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Statistics on ordered partitions of sets∗

Einar Steingŕımsson

We introduce several statistics on ordered partitions of sets, that
is, set partitions where the blocks are permuted arbitrarily. The
distribution of these statistics is closely related to the q-Stirling
numbers of the second kind. Some of the statistics are generaliza-
tions of known statistics on set partitions, but others are entirely
new. All the new ones are sums of two statistics, inspired by statis-
tics on permutations, where one of the two statistics is based on a
certain partial ordering of the blocks of a partition.
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0. Prologue

This paper was first made public on my webpage at Chalmers University of
Technology in 2001, after it had been rejected by two journals. It was first
posted on the arXiv in 2006 [18], with (trivial) updates in 2007 and 2014.

The reason it is being published now is to put it more formally on the
record, as it has been cited in several papers, dealing both directly with
some of the conjectures in the paper and in work in other areas, notably
the important Delta Conjecture (see below). In a series of papers, Ksavrelof
and Zeng [12], Ishikawa, Kasraoui and Zeng [9, 8] and Kasraoui and Zeng
[10] proved all the conjectures in this paper, the last of these papers giving
combinatorial proofs. Also, Remmel and Wilson [15] solved the problem that
was the original motivation for the present paper, namely finding a bijective
proof of Proposition 2 here, due to Zeng and Zhang [22], thus “explaining”
combinatorially this strong connection between ordered set partitions and
permutations. Wilson then extended this correspondence to multiset parti-
tions and descent-starred permutations [21].

The statistic ROS defined here also has a bearing on the Delta Con-
jecture of Haglund, Remmel and Wilson [6], and played a role in Haglund,

∗Part of this research was carried out while the author was visiting Université
Louis-Pasteur in Strasbourg in 1996, supported by the EU Network in Algebraic
Combinatorics.
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Rhoades and Shimozono’s paper on that conjecture and generalized coin-

variant algebras [7].

Apart from this Prologue, the deletion of a now obsolete footnote and

the updating of references, the content of the paper is the same as in the

original version.

1. Introduction

The Stirling numbers of the second kind, S(n, k), which count the parti-

tions of an n-element set into k blocks, have been much studied. Their

q-analog Sq(n, k), the q-Stirling numbers of the second kind, can be defined

by Sq(n, k) = 0 if k > n or k < 0 and, for n ≥ k ≥ 0, by the identity

[k]! · Sq(n, k) =
∑
i

(−1)i ·
[
k

i

]
· q(

i

2) · [k − i]n,(1)

where

[k] = 1+ q+ · · ·+ qk−1, [k]! = [k][k−1] · · · [1], and

[
n

k

]
=

[n]!

[k]! · [n− k]!
.

Here, as in the remainder of the paper, sums are taken to be over all integers,

unless explicitly stated otherwise.

There is an alternative definition of the q-Stirling numbers. Those num-

bers, sometimes denoted S̃q(n, k), are related to Sq(n, k) by Sq(n, k) =

q(
k

2)S̃q(n, k). In fact, the factor q(
k

2) is explicit in some of our statistics,

indicating that they essentially correspond to S̃q(n, k), but as this factor

does not appear transparently in some other statistics we take (1) above as

our definition.

There are several ways to define Sq(n, k) combinatorially, most of them

based on statistics on set partitions. Perhaps the simplest of these statistics

(in terms of definition) is the one due to Milne [13]. It can be defined as

follows: Given a partition of the set {1, 2, . . . , n} into k blocks, order the

blocks in the standard way, that is, by increasing least element. Let bi be

the size of the ith block in this ordering. Milne’s statistic, which we call mil,

is then defined to be b2 + 2b3 + · · · + (k − 1)bk. As an example, mil(14 −
238− 5− 67) = 1 · 3 + 2 · 1 + 3 · 2 = 11.

The following lemma is easily proved from identity (1) or from the defi-

nition of mil given above.
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Lemma 1. The numbers Sq(n, k) satisfy the recurrence

Sq(n, k) = qk−1 · Sq(n− 1, k − 1) + [k] · Sq(n− 1, k).(2)

Many authors have studied statistics on set partitions with distribution
given by the numbers Sq(n, k). Apart from the paper by Milne [13], who
seems to have pioneered the study of partition statistics whose distribution
is given by the q-Stirling numbers, we mention [3, 5, 16, 19, 20]. Of these,
the paper by Wachs and White [19] is the most comprehensive. Also, there
is a substantial literature on various statistics on set partitions restricted to
so-called non-crossing partitions. See for example [1, 14, 17, 20].

In the present paper we study statistics on ordered partitions of sets, that
is, set partitions where the blocks of a partition are ordered arbitrarily. The
original motivation of this study is an identity relating q-Stirling numbers
of the second kind to q-Eulerian numbers (see Proposition 2 below). The
Eulerian number A(n, k) counts permutations in the symmetric group Sn

with k descents. A descent in a permutation p = a1a2 · · · an is an i such that
ai > ai+1. There is a basic identity relating the S(n, k)’s and the A(n, k)’s,
namely

k! · S(n, k) =
∑
i

(
n− i

k − i

)
·A(n, i− 1),(3)

which is easily proved combinatorially. The q-analog of the Eulerian numbers
is the maj-statistic, defined as the sum of the descents in a permutation. As
an example, the permutation p = 5261743 has descents 1, 3, 5 and 6, and
thus maj p = 1 + 3 + 5 + 6 = 15. We denote by Aq(n, k) the distribution of
permutations with k descents according to maj, that is,

Aq(n, k) =
∑
p∈Sk

n

qmaj p,

where Sk
n is the set of permutations in Sn with exactly k descents.

The q-analog of identity (3) was derived by Zeng and Zhang [22], using
analytic methods, and goes as follows.

Proposition 2 (Zeng and Zhang [22, Proposition 4.6]). For all n and k
with 0 ≤ k ≤ n we have

[k]! · Sq(n, k) =
∑
i

qk(k−i) ·
[
n− i

k − i

]
·Aq(n, i− 1).(4)
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The distribution of the bistatistic (des,maj) on the symmetric group
Sn, that is, the sum of Aq(n, k) over all k, has been thoroughly studied.
This statistic, together with all other bistatistics with the same distribu-
tion, is said to be Euler-Mahonian (the number of descents is an Eulerian
statistic and maj is a Mahonian statistic). Because of the relation between
the q-Eulerian numbers and the q-Stirling numbers encoded by identity (4),
we will refer to statistics on ordered partitions of sets with the distribu-
tion [k]! ·Sq(n, k) as Euler-Mahonian, and we will even call Euler-Mahonian
those statistics on (unordered) partitions of sets that have the distribution
Sq(n, k).

As mentioned above, the original motivation of this paper was the iden-
tity (4). We have found several statistics, defined on ordered partitions of
sets, whose distribution we conjecture to be that given by either side of
(4). Two of these we prove to have this distribution, but in neither case
have we been able to find a bijective proof. The obvious combinatorial proof
of identity (3) does not generalize to the q-analog case of identity (4) in
any straightforward way using the known statistics on set partitions. Thus,
identity (4) still lacks a combinatorial proof.

Now, given any statistic S with the distribution Sq(n, k) on Pk
n we could

define a composite statistic stat = S + T on OPk
n by computing S on the

standard ordering of the blocks of π ∈ OPk
n and letting T be any Mahonian

permutation statistic (such as inv, the number of inversions, or maj) com-
puted on the permutation induced by the ordering of the blocks of π, since
the Mahonian permutation statistics have distribution [k]! on Sk. Thus, we
would be computing two separate statistics and effectively ignoring the or-
dering of the blocks for one of the statistics. However, we know of no such
statistic that lends itself to a combinatorial proof of identity (4).

In fact, we are aware of only one statistic defined on set partitions that
is independent of the ordering of the blocks, and thus can be combined with
any Mahonian permutation statistic on the permutation of the blocks to
obtain a statistic with distribution [k]!Sq(n, k) on OPk

n. This is the inter-
twining number of Ehrenborg and Readdy [3, §6], an interesting statistic
with properties quite different from those considered here. But, since we
don’t make any use of this statistic we omit its definition.

Although we have not come up with a bijective proof of (4) we have
found a statistic, which we call bmajmil (see Definition 7), defined on
ordered partitions, whose distribution is given by [k]! · Sq(n, k). However,
our proof consists of constructing a bijection between ordered partitions of
{1, 2, · · · , n} with k blocks and the set of permutations with at most n− k
descents, marked in certain ways, showing that the statistic in question has



Statistics on ordered partitions of sets 561

the distribution given by the right hand side of (4). We also show that a
straightforward generalization of one of the statistics by Wachs and White
[19] has distribution [k]! · Sq(n, k).

We have also found several other statistics that we conjecture to have
the distribution [k]! · Sq(n, k). All of these conjectures have been verified by
computer for n ≤ 11, so it seems unlikely that they could be wrong.

It is somewhat intriguing that the new statistics introduced are all sums
of two statistics, where one is essentially one of two Mahonian permuta-
tion statistics, but defined on a certain partial ordering of the blocks of a
partition.

It should also be mentioned that the ordered partitions studied here have
recently been treated by Krob, Latapy, Novelli, Phan and Schwer [11], under
the name of pseudo-permutations. Their results are quite different from ours,
but it seems likely that some connections will emerge.

2. Generalizations of known statistics

Let Pk
n be the set of (unordered) partitions of the set {1, 2, . . . , n} with k

blocks and let OPk
n be the set of ordered partitions of the set {1, 2, . . . , n}

with k blocks. We now introduce several statistics on OPk
n that are gener-

alizations of known statistics on Pk
n.

So far, most known statistics on Pk
n can be defined in terms of inversions

between the letters (integers) in a partition π and the openers and closers
of the blocks of π. The opener of a block is its least element and the closer
is its greatest element. For example, the partition π = 136− 27− 4− 58 has
openers 1, 2, 4 and 5 and closers 6, 7, 4 and 8.

On unordered partitions we always assume, when referring to the order-
ing of the blocks of a partition, that the blocks are written in increasing
order of their respective openers. We call this the standard ordering.

One statistic whose distribution on Pk
n is S̃q(n, k) is the sum rosπ =∑

i rosi π where rosi π is the number of openers in π that are smaller than i
and that belong to blocks to the right of the block containing i (the name
ros is of course an abbreviation of “right opener smaller”). For example, the
values of rosi for the partition π = 136− 27− 4− 58 are 0, 1, 3, 0, 2, 0, 0, 0
(written in the order in which the letters appear in π), so rosπ = 6.

We now define ten partition statistics. Four of these were defined by
Wachs and White [19], although their treatment was in terms of restricted
growth functions, a different way of representing partitions. Another four of
our statistics are mirror images of the aforementioned ones that contribute
nothing new in the case of unordered partitions. The last two statistics,



562 Einar Steingŕımsson

essentially defined by Foata and Zeilberger [4] for permutations, are in fact
each equal to the difference of two of the first eight statistics. However, they
are useful to define and they also make clear the similarity between some of
our partition statistics and known permutation statistics.

Definition 3. Given a partition π ∈ OPk
n, let openπ and closπ be the set of

openers and closers, respectively, of π. Let block(i) be the number (counting
from the left) of the block containing the letter i. We define eight coordinate
statistics as follows:

rosi π = #{j | i > j, j ∈ openπ, block(j) > block(i)},
robi π = #{j | i < j, j ∈ openπ, block(j) > block(i)},
rcsi π = #{j | i > j, j ∈ closπ, block(j) > block(i)},
rcbi π = #{j | i < j, j ∈ closπ, block(j) > block(i)},
losi π = #{j | i > j, j ∈ openπ, block(j) < block(i)},
lobi π = #{j | i < j, j ∈ openπ, block(j) < block(i)},
lcsi π = #{j | i > j, j ∈ closπ, block(j) < block(i)},
lcbi π = #{j | i < j, j ∈ closπ, block(j) < block(i)}.

Moreover, we let rsbi be the number of blocks B to the right of the block
containing i such that the opener of B is smaller than i and the closer of B
is greater than i (rsb is an abbreviation for “right, smaller, bigger”). Also,
we define lsbi in an analogous way, with “right” replaced by “left.”

We then set

rosπ =
∑
i

rosi π

and likewise for the remaining nine statistics, i.e. each of rob, rcs, rcb, los,
lob, lcs, lcb, rsb, lsb is defined to be the sum over all i of the respective
coordinate statistic.

Note that the statistic rsb was first defined, essentially, in [4] (see also
[2]) as a “partial statistic” in the definition of the permutation statistic mak.
We will treat a partition statistic analogous to mak later in this paper.

As an example of the coordinate statistics just defined we give the values
of three of them on the ordered partition π = 47− 3− 159− 68− 2:

π = 4 7 − 3 − 1 5 9 − 6 8 − 2

rosi : 3 4 2 0 1 2 1 1 0
lcbi : 0 0 1 2 1 0 2 1 4
rsbi : 1 2 1 0 0 0 0 0 0
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On unordered partitions, the statistic mil mentioned above is in fact
equal to los (left opener smaller), since the opener of every block to the
left of the block containing a given letter is smaller than that letter. Thus,
los has the distribution Sq(n, k) on Pk

n. On the other hand, lob (left opener
bigger) is clearly identically zero on Pk

n.
On ordered partitions the situation is much simpler, since “left” and

“right” have equal status, that is, reversing the order of the blocks in an
ordered partition turns a left opener into a right opener and likewise for
closers. Thus every right statistic is equidistributed with its corresponding
left statistic.

Moreover, given a partition π, let πc be the partition obtained by comple-
menting each of the letters in π, that is, by replacing the letter i by n+1− i.
It is then easily checked that rcbπc = rosπ and that rcsπc = robπ. Thus the
eight statistics obtained by independently varying left/right, opener/closer
and smaller/bigger fall into only two categories when it comes to their dis-
tribution on ordered partitions. One of these categories consists of ros, rcb,
los and lcb, and the other contains rob, rcs, lcs and lob. Since rcbi ≥ robi for
all i and any partition π, it is clear that the statistics in the latter category
are “smaller” than those in the first one. Indeed, the “small” statistics do
not have a distribution related in any obvious way to the Sq(n, k), except
that robi equals rcbi− rsbi, which is easily proved as are the analogous iden-
tities for rcs, lcs and lob. However, the “small” statistics play a role in some
of our new statistics, which consist of combinations of these with yet other
statistics.

It should perhaps be mentioned that there is a way to redefine ros in
order to “split” it into a partition statistic and a Mahonian statistic on
the permutation of the blocks. Namely, rosi, when restricted to the openers
of π, records just the inversions among the openers, and thus the inversion
statistic on the permutation of the blocks of π (as compared to the standard
ordering). However, as mentioned before, we have not been able to exploit
this to find a combinatorial proof of Proposition 2.

The statistic ros has distribution S̃q(n, k) on Pk
n and on OPk

n its distribu-
tion is [k]!S̃q(n, k). In order to get the distribution [k]!Sq(n, k) we therefore

add
(
k
2

)
, where k is the number of blocks in π. We call this new statistic

ROS, so ROSπ = rosπ +
(
k
2

)
.

Theorem 4. The statistic ROS is Euler-Mahonian on ordered partitions,
that is, ∑

π∈OPk
n

qrosπ = [k]! Sq(n, k).
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Proof. The proof is by induction on n, with k fixed. Suppose first that π is a
partition in OPk

n, such that n is a singleton block. Then π can be obtained
from a unique partition π′ in OPk−1

n−1, by inserting n as a singleton block
in one of the slots between blocks in π′, or before, or after, all the blocks
in π. If π is obtained by inserting n right after block i in π′, then there
will be (k − 1 − i) blocks following n so this increases ROS by k − 1 − i.
Moreover, since we now have k blocks instead of k− 1, ROS is additionally
increased by

(
k
2

)
−

(
k−1
2

)
= k − 1. Therefore the total increase in ROS is

(k − 1− i) + (k − 1).
Thus, if S is the set of partitions obtained from the partition π′ by

inserting n in the k slots between blocks in π′ or before or after all of the
blocks, then we have

∑
π∈S

qrosπ = qrosπ
′
qk−1(1 + q + · · ·+ qk−1) = qrosπ

′
qk−1[k].

On the other hand, if n is not a singleton block in π, then π can be
obtained from a unique partition π′ in OPk

n−1, by inserting n in one of the
blocks in π′. If n is thus inserted into the i-th block we increase ROS by
(k− i), so the corresponding sum, with T defined analogously to S above, is

∑
π∈T

qrosπ = qrosπ
′
(1 + q + · · ·+ qk−1) = qrosπ

′
[k].

Thus we have, assuming the statement true for n− 1, that

∑
π∈OPk

n

qrosπ = qk−1[k][k − 1]!Sq(n− 1, k − 1) + [k][k]!Sq(n− 1, k)

= [k]!

(
qk−1Sq(n− 1, k − 1) + [k]Sq(n− 1, k)

)
,

which, by Lemma 1, equals [k]! Sq(n, k) as desired. The case n = 1 is trivial
(and the case n = 0 a matter of definition).

Corollary 5. The following statistics are Euler-Mahonian on OPk
n:

RCB = rcb+

(
k

2

)
,

LOS = los +

(
k

2

)
,

LCB = lcb +

(
k

2

)
.
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3. A new Euler-Mahonian statistic on ordered partitions

We now define a new statistic that has the distribution [k]!Sq(n, k) on OPk
n.

This statistic, and each of the new statistics we introduce in the next section,
is a combination of two statistics S and T , where S is a partition statistic
that is inspired by a permutation statistic. What is surprising is that the
T -statistics are permutation statistics computed on the partial ordering of
the blocks of a partition defined by setting Bi < Bj if each letter of Bi is
smaller than every letter of Bj . We consider two such permutation statistics
on the blocks, corresponding to inv and maj, respectively.

Definition 6. Let π be an ordered partition in OPk
n with blocks B1, B2, . . . ,

Bk and let the partial ordering of the blocks be as defined in the preceding
paragraph.

We say that i is a block descent in π if Bi > Bi+1.

The block major index of π, denoted bmajπ, is the sum of the block descents
in π.

A block inversion in π is a pair (i, j) such that i < j and Bi > Bj .

The block inversion number of π denoted binvπ, is the number of block
inversions in π.

Moreover, we set cbmaj =
(
k
2

)
− bmaj and cbinv =

(
k
2

)
− binv.

Note that cbmaj is the sum of the elements in the complement of the
set of block descents in π, whence the prefixed “c,” and likewise for cbinv.

For example, if π = 41− 96− 5− 87− 32 (where we write the elements
of each block decreasingly to emphasize the block descents) then binvπ =
0 + 2 + 1 + 1 + 0 = 4 and bmajπ = 2 + 4 = 6 since the first block is not
larger than any other block, the second block is larger than the third and
the fifth blocks, and the third and the fourth blocks are both larger than
the fifth block.

The new statistic we now introduce is the sum of the statistic bmaj and
the statistic mil computed on ordered partitions in the same way as for
unordered partitions. (Thus, on ordered partitions, mil is not equal to los
as it is on Pk

n.)

Definition 7. Let π be an ordered partition with blocks B1, B2, . . . , Bk and
let bi be the size of block i. Then

bmajmilπ = bmajπ +
∑
i

(i− 1)bi.

For example, bmajmil(41− 96− 5− 87− 32) = (2 + 4) + (1 · 2 + 2 · 1 +
3 · 2 + 4 · 2) = 6 + 18 = 24.



566 Einar Steingŕımsson

Note that mil is closely related to the maj-statistic on permutations.
Namely, maj of a permutation p can be computed by assigning to each
letter in p the number of descents to its right and then summing these
numbers. This gives the same result as writing p backwards, cutting it at
each non-descent and then computing mil on the resulting partition. As an
example,

maj(2 8 6 1 3 7 4 5) = 3 + 3 + 2 + 1 + 1 + 1 + 0 + 0

mil(54− 731− 6− 82) = 0 + 0 + 1 + 1 + 1 + 2 + 3 + 3.

In order to prove that bmajmil has the distribution [k]!Sq(n, k) we need
to rewrite identity (2). Recall that Aq(n, k) is the polynomial in q whose
i-th coefficient is the number of permutations in Sn with k descents and
maj equal to i.

Lemma 8. Aq(n, i− 1) = qni−(
n+1

2 ) ·Aq(n, n− i).

Proof. If we reverse a permutation in Sn with i − 1 descents, the resulting
permutation will have exactly n− i descents. Moreover, it is easy to see that
the change in maj when reversing a permutation depends only on n and i.
It is also easy to see that the polynomials Aq(n, k) are symmetric (reverse a
permutation and complement each letter, i.e., replace k by n+1− k). Thus
it suffices to compute the minimum of maj on the set of permutations with
i−1 descents and on the set of those with n−i descents, respectively, in order
to determine the shift in the exponents of q when going from Aq(n, i− 1) to
Aq(n, n− i). The difference between these two minima is of course

i−1∑
k=1

i−
n−i∑
k=1

i =

(
i

2

)
−

(
n− i+ 1

2

)
= (i · (i− 1)− (n− i+ 1)(n− i))/2,

which is easily seen to equal ni−
(
n+1
2

)
.

Using Lemma 8, we can now rewrite Proposition 2 in the following form.

Proposition 9 (Equivalent to Proposition 2).

[k]! · Sq(n, k) =
∑
i

qk(k−i)+ni−(n+1

2 ) ·
[
n− i

k − i

]
·Aq(n, n− i).

It is well-known that the q-binomial coefficient
[
n
k

]
records the inversion

statistic on binary words of length n with exactly k 1’s. As an example,[
3
2

]
= 1 + q + q2, corresponding to the words 011, 101, 110, whose number
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of inversions is zero, one and two, respectively. We will be concerned with
inversions in binary words associated to subsets of the set of descents of
certain permutations.

The descent blocks of a permutation p are the maximal contiguous de-
creasing subsequences of p. For example, the permutation 521364 has descent
blocks 521− 3− 64.

Let p be a permutation in Sn with descent blocks B1, B2, . . . , Bi. Then p
has n− i descents. Pick k− i of these descents and mark them with 1’s and
mark the descents not picked with 0’s. Let w be the binary word obtained
by reading the 0’s and 1’s from left to right. We translate the permutation p,
together with the set of chosen descents (coded by w) into an ordered par-
tition π with k blocks by cutting p into its descent blocks and then further
cutting the descent blocks at the chosen descents.

As an example, let p = 51 − 742 − 6 − 83, where we use the dashes
to indicate the partition of p into descent blocks. If we pick the descents
indicated by vertical bars in 5|1 − 74|2 − 6 − 83 then w = 1010 and the
ordered partition obtained from (p, w) is π = 5− 1− 74− 2− 6− 83. Now
maj p = 1+3+4+7 = 15, invw = 3 and bmajmil(5−1−74−2−6−83) =
(1+4+3+4+10)+(1+3) = 26. Thus, bmajmilπ = maj p+ invw+8. As it
happens, the number 8 here equals k(k− i)+ni−

(
n+1
2

)
(cf. Proposition 9),

since we have n = 8, k = 6 (the number of blocks in π) and i = 4 (the
number of descent blocks in p).

We will now prove that this holds in general, thus showing that the dis-
tribution of bmajmil onOPk

n is given by the right hand side in Proposition 9.

Theorem 10. The distribution of bmajmil on OPk
n is

∑
i

qk(k−i)+ni−(n+1

2 ) ·
[
n− i

k − i

]
·Aq(n, n− i).

Thus, bmajmil is Euler-Mahonian on ordered partitions.

Proof. The proof is along the lines in the example preceding the theorem.
That is, to each pair (p, w), where p is a permutation in Sn with n − i
descents and w is a binary word of length n− i with k− i 1’s, we associate a
partition π by cutting p at each non-descent and at those descents in p that
correspond to 1’s in w. This is clearly a bijective correspondence since each
ordered partition in OPk

n gives rise to a unique permutation in Sn with n− i
descents, exactly k− i of which are marked (by virtue of occurring between
adjacent blocks of π).

We show that the difference bmajmilπ − (invw + maj p) equals the
exponent k(k − i) + ni−

(
n+1
2

)
in the sum, which establishes the theorem.
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We fix n and i, and proceed by induction on k. The base case is k = i,
since k ≥ i. The induction step consists of two parts, the first of which is
a lemma that shows we may restrict our attention to words w whose last
letter is a 0.

(i) If k = i, referring to the example preceding the theorem, we have
a permutation with no marked descents, so w is the all zero word,
whose inv is 0. Thus we need to show that given a permutation p with
k descent blocks, its maj differs from bmajmil of the corresponding
ordered partition π by the exponent k(k− i)+ni−

(
n+1
2

)
= 0+n(k−

1)−
(
n
2

)
= nk −

(
n+1
2

)
.

Let b1, b2, · · · , bk be the sizes of the descent blocks in p. Then

maj p =

(
n+ 1

2

)
− b1 − (b1 + b2)− · · · − (b1 + b2 + · · ·+ bk)

=

(
n+ 1

2

)
−

k∑
i=1

(k + 1− i)bi

and, since bmajπ = 0, we have

bmajmilπ = b2 + 2b3 + · · ·+ (k − 1)bk =

k∑
i=1

(i− 1)bi.

Thus

bmajmilπ −maj p = k
∑

bi −
(
n+ 1

2

)
= kn−

(
n+ 1

2

)
,

as desired.
(ii) We now show that given a permutation p and a binary word w indi-

cating which of the descents in p have been chosen, if we transpose a 0
in w with an adjacent 1 to its right then the change in bmajmil of the
corresponding partition is 1, which equals the change in invw. (The
transposition in w does not, of course, affect maj p.)
We first consider the case where the 0 and the 1 belong to the same
descent block. Then bmajmil of the corresponding partition also in-
creases by 1 because one letter gets moved from a block to the next
one, whereas the number and position of block-descents is unchanged.
If the 0 and 1 belong to different blocks then two letters get moved up
one block, but the block descent associated to the 1 is reduced by one.
Thus the total increase in bmajmil is 1.
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(iii) Now we observe what happens when we increase k by 1. This corre-
sponds to changing one of the 0’s in w to a 1. By repeated use of (ii)
we may assume that the last letter in w is a 0 and that we are changing
that 0 to a 1.
The exponent k(k − i) + ni −

(
n+1
2

)
now increases by 2k + 1 − i, but

inv decreases by k− i, since one inversion is lost for each of the 1’s we
had. Thus the total increase on the permutation side is k + 1.
On the partition side, suppose that the last j blocks in π are singletons
(and not the block preceding them). Then the 0 that is being changed
to a 1 lies between the last two letters in block k − j so the block
number of the last letter in block k− j is increased by 1 and the same
is true of each of the j letters in the trailing singleton blocks. This
contributes an increase of j+1 to bmajmil. Moreover, we introduce a
new block descent in position k−j. Thus the total increase in bmajmil
is also k + 1.

4. Other (conjectured) Euler-Mahonian statistics

We now introduce several new statistics on ordered partitions. All of these,
like the statistic bmajmil, are sums of one statistic defined on the elements
of the ordered partition and one statistic defined on the partial ordering of
the blocks described above.

All the conjectures in this section have been verified by computer for all
n ≤ 11. This is strong evidence, because what could “go wrong” we expect
to do so for much smaller n.

We start with a preliminary definition of a partition statistic that we
call mak. Namely, we let closi be the closer of the i-th block in π and set

makπ =
∑
i

(n− closi) + rsbπ.

This statistic is essentially the same as the Mahonian permutation statis-
tic bearing the same name, that was defined by Foata and Zeilberger [4].
Namely, let nclπ be the sum of the non-closers in π and observe that∑

i closi =
(
n+1
2

)
− nclπ. Then makπ can be rewritten in the following

way, assuming π has k blocks:

∑
i

(n− closi) + rsbπ = kn−
∑
i

closi + rsbπ(5)

= kn−
(
n+ 1

2

)
+ nclπ + rsbπ.
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Now, for n and k fixed, the terms kn−
(
n+1
2

)
only amount to a constant shift

of the statistic. What remains is nclπ+rsbπ which is equal to mak p, where p

is the permutation obtained from π by writing the elements of the first block

of π in decreasing order, then those of the second block in decreasing order

and so on, assuming that π was written in standard form. As an example,

the partition 421 − 63 − 85 − 7 yields the permutation 42163857. Thus,

mak is, conjecturally, an Euler-Mahonian statistic both on partitions and

permutations.

There is another way to rewrite mak that is also interesting. Namely,

let scli be the number of closers in π that are smaller than the i-th letter

in π. Then
∑

i (n− closi) =
∑

i scli. Moreover, since no letter is larger than

the closer of its own block, we have that scli = lcsi+rcsi. Thus, as we also

have rsb = ros− rcs, this entails that

mak =
∑
i

(n− closi) + rsb =
∑
i

scli + rsb

= lcs+ rcs+ rsb = lcs+ rcs+(ros− rcs) = lcs+ ros .

On ordered partitions the statistic mak
′ = lob+ rcb is clearly equidis-

tributed with mak, which can be seen by complementing the letters of a par-

tition. Moreover, by the same reasoning, the statistics n(k− 1)− (lcb+ rob)

and n(k − 1)− (los+ rcs) are equidistributed with each other.

For clarity we now write up the definitions of these four statistics.

Definition 11.

mak = lcs+ ros,

mak
′ = lob+ rcb,

�mak = n(k − 1)− (los+ rcs),

�mak′ = n(k − 1)− (lcb+ rob).

We conjecture that each of the above statistics can be paired with either

binv or bmaj to yield an Euler-Mahonian statistic on ordered partitions.

Conjecture 12. Each of the following eight statistics is Euler-Mahonian

on OPk
n.

mak+bmaj, mak
′+bmaj, �mak+bmaj, �mak′+bmaj,

mak+binv, mak
′+binv, �mak+binv, �mak′+binv .
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Since both binv and bmaj vanish on Pk
n the above eight statistics reduce

to the statistics in Definition 11 when restricted to Pk
n. It was pointed out

by an anonymous referee that they are all Euler-Mahonian on Pk
n, that mak

′

and �mak are both equal (as functions) to RCB (see Theorem 4), and that

mak and �mak′ are equal, and can be shown to be Euler-Mahonian using

a bijection in Section 3 of [20].

The statistics in Definition 11 were also shown to be Euler-Mahonian by

Gérald Ksavrelof and Jiang Zeng [12]. In fact, they proved more. Namely,

given any partition π = B1 − B2 − · · · − Bk of [n] into k blocks and d with

0 ≤ d ≤ k, define

makd π = makπ + k − d−#{a ∈ Bj | j > d, a > closd}.

Then they prove that makd is Euler-Mahonian on P k
n . Note that makk =

mak.

The last new statistic we introduce is not based on any Mahonian per-

mutation statistic, but rather on the coordinate statistic lsb introduced in

Definition 3. We could of course make an analogous definition for rsb, which

would require a “right” analog of cbmaj and cbinv.

Conjecture 13. The statistics

cmajLSB = lsb+ cbmaj+

(
k

2

)
,

cinvLSB = lsb+ cbinv+

(
k

2

)

are Euler-Mahonian on OPk
n.

Note that when we restrict to Pk
n, both cmajLSB and cinvLSB reduce

to lsb+
(
k
2

)
. On Pk

n the statistic lsb is equal to lcb, because each block to

the left of the block containing a given letter i has an opener that is smaller

than i. Thus, by Corollary 5, lsb+
(
k
2

)
is Euler-Mahonian on Pk

n.

Finally we point out an equivalent way of formulating the conjecture

that mak+bmaj and mak+binv are Euler-Mahonian. This formulation

gives a simpler form for the sum in Proposition 9 because the shift in mak

mentioned above can be factored out from that sum in a way that allows

us to eliminate the power of q involved. We use the following lemma, where[
a
b

]
q−1 is the polynomial in q−1 obtained by replacing q with q−1 in

[
a
b

]
:
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Lemma 14. [
n− i

k − i

]
q−1

= q(k−n)(k−i)

[
n− i

k − i

]
.

Proof. It is well known that
[
a
b

]
is symmetric as a polynomial in q. Therefore,

since the effect of replacing q by q−1 in the polynomial
[
a
b

]
is to reverse the

coefficients and shift the exponents of q in
[
a
b

]
, to prove the lemma we only

need to compute the degree of
[
n−i
k−i

]
as a polynomial in q. This degree is

(n− k)(k − i).

Let now Mq(n, k) be the distribution of ncl+ rsb+bmaj on OPk
n. Then,

by identity (5), Mq(n, k) equals the distribution on OPk
n of mak+bmaj, di-

vided by qkn−(
n+1

2 ). Thus, the conjecture thatmak+bmaj is Euler-Mahonian

on OPk
n is equivalent to

Mq(n, k) = q(
n+1

2 )−kn
∑
i

qk(k−i)+ni−(n+1

2 ) ·
[
n− i

k − i

]
·Aq(n, n− i).

Rewriting the power of q in the right hand side and then applying Lemma 14

we obtain the following, which is equivalent to the first part of Conjecture 12.

Conjecture 15.

Mq(n, k) =
∑
i

[
n− i

k − i

]
q−1

·Aq(n, n− i).

Observe that we could also take Mq(n, k) to be the distribution of

ncl+ rsb+binv. What is perhaps most interesting about Conjecture 15 is

the fact that Aq(n, n− i) is also the distribution of the permutation statistic

mak on the set of permutations in Sn with exactly n− i descents. (In other

words, the bistatistics (des,mak) and (des,maj) have the same distribution

on Sn.) One might thus hope to find a simple proof of Conjecture 15, since

we are computing essentially the same statistic on both sides, but we have

been unable to find such a proof.
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