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Remarks on the recurrence and transience of
non-backtracking random walks

Paul Jung and Greg Markowsky

A short proof of the equivalence of the recurrence of a non-back-
tracking random walk and that of a simple random walk on regular
infinite graphs is given. It is then shown how this proof can be
extended in certain cases where the graph in question is not regular.
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A non-backtracking random walk (abbr. NBRW) is a random process defined
on the vertices of a graph G by the transition probabilities
(1)

P (X1 = y|X0 = x) =

{ 1
deg(x) if y ∼ x

0 if y �∼ x ,

P (Xn+1 = y|Xn = x2, Xn−1 = x1) =

{ 1
deg(x2)−1 if y ∼ x2 and y �= x1

0 if y �∼ x2 or y = x1 .

Recently NBRWs have received much attention in the scientific litera-
ture due to their connection to spectral methods for community detection,
[KMM+13, BLM18, Abb17] and also because they mix faster than the cor-
responding simple random walks on various graphs G [ABLS07, LXE12,
Kem16]. They have also played a role in the spectral analysis of random
matrices [Sod07].

Consideration of the NBRW on Z
d dates back to [MS96, Section 5.3]

and the process was also analyzed in [FvdH13] where the Green’s function
and functional central limit theorem were studied. In [Kem18], the question
of recurrence of a non-backtracking random walk on the integer lattice was
settled: the walk is transient on Z (trivially) and on Z

d with d ≥ 3, and
recurrent on Z

2. Following this, in [Her, Prop 1.1], the following extension
was proved.

Theorem 1. If G is a regular infinite graph of degree k ≥ 3, then a non-
backtracking random walk is recurrent on G if, and only if, a simple random
walk is recurrent on G.
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The result in [Kem18] was proved by a rather intricate counting argu-
ment, and in [Her] the universal cover of G is used to prove Theorem 1 in
amongst a larger work on reversibility. Each of these works contain a num-
ber of results of independent interest, however if we are only interested in
Theorem 1 there is a very short and simple probabilistic coupling-type proof
available, as we now present.

Proof. We begin with an algorithm which modifies deterministic sequences
of the vertices of G. Let us suppose (x0, x1, x2, . . .) is such a sequence with
xi initially being in position i (but the positions may later change). Our
algorithm will use a cursor #, starting in position 0, and move along the
sequence and essentially remove the backtracking contained in the sequence.
The algorithm is as follows:

1. If # is at position 0, move it to the right.
2. If # is at position n > 0, compare the numbers in positions n− 1 and

n+ 1, and
2a. if they are not equal, then move # to the right,
2b. if they are equal, then erase the numbers in positions n and n+1 and

shift the remaining part of the sequence two positions to the left to
close the gap (for example, the very first time this step occurs, that
portion of the sequence will then read (. . . , xn−1, xn+2, . . .)). Next,
move # to the left.

3. Repeat.

The reason for moving # left in step (2b) is to check whether the erasure
has introduced a new backtracking. Note that, if our initial sequence is such
that # eventually leaves any given finite subset of positions forever, then the
output of this algorithm will be a sequence which contains no backtracking.

Let us apply this algorithm to a simple random walk (abbr. SRW) on
the vertices of G. If (Xn)n denotes a SRW, then we may apply our algorithm
to the random sequence (X0, X1, X2, . . .). It is straightforward to verify that
the regularity of G implies that the output from the algorithm is a NBRW,
provided only that # eventually leaves any finite subset of positions forever.
Examining the (now random) movements of #, notice that they have inde-
pendent increments and that at any position n > 0, there is probability 1

k of

moving to the left and probability k−1
k of moving to the right. These move-

ments constitute a birth-death chain, which is well known to be transient in
this case since k−1

k > 1
2 (see for instance [Nor98]).

It is now immediate that a graph G transient for a SRW is also transient
for a NBRW, since our algorithm can in no way turn finitely many visits to
any vertex in a SRW into infinitely many for a NBRW.
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To see that a G recurrent for a SRW is also recurrent for a NBRW
is slightly more subtle. Fix a vertex v and let (ni)i∈N be the sequence of
(random) times that (Xn)n visits v. Also, if the cursor # ever visits Xni

,
let pi be the position that Xni

is in when # visits it for the first time. If #
never visitsXni

(due to an erasure resulting from step (2b) of the algorithm),
simpy set pi = ∞.

Note that the event of a given visit to v of the SRW, Xni
= v, not being

erased by our algorithm contains the event

Ei := {pi < ∞ and the cursor # visits pi exactly once.}.

Note that P (Ei) > 0 since the birth-death chain # is transient, and that
this probability does not depend on i. Note also that the events {Ei}i are
independent, thus infinitely many visits to any vertex in G for a SRW must
remain infinitely many in a NBRW.

Remarks.

• It is satisfying to note the reason that the proof fails for k = 2: the
resulting birth-death chain produced by the algorithm is a SRW on the
integers, which is well known to be recurrent; therefore our algorithm
fails and a NBRW cannot be produced in this fashion.

• The condition that G is regular is necessary for the proof (although it
can be weakened somewhat; see below). To see this, note that if G is
not regular then the following situation may arise. Let us suppose v is
a vertex of degree 3 adjacent to x, y, and z. If a NBRW reaches v via
x then it should have equal probabilities of passing next to y and z.
However if the degree of y is higher than that of z then a passage of
a SRW from v to z is more likely to be erased by what follows than
one from v to y. When we apply our algorithm to a SRW, then, our
output is a random process without backtracking, but it is not equal
in distribution to a NBRW.

Incidentally, we may adjust the method of proof used in Theorem 1 in
order to handle the following situation.

Proposition 1. Suppose G is an infinite graph such that every vertex has
either degree k1 or k2, with k1 > k2 ≥ 2. Suppose further that every vertex
of degree k1 is adjacent only to vertices of degree k2, and every vertex of
degree k2 is adjacent only to vertices of degree k1. Then a non-backtracking
random walk is recurrent on G if, and only if, a simple random walk is
recurrent on G.
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Remark. A graph as described in the proposition is commonly referred to
as a (k1, k2)-biregular graph or semiregular bipartite graph.

The only adjustment to our previous proof is to note that the birth-death
chain produced by our algorithm has two different probabilities; for instance,
if we start at a vertex of degree k1 then the resulting birth-death chain moves
to the right with probability k1−1

k1
at even positions in the sequence, and k2−1

k2

at odd positions. Nevertheless, this birth-death chain is still easily seen to
be transient by the methods in [Nor98]; alternatively we can appeal to the
theory of electric networks and their connections to random walk. In [DS84,
Ch. 5] it is shown that the birth-death chain is transient precisely when the
resistance to ∞ of an associated electric network is finite. If we let rj denote
the resistance between integers j− 1 and j, then it may be checked that the
resistances rj in this case satisfy

(2) rj+1 =

{ rj
k1−1 if j is odd
rj

k2−1 if j is even ,

Since our associated electric network has resistors all in one series, the resis-
tance to ∞ in this case is simply

∑∞
j=1 rj , and it is straightforward to verify

that the relationships (2) imply that this sum is finite, thus the birth-death
chain is transient. The rest of the proof persists unchanged.

As a bit of an aside, we may also give a partial answer to an intriguing
question posed in [Her]. Question 1.11 in that work is as follows:

Let G be a connected graph of bounded degree such that the length of any
path of vertices of degree 2 is bounded by a finite constant L > 0. Is it the
case that a SRW on G is transient iff the NBRW on G is transient?

We will show that the answer is in the affirmative provided that the
vertices of the graph have only one possible degree other than 2. In other
words, we have the following proposition.

Proposition 2. Let G be a connected graph where there is a constant k > 2
such that every vertex has either degree 2 or k. Suppose further that the
length of any path of vertices of degree 2 is bounded by a finite constant
L > 0. Then a non-backtracking random walk is recurrent on G if, and only
if, a simple random walk is recurrent on G.

Proof. We again make use of the theory of electric networks. Let V denote
the set of all vertices of G of degree k, and let G′ be a multigraph with
vertices V and with edges drawn as follows. For any two vertices of G′, we
draw an edge between them if these two vertices are adjacent in G. Next,
for any two vertices of G′ we draw additional edges if there is a path of
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vertices of degree 2 connecting them in G; note that these additional edges
may cause G′ to be a multigraph rather than a graph because the additional
edges may induce multiple edges between points or possibly even be loops.
Assign to each edge in G′ a resistance of one if the edge exists in G or a
resistance equal to the length of the corresponding path of vertices of degree
2 in G otherwise (if the reader is uncomfortable with the possible loops
or multiple edges, they may at this point erase all loops and collapse any
set of multiple edges between two points into a single edge with resistance
calculated in parallel in order to obtain a genuine graph). Suppose we start
a SRW (Xn)n on G at a point in V (recurrence and transience for a SRW
on a connected multigraph of bounded degree are not affected by the initial
point, since there is always a positive probability of passing between any
two given vertices). Define a sequence of stopping times by τ0 = 0 and

τn = min{j > τn−1 : Xj ∈ V } for n ≥ 1.

It then may be checked that the process (Xτ0 , Xτ1 , Xτ2 , . . .) on V is equal in
distribution to a weighted random walk (abbr. WRW) on G′, as defined in
[DS84]. We will prove the following set of equivalences.

SRW on G is recurrent
(1)⇐⇒ WRW on G′ is recurrent

(2)⇐⇒ SRW on G′ is recurrent
(3)⇐⇒ NBRW on G′ is recurrent

(4)⇐⇒ NBRW on G is recurrent

(1) follows since Xτn is recurrent precisely when Xn is.
(2) is immediate from Theorem 2.4.3 of [DS84], which states that recur-

rence is equivalent for a WRW and a SRW (which can be realized as
having all resistances set to 1) provided that we have a finite upper
and lower bound on the resistances, as we do in this case due to the
existence of the constant L.

(3) is immediate from Theorem 1.
(4) follows by noting that if we let Xn be a NBRW on G and define the

stopping times τn as above, then the process Xτ0 , Xτ1 , Xτ2 , . . . on V is
equal in distribution to a NBRW on G′, as the process Xn may not
reverse directions on the paths of vertices of degree 2.

These equivalences complete the proof of the proposition.

This method of proof can be further extended to the following situation,
with Proposition 1 taking the place of Theorem 1 where required. Details
are omitted.
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Proposition 3. Let G be a connected graph where there are constants 2 <
k1 < k2 such that every vertex has degree 2, k1, or k2. Suppose further that
the length of any path of vertices of degree 2 is bounded by a finite constant
L > 0. Suppose also that the graph G′ formed as in the proof of Proposition
2 is of the form required in Proposition 1. Then a non-backtracking random
walk is recurrent on G if, and only if, a simple random walk is recurrent
on G.

Acknowledgments

P. Jung was supported in part by the (South Korean) National Research
Foundation grant N01170220. This work was done while G. Markowsky was
visiting KAIST, and he would like to thank the mathematics department
there for their kind hospitality. We would also like to thank an anonymous
referee for a careful reading and helpful comments.

References

[Abb17] E. Abbe. Community detection and stochastic block models: re-
cent developments. The Journal of Machine Learning Research,
18(1):6446–6531, 2017. MR3827065

[ABLS07] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-
backtracking random walks mix faster. Communications in
Contemporary Mathematics, 9(04):585–603, 2007. MR2348845

[BLM18] C. Bordenave, M. Lelarge, and L. Massoulié. Nonbacktracking
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