will bound from below the probability that the algorithm

constructs a percolating subset of size at least t0 :=
lnn
cr

(in one round,

see Lemma 10) where cr := C
1

r−1
r .

I.b Second, conditioned on the algorithm constructing a percolating subset

of size at least t0, we will bound from below the probability that the

algorithm constructs a percolating subset of size at least t1 = (lnn)1+
1

r

(in one round, see Lemma 11).

The probability that Algorithm 6 reaches t1 in one round is bounded

from below by the product of the probabilities of the two stages. This prod-

uct turns out to be small, but crucially Algorithm 6 makes many attempts

to reach t1. The probability that at least one of these rounds succeeds will

be large (see Lemma 13).
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In step t of round k of Algorithm 6, we have a trial set Xt
k which is a

percolating set. If the algorithm finds a suitable vertex to add to the trial
set Xt

k, we create the new trial set Xt+1
k and proceed to step t+ 1 of round

k. If not, we discard the vertices of the trial set Xt
k and begin the new round

k + 1. We stop if a round has reached step t1 or if we have had n
2t1

rounds.
The formal description of the algorithm is as follows:

Algorithm 6 (The 1-by-1 algorithm). The algorithm is divided into rounds,
indexed by k, and each round is divided into steps, indexed by t. At the start
of the k-th round there is a set A0

k ⊆ [n] of active vertices and a set Dk ⊆ [n]
of discarded vertices. We begin with A0

1 = [n] and D1 = ∅. The procedure of
the k-th round is as follows:

At the start of the t-th step of the k-th round there are sets of trial and
dormant vertices:

• Xt
k = {x1k, x2k, ..., xtk} ⊆ A0

k (trial vertices);

• U t
k ⊆ A0

k (dormant vertices),

where A0
k = Xt

k ∪̇At
k ∪̇U t

k.

(1) For t = 0, we move an arbitrary active vertex x1k ∈ A0
k to the trial set:

• X1
k := {x1k}; • U1

k := ∅; • A1
k := A0

k\{x1k}; • R0
k := ∅,

and set t := 1.
(2) For t ≥ 1, we reveal all edges of E

(1)
1 between At

k and xtk and edges of

E
(1)
i (i = 1, . . . , r) between any neighbour of xtk in E

(1)
1 and x1k, . . . , x

t
k.

Let

• Rt
k := {x ∈ At

k : xxtk ∈ E
(1)
1 };

• Bt
k := {x ∈ Rt

k : ∀ i ∈ {2, 3, ..., r} ∃ si ≤ t such that xxsik ∈ E
(1)
i }.

(3) If Bt
k �= ∅, then let xt+1

k be an arbitrary element of Bt
k. Then set:

• Xt+1
k := Xt

k ∪ {xt+1
k };

• At+1
k := At

k\Rt
k;

• U t+1
k := U t

k ∪
(
Rt

k\{xt+1
k }

)
.

If t ≥ t1 = (lnn)1+
1

r then STOP, otherwise set t = t + 1 and go to
step (3).

(4) If Bt
k = ∅, then set

• A0
k+1 := A0

k\Xk; • Dk+1 := Dk ∪Xt
k.



612 Oliver Cooley and Abraham Gutierrez

(5) If

k ≥ n

2(lnn)1+
1

r

then STOP, otherwise set k := k + 1 and t := 0, and go to step (1).

We reveal edges and non-edges as they are exposed in the algorithm, e.g.
when defining Rk

t we test each pair (xk0, a) for a ∈ At
k to reveal whether it

lies in E
(1)
1 . Note that since every tested pair has at least one of its endpoints

in the trial set, we guarantee independence between rounds by discarding
the trial set at the end of each round. We also have independence within
each round, because no pair is tested twice within a round.

Since we consider at most n/(2(lnn)1+
1

r ) rounds, and stop each with a

trial set of size at most (lnn)1+
1

r vertices, we start each new round with at
least n/2 vertices, i.e.

|A0
k| ≥

n

2
.

We will need the following definitions:

Definition.

• Let X t
k be the event that Xt

k is defined (i.e. we reach step t in round k).
• Let St

k := {|Rs
k| ≤ n

4t1
for s = 0, 1, 2, ..., t}.

• Let Yt
k := X t

k ∩ St
k.

The event X t
k means that we found a percolating subset of size t formed

with only edges of the first round of exposure. Conditioned on getting to
round k the event X 1

k always holds. For t ≥ 2 the event X t
k is equivalent to

the event that Bt−1
k is non-empty. The event St

k guarantees that within a
round k, we do not discard too many vertices by step t. More specifically, if
the event Yt−1

k holds, we have

|At
k| ≥ |A0

k| − (t− 1)
n

4t1
≥ n

2
− t

t1

n

4
≥ n

4
.

Note that if we get to round k, the event S0
k always holds, since R0

k = ∅.
We will use the following easily verified inequalities to approximate some

expressions.

Fact 7. For t ≥ 0, p ≤ 1 we have:

a) If 1− pt ≥ 0 then 1− (1− p)t ≥ pt(1− pt);
b) If 1− pt ≤ 1

2 then 1− (1− p)t ≥ 1
5 .
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Note that a) was used in [5], but that b) is only needed for the multi-

coloured case. We will also use the following observation: for t ≤ t1,

(3) p1t ≤ p2t1
(2)

≤ (lnn)1+
1

r

(lnn)
r

r−1

= (lnn)
1

r
− 1

r−1 = o(1).

The following parameter will help us distinguish between “small” and

“large” pi’s, something that is not needed in the 2-coloured case since both

p1 and p2 are “small”.

Definition. For t ≤ t1, let it := max{i ∈ [2, r] : 1− pit
3 ≥ 1

2}.
Note that by (3), it is well defined. We now calculate a lower bound on

the probability of “one-step success” i.e. the probability of being able to add

a vertex to the percolating set in Algorithm 6. Recall that Pi = p1p2...pi for

each 1 ≤ i ≤ r.

Lemma 8. For n large enough and 1 ≤ t ≤ t1 = (lnn)1+
1

r we have that

independently for each x ∈ At
k the following holds:

P[x ∈ Bt
k] ≥

(
1

5

)r−1 Pit

3it
tit−1.

Proof. We have

P[x ∈ Bt
k] =

p1
3

r∏
j=2

(
1−

(
1− pj

3

)t
)

(F. 7)
≥ p1

3

(
1

5

)r−it it∏
j=2

pjt

3

(
1− pjt

3

)

≥
(
1

5

)r−it Pit

3it
tit−1

(
1

2

)it−1

≥
(
1

5

)r−1 Pit

3it
tit−1.

We now make use of the lower bound of Lemma 8 and the fact that

the events {x ∈ Bt
k} are independent for different vertices x. Recall that

cr := C
1

r−1
r .

Lemma 9. For 1 ≤ t ≤ t1 = (lnn)1+
1

r and n large enough the following

holds.

(a) P
[
Yt
k

∣∣Yt−1
k

]
≥ 1− exp

(
−
(

1
16

)r ( crt
lnn

)it−1
)
.
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(b) If
(

1
16

)r ( crt
lnn

)it−1 ≤ 1 we have

P
[
Yt
k

∣∣Yt−1
k

]
≥

(
1

32

)r ( crt

lnn

)it−1

.

Proof. Since case (b) follows from case (a) and the inequality 1 − x
2 ≥

exp(−x), valid for x ∈ [0, 1], we only need to prove case (a).

We recall that Yt
k = X t

k ∩ St
k, and therefore

(4) P
[
Yt
k

∣∣Yt−1
k

]
≥ 1− P

[
X t
k

∣∣Yt−1
k

]
− P

[
St
k

∣∣Yt−1
k

]
.

We bound the two probability terms on the right-hand side of the inequality
separately.

Let Zt
k be the random variable that represents the number of sets Z of

size n
4t1

such that Z ⊆ Rt
k. If St

k ∩ Yt−1
k holds then Zt

k ≥ 1, therefore we
deduce using Markov’s inequality that

(5) P

[
St
k

∣∣Yt−1
k

]
≤ E

[
Zt
k

∣∣∣Yt−1
k

]
≤

(
n
n
4t1

)(p1
3

) n

4t1 ≤
(
4

3
et1p1

) n

4t1

≤ e−
√
n.

For the last inequality we used that n/(4t1) ≥ √
n and p1t1

(3)
= o(1) ≤ 3

4e2

for n large enough.

For the second term in (4), we use Lemma 8 and the observation that
|At−1

k | ≥ n/4 to obtain

P

[
X t
k

∣∣Yt−1
k

]
=

∏
x∈At−1

k

P[x /∈ Bt−1
k ] ≤

(
1−

(
1

5

)r−1 Pit

3it
tit−1

)n

4

≤ exp

(
−n

4

(
1

5

)r−1 Pit

3it
tit−1

)
.

From the assumptions of Theorem 2, we have Pit ≥ Cr

n(lnn)it−1 ≥ c
it−1
r

n(lnn)it−1 .

We deduce that

(6) P

[
X t
k

∣∣Yt−1
k

]
≤ exp

(
−
(

1

15

)r ( crt

lnn

)it−1
)
.



Multi-coloured jigsaw percolation on random graphs 615

Substituting (5) and (6) into (4) gives

P
[
Yt
k

∣∣Yt−1
k

]
≥ 1− exp

(
−
(

1

15

)r ( crt

lnn

)it−1
)

− exp(−
√
n).

To complete the proof we recall that t ≤ t1, 2 ≤ it ≤ r and observe that

(
t

lnn

)it−1

≤
(

t1
lnn

)r−1

= (lnn)
r−1

r = o(
√
n),

and conclude that

P
[
Yt
k

∣∣Yt−1
k

]
≥ 1− exp

(
−
(

1

16

)r ( crt

lnn

)it−1
)
.(7)

Recall that t0 = lnn
C1/(r−1)

r

= lnn
cr

. In order to calculate a lower bound

on the probability of “proceeding to step t1” we use Lemma 9 to calculate

lower bounds for the events “proceeding to step t0” and “proceeding to step

t1 given that we already proceeded to step t0”. We formally express this in

Lemmas 10 and 11.

Lemma 10. P
[
Yt0
k

∣∣X 0
k

]
≥ n− 7(r−1)

cr .

Proof. Since crt
lnn ≤ 1 for 1 ≤ t ≤ t0, we can use Lemma 9 (b):

P
[
Yt0
k

∣∣X 0
k

]
= P

[
Yt0
k

∣∣Y0
k

]
=

t0∏
t=1

P
[
Yt
k

∣∣Yt−1
k

]
≥

t0∏
t=1

(
1

32

)r (Crt

lnn

)it−1

≥
t0∏
t=1

(
1

322

)r−1( crt

lnn

)r−1

≥
(

crt0
1024 lnn

)(r−1)t0

=

(
1

1024

)(r−1) ln n

cr

≥ n− 7(r−1)

cr ,

since 1
1024 ≥ 1

e7 .

Lemma 11. P
[
X t1
k

∣∣Yt0
k

]
≥ n−28r+2/cr .

In the proof of Lemma 11 we will use the following claim.
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Claim 12. For any real numbers α ≥ 1 and 0 ≤ y ≤ 1− 1
α , we have

1− y ≥ e−αy.

Proof. From the hypothesis we deduce that

α ≥ 1

1− y
=

∞∑
i=0

yi
(y≥0)

≥ 1

y

∞∑
i=1

yi

i
=

− ln(1− y)

y
,

and the desired inequality follows.

Proof of Lemma 11. We begin by applying Lemma 9 (a):

P
[
X t1
k

∣∣Yt0
k

]
≥ P

[
Yt1
k

∣∣Yt0
k

]
=

t1∏
t=t0+1

P
[
Yt
k

∣∣Yt−1
k

]

≥
t1∏

t=t0

(
1− exp

(
−
(

1

16

)r ( crt

lnn

)it−1
))

.

Setting α := 1
1−exp{−( 1

16)
r} > 1 and y := exp

(
−
(

1
16

)r ( crt
lnn

)it−1
)

and

noting that crt
lnn ≥ crt0

lnn = 1 for t ≥ t0, we deduce that y ≤ exp
(
−
(

1
16

)r)
=

1− 1
α , therefore we can apply Claim 12. Thus

P
[
X t1
k

∣∣Yt0
k

]
≥ exp

(
−α

t1∑
t=t0

exp

(
−
(

1

16

)r ( crt

lnn

)it−1
))

≥ exp

(
−α

∞∑
t=t0

exp

(
−
(

1

16

)r ( crt

lnn

)))

= exp

(
−

α exp
(
−
(

1
16

)r)
1− exp

(
−
(

1
16

)r cr
lnn

)
)
.

We now simplify the denominator by using the inequality e−x ≤ 1−x/2
valid for x ≤ 1:

P
[
X t1
k

∣∣Yt0
k

]
≥ exp

(
−

α exp
(
−
(

1
16

)r)
1−

(
1− 1

2

(
1
16

)r cr
lnn

)
)

= exp

(
−
24r+1α exp

(
−
(

1
16

)r)
lnn

cr

)
.
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We now observe that

24r+1α exp

(
−
(

1

16

)r)
= 24r+1 exp

(
−
(

1
16

)r)
1− exp

(
−
(

1
16

)r) ≤ 24r+1 1
1
2

(
1
16

)r = 28r+2,

and the result follows.

Using Lemmas 10 and 11, we can complete the proof of Part I

Lemma 13. G(1) contains a percolating subset of size (lnn)1+
1

r with prob-

ability at least 1− e−
√
n.

Proof. Let k ≤ n

2(lnn)1+
1
r
. Applying Lemmas 10 and 11, and since Yt0

k ⊂
Y0
k ⊂ X 0

k , the probability that in round k we find a percolating subset of

size (lnn)1+
1

r is at least

P
[
X t1
k

∣∣X 0
k

]
≥ P

[
X t1
k

∣∣Yt0
k

]
· P

[
Yt0
k

∣∣X 0
k

]
≥ n− 7(r−1)

cr · n− 28r+2

cr ≥ n− 28r+3

cr .

We conclude that the probability of not finding a percolating subset of size

t1 = (lnn)1+
1

r in each of the n/
(
2(lnn)1+

1

r

)
rounds is at most

(
1− n− 28r+3

cr

) n

2(ln n)
1+ 1

r ≤ exp

⎛
⎝− n1− 28r+3

cr

2(lnn)1+
1

r

⎞
⎠ ≤ exp(−

√
n).

These inequalities hold since cr ≥ 28r+5, provided n is large enough com-

pared to cr.

Remark. We note that as r becomes larger, Algorithm 6 has a harder time

constructing a percolating set larger than lnn. While for two colours we

reach size (lnn)
3

2 whp, for r colours we must settle for size (lnn)1+
1

r .

3.3. Part II

In this subsection we aim to prove that conditioned on the existence of a

percolating set of size t1 in G(1), whp there is a percolating set of size at

least n
2r+2 in G(1) ∪G(2) (see Lemma 17).

We will attempt to construct a percolating set of linear size with the

following algorithm:
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Algorithm 14 (The doubling algorithm).
Input: an r-fold graph G(2) and a subset X0 which is percolating with respect
to G(1).

For t ≥ 0, we construct Xt inductively as follows:

• Let At := V \Xt be the set of active vertices.

(1) At step t ≥ 0 we reveal all edges of G(2) between At and Xt \ Xt−1,
where X−1 := ∅. We define

• Bt := {v ∈ At : ∀ i ∈ [r] ∃ vi ∈ Xt \Xt−1 such that vvi ∈ E
(2)
i }.

In other words, Bt is the set of active vertices joined to Xt \Xt−1 by
an edge of each colour from the second round of exposure.

(2) If |Bt| < |Xt| we STOP. Otherwise, we set

• Xt+1 := Xt ∪Bt,

• At+1 := At \Bt.

If |Xt+1| ≥ n/2r+2 then STOP, otherwise go to (1) for step t+ 1.

We set bt := |Bt| and xt := |Xt| for all t.
Remark.

(i) If we reach step t + 1 in Algorithm 14, then bs ≥ xs for every s ∈ [t]
and therefore

xs = xs−1 + bs−1 ≥ 2xs−1 for every s ∈ [t+ 1].

Thus bt ≥ xt ≥ 2xt−1 ≥ 22xt−2 ≥ ... ≥ 2tx0 = 2tt1.
(ii) If we reach step t+ 1, then

(8) xt+1 = bt + xt ≤ 2bt.

Let t2 := max
{
t ∈ N ∪ {0} : xt <

n
2r+2

}
. Note that if Algorithm 14 con-

structs a percolating set Xt of size ≥ n
2r+2 , then it will stop at time t = t2+1;

otherwise it will stop at time t2. Furthermore, by the previous remark we

know that 2t2 ≤ bt2
t1

≤ n, so

(9) t2 ≤ log2(n) ≤ 2 lnn.

Given an r-fold graph G, we denote the event that V contains a per-
colating subset of size at least m by E(G,m). The general idea to prove
the main result of this section (Lemma 17) is as follows: we first prove in



Multi-coloured jigsaw percolation on random graphs 619

Claim 15 that the expected number of “suitable” vertices Bt is at least twice

the size of the percolating set Xt constructed in step t− 1 (see Steps 1&2 of

Algorithm 14). Subsequently, in Lemma 16 we prove a lower bound on the

conditional probability that Algorithm 14 proceeds to step t+1 conditioned

on it reaching step t. Finally, we apply this lower bound multiple times to

obtain Lemma 17.

Claim 15. Let t ≤ t2. Then

E[bt] ≥ 2xt.

Proof. Let qt,i denote the probability that a vertex v ∈ At is joined to

Bt−1 = Xt \ Xt−1 by at least one edge of G
(2)
i . From (8) we know that

bt−1 ≥ xt/2 for 0 ≤ t ≤ t2, where b−1 := x0, and so we obtain

qt,i = 1−
(
1− pi

3

)bt−1

≥ 1−
(
1− pi

3

)xt/2

≥ 1− exp
(
−pixt

6

)
≥

{
pixt

12 if pixt ≤ 6;
1
2 otherwise.

(10)

Let jt := max{j ∈ [r] ∪ {0} : pjxt ≤ 6} ≥ 0, where p0 := 0. Recalling that

At ≥ n/2 for t ≤ t2, we obtain

E[bt] = |At|

⎛
⎝ r∏

j=1

qt,j

⎞
⎠ (10)

≥ n

2

⎛
⎝ jt∏

j=1

pjxt
12

⎞
⎠(

1

2

)r−jt

=

{
2
(

n
2r+2

)
≥ 2xt for jt = 0;

n
(
xt

3

)jt Pjt

(
1
2

)r+jt+1
otherwise.

Thus we may assume that jt ≥ 1 (otherwise we are done). Making a further

case distinction we obtain

Case 1: jt = 1. We recall that P1 = p1 ≥ Cr lnn
n , thus for n large enough

we have:

E[bt] ≥
(
Cr lnn

2r+2

)
xt
3

≥ 2xt,

since Cr

2r+2 ≥ 1.
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Case 2: jt ≥ 2. We recall that Pi = p1...pi ≥ Cr/(n(lnn)
i−1) for all 2 ≤ i ∈

[r] and xt ≥ 2tt1 for all 0 ≤ t ≤ t2. Thus

E[bt] ≥
n

2r+jt+1

(2tt1)
jt−1

3jt
xt

(
Cr

n(lnn)jt−1

)
= Cr

2t(jt−1)

2r+jt+13jt

(
t1
lnn

)jt−1

xt

≥ Cr

22r+13r
xt ≥ 2xt,

where the last two inequalities are valid since t1
lnn ≥ 1 and Cr ≥ 28r

2 ≥
22r+23r.

We apply Claim 15 to bound the probability that we are able to double

the size of the percolating set in each step.

Lemma 16. For each integer 1 ≤ t ≤ t2, we have

P [bt ≥ xt|Xt �= ∅] ≥ 1− exp

(
− t1

4

)
.

Proof. For t ≤ t2, the trial set Xt is of size at most n/2r+2. This means that

there are at least n− n/2r+2 ≥ n/2 vertices in the set of active vertices At.

We note that the events that v ∈ Bt are independent for different v ∈ At,

so bt is distributed as Bi(|At|, qt,1qt,2...qt,r),. Note that the distribution of bt
is dependent on both |At| and bt−1 = |Xt \ Xt−1|. In what follows we will

suppress the conditioning on these two variables for ease of notation.

Now the Chernoff bound (see e.g. [1]) tells us that

(11) P[Bi(m, q) ≤ (1− δ)mq] ≤ exp

(
−mqδ2

2

)
for all 0 < δ < 1.

From Claim 15 we deduce that

P [bt ≥ xt|Xt �= ∅] ≥ P

[
bt >

E[bt]

2

] (11)
≥ 1− exp(−E[bt]/8)

≥ 1− exp(−xt/4) ≥ 1− exp(−x0/4).

Recalling that x0 = t1, this completes the proof.

We apply Lemma 16 multiple times to obtain the main result of this

section.
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Lemma 17. For n large enough,

P

[
E
(
G(1) ∪G(2),

n

2r+2

) ∣∣∣E (
G(1), (lnn)1+

1

r

)]
≥ 1− exp(− t1

5
).

Proof. Since t2 ≤ 2 lnn by (9), we deduce from Lemma 16 that

P

[
E
(
G(1) ∪G(2), n/2r+2

) ∣∣∣E (
G(1), t1

)]
≥

t2∏
t=0

P
[
bt ≥ xt

∣∣Xt �= ∅
]

≥
(
1− exp

(
− t1

4

))2 lnn

≥ 1− 2(lnn) exp

(
− t1

4

)

= 1− exp

(
ln(2 lnn)− t1

4

)

≥ 1− exp

(
− t1

5

)
,

where the last inequality is valid since t1 = Ω(lnn).

3.4. Part III

Finally we prove that G∗ := G(1) ∪G(2) ∪G(3) percolates whp.

Lemma 18. Conditioned on G(1) ∪G(2) containing a percolating subset X
of size at least n/2r+2, G∗ percolates whp.

Indeed, we will prove that whp every vertex in V \X is connected to X
by edges of every colour by using the final round of exposure G(3).

Proof of Lemma 18. We begin by defining K to be the event that there is

at least one vertex v ∈ V \X and one colour i ∈ [r] such that E
(3)
i contains

no edge between v and X. Thus

P[K] ≤
∑
i∈[r]

∑
v∈V \X

(
1− pi

3

)|X|
≤ rn

(
1− p1

3

) n

2r+2 ≤ rne−
Cr

3·2r+2 lnn

= rn1− Cr
3·2r+2 ≤ r

n
= o(1),

where the last inequality holds since Cr ≥ 28r
2 ≥ 3 · 2r+3. Since K̄ implies

that G∗ percolates, this completes the argument.
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4. Concluding remarks

A number of open questions naturally present themselves.

4.1. Optimising Cr

Similar to Bollobás, Riordan, Slivken and Smith [5], we made no attempt to
optimise the constant Cr in Theorem 2. As a result, the bounds on Pr for the
subcritical and supercritical case are a long way apart. It is natural to expect
them to be asymptotically equal, leading to the following strengthening of
Theorem 2 (in the case when r is constant):

Conjecture 19. Let r ∈ N. There exist constants C∗
2 , . . . , C

∗
r such that the

following holds: suppose that p1, ..., pr are functions of n such that 0 ≤ p1 ≤
p2 ≤ ... ≤ pr ≤ 1 and G = G(n, p1, p2, ..., pr). For i ∈ [r] let Pi := p1p2...pi.
Then for any constant ε > 0:

(i) If Pi ≤ (1−ε)C∗
i

n(lnn)i−1 for some 2 ≤ i ≤ r or P1 ≤ (1−ε) lnn
n then whp G does

not percolate.

(ii) If Pi ≥ (1+ε)C∗
i

n(lnn)i−1 for every 2 ≤ i ≤ r and P1 ≥ (1+ε) lnn
n , then whp G

percolates.

The case r = 1 is simply the graph case, where the classical result of
Erdős and Rényi shows that the conjecture is true. In the case when r = 2,
the conjecture was proved in [8], and the value of C∗

2 was determined to be
1/4. It would be interesting to determine whether this conjecture is true,
and if so to determine the exact values of the C∗

i for i ≥ 3, and indeed to
generalise to the case when r is allowed to grow as a function of n.

4.2. Size of the critical window

If the C∗
i can be determined precisely, the next parameter to optimise would

be the parameter ε in Conjecture 19. More precisely, does the result still hold
if rather than ε being a constant it is allowed to be a function of n which
tends to 0 sufficiently slowly. This has already been extensively studied in
the case r = 1, which corresponds to connectedness of the graph, but is an
open problem in general.

4.3. Speed of the jigsaw process

In the supercritical case of Theorem 2, we know that whp the jigsaw perco-
lation algorithm will terminate with just one cluster, but how many steps
does this process require?
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More precisely, in each step we create an auxiliary graph on the clusters
of vertices, with an edge between clusters if there are edges between them
of every colour in the r-fold graph, and merge each connected component of
this auxiliary graph. How many iterations of this process are required before
we have one single remaining cluster?

An analysis of the proof shows that, for the random graphs considered in
the supercritical case, whp at most (1 + o(1))(lnn)1+1/r steps are required.
However, this was not optimised and it would be natural to conjecture that
actually Θ(lnn) steps are sufficient. It would also be interesting to determine
the constant in this Θ(lnn) term, which would most likely be dependent on
how close the probability product Pr is to the jigsaw percolation threshold.
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