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Lecture hall P-partitions

PETTER BRANDEN* AND MADELEINE LEANDER

We introduce and study s-lecture hall P-partitions which is a gen-
eralization of s-lecture hall partitions to labeled (weighted) posets.
We provide generating function identities for s-lecture hall P-parti-
tions that generalize identities obtained by Savage and Schuster
for s-lecture hall partitions, and by Stanley for P-partitions. We
also prove that the corresponding (P, s)-Eulerian polynomials are
real-rooted for certain pairs (P, s), and speculate on unimodality
properties of these polynomials.

1. Introduction

Let s = (s1,...,8,) be a sequence of positive integers. An s-lecture hall
partition is an integer sequence A = (A1,...,\,) satisfying 0 < A\;/s7 <
-+ < A\n/sp. These are generalizations of lecture hall partitions, correspond-
ing to the case when s = (1,2,...,n), first studied by Bousquet-Mélou and
Eriksson [3]. It has recently been made evident that s-lecture hall partitions
serve as a rich model for various combinatorial structures with interesting
generating functions, see [2, 3, 4, 13, 14, 19, 18, 20, 21] and the references
therein.

In this paper we generalize the concept of s-lecture hall partitions to
labeled posets. This constitutes a generalization of Stanley’s theory of P-
partitions, see [24, Ch. 3.15]. In Section 3 we derive multivariate generating
function identities for s-lecture hall P-partitions, and prove a reciprocity the-
orem (Theorem 3.9). When P is a naturally labeled chain or an anti-chain,
the generating function identities obtained produce results on s-lecture hall
partitions and signed permutations, respectively (see Section 6). We also in-
troduce and study a (P, s)-Eulerian polynomial. In Section 4 we prove that
this polynomial is palindromic for sign-graded labeled posets with a spe-
cific choice of s. In Section 5 we prove that the (P, s)-Eulerian polynomial is
real-rooted for certain choices of (P, s), and we also speculate on unimodality
properties satisfied by these polynomials.
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2. Lecture hall P-partitions

In this paper a labeled poset is a partially ordered set on [p] := {1,...,p} for
some positive integer p, i.e., P = ([p], =), where < denotes the partial order.
We will use the symbol < to denote the usual total order on the integers. If
P is a labeled poset, then a P-partition! is a map f : [p] — R such that

1. if z <y, then f(z) < f(y), and
2. ifz <y and = >y, then f(z) < f(y).

The theory of P-partitions was developed by Stanley in his thesis and has
since then been used frequently in several different combinatorial settings,
see [24, 25].

Let

O(P)={f € RP: f is a P-partition and 0 < f(z) <1 for all z € [p]}

be the order polytope associated to P. Note that if P is naturally labeled,
ie., x <y implies = < y, then O(P) is a closed integral polytope. Otherwise
O(P) is the intersection of a finite number of open or closed half-spaces.
Recall that the Ehrhart polynomial of an integral polytope P in RP is defined
for nonnegative integers n as

i(P,n) = |nPNZP|,

where nP = {nx : x € P}, see [24, p. 497]. For order polytopes we have the
following relationship due to Stanley:

S i(0(P), )i = %

n>0

where Ap(t) is the P-Eulerian polynomial, which is the generating polyno-
mial of the descent statistic over the set of all linear extensions of P, see [24,
Ch. 3.15].

The purpose of this paper is to initiate the study of a lecture hall gen-
eralization of P-partitions. Let P be a labeled poset and let s : [p] — Z4 :=
{1,2,3,...} be an arbitrary map. We define a lecture hall (P, s)-partition to
be a map f : [p] — R such that

'What we call P-partitions are called reverse (P,w)-partitions in [24, 25]. How-
ever the theory of (P,w)-partitions and reverse (P,w)-partitions are clearly equiv-
alent.
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1. if z <y, then f(x)/s(z) < f(y)/s(y), and
2. if x <y and z > y, then f(x)/s(z) < f(y)/s(y).

Let

O(P,s) ={f € RP :f is a (P, s)-partition and
0< f(x)/s(x) <1 for all x € [p]}

be the lecture hall order polytope associated to (P, s). We also let

C(P,s)={f € RP:f is a (P, s)-partition and
0 < f(z)/s(x) for all z € [p|}

be the lecture hall order cone associated to (P, s). The (P, s)-Eulerian poly-
nomial, A(p(t), is defined by

A S
S H(O(P, s),n)t" = %

n>0
3. The main generating functions

In this section we derive formulas for the main generating functions associ-
ated to lecture hall (P, s)-partitions. The outline follows Stanley’s theory of
P-partitions [24, Ch. 3.15]. We shall see in Section 6 that the special cases
when P is naturally labeled chain or an anti-chain automatically produce
results on lecture hall polytopes and signed permutations, respectively.

Let &, denote the symmetric group on [p]. f 7 = mmy-- 71y € G, is a
permutation written in one-line notation, we let P; denote the labeled chain
m < m < - < mp. If P =([p],X) is a labeled poset, let £L(P) denote the
set

L(P):={me&,:if m; < mj, then i <j, for all i, € [p]},

of linear extensions (or the Jordan-Holder set) of P. The following lemma
is an immediate consequence of Stanley’s decomposition of P-partitions [24,
Lemma 3.15.3].

Lemma 3.1. If P is a labeled poset and s : [p] — Z, then

C(Ps)= || C(Pr,s9),
weL(P)

where | | denotes disjoint union.
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Let s : [p] = Z4+. An s-colored permutation is a pair 7 = (m,r) where
m € &p, and r : [p] — Nsatisfies r(m;) € {0,1,...,s(m;)—1} forall1 <i <p.
If P = ([p], %) is a labeled poset, let

L(P,s)={r:7=(m,r) where 7 € L(P) and

7 is an s-colored permutation}.
For f:[p] = N, let q(f),r(f) : [p] = N be the unique functions satisfying

f(x) = q(f)(@)-s(z)+r(f)(x), where ¢(f)(z) € Nand 0 <r(f)(z) < s(x),

for all z € [p|. Let further

Fpyxy)= Y yxi),
FEN(P,s)

where x" = x;(l)mg(z) . -x;(p) and N(P,s) = C(P,s) N NP. We say that
i€[p—1]isa descent of T = (m,r) if

{m < miy1 and 7(m;)/s(m;) > r(miy1)/s(miz1), or,
m > i1 and r(m;)/s(m;) > r(mwiv1)/s(miv1),
Let

Dy(r) ={i €[p—1]:iis a descent}.

Theorem 3.2. If P is a labeled poset and s : [p] — Z4, then

| | xﬂi+1 e xﬂ'p

 1€D: (1)
(3.1) Fipy(x,y) = S oy |
T=(m,r)EL(P,s) H (1—zg, - l’ﬂp)
i€[p]

Proof. By Lemma 3.1 we may assume that P = P; is a labeled chain. Let
f € NP and write f(t) = q(t)s(t) +r(t), where 0 < r(t) < s(t) and ¢(t) € N
for all t € [p]. What conditions on ¢ and r guarantee f € N(P,s)? Suppose
m; < mit+1. Then we need

7(Tiv1)
s(mit1)

(32)  qlm)+ - = < = q(mit1) +
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If r(m)/s(mi) < r(mig1)/s(mis1), then (3.2) holds if and only if ¢(m) <
q(mig1). If v(m;)/s(m) > r(migr1)/s(mit1), then (3.2) holds if and only if
q(mi) < q(mit1).

Suppose m; > ;1. Then we need

N rm)  fm)  f(mie) o
(33) Q(ﬂ-z) + s(m) - S(ﬂ'i) < 5(7ri+1) - Q( H—l) +

r(miv1)
s(mig1)

If r(m)/s(m) < r(mis1)/s(miy1), then (3.3) holds if and only if ¢(m;) <
q(mig1). If v(m)/s(mi) > r(mig1)/s(misr1), then (3.3) holds if and only if

q(mi) < q(miy1).
Let 7 = (m,r), where r is fixed. Then f = gs 4+ r € N(P, s) with given
(fixed) r if and only if

(3.4) 0 < q(m) < q(m) < --- < q(mp),

where q(m;) < q(mi+1) if i € D1(7). Hence f = gs +r € N(P,s) if and only
if for each k € [p]:

q(mi) = ap + [{i € Di(7) i < k}|,

where a, € Nand 0 < ay <--- < o,. Hence

P
q(mi) _ a1 e
g Tt = g Loy o Tyt H Tripy " T,
q =1 0<a;<--<ap i€Dy (1)
[T @ on,
. iED1(T)
Y
H(l_%i...%p)
ic[p]

where the first sum is over all ¢ satisfying (3.4). The theorem follows. [
Let Z4(P,s) = C(P,s) N Z%. and let

fEZL(Ps)

Let further

D (7_) _ Dl(T), if T’(ﬂ'l) 750,
? Di(r)u {0}, ifr(m) =0.
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Theorem 3.3. If P is a labeled poset and s : [p] — Z, then

r €D (T
F(_;,s) (va) = Z y () .
7=(m,r)EL(P,s) H (1 — Ty, l'wp)
i€(p)

Proof. Consider (P’,s") where P’ is obtained from P by adjoining a least
element 0 labeled p+ 1, and s : [p+1] — Z, is such that s’ restricted to [p]
agrees with s. Let also s'(p + 1) > max{s(t) : t € [p]}. Then f € N(P',s') if
and only if f|;, € N(P,s) and

flo+1) _ f@)

0= 9D S s

for all = € [p].

Thus F(; S)(x,y) is obtained from F(p: o)(x,y) when we restrict to all f €

N(P’,s") with f(p+1) =1, i.e,q¢(p+1) =0and r(p+1) = 1, and then shift
the indices. Hence ¢ = 0 is a descent in ((p + 1)mim - - - mp, 1) if and only if
r(m1) = 0, and the proof follows. O

For f : [p] = Z4, let ¢'(f),r'(f) : [p] = N be the unique functions
satisfying

f@)=q'(f)(x)-s(x)+r'(f)(z), where ¢'(f)(x) €N and 0<r'(f)(z) < s(x),

for all = € [p]. Let further

G(P,s) (Xa Y) = yr’(f)xq’(f).
f€Z+(P75)
Let D3(7) be the set of all ¢ € [p — 1] for which
m < miv1 and (r(m;) + 1) /s(m;) > (r(mip1) +1)/s(mig1), or,
m; > miv1 and (r(m) + 1) /s(m) > (r(miv1) + 1) /s(mis1)-

Theorem 3.4. If P is a labeled poset and s : [p] — Z4, then

I @nreoom,

r ’L€D3(T)
Gryxy)= >  y 't :
T=(m,r)eL(P,s) H (1 = Lyt xﬂp)
i€[p]
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where 1 = (1,1,...,1) is the all ones vector.

Proof. The proof is almost identical to that of Theorem 3.2, and is therefore
omitted. O

For n € N, let
Nen(P,s) = {f € N(P,s) : f(z)/s(z) <n for all z € [p]},

and let

Fipgxyin)= Yy xilh),
fEN<,(P,s)

The polynomials F(}LDS) (x,y;n) and G(pg)(x,y;n) are defined analogously
over {f € Z.(P,s): f(z)/s(x) <n for all x € [p]}. Let also

Nen(P,s) ={f € N(P,s) : f(x)/s(x) < n for all x € [p|},

and

Flpgxyin) = >  yxih,
fENL,(P,s)
For 7 = (m,7) € L(P,s), define

D(r) = Dy (1), if r(mp) =0,
Di(t)u{p}, ifr(m,) >0,

and
D if =0
D4(7’) —_ 2(7-)7 1 T(ﬂ'p) ’
Do(r)U{p}, i r(my) > 0
Proposition 3.5. If P is a labeled poset and s : [p| — Z, then

(3.5)

| | $7Ti+1 e ‘Tﬂ'p

B AAD(7)]
Y Fpgxyntt= >y =D T
n>0 r=(m,r)EL(Ps) H (1 =g, -2y t)
i€[p]
(3.6)
H ‘1‘7l'71+1 PR xﬂ_p
t1D1(7)|+1

n r €D1(T)
Y Fpgxyimitt= >y
TLZO T:(ﬂ',’I‘)EE(P,S) H (1 - xm P :];‘ﬂ-pt)
i€[p]

1—t
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| | xﬂ’i+1 e xﬂ_p

. €D (T) t1Pa ()|
Yo Fpyxyintt= >y —
n>0 T=(m,r)EL(P,s5) H (1=, - 2, )
i€(p]
(3.8)
H $wi+1 e xﬂ_p
n i1 G€Ds(T ¢IPs()l+1
d Grpyxyntt= >yt ) -
n=>0 T=(m,r)EL(P,s) H (1 Tt ‘Tﬂ'pt)
i€lp]

Proof. For (3.5) consider (P’,s") where P’ is obtained from P by adjoining
a greatest element 1 labeled p + 1, and s : [p + 1] — Z, restricted to [p]
agrees with s, while s'(p + 1) = 1. If we set xp41 = ¢, then

Z F(P,s) (Xa y; n)tn = F(P’,s’):
n>0

and
L(P's)Y={(m1 - mp(p+1),7") : (w1 7p, 7’| p) € L(P,s) and 7' (p+1) =0}.

The identity (3.5) follows by noting that i = p is a descent of (- m,(p +
1),r') if and only if r(mp)/s(mp) > r'(p+1)/s'(p+ 1) = 0.

The other identities follows similarly. For example (3.6) follows by con-
sidering (P’, s") where P’ is obtained from P by adjoining a greatest element
1 labeled 0 (and then relabel so that P’ has ground set [p 4 1]). For (3.8)
consider again (P’,s’), where P’ is obtained from P by adjoining a great-
est element 1 labeled p + 1, and s’ is defined as for the case of (3.5). Note
that since '(p + 1) = 1 we have ¢/(p+ 1) = n —11if f(p+ 1) = n. This
explains the shift by one in the exponent on the right hand side of (3.8),
ie., |Ds(7)| + 1. O

If ¢ is a variable, let [0], := 0 and [n], ;= 1+ ¢+ ¢*> + -+ + ¢"~! for
n > 1. For the special case of (3.5) when P is an anti-chain we acquire the
following corollary, which is a generalization of [1, Theorem 5.23].
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Corollary 3.6. If P is an anti-chain and s : [p] — Z4, then

I

u ; D(7)|
n . n r 1€D(T) tl
S T @+ [nlafs()]y) " = > ooy -
n204=1 ey 1] (0= wn - ant)
i€[p]

Proof. Let P be an anti-chain and let s : [p] — Z4. Consider f € N<, (P, s).
Since P is an anti-chain, f(i) and f(j) are independent for all 1 <i < j <p,
and the only restriction is 0 < f(i) < ns(i) for all 1 < i < p. We write
f(@) = s(i)q(i) + (i), where 0 < r(i) < s(i). Then f € N<,,(P,s) if and only
if either g(i) =n and r(i) =0, or 0 < ¢(i) <n—1and 0 < r(:) < s(z) — 1.
Hence

Sy OxiD = T @s(@)y, + -+ 2 sy, + a7

fEN<n(Ps) =1
P
= [ @} + Il [s@)]y) -
i=1
The corollary now follows from (3.5). O

Note that the special case of (3.5) when P is a naturally labeled chain
gives an analogue (by an appropriate change of variables) to one of the
main results in [20], see Theorem 5 therein. From (3.5) we also get an
interpretation of the Eulerian polynomial Ap)(t). For 7 € L(P,s), let
dess(7) = |D(7)|.

Corollary 3.7. If P is a labeled poset and s : [p| — Z4, then

A(P,s) (t) _ Z tdess(T) )

TEL(P,s)

The next corollary follows from Proposition 3.5 by setting the z- and
y-variables to 1.
Corollary 3.8. If P is a labeled poset and s : [p| — Z, then

Z DM — Z tIDa(T)Hl7

TEL(P,s) TEL(P,s)
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and if s(x) = 1 for all minimal elements x in P, then

TEL(P,s) TEL(P,s)

Let P = ([p], <) be a labeled poset. For i € [p], let i* = p+ 1 — i, and
let (P*,s*) be defined by P* = ([p], <*) with

i=jin P if and only if ¢* <* j* in P*, for all ¢,5 € [p],

and s*(i*) = s(7) for all i € [p]. The poset P* is called the dual of P.

Theorem 3.9 (Reciprocity theorem). If P is a labeled poset and s : [p] —
Z, then

yS(l) . UyS(p) L
G(p-s)(x",y*) = (-1)P= L Fips(x~'y™),
gjl .. ."L’p
where x* = (2p, Tp_1,...,21) and x* = (z7',... ,x;l).
Proof. For 7 = (m,r) € L(P,s), let 7% = (775 -7, ") where r*(i*) =

s(i) — 1 —r(7) for all ¢ € [p]. Clearly the map 7 — 7* is a bijection between
L(P,s) and L(P*,s*). Moreover if i € [p — 1], then ¢ € D3(7) if and only if

V

(r(mi+1) +1)/s(mit1), or,

mi > miv1 and (r(m) +1)/s(m) = (r(mier) +1)/s(miv),

Y

{m < 71 and (r(m) + 1) /s(m)

if and only if

m >y and r(wp) [s* () < r(mi ) /s (), or,
my < miy and r* (7)) /s (7

if and only if ¢ € [p— 1]\ Di(7*). Thus
(3.10) D3(t)=[p—1\ Di(7*) and Di(7)=[p—1]\ Ds(7"),
for all 7 € L(P,s). Now

| | xWH—l ‘e xﬂ_p

r 9€D1(T)
Fpyxy)= > ¥
rePs) | [EEE
i€[p]
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T wrnom,

= Z yriﬂp*ll\Ds(T*)
TEL(P,s) H (1= @, - -,

i€[p]
-1 -1
H T * " Py,

- ¥ y*(y*) " ieDi(r) [[en =
reL(Ps) Ty Ty H (1 — T, v xﬂp) ’LE[p]

i€[p]
H x;_l . - x;l
yf(l) e y;(p) (v 1+1) 1€D5 () o »
e S =
T1edp 7'652(1:375) H(l _567_&1 “"T;pl)
i€[p]
s(1) s(p)
Y " Yp w\—1 ) —1
=(=1)? -
( ) T T G(P ,8 )((X) 7(y ) )’
from which the theorem follows. O

Remark 3.1. Theorem 3.9 generalizes the reciprocity theorem in [4] which
follows as the special case when P is a naturally labeled chain.

4. Sign-ranked posets

Let P={1 <2< --- < p} be a naturally labeled chain, and let s(i) =i for
all i € [p]. Savage and Schuster [20, Lemma 1] proved that Ap(t) is equal
to the Eulerian polynomial

Ap(t) = Z tdeS(W)v

€S,

where des(m) = |{i € [p| : m > mit1}. Recall that a polynomial g(¢) is
palindromic if tNg(1/t) = g(t) for some integer N. It is well known that
Ap(t) is palindromic (in fact tP~1A,(1/t) = A,(t)). The same is known to be
true for the P-Eulerian polynomial of any naturally labeled graded poset,
see [24, Corollary 3.15.18], and more generally for P-Eulerian polynomials
of so called sign-graded labeled posets [10, Corollary 2.4]. We shall here
generalize these results to (P, s)-Eulerian polynomials.

Recall that a pair of elements elements (x,y) taken from a labeled poset
P is a covering relation if v < y and x < z < y for no z € P. Let £(P)
denote the set of covering relations of P. If P is a labeled poset define a
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function € : £(P) — {—1,1} by

(2.7) 1, if x <y, and
e(z,y) = ]
Y -1, ifx>y.

Sign-graded (labeled) posets, introduced in [10], generalize graded naturally
labeled posets. A labeled poset P is sign-graded of rank r, if

M?r

Exz lux’L =
=1

for each maximal chain x¢g < 1 < -+ < xp in P. A sign-graded poset is
equipped with a well-defined rank-function, p : P — Z, defined by

M»

€ xz 1, mz
=1

where g < 1 < --+ < xx = « is any unrefinable chain, x( is a minimal
element and xj = x. Hence a naturally labeled poset is sign-graded if and
only if it is graded. A labeled poset P is sign-ranked if for each maximal
element x € P, the subposet {y € P : y < x} is sign-graded. Note that
each sign-ranked poset has a well-defined rank function p : P — Z. Thus a
naturally labeled poset is sign-ranked if and only if it is ranked.

Theorem 4.1. Let P be a sign-ranked labeled poset and suppose its rank
function attains non-negative values only. Let s(x) = p(x) + 1 for each
x € [p|, and define u : N(P,s) — ZP by u(f)(z*) = f(z) + p(z). Then
u: N<p(P,s) = Nepy1(P*,5%) is a bijection for each n € N.

Proof. We first prove u : N(P,s) — N(P*, s*). Note that f is a (P,s)-
partition if and only if

L i (2,5) € E(P), then [(x)/s(x) < f(y)/5(y), and
2. if (z,y) € E(P) and e(z,y) = —1, then f(z)/s(x) < f(y)/s(y).

Hence it suffices to consider covering relations when proving that u :
N(P, s) — N(P*, s*).

Let f € N(P,s). Suppose y covers x and €(x,y) = 1. Then f(z)/s(z) <
f(y)/s(y) and s(x) < s(y), and thus

v
WD) _ f@ s =1 S0, LS 1 D)
. )

*(x*) s(z) “sly) o os(e) sy s(y)
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as desired.
Suppose y covers z and €(z,y) = —1. Then f(z)/s(z) < f(y)/s(y) and
s(z) = s(y) + 1 so that

uN") _w)E) _ fly) @) ( 1 1 ) .

*(y*) “(a*)  s(y) s+l \sy) sy +1

We want to prove that the quantity on either side of the equality above is
nonnegative. By assumption

fly) __fl@) @) +Df) = s@)f()

- = > 0.

s(y)  s(y)+1 s(y)(s(y) +1)
Hence (s(y) +

—

) f(y) — s(y) f(x) is a positive integer, so that

fy)  _f&) 1
s(y)  s(y)+1 7 s(y)(sly) +1)

as desired. Note that u(f) is nonnegative since it is increasing and u(f)(z*) =
f(z) when z* is a minimal element in P*. Hence u(f) € N(P*, s*).

Let n : N(P*,s*) — ZF be defined by 1(g)(z) = g(z*) — p(x) = g(x*) +
p*(z*), where p* is the rank function of P*. Clearly n : N(P*,s*) — N(P,s)
by the exact same arguments as above. Thus u=! = 5 and u : N(P,s) —
N(P*, s*) is a bijection.

Now u(f)(z")/s*(z*) = flz)/s(x) + (s(x) —1)/s(x) < n+1if f €
Ne<p(P,s) and z € P, so that u : Ny (P,s) — Nepyq(P*,s*) for each
n € N.

On the other hand if g € N, 41(P*, s%),
r(z*) where 0 < g(z*) <n and 0 < r(z*) <

(h 9(z") = q(z*)(p(x) +1) +

). Hence
M@ o) gl ) el
s(z)  pz)+1 p(ac)—i—lS + p(z) +1 p(a:)+1S
Thus 7 : Nep41(P*, s%) = N<p (P, s) which proves the theorem. O

Theorem 4.2. If P is a sign-ranked labeled poset with nonnegative rank
function p and s = p+ 1, then

A(P,s) (t> = tp_lA(P,s) (t_l)

and

(=1)Pi(O(P, s),—t) = i(O(P,s),t — 2).
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Proof. By (3.5), (3.6) and Theorem 4.1

A(P,s)(t): Z P — Z P (T

TEL(P,s) T*EL(P*,s5*)

The first part of the theorem now follows from (3.9) and (3.10). The second
part follows from e.g., [24, Lemma 3.15.11]. O

5. Real-rootedness and unimodality

The Neggers-Stanley conjecture asserted that for each labeled poset P, the
Eulerian polynomial Ap(t) is real-rooted. Although the conjecture is refuted
in its full generality [9, 26], it is known to hold for certain classes of posets
[6, 27]. Moreover, when P is sign-graded, then the coefficients of Ap(t) form
a unimodal sequence [10, 16]. It is natural to ask for which pairs (P, s)

(a) is A(pg)(t) real-rooted?
(b) do the coefficients of A(p)(t) form a unimodal sequence?

We first address (a). Suppose P = ([p], =p), @ = ([¢g],=¢) and R = ([p +
q], Xr) are labeled posets such that [p + ¢| is the disjoint union of the two
sets {u; <wg <--- <wp}and {v; <wvg <--- <y}, and x =g y if and only
if either

e © =u; and y = u; for some 4, j € [p] with i <p j, or
e z =v; and y = v; for some i, € [¢] with i <¢ j.
We say that R is a disjoint union of P and @ and write R = PUQ. Moreover

if sp:[p] = Z4 and sq : [qg] = Z, then we define spg : [p+¢q] = Z4 as
the unique function satisfying spug(u;) = sp(i) and spug(vs) = sQ(J)-
Proposition 5.1. If the polynomials Aps,.)(t) and Aqs,)(t) are real-

rooted, then so is the polynomial A(pLig,spusq)(t)-

Proof. Clearly

i(PUQ,spUsg),t) =i(O(P,sp),t) - i(0(Q, 50):1),

so the proposition follows from [28, Theorem 0.1]. O

It was proved in [22] that if P ={1 <2 < --- <p} and s: [p] = Z; is
arbitrary, then A(p,)(t) is real-rooted. In Theorem 5.2 below we generalize
this result to ordinal sums of anti-chains. If P = (X, <p) and Q = (Y, =g)
are posets on disjoint ground sets, then the ordinal sum, P®Q = (XUY, <),
is the poset with relations
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1. 1 < o, for all x1,z9 € X with 21 <p x2,
2. y1 < yo, for all y1,y2 € X with y1 <@ y2, and
3. x<yforallz e X andy € Y.

Let f and g be two real-rooted polynomials in R[¢] with positive leading
coefficients. Let further vy > a9 > --- > o, and 51 > By > -+ - > 5, be the
zeros of f and g, respectively. If

Lap < fr<a; < By

we say that f is an interleaver of g and we write f < g. We also let f < 0
and 0 < f. We call a sequence F,, = (f;)I; of real-rooted polynomials
interlacing if f; < f; for all 1 <1i < j < n. We denote by F;, the family of
all interlacing sequences (f;)"_; of polynomials and we let 7,7 be the family
of (fi)!, € Fy such that f; has nonnegative coefficients for all 1 <i < n.

To avoid unnecessary technicalities we here redefine a labeled poset to
be a poset P = (S, <), where S is any set of positive integers. Thus L£(P) is
now the set of rearrangements of S that are also linear extensions of P.

Equip X(P,s) :={(k,z) : x € P and 0 < k < s(z)} with a total order
defined by (k,z) < (£.y) if k/s(x) < (/s(y), or k/s(z) = ¢/s(y) and = < y.
For v € X(P, s), let

FARUEIED ST

T=(m,r)EL(P,s)
(r(m1),m1)=y

Theorem 5.2. Suppose P = A, @ --- @ A, is an ordinal sum of anti-
chains, and let s : P — Z, be a function which is constant on Ay, for
1 < i < m. Then {A’(Yp’s)(w}’yEX’ where X = X(P,s), is an interlacing
sequence of polynomials.

In particular A(p)(t) and AEYP’S) (t) are real-rooted for all v € X.

Proof. The proof is by induction over m. Suppose m = 1, p1 = n, A, is
the anti-chain on [n], and s(A,) = {s}. We prove the case m = 1 by induc-
tion over n. If n = 1 we get the sequence 1,t,t,...,t which is interlacing.
Otherwise if v = (k, 1), then

=D AL, () T DAL,
K<y K>

where s’ is s restricted to A,_1. This recursion preserves the interlacing
property, see [22, Theorem 2.3] and [11], which proves the case m = 1 by
induction.
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Suppose m > 1. The proof for m is again by induction over p; = n. If
p1 =1, then

)= D tAfp o) (B + D Alp i ¢

Ry K>y

Where P! = Ay @ --- @ A,,, and where s’ is the restrictions to P’. Hence the
case p; = 1 follows by induction (over m) since this recursion preserves the
interlacing property, see [22, Theorem 2.3].

The case m > 1 and p; > 1 follows by induction over p; just as for the
case m=1,n > 1.

Hence {AZP’S) (t)}4 is an interlacing sequence, and thus

A(P,s) (t) = Z A(WP,S) (t)a

v

is real-rooted by e.g., [22, Theorem 2.3]. O

Next we address (b). A palindromic polynomial g(t) = ag+ait+- - -+ant™
may be written uniquely as

L4/2]
)= w1+,
k=0

where {%(g)}IEdZ/SJ are real numbers. If v5(g) > 0 for all k, then we say that

g(t) is y-positive, see [11]. Note that if g(t) is y-positive, then {a;}} is a
unimodal sequence, i.e., there is an index m such that a9 < -+ < ay >
Am+1 2 Zan-

Conjecture 5.3. Suppose P is a sign-ranked labeled poset with nonnegative
rank function p and s = p+ 1, then A(p ) (t) is y-positive.

Remark 5.1. Let P be a sign-ranked labeled poset with a rank function
p with values only in {0,1}, and let s = p + 1. Following the proof of [10,
Theorem 4.2], with the use of Theorem 5.2, it follows that Conjecture 5.3
holds for (P, s). We omit the technical details in recalling the proof here.

If P is a naturally labeled ranked poset and s = p + 1, then O(P,s)
is a closed integral polytope and A(p)(t) is the so called h*-polynomial of
O(P, s). If the following conjecture is true, then the coefficients of Ap 4 (t)
form a unimodal sequence by a powerful theorem of Bruns and Rémer 8,
Theorem 1].
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Conjecture 5.4. Suppose P is a naturally labeled ranked poset, and let
s = p+ 1. Then O(P,s) (or some related polytope with the same Ehrhart
polynomial) has a regular and unimodular triangulation.

Remark 5.2. Evidence for Conjectures 5.3 and 5.4 is provided by [23]
where it is proved that the coefficients of A(p)(t) form unimodal sequence
whenever P is a naturally labeled ranked poset with a least element, and
s=p+1

6. Applications

In this section we derive some applications of the generating function iden-
tities obtained in Section 3. If @ = (au,...,qp) is a sequence, let |o =
ai+ -+ ap For 7= (m,7) € L(P,s), let

comaj(r) = Z p— i, and
i€D(1)

hp(r) = |r| + Y s(migr) + -+ s(mp)
i€D(T)

Theorem 6.1. If P is a labeled poset and s : [p] — Z., then
Z q|r\ ucomaj(T)tdesS (1)

r n TEL(P,s
61) > 3 DD g = ( >p
nZO feNSn(P,S) H(l N ult)
=0

Proof. Set z; = u and y; = ¢q for all 1 < i < pin (3.5). Then

| | Iﬂ'i+1 N $7rp

D]

r i€D(T) -
Z Y H(l_gjm...xﬂpt)l—t N Z

reL(Ps) H (1—tuP™")(1—¢)

q|r\ucomaj (‘r)tdesS (T)

TEL(P,s)
i€(p] i€[p]
Z Il comai(r) ydes. ()
_ TEL(Pys)
[T -t))a—1
i€[p]

The theorem follows. ]
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Theorem 6.2. If P is a labeled poset and s : [p] — Z, then

qlhp(T) tdess (7)

62) Y o= Y

n>0 \ fEN<,(P,s) TE€L(P,s) H (1 — tg>i= 8(7”)> (1- t)'

i€[p]
Proof. Set x; = ¢*® and y; =qforall 1 <i<pin (3.5).
Corollary 6.3. If P is an anti-chain and s : [p] — Z, then

Z q\r\ L comal (7) tdess (1)
p

63 S TL" + sl ¢ = =200
n>0i=1 [ -t

=0

Proof. The corollary follows from Theorem 6.1 and Corollary 3.6.

The wreath product of &, with a cyclic group of order k£ has elements

Zi 1Sy ={(m,r):m € &y and r: [p] — Zy}.

O

The elements of Zj, 1 &, are often thought of as r-colored permutations. We
may identify Z;1&, with L(P, s) where P is an anti-chain on [p] and s(i) = k

for all k € [p]. For 7 = (m,7) € Zi 1 &, define
fmaj(7) = |r| + k - comaj(7).

Note that lhp(7) agrees with fmaj(r) when s = (k, k, ..., k).

Below we derive a Carlitz formula for Z; ! &), first proved by Chow and

Mansour in [12].

Corollary 6.4. For positive integers p and k,

§ : 7fdesS(T)quaj(T)
n TELKIS,
(6.4) S [k + 12 = T2

n>0 (1 _ tqki)
i=0




Lecture hall P-partitions 409

Proof. Let s = (k,k,...,k) and set u = ¢* in (6.3). Then

p

(" + [aluls(@]g) = (0" + [algelily)
=1
. qkn -1 qk -1 p
- (q R >
= [nk+1].

The right hand side follows since s(i) = k for all 1 < ¢ < p, and thus we sum
over all 7 € Z; 1 G,,. Il

Remark 6.1. The definition of fmaj above differs from the definition of

the flag major index fmaj, in [12]. By the change in variables ¢ — ¢! and

t — t¢*? and by noting that [kn + 1]5t" is invariant under this change of
variables we find that the two flag major indices have the same distribution.

Corollary 6.5. For positive integers p and k,

, z q'{l qu . rptdess(T)

Z H(l + n[k]%)tn = e (1 _ t)p-i—l

n>01=1

Proof. Let s = (k,k,...,k) and set z; = 1 for all 1 < i < p in the equation
displayed in Corollary 3.6. O

Remark 6.2. Note that when ¢; > 0 for all 1 < ¢ < p, the polynomial

p

n— [+ nlkl,,)

i=1

has all its zeros in the interval [—1,0]. By an application of [28, Theorem
0.1] it follows that the polynomial

Z q?q;z . rptdess(r)

TELKS,

is real-rooted in ¢. This generalizes [7, Theorem 6.4], where the case k = 2
was obtained.
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