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Descents in t-sorted permutations∗

Colin Defant
†

Let s denote West’s stack-sorting map. A permutation is called t-
sorted if it is of the form st(μ) for some permutation μ. We prove
that the maximum number of descents that a t-sorted permutation
of length n can have is

⌊
n−t
2

⌋
. When n and t have the same par-

ity and t ≥ 2, we give a simple characterization of those t-sorted
permutations in Sn that attain this maximum. In particular, the
number of such permutations is (n− t− 1)!!.

Keywords and phrases: Permutation, descent, stack-sorting, valid
hook configuration.

1. Introduction

In this paper, a “permutation” is a permutation of a finite set of positive
integers, written in one-line notation. Let Sn denote the set of all permuta-
tions of the set [n]. In his Ph.D. dissertation, West [36] introduced a function
s, called the stack-sorting map, that sends permutations through a vertical
“stack” as follows. Suppose we are given an input permutation π = π1 · · ·πn.
At any point in time during the procedure, if the next entry in the input
permutation is smaller than the entry at the top of the stack or if the stack
is empty, the next entry in the input permutation is placed at the top of the
stack. Otherwise, the entry at the top of the stack is appended to the end of
the growing output permutation. This process terminates when the output
permutation has length n, and s(π) is defined to be this output permutation.
The following illustration shows that s(4162) = 1426.

West’s stack-sorting map was actually defined as a deterministic vari-
ant of a “stack-sorting algorithm” that Knuth introduced in [32]. In fact,

arXiv: 1904.02613
∗The author was supported by a Fannie and John Hertz Foundation Fellowship

and an NSF Graduate Research Fellowship.
†ORCID: 0000-0002-4910-5765.

511

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1904.02613


512 Colin Defant

Knuth’s analysis of his stack-sorting algorithm initiated the investigation

of permutation patterns, which is now a major area of research [2, 31]. It

was also the first appearance of the so-called “kernel method,” which is now

an indispensable tool in enumerative and analytic combinatorics [1, 7]. The

stack-sorting map has received a huge amount of attention since its intro-

duction in West’s dissertation [2–6, 8–29, 35–37]. We will mention just a

few results in this line of work, referring the reader to [2, 5, 15–25] for more

details.

Bousquet-Mélou defined a permutation to be sorted if it is in the image

of s, and she described a method that allows one to determine whether or not

a given permutation is sorted. She also found a bivariate generating func-

tion equation that implicitly enumerates sorted permutations, but she was

unable to remove the additional “catalytic variable.” In short, this means

that counting sorted permutations explicitly (or even obtaining asymptotic

information) is hard.

In recent years, the current author [15–19, 21–25] has introduced ob-

jects called “valid hook configurations” in order to reprove and generalize

old results and to prove new results concerning the map s. These objects

allow one to compute the fertility of a permutation, which is the number of

preimages of the permutation under s. In particular, they give a method,

which we describe in Section 2, for determining if a permutation is sorted.

This method and Bousquet-Mélou’s have some similarities, but we believe

the former is better suited for our purposes.

A descent of a permutation π = π1 · · ·πn is an index i ∈ [n − 1] such

that πi > πi+1. Let des(π) denote the number of descents of π. It is known

(see either [24] or Exercise 18 in Chapter 8 of [2]) that every sorted permu-

tation of length n has at most n−1
2 descents. The authors of [24] studied the

permutations that attain this maximum, which turn out to have several in-

teresting properties. The exploration of these permutations began with the

following characterization. Let us say a permutation is uniquely sorted if it

has exactly one preimage under s.

Theorem 1.1 ([24]). A permutation of length n is uniquely sorted if and

only if it is sorted and has exactly n−1
2 descents.

The previous theorem implies that every uniquely sorted permutation

has odd length. The authors of [24] defined a bijection between uniquely

sorted permutations and certain weighted matchings that Josuat-Vergès [30]

studied in the context of free probability theory. From this, they deduced

that the number of uniquely sorted permutations in S2k+1 is Ak+1, where
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(Am)m≥1 is sequence A180874 in the OEIS and is known as Lassalle’s se-
quence [34]. This exciting new sequence first appeared in [33], where Las-
salle proved a conjecture of Zeilberger by showing that it is increasing. In
fact, the bijection established in [24] produced three new combinatorial in-
terpretations of Lassalle’s sequence; the only combinatorial interpretation
known beforehand involved the weighted matchings that Josuat-Vergès ex-
amined. The authors of [24] also showed that the sequences (Ak+1(�))

2k+1
�=1

are symmetric, where Ak+1(�) is the number of uniquely sorted permuta-
tions in S2k+1 that start with the number �. One can define the hotspot of
a uniquely sorted permutation π1 · · ·πn to be πr+1, where r is the largest
element of [n−1] such that π has n−r

2 descents in {r, . . . , n−1}. This some-
what strange definition is justified by the surprising fact that Ak+1(�) is the
number of uniquely sorted permutations in S2k+1 with hotspot �− 1. More
recently, the current author [17] has found several bijections between sets
of uniquely sorted permutations avoiding various patterns and intervals in
posets of Dyck paths.

It is typical to think of the stack-sorting map s as producing a dynamical
system on Sn. Thus, we let s

t denote the composition of s with itself t times.
It is straightforward to check that sn−1(π) = 123 · · ·n for every π ∈ Sn.
Consequently, we can endow Sn with the structure of a rooted tree (the
“stack-sorting tree on Sn”) by letting 123 · · ·n be the root and declaring
that a nonidentity permutation σ is a child of π if s(σ) = π (see Figure 1).
One of the most well-studied notions concerning the stack-sorting map is
that of a t-stack-sortable permutation [2–6, 8, 9, 11, 12, 14, 16, 22, 26–
29, 36, 37], which is a permutation π such that st(π) is increasing. When we
restrict attention to Sn, we see that these are the permutations of depth at
most t in the stack-sorting tree on Sn. The definition of a sorted permutation
is in some sense dual to that of a 1-stack-sortable permutation. Indeed, a
permutation in Sn is sorted if and only if it has height at least 1 in the
stack-sorting tree on Sn. In this article, we consider permutations of height
at least t in this stack-sorting tree. This naturally generalizes the definition
of a sorted permutation, providing a dual to the notion of a t-stack-sortable
permutation.

Definition 1.1. A permutation is called t-sorted if it is of the form st(μ)
for some permutation μ.

Our main results are as follows. We phrase these results for permutations
in Sn, but the analogous statements for permutations of arbitrary finite sets
of positive integers hold as well. Recall that a left-to-right maximum of a
permutation is an entry that is larger than everything to its left.
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Figure 1: The stack-sorting tree on S4. The only 2-sorted permutations in
S4 are 1234 and 2134, which are circled.

Theorem 1.2. If n ≥ t ≥ 1, then the maximum number of descents that a
t-sorted permutation in Sn can have is

⌊
n−t
2

⌋
.

Theorem 1.3. Suppose that n ≥ t ≥ 2 and that n ≡ t (mod 2). A permu-
tation π = π1 · · ·πn ∈ Sn is t-sorted and has n−t

2 descents if and only if its
left-to-right maxima are

π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn.

In particular, the number of such permutations is (n− t− 1)!!.

The quantity max{des(st(μ)) : μ ∈ Sn} drops by roughly a factor of
2 when t changes from 0 to 1. One might expect this quantity to drop by
another constant factor when t changes from 1 to 2 or from 2 to 3. However,
Theorem 1.2 tells us that this is not actually the case; when t ≥ 1 and we
increment t by 1, this maximum decreases by at most 1.

A general rule of thumb for dynamical systems is that things get much
more complicated as one considers higher and higher iterates. This is cer-
tainly true in the context of t-stack-sortable permutations. It follows from
Knuth’s analysis [32] that a permutation is 1-stack-sortable if and only if it
avoids the pattern 231, so the number of such permutations in Sn is simply
the nth Catalan number Cn = 1

n+1

(
2n
n

)
. West [36] gave a more complicated

characterization of 2-stack-sortable permutations and conjectured that the
number of such permutations in Sn is 2

(n+1)(2n+1)

(
3n
n

)
. This was proven by

Zeilberger [37], and other proofs emerged later [14, 16, 26, 27, 29]. There is
a much more complicated characterization of 3-stack-sortable permutations
due to Úlfarsson involving so-called “decorated patterns,” and only very
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recently has a (very complicated) recurrence for these numbers emerged
[16]. Morally speaking, the article [16] tells us that 3-stack-sortable permu-
tations fail to conform to some of the nice patterns that 1-stack-sortable
permutations and 2-stack-sortable permutations obey. We do not even have
a characterization of 4-stack-sortable permutations.

In light of this rule of thumb for dynamical systems, the utter simplicity
of the characterization in Theorem 1.3 is shocking. This theorem tells us that
the set of extremal permutations attaining the maximum number of descents
actually becomes much simpler when we consider t-sorted permutations for
t ≥ 2 instead of sorted permutations. Indeed, recall from Theorem 1.1 that
the sorted permutations in Sn with exactly n−1

2 descents are precisely the
uniquely sorted permutations in Sn. These permutations are counted by
Lassalle’s sequence, which is quite complicated (and intriguing!). This se-
quence did not even appear in the literature until 2012. By contrast, when
t ≥ 2, the extremal permutations are counted by double factorials, which
were understood well before 2012. It is also interesting that when t ≥ 2, the
number of such permutations only depends on the difference n− t, which is
also twice the number of descents in these permutations.

For emphasis, let us reiterate that the analogue of the characterization
in Theorem 1.3 for t = 1 is false. One direction is true. If n is odd and
π = π1 · · ·πn ∈ Sn has π1, π3, π5, . . . , πn as its left-to-right maxima, then π
is sorted and has n−1

2 descents (equivalently, it is uniquely sorted). However,
when n ≥ 5 is odd, there are uniquely sorted permutations of length n whose
left-to-right maxima are not the entries in odd-indexed positions. For exam-
ple, the uniquely sorted permutations in S5 are 21435, 31425, 32145, 32415,
42135.

2. Valid hook configurations

We now define valid hook configurations and state how to use them to
determine if a permutation is sorted. We only need valid hook configurations
in order to prove Corollary 2.1 below, so the reader wishing to skip this
discussion can simply accept Corollary 2.1 on the basis of faith and proceed
to Section 3.

The plot of a permutation π = π1 · · ·πn is the graph displaying the
points (i, πi) for all i ∈ [n]. The left image in Figure 2 shows the plot of
3142567. A hook of π is drawn by starting at a point (i, πi) in the plot of
π, moving vertically upward, and then moving to the right until reaching
another point (j, πj). In order for this to make sense, we must have i < j
and πi < πj . The point (i, πi) is called the southwest endpoint of the hook,
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Figure 2: The left image is the plot of 3142567. The right image shows this
plot along with a single hook.

Figure 3: Four arrangements of hooks that are forbidden in a valid hook
configuration.

while (j, πj) is called the northeast endpoint. The right image in Figure 2

shows the plot of 3142567 along with a hook that has southwest endpoint

(3, 4) and northeast endpoint (6, 6).

Definition 2.1. Let π = π1 · · ·πn be a permutation whose descents are

d1 < · · · < dk. Let H = (H1, . . . , Hk) be a tuple of hooks of π. Let (iu, πiu)

and (ju, πju) be the southwest endpoint and the northeast endpoint of Hu,

respectively. We say H is a valid hook configuration of π if the following

conditions are satisfied:

1. We have iu = du for every u ∈ {1, . . . , k}.
2. No point in the plot of π lies directly above a hook in H.

3. The hooks in H do not intersect each other except in the case that the

northeast endpoint of one hook is the southwest endpoint of another.

Figure 3 shows arrangements of hooks that are forbidden from appearing

in a valid hook configuration by Conditions 2 and 3 in Definition 2.1. Figure 4

shows all of the valid hook configurations of 3142567. Observe that the total

number of hooks in a valid hook configuration of π is exactly k, the number

of descents of π.
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Figure 4: The valid hook configurations of 3142567.

The following theorem tells us how to use valid hook configurations
to determine whether or not a given permutation is sorted. It is a special
consequence of Theorem 5.1 in [21].1

Theorem 2.1 ([21]). A permutation is sorted if and only if it has a valid
hook configuration.

We can now combine Theorems 1.1 and 2.1 to prove the following corol-
lary. This proof is the only place where we explicitly use valid hook config-
urations. However, we will continue to rely heavily on Theorem 1.1, whose
proof also uses valid hook configurations.

Corollary 2.1. Let π = π1 · · ·πn be a permutation. If there is an index
� ∈ [n− 2] such that π�+1 < π�+2 < π�, then π is not uniquely sorted.

Proof. Suppose instead that such an index � exists and that π is uniquely
sorted. Let k = des(π). According to Theorem 1.1, n = 2k + 1. Because π
is sorted, Theorem 2.1 tells us that it has a valid hook configuration H. It
follows from Condition 3 in Definition 2.1 that the northeast endpoints of
the hooks in H are distinct. There are k hooks in H, so there are k northeast
endpoints of hooks in H. Let us say a point (i, πi) in the plot of π is a descent
bottom of the plot of π if i − 1 is a descent of π. Note that the plot of π
has exactly k descent bottoms. It follows from Condition 2 in Definition 2.1

1The article [21] from 2017 is slightly outdated. We refer the reader to [23]
(specifically, Theorem 2.1 in that article) for a more modern treatment of valid
hook configurations.
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that a descent bottom cannot be the northeast endpoint of a hook in H.
Since n = 2k + 1, this implies that the set of descent bottoms of the plot
of π and the set of northeast endpoints of hooks in H form a partition of
{(i, πi) : 2 ≤ i ≤ n} into two sets of size k.

Now consider the point (�+2, π�+2). This point is not a descent bottom
of the plot of π, so it follows from the previous paragraph that it is the
northeast endpoint of a hook H in H. According to Condition 2 in Definition
2.1, H cannot pass below the point (�, π�). This means that the southwest
endpoint of H must be (�+ 1, π�+1). However, this contradicts Condition 1
in Definition 2.1 because �+ 1 is not a descent of π.

3. Proofs of main results

The purpose of this section is to prove Theorems 1.2 and 1.3. Theorem 1.2
is already known when t = 1, and Theorem 1.3 is only stated for t ≥ 2.
Therefore, we may assume n ≥ t ≥ 2.

Proof of Theorem 1.2. Let us begin by proving that every t-sorted permuta-
tion in Sn has at most n−t

2 descents. Observe that a t-sorted permutation in
Sn must end in the entries n−t+1, n−t+2, . . . , n, in that order. This is a con-
sequence of the definition of the stack-sorting map, and it is the reason why
sn−1(π) = 123 · · ·n for every π ∈ Sn. Now suppose π ∈ Sn is t-sorted. We can
write π = π′(n−t+2)(n−t+3) · · ·n for some permutation π′ ∈ Sn−t+1 that
ends in the entry n− t+1. There is a (t−1)-sorted permutation σ such that
s(σ) = π. Because σ is (t−1)-sorted, we have σ = σ′(n−t+2)(n−t+3) · · ·n
for some σ′ ∈ Sn−t+1. By applying the stack-sorting procedure to σ, we find
that π = s(σ′(n− t+ 2)(n− t+ 3) · · ·n) = s(σ′)(n− t+ 2)(n− t+ 3) · · ·n.
Thus, π′ = s(σ′). This means that π′ is a sorted permutation in Sn−t+1, so
it has at most n−t

2 descents. Hence, π also has at most n−t
2 descents.

For our next point of business, we assume n ≡ t (mod 2) and con-
sider a permutation π = π1 · · ·πn ∈ Sn whose left-to-right maxima are
π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn. This permutation has exactly
n−t
2 descents, which are precisely the elements of {1, 3, 5, . . . , n − t − 1}.

We wish to show that π is t-sorted. Let π(0) = π. Let π(1) be the permu-
tation obtained from π(0) by sliding each of the entries π2, π4, π6, . . . , πn−t

to the right by 1 position. For example, if t = 3, n = 11, and π = π(0) =
51 6 2 7 3 8 4 9 10 11, then π(1) = 56 1 7 2 8 3 9 4 10 11. Now let π(2) be the per-
mutation obtained from π(1) by sliding each of the entries π2, π4, π6, . . . , πn−t

(the same entries as before) to the right by 1 position. In the above ex-
ample, π(2) = 56 7 1 8 2 9 3 10 4 11. Continue in this fashion to construct



Descents in t-sorted permutations 519

the permutations π(1), π(2), . . . , π(t). In the above example, π(t) = π(3) =
56 7 8 1 9 2 10 3 11 4. It is straightforward to check that s(π(i)) = π(i−1) for
every i ∈ {1, . . . , t}. This shows that π = st(π(t)), so π is t-sorted.

The previous two paragraphs prove Theorem 1.2 when n and t have the
same parity. In order to complete the proof, we need to show that there is
a t-sorted permutation in Sn with n−t−1

2 descents when n �≡ t (mod 2). In
this case, we know already that there is a t-sorted permutation λ ∈ Sn−1

with n−t−1
2 descents. Let μ ∈ Sn−1 be such that st(μ) = λ. Let 1 ⊕ λ ∈ Sn

be the permutation obtained by incrementing each entry in λ by 1 and then
prepending a 1 to the resulting permutation. For example, if λ = 324156,
then 1 ⊕ λ = 1435267. Define 1 ⊕ μ ∈ Sn similarly. It is straightforward to
check that st(1⊕ μ) = 1⊕ λ, so 1⊕ λ is a t-sorted permutation in Sn with
n−t−1

2 descents.

Having completed the proof of Theorem 1.2, we proceed to prove The-
orem 1.3. Let us first prove the characterization stated in this theorem in
the case in which t = 2. We are given that n ≥ 2 is even. We saw above
that every permutation π = π1 · · ·πn ∈ Sn whose left-to-right maxima are
π1, π3, π5, . . . , πn−1, πn is 2-sorted and has n−2

2 descents. We need to prove
the converse, which is the statement of the following proposition.

Proposition 3.1. Let n ≥ 2 be even. Let π = π1 · · ·πn ∈ Sn be a 2-
sorted permutation with n−2

2 descents. The left-to-right maxima of π are
π1, π3, π5, . . . , πn−1, πn.

Proof. Because π is 2-sorted, there are permutations σ = σ1 · · ·σn and μ =
μ1 · · ·μn in Sn such that s(μ) = σ and s(σ) = π. Since π and σ are sorted,
we have πn = σn = n. Thus, we can write π = π′n and σ = σ′n, where
π′ = π1 · · ·πn−1 and σ′ = σ1 · · ·σn−1. We have π = s(σ) = s(σ′n) = s(σ′)n,
so s(σ′) = π′. This shows that π′ is a sorted permutation in Sn−1 with n−2

2
descents, so it is uniquely sorted by Theorem 1.1. We now prove a sequence
of claims regarding the permutation σ. Recall that a point (u, λu) in the plot
of a permutation λ = λ1 · · ·λn is called a descent bottom of the plot of λ if
u−1 is a descent of λ. In this case, we also say that the entry λu is a descent
bottom of λ. For example, the descent bottoms of 5346127 are 1 and 3. We
say an index i ∈ {2, . . . , n− 1} is a double descent of λ if λi−1 > λi > λi+1.

Claim 1. The permutation σ has no double descents.

From the definition of the stack-sorting map, it is straightforward to
verify that every descent bottom of the permutation π = s(σ) is also a
descent bottom of σ. This implies that des(σ) ≥ des(π) = n−2

2 . Now, σ
is a sorted permutation in Sn, so des(σ) ≤

⌊
n−1
2

⌋
= n−2

2 . It follows that
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des(σ) = des(π) = n−2
2 . Since every descent bottom of π is a descent bottom

of σ, we now know that every descent bottom of σ is a descent bottom of
π. Suppose i is a double descent of σ. When we apply the stack-sorting
procedure to σ, there will be a point in time when the entry σi+1 sits on top
of σi in the stack. Whichever entry leaves the stack immediately before σi
leaves the stack must be smaller than σi since it must have sat on top of σi
in the stack. This prohibits σi from being a descent bottom of π, which is a
contradiction since it is a descent bottom of σ. This proves Claim 1.

Claim 2. We have σ1 < σ2.

Suppose instead that σ1 > σ2. Since σ has no double descents by Claim 1,
we must have σ2 < σ3. Let σ′′ = σ2σ1σ3σ4 · · ·σn−1 ∈ Sn−1 be the permu-
tation obtained from σ′ by switching the positions of its first two entries.
Consider sending σ′ and σ′′ through different stacks simultaneously. When
stack-sorting σ′, the first step is to push σ1 into the stack. Next, we push
σ2 into the stack. The third step is to pop σ2 out of the stack (because
σ2 < σ3). When stack-sorting σ′′, the first step is to push σ2 into the stack.
Next, we pop σ2 out of the stack (because σ2 < σ1). The third step is to push
σ1 into the stack. Thus, after taking three steps each, the two stack-sorting
procedures are in identical configurations. Indeed, in both procedures, σ2
is the only entry that has left the stack, σ1 is the only entry in the stack,
and σ3σ4 · · ·σn−1 is the remainder of the input permutation consisting of
those entries that have not yet entered the stack. From this, it follows that
s(σ′) = s(σ′′). However, this is a contradiction because s(σ′) is π′, which we
previously showed is uniquely sorted. This proves Claim 2.

Claim 3. There is a permutation λ = λ1 · · ·λn ∈ Sn such that s(λ) = σ
and λ1 = σ1.

The permutation μ ∈ Sn satisfies s(μ) = σ, so we are done if σ1 = μ1.
Thus, we may assume σ1 = μj for some j ∈ {2, . . . , n}. When we send
μ through the stack-sorting procedure, μj is the first entry to leave the
stack (because it is σ1). This forces μ1 > · · · > μj and μj+1 > μj . Let
λ = λ1 · · ·λn = μjμ1μ2 · · ·μj−1μj+1μj+2 · · ·μn be the permutation obtained
from μ by moving the entry μj to the beginning of the permutation and
keeping all other entries in the same relative order. Consider sending μ and
λ through different stacks simultaneously. When stack-sorting μ, the first
step is to push μ1 into the stack. The second step is to push μ2 into the
stack. We continue until pushing μj into the stack in the jth step. The
(j+1)st step is to pop μj out of the stack (because μj < μj+1). When stack-
sorting λ, the first step is to push μj into the stack. The second step is to
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pop μj out of the stack (because μj < μ1). The third step is to push μ1 into
the stack. We then continue until pushing μj−1 into the stack in the (j+1)st

step. Thus, after taking j + 1 steps each, the two sorting procedures are
in identical configurations. Indeed, in both procedures, μj is the only entry
that has left the stack, μ1, μ2, . . . , μj−1 are the entries in the stack (listed
here from bottom to top), and μj+1μj+2 · · ·μn is the remainder of the input
permutation consisting of those entries that have not yet entered the stack.
This shows that s(λ) = s(μ) = σ, so this choice of λ has the properties
needed to prove Claim 3.

Claim 4. The permutation ζ = σ2σ3 · · ·σn is uniquely sorted.

Let λ be the permutation that is guaranteed to exist by Claim 3. When
we send λ through the stack-sorting procedure, λ1 is the first entry to leave
the stack (because it is σ1). This means that nothing can ever sit on top of λ1

in the stack, so λ1 < λ2. It follows that σ1ζ = σ = s(λ) = λ1s(λ2λ3 · · ·λn) =
σ1s(λ2λ3 · · ·λn), so ζ is sorted. We saw in the proof of Claim 1 that des(σ) =
n−2
2 . Claim 2 tells us that 1 is not a descent of σ, so ζ must have n−2

2 descents.
Since ζ is a sorted permutation of length n− 1, it follows from Theorem 1.1
that ζ is uniquely sorted.

Claim 5. For every descent i of σ, we have σi < σi+2.

Suppose i is a descent of σ. Note that i �= n−1 since σn = n (σ is sorted).
This means that it makes sense to talk about the entry σi+2. Claim 2 tells
us that i ≥ 2, so i is a descent of the permutation ζ = σ2σ3 · · ·σn. Claim 4
tells us that ζ is uniquely sorted, so it follows from Corollary 2.1 that we do
not have σi+1 < σi+2 < σi. Claim 1 tells us that i+1 is not a double descent
of σ, so we do not have σi+2 < σi+1 < σi. The only remaining possibility is
that σi+1 < σi < σi+2.

Claim 6. The descents of σ are 2, 4, 6, . . . , n−2, and the left-to-right maxima
of σ are σ1, σ2, σ4, σ6, . . . , σn.

We saw in the proof of Claim 1 that σ has n−2
2 descents, and Claim 1

itself guarantees that no two of these descents are consecutive integers. We
also know by Claim 2 that 1 is not a descent of σ. Furthermore, since σn = n
(σ is sorted), the index n− 1 is not a descent of σ. Put together, these facts
force the descents of σ to be 2, 4, 6, . . . , n− 2. Now, σ1 is obviously a left-to-
right maximum of σ. We also know that σ2 is a left-to-right maximum by
Claim 2. Since 2 is a descent of σ, we know by Claim 5 that σ3 < σ2 < σ4.
This shows that σ3 is not a left-to-right maximum and that σ4 is a left-
to-right maximum. Since 4 is a descent of σ, we know by Claim 5 that
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σ5 < σ4 < σ6. This shows that σ5 is not a left-to-right maximum and that
σ6 is. Continuing in this fashion, we find that the left-to-right maxima of σ
are σ1, σ2, σ4, σ6, . . . , σn.

We can now finally determine the left-to-right maxima of π. It follows
from Claim 6 and the definition of s that

π = s(σ) = σ1σ3σ2σ5σ4σ7σ6 · · ·σn−1σn−2σn.

Claim 6 also implies that the entries σ1, σ2, σ4, σ6, . . . , σn, which are the
same as the entries π1, π3, π5, . . . , πn−1, πn, are left-to-right maxima of π.
For example, to see that σ4 is a left-to-right maximum of π, we need to
check that σ4 is larger than the entries σ1, σ2, σ3, σ5. We know that σ4 is
larger than σ1, σ2, σ3 because σ4 is a left-to-right maximum of σ, and it is
larger than σ5 because 4 is a descent of σ. No descent bottom of π can
be a left-to-right maximum of π. Since des(π) = n−2

2 , there are at most
n− n−2

2 = n+2
2 left-to-right maxima of π. Hence, π1, π3, π5, . . . , πn−1, πn are

the only left-to-right maxima of π.

Proof of Theorem 1.3. Proposition 3.1 completes the proof of the charac-
terization in Theorem 1.3 when t = 2. Let us now assume that n ≥ t ≥ 3
and that n and t have the same parity. We already saw at the beginning of
this section that every permutation π = π1 · · ·πn ∈ Sn whose left-to-right
maxima are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3 . . . , πn is t-sorted and has
n−t
2 descents; we need to prove the converse.

Let π = π1 · · ·πn ∈ Sn be an arbitrary t-sorted permutation with n−t
2

descents. Because π is t-sorted, it is certainly (t − 2)-sorted. This means
that it ends in the entries n − t + 3, n − t + 4, . . . , n, so we can write π =
π′(n− t+ 3)(n− t+ 4) · · ·n for some π′ ∈ Sn−t+2. There is a (t− 2)-sorted
permutation λ ∈ Sn such that s2(λ) = π. Since λ is (t − 2)-sorted, we can
write λ = λ′(n− t+ 3)(n− t+ 4) · · ·n for some λ′ ∈ Sn−t+2. We now have

π′(n− t+ 3)(n− t+ 4) · · ·n = s2(λ) = s2(λ′(n− t+ 3)(n− t+ 4) · · ·n)

= s2(λ′)(n− t+ 3)(n− t+ 4) · · ·n,
so π′ = s2(λ′). This shows that π′ is a 2-sorted permutation in Sn−t+2 with
n−t
2 descents. According to Proposition 3.1, the left-to-right maxima of π′

are π1, π3, π5, . . . , πn−t+1, πn−t+2. This proves that the left-to-right maxima
of π are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn, as desired.

To finally complete the proof of Theorem 1.3, we need to show that
the number of permutations π = π1 · · ·πn ∈ Sn whose left-to-right maxima
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are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn is (n − t − 1)!! (assuming
again that n ≥ t ≥ 2 and that n ≡ t (mod 2)). It is convenient to think of
constructing the plot of such a permutation, which we can imagine is just a
collection of n points in the plane such that no two points lie on a common
vertical or horizontal line (without regarding the specific coordinates of these
points). We will build the plot by placing points one at a time from left to
right. We first place the first point, which will represent the first entry in
the permutation. There is 1 choice for the height of the second point relative
to the first point. Namely, the second point must be lower than the first.
The third point must be higher than both the first and second points. The
fourth point must be lower than the third, but we can freely choose its height
relative to the first two points. Thus, there are 3 choices for the height of
the fourth point relative to the first three. The fifth point must be higher
than all of the first four points. The sixth point must be lower than the fifth,
but we can freely choose its height relative to the first four points. Thus,
there are 5 choices for the height of the sixth point relative to the first five.
Continuing in this manner, we find that there are (n−t−1)!! ways to choose
the relative heights of the first n−t points. The final t points must be higher
than all of the first n− t points, and their heights must be increasing from
left to right. Therefore, the total number of ways to construct the plot of π
is (n− t− 1)!!.

4. Future work

We have given a characterization of the t-sorted permutations in Sn that
have the maximum possible number of descents when n ≥ t ≥ 2 and n ≡ t
(mod 2). A natural next step would involve trying to understand these ex-
tremal permutations when n �≡ t (mod 2). For example, when t = 2 and n
is odd, we would like to understand (or even just count) the 2-sorted permu-
tations in Sn with n−3

2 descents. This appears to be much more complicated
than the case in which n and t have the same parity; any significant progress
would be very interesting.

To elaborate further upon this point, let us note that our proofs often
relied upon the characterization given in Theorem 1.1. One might hope for
a similar characterization that would apply to sorted permutations in Sn

with n−2
2 descents. One can show that every permutation in Sn with exactly

2 preimages under s must have exactly n−2
2 descents. Unfortunately, the

converse is false. The permutation 2134 ∈ S4 has 4−2
2 = 1 descent, but we

can see in Figure 1 that is has 4 preimages under the stack-sorting map.
This lack of an analogue of Theorem 1.1 is one reason why we might expect
studying extremal permutations to be difficult when n �≡ t (mod 2).
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[35] H. Úlfarsson, Describing West-3-stack-sortable permutations with per-
mutation patterns. Sém. Lothar. Combin., 67 (2012). MR2971010

[36] J. West, Permutations with restricted subsequences and stack-sortable
permutations, Ph.D. Thesis, MIT, 1990.

[37] D. Zeilberger, A proof of Julian West’s conjecture that the number of
two-stack-sortable permutations of length n is 2(3n)!/((n+1)!(2n+1)!).
Discrete Math., 102 (1992), 85–93. MR1168135

Colin Defant

Princeton University

Fine Hall, 304 Washington Rd.

Princeton, NJ 08544

USA

E-mail address: cdefant@princeton.edu

Received April 15, 2019

http://www.ams.org/mathscinet-getitem?mr=1401000
http://www.ams.org/mathscinet-getitem?mr=3071084
http://www.ams.org/mathscinet-getitem?mr=3012380
http://www.ams.org/mathscinet-getitem?mr=0378456
http://www.ams.org/mathscinet-getitem?mr=2881235
http://www.ams.org/mathscinet-getitem?mr=2971010
http://www.ams.org/mathscinet-getitem?mr=1168135
mailto:cdefant@princeton.edu

	Introduction
	Valid hook configurations
	Proofs of main results
	Future work
	Acknowledgments
	References

