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The Hopf monoid of orbit polytopes

Mariel Supina
∗

Many families of combinatorial objects have a Hopf monoid struc-
ture. Aguiar and Ardila introduced the Hopf monoid of general-
ized permutahedra and showed that it contains various other no-
table combinatorial families as Hopf submonoids, including graphs,
posets, and matroids. We introduce the Hopf monoid of orbit poly-
topes, which is generated by the generalized permutahedra that
are invariant under the action of the symmetric group. We show
that modulo normal equivalence, these polytopes are in bijection
with integer compositions. We interpret the Hopf structure through
this lens, and we show that applying the first Fock functor to this
Hopf monoid gives a Hopf algebra of compositions. We describe the
character group of the Hopf monoid of orbit polytopes in terms of
noncommutative symmetric functions, and we give a combinatorial
interpretation of the basic character and its polynomial invariant.

Keywords and phrases: Hopf monoids, generalized permutahedra, or-
bit polytopes, weight polytopes, noncommutative symmetric functions,
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1. Introduction

In [1], Aguiar and Ardila introduced the Hopf monoid of generalized permu-
tahedra and proved that much of its algebraic structure can be interpreted
combinatorially. Many other combinatorial families form Hopf submonoids
of generalized permutahedra, so this theory produced new proofs of known
results about graphs, matroids, posets, and other objects. It also led to some
new and surprising theorems. Associated to a Hopf monoid is a group of mul-
tiplicative functions called the character group. Aguiar and Ardila showed
that the character groups of the Hopf monoids of permutahedra and associ-
ahedra are isomorphic to the groups of formal power series under multipli-
cation and composition, respectively. Using their formula for the antipode of
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generalized permutahedra, they found that permutahedra have information
about multiplicative inverses of power series encoded in their face structure,
and associahedra have analogous information about compositional inverses
of power series.

A subject of ongoing study is to examine other Hopf submonoids of gen-
eralized permutahedra (for example, see [3]). We consider the Hopf monoid
generated by orbit polytopes. These are the generalized permutahedra that
are invariant under the action of the symmetric group, so this Hopf monoid
contains permutahedra as a Hopf submonoid.

This paper presents two main results. First, Theorem 4.21 describes a
Hopf algebra of compositions which results from applying the first Fock
functor to the Hopf monoid of orbit polytopes. Second, Theorem 5.5 shows
that the character group of the Hopf monoid of orbit polytopes is isomorphic
to a subgroup of the group of invertible elements in the completion of the
Hopf algebra NSym of noncommutative symmetric functions. In Section 2,
we introduce some necessary background. Section 3 formally defines orbit
polytopes and shows how, up to normal equivalence, they can be viewed
as compositions. In Section 4, we interpret the product and coproduct of
generalized permutahedra in the case of orbit polytopes, and we show that
these operations can be neatly described in terms of compositions. Finally,
in addition to presenting the description of the character group, Section 5
discusses the basic character of orbit polytopes and its polynomial invariant.

2. Preliminaries

Let I be a finite set. Let RI be the linearization of I, so RI is a real vector
space with basis {ei : i ∈ I}. Let RI be its dual, the set of linear functionals
y : RI → R.

2.1. Normal equivalence of polytopes

We begin by introducing an important equivalence relation on polytopes
which will be very useful in our investigation of orbit polytopes. Let P ⊆ RI
be a polytope and let F be a face of P (we write F ≤ P ).

Definition 2.1. The normal cone of F is the cone of linear functionals

NP (F ) := {y ∈ RI : y attains its max value on P at every point in F},

i.e. NP (F ) is the cone of linear functionals that define a face of P containing
F .
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Figure 1: Normally equivalent polytopes in R2.

Definition 2.2. The normal fan NP of P is the fan in RI consisting of the
normal cones of each face of P ,

NP := {NP (F ) : F ≤ P}.

Definition 2.3. The polytopes P and Q are normally equivalent if NP =
NQ.

Example 2.4. The polytopes P and Q in Figure 1 are normally equivalent.

2.2. The braid arrangement

In this section, we introduce an important hyperplane arrangement that is
central to the study of generalized permutahedra.

Definition 2.5. The braid arrangement is the hyperplane arrangement in
RI consisting of the hyperplanes xi = xj for i, j ∈ I with i �= j.

The braid arrangement divides RI into closed full-dimensional cones, or
chambers.

Definition 2.6. The braid fan BI is the polyhedral fan in RI formed by
taking the set of chambers of the braid arrangement and all of their faces.

We will also sometimes deal with the dual braid fan BI that lives in
the dual space RI . It is defined analogously to BI and shares all of its
combinatorial properties. The following is a well-known fact about the braid
fan:

Proposition 2.7. The faces of the braid fan are in bijection with ordered
set partitions of I.
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Our convention in this paper will be that the ordered set partition S1 �
· · · � Sk of I corresponds to the cone of the braid arrangement consisting of
all points satisfying, for i1 ∈ Sj and i2 ∈ S�:

(i) xi1 ≥ xi2 if and only if j ≤ �, and
(ii) j = � implies xi1 = xi2 .

It follows that the chambers of the braid fan are in bijection with the set of
all linear orderings of the coordinates of a point in the ambient space. We
will need to distinguish one chamber to use as a reference point.

Definition 2.8. Fix any chamber D of the braid fan, and call this the fun-
damental chamber. Define a linear order ≺ on I to be the one corresponding
to D, so

D = {x ∈ RI : i ≺ j =⇒ xi ≥ xj}.
For example, when I = [n] we could choose the fundamental chamber of

B[n] to be the set of points in Rn with x1 ≥ x2 ≥ · · · ≥ xn.

Corollary 2.9. The faces of the fundamental chamber D of the braid fan
BI are in bijection with the compositions of the integer |I|.
Proof. From Definition 2.8 we can see that the faces of D correspond only
to the ordered set partitions S1 � · · · � Sk of I such that for 1 ≤ i < k,
all elements of Si are greater than all elements of Si+1 under ≺. Thus the
ordered set partitions corresponding to faces of D depend only on the sizes
of their parts. This sequence of sizes (|S1|, . . . , |Sk|) is an integer composition
of |I|.

2.3. Generalized permutahedra

Generalized permutahedra are polytopes with very nice combinatorial and
algebraic properties. They are equivalent to submodular functions and to
polymatroids up to translation.

Definition 2.10. Let F and G be polyhedral fans. Then F is a coarsening
of G if each cone of G is contained in a cone of F .

Definition 2.11. A generalized permutahedron is a polytope whose normal
fan is a coarsening of the braid fan.

Generalized permutahedra can be obtained by moving the vertices of a
standard permutahedron in such a way that the edge directions are preserved
[8]. Proposition 2.14 below gives an equivalent definition of generalized per-
mutahedra using submodular functions.
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Definition 2.12. A submodular function is z : 2I → R where I is a finite
set and z satisfies the following properties:

(i) z(∅) = 0, and
(ii) z(S ∩ T ) + z(S ∪ T ) ≤ z(S) + z(T ) for all S, T ⊆ I.

Definition 2.13. Let z : 2I → R be a submodular function. The base
polytope of z is

(1) P(z) =
{
x ∈ RI :

∑
i∈I

xi = z(I) and ∀ ∅ � A � I,
∑
a∈A

xa ≤ z(A)
}
.

Proposition 2.14 ([5]). A polytope is a generalized permutahedron if and
only if it is the base polytope of a submodular function. Furthermore, every
generalized permutahedron is the base polytope a unique submodular func-
tion, and all of the inequalities in (1) are tight.

3. Orbit polytopes

In this section, we introduce orbit polytopes, the main combinatorial objects
studied in this paper.

3.1. Definition of an orbit polytope

The symmetric group SI acts on RI by permuting coordinates. If σ is a
permutation in SI and p = (pi)i∈I ∈ RI, then this action is given by σ(p)i =
pσ−1(i).

Definition 3.1. Let p ∈ RI. The orbit polytope of p is the polytope

O(p) := conv{σ(p) : σ ∈ SI}.

Orbit polytopes are sometimes called permutahedra [8], but we avoid
this terminology in order to distinguish the Hopf monoid of orbit polytopes
from the Hopf monoid of (standard) permutahedra discussed in [1].

Orbit polytopes are closely related to weight polytopes, a general con-
struction arising in representation theory and the theory of finite reflection
groups. The vertices of weight polytopes are given by the orbit of a special
point, called a weight, under a relevant action. The weights arising in the
representation theory of the general linear group are all integer points; thus
orbit polytopes with integer vertices are the same as weight polytopes for
GLn.
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Figure 2: The orbit polytopes O(1, 0, 0) and O(1, 1, 0).

Figure 3: The standard 4-permutahedron O(4, 3, 2, 1).

Example 3.2. The orbit polytope O(1, 0, 0) is the 2-dimensional standard

simplex in R3. The orbit polytope O(1, 1, 0) is combinatorially equivalent to
O(1, 0, 0), but it has a different normal fan (see Figure 2).

Example 3.3. For any λ ∈ R, the orbit polytope O(λ, . . . , λ) is a single
point in RI.

Example 3.4. Let I = [n] and p = (n, n− 1, . . . , 1) ∈ Rn. Then O(p) is the
standard n-permutahedron (see Figure 3).

Note that if q is an element of the SI orbit of p, then O(p) = O(q). In

this paper, we will often use this observation to write p with its coordinates
in decreasing order. Furthermore, note that the orbit polytope O(p) for

p = (pi)i∈I ∈ RI will always lie in the codimension-1 affine subspace of RI
given by ∑

i∈I
xi =

∑
i∈I

pi.

To describe the faces of an orbit polytope, it is helpful to use the rear-
rangement inequality. This states that if x1, . . . , xn and y1, . . . , yn are real
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Figure 4: The (1, 0, 1, 1)-maximal face of O(2, 2, 1, 0).

numbers such that x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn, then for all

σ ∈ Sn, we have

(2) x1y1 + · · ·+ xnyn ≥ xσ(1)y1 + · · ·+ xσ(n)yn.

We can see inequality (2) in action in the next example.

Example 3.5. Let p = (2, 2, 1, 0) ∈ R[4], and let y = (1, 0, 1, 1) ∈ R[4]. Then

the rearrangement inequality says that the vertices of O(p) maximizing y are

the elements of the S4 orbit of p such that the three largest coordinates are

in positions 1, 2, and 4, and the smallest coordinate is in position 2. These

are the points (1, 0, 2, 2), (2, 0, 1, 2), and (2, 0, 2, 1). Hence the y-maximal

face of O(p) is the triangular facet conv{(1, 0, 2, 2), (2, 0, 1, 2), (2, 0, 2, 1)}, as
seen in Figure 4.

Proposition 3.6. Orbit polytopes are generalized permutahedra.

Proof. Let p ∈ RI for some finite set I, and consider the orbit polytope

O(p). Choose some linear functional y ∈ RI and let F be the y-maximal

face of O(p). Now, y lies in the relative interior of exactly one cone C ∈ BI .

This cone C corresponds to some ordered partition S1�S2�· · ·�Sk of the set

I. Inequality (2) says that the vertices of F must be precisely the elements

of the SI orbit of p that have their largest |S1| coordinates in the positions

in S1, the next largest |S2| coordinates in the positions in S2, and so on,

ending with the smallest |Sk| coordinates, which must be in the positions in

Sk. But then by (2), all other z ∈ C must also attain their maximum value

for O(p) on F . Thus C ⊆ NO(p)(F ), so NO(p) coarsens BI .



582 Mariel Supina

3.2. Half-space description of orbit polytopes

Polytopes can be described either as the convex hull of their vertices or as
the intersection of the half-spaces defining their facets. Orbit polytopes are
defined in terms of their vertex description (see Definition 3.1), but they
have a simple half-space description as well.

Proposition 3.7 ([9]). Let p ∈ RI with n = |I|, and label the coordinates
of p as p1, . . . , pn such that p1 ≥ · · · ≥ pn. Then

(3) O(p) =

{
x ∈ RI :

∑
i∈I

xi =

n∑
i=1

pi and ∀∅ � S � I,
∑
s∈S

xs ≤
|S|∑
i=1

pi

}
.

Proof. By Proposition 3.6, O(p) is a generalized permutahedron. Thus by
Proposition 2.14, O(p) is the base polytope of a unique submodular function.

Consider the function z : 2I → R given by z(S) =
∑|S|

i=1 pi. It is straightfor-
ward to verify that z is submodular, and that the right side of equation (3)
is the base polytope of z. Moreover, it is immediate that all vertices of O(p)
satisfy the equation and inequalities in (3). Thus by convexity, all points in
O(p) satisfy these inequalities. For each S ⊆ I there exists some vertex v of
O(p) satisfying

∑
s∈S

vs =

|S|∑
i=1

pi ;

namely, v is any element of the SI orbit of p with p1, . . . , p|S| in the positions
corresponding to S. Hence, these inequalities are tight for O(p), so O(p) is
the base polytope of z.

3.3. Orbit polytopes and submodular functions

It is clear from Definition 3.1 that orbit polytopes are invariant under the
action of SI . However, one might wonder whether there exist other gener-
alized permutahedra that are invariant under this action. Submodular func-
tions are a useful tool for answering this question. Proposition 3.7 shows
that O(p) = P(z) where z : 2I → R is the submodular function given by

(4) z(S) =

|S|∑
i=1

pi

for all ∅ � S ⊆ I.
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In general, the action of SI on I induces an action of SI on submodular

functions on I by (σ · z)(S) = z(σ−1(S)). One can show that under this

action, a submodular function z : 2I → R is SI -invariant if z(S) = z(T )

whenever |S| = |T |.

Proposition 3.8. A polytope in RI is an orbit polytope if and only if it is

the base polytope of an SI-invariant submodular function.

Proof. It is clear that the submodular function in (4) is SI -invariant. Con-

versely, let |I| = n and let z : 2I → R be SI -invariant. Then there exist

t1, . . . , tn ∈ R such that for all ∅ � S ⊆ I, we have z(S) = t|S|. Let t0 = 0

and define pk = tk−tk−1 for 1 ≤ k ≤ n. Label the elements of I as 1, 2, . . . , n.

Then by submodularity, for 2 ≤ k ≤ n we have

z({1, . . . , k − 2}) + z({1, . . . , k}) ≤ z({1, . . . , k − 1}) + z({1, . . . , k − 2, k})
tk−2 + tk ≤ tk−1 + tk−1

tk − tk−1 ≤ tk−1 − tk−2

pk ≤ pk−1.

Thus p1 ≥ · · · ≥ pn. It follows from Proposition 3.7 that P(z) = O(p) where

the multiset of coordinates of p is {p1, . . . , pn}.

Corollary 3.9. Orbit polytopes are exactly the generalized permutahedra

which are invariant under the SI action on RI.

The set of all submodular functions z : 2I → R forms the submodular

cone in R(2I). The structure of the submodular cone is extremely compli-

cated and a subject of ongoing study. The cone of submodular functions

corresponding to orbit polytopes admits a much simpler description. We

can obtain this cone from the submodular cone by intersecting it with all

hyperplanes of the form z(S) = z(T ) for pairs S, T ⊆ I with |S| = |T |. The
faces of the submodular cone correspond to normal equivalence classes of

generalized permutahedra, with inclusion of faces corresponding to refine-

ment of normal fans. This means that the faces of our new cone correspond to

normal equivalence classes of orbit polytopes. We will see in Section 3.4 that

these equivalence classes are in bijection with integer compositions, which

implies that the face lattice of the cone of SI -invariant submodular func-

tions is simply a Boolean lattice. Thus the cone of SI -invariant submodular

functions is simplicial.
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3.4. Orbit polytopes modulo normal equivalence

The goal of this section is to show that normal equivalence classes of orbit

polytopes O(p) for p ∈ RI are in bijection with compositions of the integer

n := |I|. In order to show this, we will need to use some nice properties of

orbit polytopes.

Lemma 3.10. Orbit polytopes have exactly one vertex lying in each chamber

of the braid fan BI .

Proof. It is a general fact in the theory of Coxeter groups that a finite

reflection group acts transitively on the chambers of its Coxeter arrangement

(see [7, 1.12]). Thus the SI -orbit of a point in RI must consist of exactly

one point in each chamber of BI .

Note that it is possible for a vertex to lie in more than one chamber

of BI if it is on the intersection of two or more closed chambers. We can

identify each cone of the braid fan BI with the cone of the dual braid fan BI

that corresponds to the same ordered set partition. Some would consider it

a mathematical sin to conflate the dual vector spaces RI and RI in this way.

However, in the case of orbit polytopes, such sinfulness can be illuminating,

as evidenced by the following lemma.

Lemma 3.11. Let v be a vertex of the orbit polytope O ⊂ RI. Then the

normal cone NO(v) is the union of all the chambers of BI containing v,

viewed as cones in RI under the natural correspondence between BI and BI .

Proof. Suppose O = O(p) for p ∈ RI. By Lemma 3.10, O has exactly one

vertex in each chamber of BI , and this vertex results from reordering the

coordinates of p according to the ordered set partition of that chamber. The

rearrangement inequality (2) implies that the functionals in the normal cone

of a vertex v must have their coordinates ordered in the same way as v. Thus

the functionals in NO(v) are those in all chambers of BI corresponding to

chambers of BI containing v.

Given a point p ∈ RI, we can obtain a composition of n using Corollary

2.9 and Lemma 3.10 as follows:

Definition 3.12. The composition of p is the integer composition corre-

sponding to the unique face of the fundamental chamber D of BI that con-

tains some point in the SI -orbit of p.
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Example 3.13. Let p = (1, 3, 1, 6, 6, 0, 2, 1) ∈ R8. Then the element of

the S8-orbit of p that lies in the fundamental chamber of B[8] is p′ =

(6, 6, 3, 2, 1, 1, 1, 0). The composition of the integer 8 corresponding to p is

(2, 1, 1, 3, 1) since p′ has two of its biggest coordinate (6), one of the second

biggest coordinate (3), one of the third biggest coordinate (2), three of the

fourth biggest coordinate (1), and one of the smallest coordinate (0).

Corollary 3.14. Every vertex of an orbit polytope O has the same compo-

sition.

Proof. This follows from Lemma 3.10, which implies that O has exactly one

vertex in the fundamental chamber.

Definition 3.15. The composition of an orbit polytope O is the composition

of any of its vertices.

Proposition 3.16. Let O and O′ be orbit polytopes. Then O and O′ are
normally equivalent if and only if they have the same composition.

Proof. Let v and v′ be the unique vertices of O and O′, respectively, that
lie in the fundamental chamber D of the braid fan.

(=⇒): Suppose O and O′ have different compositions. Then v and v′

lie in the interior of different faces of D. By Lemma 3.11, this means that

NO(v) �= NO′(v′), so O �≡ O′.

(⇐=): Suppose O and O′ have the same composition. Then v and v′ lie
in the interior of the same face of D. So we have a bijection between the

vertices of O = O(v) and O′ = O(v′) given by σ(v) �→ σ(v′) for each vertex

σ(v) of O, where σ ∈ SI . Now let F ≤ O, so F = conv{σ1(v) . . . , σm(v)} for

some σ1, . . . , σm ∈ SI . Define F ′ ⊆ O′ to be conv{σ1(v′), . . . , σm(v′)}. Then
by the rearrangement inequality (2), any y ∈ NO(F ) attains its maximal

value for O′ on the vertices σ1(v
′), . . . , σm(v′) and no others, and hence on

all of F ′ and nowhere else on O′. Thus F ′ is a face of O′, and we have shown

that NO(F ) ⊆ NO′(F ′). The other inclusion of normal cones also follows

from the rearrangement inequality.

So far, we have constructed an injection from the faces of O to the

faces of O′, and we have shown that this injection preserves normal cones.

Reversing the roles of O and O′ shows that this map is actually a bijection.

Thus NO = NO′ .

Corollary 3.17. Normal equivalence classes of orbit polytopes O(p) for

p ∈ RI are in bijection with compositions of the integer n.
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Figure 5: Normal equivalence classes of orbit polytopes in RI when |I| = 3.

Notation 3.18. Let α be a composition of n. We write Oα,I for the normal
equivalence class of orbit polytopes in RI with composition α. If the set I
is clear from context, we may simply write Oα.

Example 3.19 (Normal equivalence classes for n = 3). Let I = {1, 2, 3}.
There are four compositions of the integer 3 = |I|, so there are four normal
equivalence classes of orbit polytopes in RI, shown in Figure 5.

Example 3.20 (Notable families of orbit polytopes). The following compo-
sitions of n correspond to normal equivalence classes of well-known families
of polytopes in RI with |I| = n:

• (n): single point
• (1, . . . , 1): standard n-permutahedron
• (1, n− 1): standard n-simplex
• (k, n − k): uniform matroid polytope Uk,n; these are also known as

hypersimplices

4. Algebraic structures on orbit polytopes

In [1], the authors introduce a product and coproduct which give general-
ized permutahedra the structure of a Hopf monoid. When restricted to orbit
polytopes, these operations have a neat interpretation in terms of composi-
tions.

4.1. Toward a product

Definition 4.1. Let P ⊂ RS and Q ⊂ RT be any polytopes. Then the
product of P and Q is the polytope

P ·Q := {(p, q) ∈ R(S � T ) : p ∈ P, q ∈ Q} ⊂ R(S � T ).

The identity of this product is the unique empty orbit polytope, which lives
in R∅.
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Proposition 4.2. Let P ⊂ RI be a product of finitely many orbit polytopes.
Then up to commutativity of ·, P has a unique expression of the form

P = O(p1) · . . . · O(pk)

where pj ∈ RSj for 1 ≤ j ≤ k, and S1 � · · · � Sk is a partition of I into
nonempty sets, and O(pj) is not a single point unless |Sj | = 1.

Proof. The vertices of the product of two polytopes are exactly the products
of vertices of the two polytopes. This means that the vertex set of a product
of nonempty orbit polytopes will not contain the entire orbit of any point
under the action of the symmetric group, unless we are multiplying points
with all coordinates equal. Thus orbit polytopes that are not points cannot
decompose as products of orbit polytopes.

It is a general fact about polytopes (indeed, about subsets of RI) that
if P ⊂ RI can be written as a product of polytopes with respect to the
decomposition I = S1 � · · · � Sk and also with respect to the decomposition
I = T1 � · · · � T�, then P can be written as a product with respect to the
common refinement of these two decompositions. Hence if P is a product
of finitely many orbit polytopes with respect to the decomposition I =
S1�· · ·�Sk, then it cannot also be a product of orbit polytopes with respect
to a different decomposition, since orbit polytopes are indecomposable with
respect to this product. The exception is orbit polytopes that are points,
but requiring that all multiplicands that are points live in one dimension
guarantees uniqueness.

4.2. Toward a coproduct

Each face of an orbit polytope decomposes as a product of lower-dimensional
orbit polytopes. In particular, each facet of an orbit polytope decomposes
as a product of two orbit polytopes. This will allow us to define a coprod-
uct of orbit polytopes in Section 4.4. The following proposition makes this
observation rigorous.

Proposition/Definition 4.3. Let p ∈ RI where |I| = n. Let O = O(p) ⊂
RI be the orbit polytope of p and let I = S�T . Suppose that F ≤ O is the face
of O maximizing the indicator functional 1S of S, where 1S(x) :=

∑
s∈S xs.

Then there exist unique orbit polytopes O|S ⊂ RS and O/S ⊂ RT such that

F = O|S · O/S .

We call O|S “O restricted to S,” and we call O/S “O contracted by S.”
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Proof. Suppose I = {i1, . . . , in}. Let p = (pi)i∈I and assume without loss
of generality that pi1 ≥ · · · ≥ pin . The 1S-maximal face of O will be of the
form F = conv{v1, . . . , v�}, where v1, . . . , v� are the elements of the SI -orbit
of p that have the largest |S| coordinates in the positions in S. This means
that the vj ’s are exactly the elements of the orbit of p that are contained in
the product of orbits

{σ(pi1 , . . . , pi|S|) : σ ∈ SS} · {σ(pi|S|+1
, . . . , pin) : σ ∈ ST }.

Define O|S to be conv{σ(pi1 , . . . , pi|S|) : σ ∈ SS} ⊂ RS, and define O/S to
be conv{σ(pi|S|+1

, . . . , pin) : σ ∈ ST } ⊂ RT . Then F = O|S · O/S .

The uniqueness of this expression follows from Proposition 4.2.

It is straightforward to show that if O is a product of finitely many
orbit polytopes, a modified version of Proposition 4.3 still holds. That is,
the 1S-maximal face of O decomposes as O|S · O/S , where O|S is a finite
product of orbit polytopes that lives in RS and O/S is a finite product of
orbit polytopes that lives in RT .

4.3. Species

Let Set be the category of sets with arbitrary morphisms, and let Set× be
the category of finite sets with bijections.

Definition 4.4. A set species is a functor F : Set× → Set. If I is a finite set,
then F maps I to a set F[I] which can be considered to contain “structures
of type F labeled by I.” If σ : I → J is a bijection of finite sets, then F
maps σ to a morphism F[σ] : F[I] → F[J ] which can be thought of as the
map “relabeling the elements of F[I] according to σ.”

Definition 4.5. The set species of orbit polytopes, denoted OP, maps a finite
set I to the set OP[I] of finite products of orbit polytopes living in RI. For
a bijection of finite sets σ : I → J , we get the map OP[σ] : OP[I] → OP[J ]
induced from the isomorphism from RI to RJ relabeling the basis vectors
{ei : i ∈ I} of RI according to σ.

We have seen that orbit polytopes up to normal equivalence are in bi-
jection with compositions. It is interesting to consider the species of orbit
polytopes up to normal equivalence.

Definition 4.6. The set species of normal equivalence classes of orbit poly-
topes, denoted OP, maps a finite set I to the set OP[I] of normal equivalence
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classes of finite products of orbit polytopes in OP[I]. In other words, a gen-
eral element of OP[I] has the form

Oα1,S1
· · · · · Oαk,Sk

where I = S1 � · · · � Sk and αi is a composition of |Si| for all i.

Let Comp be the set species of compositions where Comp[I] is the set of
integer compositions of |I| and Comp[σ] = id for all bijections σ : I → J . Let
Comp≥2 be the result of removing compositions with one part from Comp[I]
when |I| ≥ 2, so Comp≥2[I] for |I| ≥ 2 is the set of compositions of |I| with
more than one part. Define Comp≥2[∅] := ∅. To describe the relationship

of OP to Comp≥2, we need the following two definitions.

Definition 4.7. The exponential species E maps a finite set I to a set {1}
containing one element. For each bijection σ : I → J , we have E[σ] = id.

Definition 4.8. Let F and G be two set species where G[∅] = ∅. The
composition of F and G is the set species F ◦G where

F ◦G[I] =
⊔
X�I

(
F [X]×

∏
S∈X

G[S]

)

where X � I denotes that X is an unordered partition of the set I into
nonempty parts. In other words, the set F ◦ G[I] is the set of structures
obtained by partitioning I, putting a structure of type G on each part, and
then putting a structure of type F on the set of parts of the partition.

It is often useful to consider what happens when the exponential species
is composed with some other species F. By Definition 4.8, the elements of
E◦F[I] will be the result of partitioning the set I into unordered parts, then
putting a structure of type F on each part.

Proposition 4.9. The species OP is isomorphic to E ◦ Comp≥2, where E
is the exponential species.

Proof. This is immediate from Definition 4.6 and the commutativity of the
polytope product.

The exponential generating function of a set species F is

F(t) =

∞∑
k=0

1

k!

∣∣∣∣F[
[k]

]∣∣∣∣tk,
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the power series for which the coefficient of tk/k! is the number of structures
of type F on a k-element set.

Example 4.10. Since the exponential species has one structure on each set,
its generating function is

E(t) =

∞∑
k=0

tk

k!
= et.

The exponential generating function for the species F◦G can be obtained
by composing the generating functions of F and G [4, §2.2].
Corollary 4.11. The exponential generating function of OP is

OP(t) = e
1

2
e2t−et+t+ 1

2 .

Proof. The exponential generating function for Comp≥2 is

Comp≥2(t) = 0 + t+

∞∑
k=2

2k−1 − 1

k!
tk

=
1

2
e2t − et + t+

1

2

Since OP = E ◦ Comp≥2, we get the result by composing the function et

with this generating function for Comp≥2.

The first few terms of the generating function for OP are

OP(t) = 1 + t+ 2
t2

2!
+ 7

t3

3!
+ 29

t4

4!
+ 136

t5

5!
+ . . .

4.4. The Hopf monoid of orbit polytopes

We now define the main algebraic object of interest.

Definition 4.12. A Hopf monoid in set species is a set species H equipped
with a collection of product maps μ = {μS,T : H[S] × H[T ] → H[I]} and a
collection of coproduct maps Δ = {ΔS,T : H[I] → H[S] × H[T ]} where S
and T are any pair of disjoint finite sets and I = S � T . These operations
must satisfy naturality, unitality, associativity, and compatibility axioms (see
[2, 1]). A Hopf monoid in set species is connected if |H[∅]| = 1.

Proposition 4.13 (OP is a Hopf submonoid of GP). Define a product and
coproduct on OP as follows:
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• The product is a collection of maps μ = {μS,T : OP[S] × OP[T ] →
OP[I]} for all ordered partitions of a finite set I into finite sets S and
T . If O ∈ OP[S] and O′ ∈ OP[T ], then their product is

μS,T (O,O′) := O · O′ ∈ OP[I]

as defined in Definition 4.1.
• The coproduct is a collection of maps Δ = {ΔS,T : OP[I] → OP[S] ×
OP[T ]} for all ordered partitions of a finite set I into finite sets S and
T . If O ∈ OP[I], then its coproduct is

ΔS,T (O) := (O|S ,O/S) ∈ OP[S]×OP[T ],

where O|S and O/S are the restriction and contraction discussed in
Proposition 4.3.

These operations turn the set species OP into a connected Hopf submonoid
of GP, where GP is the Hopf monoid of generalized permutahedra defined in
[1].

Proof. The product and coproduct described here are the same as the prod-
uct and coproduct on GP described in [1]. Products and coproducts of ele-
ments in OP result in elements of OP (see Sections 4.1 and 4.2), so OP is
closed under this product and coproduct. Thus OP is a Hopf submonoid of
GP.

Proposition 4.14 ([1]). Taking normal equivalence classes respects the
product and coproduct of OP defined in Proposition 4.13.

Corollary 4.15. The set species OP of normal equivalence classes of orbit
polytopes forms a connected Hopf monoid under the induced product and
coproduct from OP.

As a consequence of Proposition 4.2, we get that OP is a free commu-
tative Hopf monoid generated under multiplication by elements Oα,I where
I is some finite set and α ∈ Comp≥2[I]. This characterizes the product

of OP. The coproduct of OP also has a very nice formulation in terms of
compositions. This formulation uses two standard operations.

Definition 4.16. The concatenation of the compositions β = (β1, . . . , βk)
and γ = (γ1, . . . , γ�) is the composition

β · γ := (β1, . . . , βk, γ1, . . . , γ�).
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Definition 4.17. The near-concatenation of nonempty compositions β =
(β1, . . . , βk) and γ = (γ1, . . . , γ�) is the composition

β � γ := (β1, . . . , βk−1, βk + γ1, γ2, . . . , γ�).

Proposition 4.18. Let I be a finite set with |I| = n and let α be an integer
composition of n, so Oα ∈ OP[I]. Then if I = S � T we have

ΔS,T (Oα) = (Oα|S ,Oα/S
)

where α|S and α/S are the unique pair of compositions satisfying

(i) α|S is a composition of |S| and α/S is a composition of |T |, and
(ii) either α|S · α/S = α or α|S � α/S = α.

Proof. Suppose that O(p) is in the normal equivalence class Oα where
α = (α1, . . . , αk). This means that the point p has α1 occurrences of the
largest coordinate, α2 occurrences of the second largest coordinate, and so
on. Suppose p has coordinates p1, . . . , pn with p1 ≥ · · · ≥ pn, and define
q := (p1, . . . , p|S|) ∈ RS and q′ := (p|S|+1, . . . , p|T |) ∈ RT . Since q and q′ are
obtained from the |S| largest and |T | smallest coordinates of p, respectively,
we can see that the compositions of these two points satisfy conditions (i)
and (ii).

Now consider ΔS,T (O(p)). From the proof of Proposition 4.3 and the
definition of ΔS,T in Proposition 4.13, we know that

ΔS,T (O(p)) = (O(p)|S ,O(p)/S)

where O(p)|S = O(q) ⊂ RS and O(p)/S = O(q′) ⊂ RT . Passing to normal
equivalence classes and invoking Proposition 4.14 gives us the result.

Hopf monoids are required to be associative, so taking products of more
than two elements is well-defined. Likewise, coassociativity implies that de-
composing an element along more than two sets is well-defined. The following
proposition follows immediately.

Proposition 4.19. Let I be a finite set and let S1 � · · · � Sk be an ordered
partition of I.

• The map μS1,...,Sk
: OP[S1] × · · · × OP[Sk] → OP[I], obtained from

iterating the product of OP and invoking associativity, is given by

μS1,...,Sk
(Oα1,S1

, . . . ,Oαk,Sk
) = Oα1,S1

· · · · · Oαk,Sk
.
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• The map ΔS1,...,Sk
: OP[I] → OP[S1] × · · · × OP[Sk], obtained from

iterating the coproduct of OP and invoking coassociativity, is given by

ΔS1,...,Sk
(Oα,I) = (Oα|S1 ,S1

, . . . ,Oα|Sk
,Sk

)

where α|S1
, . . . , α|Sk

is the unique sequence of compositions such that
α|Si

is a composition of |Si| for all i and α can be obtained from the
α|Si

’s by some sequence of concatenations and near-concatenations;
that is,

α = α|S1
� . . .�α|Sk

where each occurrence of � is replaced with either concatenation · or
near-concatenation �.

4.5. The Hopf algebra of compositions

Given a Hopf monoid in set species, we can obtain a Hopf algebra by applying
first a linearization functor and then a Fock functor [2, §15]. The first Fock
functor produces the graded Hopf algebra⊕

n≥0

Span{isomorphism classes of elements of H[I] where |I| = n}

where isomorphisms are given by relabeling maps in the species. For orbit
polytopes, these isomorphism classes can be described using compositions.
Let A be the set containing all integer compositions with more than one
part and the unique composition of 1. We will use the notation |α| to denote
the sum of the parts of a composition α.

Lemma 4.20. Isomorphism classes of elements of OP[I] where |I| = n are
in bijection with multisets of compositions α1, . . . , αk where

∑k
i=1 |αi| = n

and αi ∈ A for all i.

Proof. Let I and J be finite sets with |I| = |J |. We know that orbit polytopes
are invariant under the action of the symmetric group, so their normal fans
must be invariant as well. Thus the normal equivalence classes Oα,I and Oβ,J

will be isomorphic if and only if they correspond to the same coarsening of
the braid fan, that is, if α = β.

Now consider general elements O ∈ OP[I] and O′ ∈ OP[J ]. Proposition
4.2 implies that up to commutativity, we can uniquely write products O =
Oα1,S1

· · · · ·Oαk,Sk
and O′ = Oβ1,T1

· · · · ·Oβ�,T�
where αi, βj ∈ A for all i and

j. Combined with uniqueness, our observation from the previous paragraph
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implies that O and O′ are isomorphic if and only if k = � and {α1, . . . , αk} =
{β1, . . . , β�} as multisubsets of A. Noting that

∑k
i=1 |αi| = n =

∑�
j=1 |βj |

completes the proof.

Applying the first Fock functor to OP results in a Hopf algebra of normal
equivalence classes of orbit polytopes. We can use Lemma 4.20 to charac-
terize this Hopf algebra using compositions.

Theorem 4.21 (Hopf algebra of compositions). Consider the commutative
algebra Comp generated freely by A. Let α ∈ A and define a coproduct
Δ : Comp → Comp ⊗ Comp by

Δ(α) :=
∑

β·γ=α
or

β�γ=α

(
|α|
|β|

)
β ⊗ γ,

where the composition (n) is defined to be equal to the product of composi-
tions (1)n. This makes Comp into a graded Hopf algebra isomorphic to the
Hopf algebra of normal equivalence classes of orbit polytopes.

Proof. Let [α] denote the isomorphism class of Oα. Lemma 4.20 shows that
the Hopf algebra of orbit polytopes is a commutative algebra generated un-
der multiplication by elements [α] for α ∈ A. There are no further relations
among these elements. Next, let us consider the coproduct in the Hopf al-
gebra of orbit polytopes. We can apply the formula from [1, Section §2.9] to
see that for a composition α,

Δ([α]) =
∑

[|α|]=S	T
[α|S ]⊗ [α/S ].

But α|S and α/S depend only on |S|, so we have

Δ([α]) =

|α|∑
i=0

(
|α|
i

)
[α|{1,...,i}]⊗ [α/{1,...,i}].

The pairs of compositions arising as a|{1,...,i} and α/{1,...,i} are exactly all of
the pairs of compositions β and γ such that i = |β| and either β · γ = α or
β � γ = α. Thus we have

Δ([α]) :=
∑

β·γ=α
or

β�γ=α

(
|α|
|β|

)
[β]⊗ [γ].
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Furthermore, we note that the isomorphism class [(n)] should correspond
under Lemma 4.20 to the multiset containing n copies of the composition (1).
Hence the map from the Hopf algebra of orbit polytopes to Comp sending
[α] to α is an isomorphism of graded Hopf algebras.

Example 4.22. We compute the coproduct of the composition (1, 2, 1) ∈
Comp:

Δ([(1, 2, 1)]) = [∅]⊗ [(1, 2, 1)]

+4·[(1)]⊗ [(2, 1)]

+6·[(1, 1)]⊗ [(1, 1)]

+4·[(1, 2)]⊗ [(1)]

+[(1, 2, 1)]⊗ [∅].

5. Characters on OP

5.1. Character group

Studying the character group of a Hopf monoid can lead to surprising con-
nections, as seen for the cases of permutahedra and associahedra in [1]. To
begin, let H be a connected Hopf monoid in set species, and let k be a field.

Definition 5.1. A character ζ : H → k is collection of natural maps {ζI :
H[I] → k} for each finite set I such that

(i) ζ∅ : H[∅] → k is the map sending 1 ∈ H[∅] to 1 ∈ k, and
(ii) if I = S � T , then for any x ∈ H[S] and y ∈ H[T ] we have

ζI(μS,T (x, y)) = ζS(x)ζT (y).

Let X(H) be the set of all characters on H.

Definition 5.2. The convolution of ζ, ψ ∈ X(H) is defined for x ∈ H[I] to
be

(ζ 
 ψ)I(x) :=
∑

I=S	T
ζS(x|S)ψT (x/S)

where the sum is taken over all ordered partitions of I into sets S and T .

This convolution product gives X(H) a group structure [1, Theorem 8.2].
We will prove that the character group of OP is related to the Hopf algebra
NSym of noncommutative symmetric functions. This is the graded dual of
the Hopf algebra QSym of quasisymmetric functions. One basis for NSym
is given by the noncommutative ribbon functions {Rα} which are indexed
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by integer compositions α. This basis is dual to the fundamental basis of
QSym and has the product

(5) RβRγ = Rβ·γ +Rβ�γ .

A detailed explanation of the Hopf structures of QSym and NSym can be
found in [6].

Definition 5.3. The completion NSym of NSym is the ring k[[{Rα}]] of
generating functions of the form ∑

α

cαRα

where the sum is over compositions α. The product in this ring is induced
from the product of the Rα given in Equation 5.

One can show that an element of NSym is invertible if and only if
c∅ �= 0, and that the invertible elements form a group under multiplication.

Definition 5.4. Define G to be the collection of invertible elements in
NSym with the properties that c∅ = 1 and n!c(n) = cn(1) for all n > 1.

It is straightforward to check that G is a subgroup of the invertible
elements of NSym.

Theorem 5.5. The character group X(OP) is isomorphic to G.

Proof. Since characters are natural maps, their values are unchanged under
the relabeling action of the species OP. Thus for ζ ∈ X(OP), it suffices to
define only ζ[n] for each positive integer n, since each other finite set can
be relabeled to one of these. (The definition of a character takes care of ζ∅,
requiring ζ∅(O∅) = 1.)

Define Comp to be the set of all integer compositions, including the
empty composition ∅. (Note: This set should not be confused with Comp,
the Hopf algebra of compositions defined in Section 4.5.) For each positive in-
teger n, define Compn to be the set of all compositions of n. Since characters
are multiplicative functions, it suffices to define the values of the character
only on a generating set. So for ζ ∈ X(OP), we only need to determine
ζ[n](Oα) for each n ≥ 1 and for each α ∈ Compn. A point O(n) in Rn is a
point in R raised to the nth power, so we must have ζ[n](O(n)) = (ζ[1](O(1)))

n.
When α is the composition (1) ∈ Comp1 or a composition with more than
one part, we may freely choose the value of ζ on Oα, since the equivalence
classes corresponding to these compositions form a free commutative gener-
ating set for OP.
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Let ζ ∈ X(OP) and let bα := ζ[n](Oα) for each α ∈ Comp, where n = |α|.
The sequence (bα : α ∈ Comp) contains all of the information needed to
define ζ. Let

F : X(OP) → NSym

be the map sending ζ to the exponential generating function

F (ζ) :=
∑

β∈Comp

bβ
|β|!Rβ

where Rβ ∈ NSym is the noncommutative ribbon function corresponding
to the composition β. Our analysis in the previous paragraph shows that F
actually induces a bijection between X(OP) and the subgroup G of NSym.

Let ψ ∈ X(OP) as well, so ψ has a generating function

F (ψ) =
∑

γ∈Comp

cγ
|γ|!Rγ .

Then ζ 
 ψ also has some generating function

F (ζ 
 ψ) =
∑

α∈Comp

aα
|α|!Rα.

The convolution product of characters tells us that for α ∈ Compn, we
should have

aα = (ζ 
 ψ)[n](Oα)

=
∑

[n]=S	T
ζS(Oα|S)ψT (Oα/S

)

=
∑

β·γ=α
or

β�γ=α

(
|α|
|β|

)
bβcγ .

Multiplying the generating functions for ζ and ψ and using the product
of the ribbon functions, we get

F (ζ)F (ψ) =
∑

β,γ∈Comp

bβcγ
|β|!|γ|!RβRγ

=
∑

β,γ∈Comp

bβcγ
|β|!|γ|! (Rβ·γ +Rβ�γ)
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=
∑

α∈Comp

( ∑
β·γ=α

or
β�γ=α

bβcγ
|β|!|γ|!

)
Rα

=
∑

α∈Comp

1

|α|!

( ∑
β·γ=α

or
β�γ=α

(
|α|
|β|

)
bβcγ

)
Rα

= F (ζ 
 ψ).

Thus the multiplication of these generating functions corresponds to the
convolution of characters in X(OP). This means that X(OP) and G are
isomorphic as groups.

5.2. Basic character

A special character on generalized permutahedra is related to many well-
studied invariants, such as the chromatic polynomial for graphs and the
Billera-Jia-Reiner polynomial for matroids. Here we examine what this char-
acter looks like for orbit polytopes.

Definition 5.6 ([1]). The basic character ζ on the Hopf monoid of gener-
alized permutahedra is given by

ζI(P ) =

{
1 if P is a point

0 otherwise

for a generalized permutahedron P ∈ GP[I].

If we restrict the basic character to OP, we can interpret it using com-
positions.

Proposition 5.7. Restricting the basic character of generalized permutahe-
dra to OP produces the character ζ ∈ X(OP) defined by

ζI(Oα) =

{
1 if α has only one part

0 otherwise

when α is an integer composition of |I|.

Proof. The orbit polytope Oα is a point if and only if α is a composition
with one part.
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5.3. Polynomial invariant of the basic character

Given a character ζ on a Hopf monoid H and an element x ∈ H[I], we can
obtain a polynomial invariant χI(x) given by

χI(x)(t) =

|I|∑
k=1

( ∑
(S1,...,Sk)�I

(ζS1
⊗ · · · ⊗ ζSk

) ◦ΔS1,...,Sk
(x)

)(
t

k

)
.

Here, we are summing over ordered partitions (S1, . . . , Sk) of the set I such
that all of the Si are nonempty.

A polynomial invariant of particular interest is the one corresponding to
the basic character. For graphs, this invariant is the chromatic polynomial;
for matroids, it is the Billera-Jia-Reiner polynomial [1, §18]. For orbit poly-
topes, we can interpret this invariant in terms of compositions, but first we
need some extra definitions and notation. Given an integer n and a compo-
sition γ = (γ1, . . . , γk) of n, let(

n

γ

)
:=

(
n

γ1, . . . , γk

)
.

We write �(γ) for the number of parts of γ. Finally, if α is another compo-
sition of n, we say that γ refines α if γ can be obtained from α by splitting
each part of α into one or more parts.

Proposition 5.8. Let Oα ∈ OP[I]. Then the polynomial invariant of Oα

corresponding to the basic character is given by

χI(Oα)(t) =
∑

γ refines α

(
|I|
γ

)(
t

�(γ)

)
.

Proof. Let ζ be the basic character on OP defined in Section 5.2. Then

(ζS1
⊗ · · · ⊗ ζSk

) ◦ΔS1,...,Sk
(Oα)

will be nonzero if and only if ΔS1,...,Sk
(Oα) is a tuple of points. We know

from Proposition 4.19 that ΔS1,...,Sk
(Oα) = (Oα|S1 ,S1

, . . . ,Oα|Sk
,Sk

). In order
for this to be a tuple of points, each α|Si

must have only one part. This will
be the case if and only if the composition (|S1|, . . . , |Sk|) refines α. Hence
we have

χI(x)(t) =

|I|∑
k=1

( ∑
(S1,...,Sk)�I

(ζS1
⊗ · · · ⊗ ζSk

) ◦ΔS1,...,Sk
(Oα)

)(
t

k

)
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=

|I|∑
k=1

( ∑
(S1,...,Sk)�I

(|S1|,...,|Sk|) refines α

1

)(
t

k

)

=

|I|∑
k=1

( ∑
γ refines α
�(γ)=k

(
|I|
γ

))(
t

k

)

=
∑

γ refines α

(
|I|
γ

)(
t

�(γ)

)
,

as desired.
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