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A ratio of alternants formula for loop Schur
functions

Gabriel Frieden
∗

Lam and Pylyavskyy introduced loop symmetric functions as a
generalization of symmetric functions. They defined loop Schur
functions as generating functions over semistandard tableaux with
respect to a “colored weight,” and they proved a Jacobi–Trudi-
style determinantal formula for these generating functions. We
prove that loop Schur functions can be expressed as a ratio of
“loop alternants,” extending the analogy with Schur functions. As
an application, we give a new proof of the loop version of the
Murnaghan–Nakayama rule.
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1. Introduction

Motivated by their study of total positivity in loop groups, Lam and Pyly-
avskyy introduced a generalization of symmetric polynomials, which they
called loop symmetric functions [15]. These are polynomials in m sets of
n variables, which are invariant under a certain birational action of the
symmetric group Sm. When n = 1, the birational action reduces to the per-
mutation of the variables x1, . . . , xm, and loop symmetric functions are the
symmetric polynomials in m variables.

The ring of loop symmetric functions is generated by polynomials e
(r)
k

(resp., h
(r)
k ), which are “loop analogues” of the elementary (resp., complete

homogeneous) symmetric polynomials. Lam and Pylyavskyy showed that

certain determinants in the e
(r)
k (resp., h

(r)
k ) are given by summing over

semistandard Young tableaux of a fixed shape λ, with the weight refined by
“coloring” the boxes of the Young diagram with elements of Z/nZ. They de-
fined loop Schur functions to be these determinants. Due to the importance
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of Schur polynomials in many areas of mathematics, it is tempting to look
for loop generalizations of their many remarkable properties. For example,
Ross and Zong [25] proved a generalization of the Gopakumar–Mariño–Vafa
formula [20, 23] in Gromov–Witten/Donaldson–Thomas theory, in which
the Schur polynomials in the original formula are replaced with loop Schur
functions.

Schur polynomials were originally defined as the ratio of two alternating
polynomials, or alternants. The main result of this article is a generalization
of the ratio of alternants formula for Schur polynomials to the loop setting
(Theorem 3.1). This formula was stated without proof in [13]. Because the
generalized alternants are defined using the birational Sm action, they are
rational functions, rather than polynomials as in the classical case; however,
we derive an alternative ratio of alternants formula which expresses loop
Schur functions as a ratio of two polynomials (Theorem 3.3). We use the ratio
of alternants formula to deduce a loop generalization of the Murnaghan–
Nakayama rule (Theorem 4.1). This result was also stated in [13], and was
proved combinatorially by Ross [24].

Prior to the work of Lam and Pylyavskyy, the birational symmetric
group action had been identified as a geometric R-matrix in the theory
of geometric crystals [27, 12]. In other words, the action tropicalizes to a
piecewise-linear formula for the combinatorial R-matrix for a tensor product

of one-row Kirillov–Reshetikhin crystals of type A
(1)
n−1 [7]. This raises the pos-

sibility that any given function on a tensor product of one-row crystals which
is invariant under the combinatorial R-matrix might be the tropicalization
of a ratio of loop symmetric functions. Lam and Pylyavskyy [17] showed
that the intrinsic energy [11, 9, 8], an important function in affine crys-
tal theory which is closely related to Lascoux and Schützenberger’s charge
statistic [22], is in fact the tropicalization of a certain loop Schur function.
This loop Schur function turns out to be related to our alternant formulas
(see Remark 3.6). Additionally, tensor products of one-row crystals can be
viewed as states in the (generalized) box-ball system, a well-studied cellular
automaton that exhibits soliton behavior [26, 7]. Formulas for the scattering
of a given state into solitons are conjecturally given by tropicalizations of a
cylindric variant of loop Schur functions [18].

We note that the birational Sm action also arose in the context of the
local Langlands program [2], and was studied in [4].

This paper is organized as follows. In Section 2, we review the basics of
loop symmetric functions and the birational Sm action. Section 3 contains
statements and proofs of the two ratio of alternants formulas (Theorems
3.1 and 3.3), and Section 4 discusses the loop Murnaghan–Nakayama rule
(Theorem 4.1).
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2. Loop symmetric functions

2.1. Loop elementary and homogeneous symmetric functions

Fix integers m,n ≥ 1. For i ∈ {1, . . . ,m} and j ∈ Z/nZ, let x
(j)
i be an

indeterminate, and let Q(x
(j)
i ) be the field of rational functions in these

mn indeterminates. Let xi = (x
(1)
i , . . . , x

(n)
i ). We view the superscript as a

“color.”
Lam and Pylyavskyy [15] introduced loop symmetric functions as a sub-

ring of polynomials in the m sets of variables x1, . . . ,xm. We begin by re-
calling the definitions of two types of loop symmetric functions.

Definition 2.1. For k ≥ 1 and r ∈ Z/nZ, define the loop elementary sym-
metric function

e
(r)
k = e

(r)
k (x1, . . . ,xm) =

∑
1≤i1<...<ik≤m

x
(r)
i1

x
(r+1)
i2

· · ·x(r+k−1)
ik

,

and define the loop homogeneous symmetric function

h
(r)
k = h

(r)
k (x1, . . . ,xm) =

∑
1≤i1≤...≤ik≤m

x
(r)
i1

x
(r−1)
i2

· · ·x(r−k+1)
ik

.

Also set e
(r)
0 = h

(r)
0 = 1, and e

(r)
k = h

(r)
k = 0 for k < 0.

Note that if we ignore colors (or take n = 1), then the loop elementary
(resp., homogeneous) symmetric functions are simply the ordinary elemen-
tary (resp., homogeneous) symmetric polynomials in m variables.

Define the ring of loop symmetric functions (in m variables), denoted

LSymm(n), to be the subring of Q(x
(j)
i ) generated by the loop elementary

symmetric functions. It follows from Theorem 2.4 below that each h
(r)
k can be

expressed as a polynomial in the loop elementary symmetric functions (and
conversely), so the loop homogeneous symmetric functions also generate
LSymm(n).

2.2. Loop Schur functions

Given partitions λ and μ, write μ ⊂ λ if the Young diagram of μ is con-
tained in that of λ. If μ ⊂ λ, define λ/μ to be the skew diagram (or skew
shape) obtained by removing the boxes of μ from the Young diagram of λ.
A semistandard tableau of shape λ/μ is a filling of the skew diagram λ/μ
with positive integers so that each row is weakly increasing, and each col-
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umn is strictly increasing. For a box (i, j) in λ/μ, define its content to be
c(i, j) = i−j (mod n). For r ∈ Z/nZ and a semistandard tableau T of shape
λ/μ, define the r-weight of T by

wtr(T ) =
∏

(i,j)∈λ/μ
x
(r+c(i,j))
T (i,j) .

Definition 2.2. For r ∈ Z/nZ and partitions μ ⊂ λ, define the loop skew
Schur function

s
(r)
λ/μ = s

(r)
λ/μ(x1, . . . ,xm) =

∑
T

wtr(T )

where the sum is over semistandard tableaux of shape λ/μ with entries in

{1, . . . ,m}. If μ = ∅, then s
(r)
λ = s

(r)
λ/∅ is a loop Schur function. Set s

(r)
∅ = 1.

Note that s
(r)
λ/μ = 0 if any column of λ/μ has more than m boxes.

Example 2.3. Let n = 3,m = 2, and λ = (3, 2). There are two semistan-
dard tableaux of shape λ with entries in {1, 2}:

.

Computing 2-weights, we have

s
(2)
(3,2) = x

(2)
1 x

(1)
1 x

(3)
1 x

(3)
2 x

(2)
2 + x

(2)
1 x

(1)
1 x

(3)
2 x

(3)
2 x

(2)
2 .

Observe that s
(r)
(k) = h

(r)
k and s

(r)
(1k) = e

(r)
k . These identities are special

cases of Jacobi–Trudi formulas for loop skew Schur functions.

Theorem 2.4 ([15, §7.2]1). For two partitions μ ⊂ λ, we have

s
(r)
λ/μ = det(h

(r−μj+j−1)
λi−μj−i+j ) = det(e

(r+μ′
j−j+1)

λ′
i−μ′

j−i+j )

where λ′ is the transpose of λ. Thus, s
(r)
λ/μ is a loop symmetric function.

1Two rings of loop symmetric functions (the “whirl” ring and the “curl” ring)
are defined in [15]. We have chosen to use the “whirl” version, as in [13, 17, 18].
The “curl” loop Schur functions are defined by assigning to box (i, j) the con-

tent j − i rather than i − j. In particular, what we denote by h
(r)
k (x1, . . . ,xm) is

h
(r−k+1)
k (y1, . . . ,ym), where yi = xm−i+1, in the notation of [15].
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The proof is a standard application of the Lindström/Gessel–Viennot
lattice path method [19, 6].

Unfortunately, loop Schur functions do not span the ring of loop symmet-
ric functions, and they are not linearly independent! It is an open problem
to find a “Schur-like” basis of LSymm(n).

2.3. Whirls and curls

Elementary (resp., homogeneous) symmetric polynomials are the coefficients
of powers of t in the formal power series

∏
i(1 + xit) (resp.,

∏
i(1− xit)

−1).
Using the correspondence between formal power series and Toeplitz matri-
ces, these polynomials can be viewed as matrix entries of an infinite upper
triangular matrix which is constant along each diagonal. Here we give an
analogous description of loop elementary and homogeneous symmetric func-
tions, following [15].

An n-periodic matrix is a Z × Z array (Xij)(i,j)∈Z such that Xij = 0 if
i − j is sufficiently large, and Xij = Xi+n,j+n for all i, j. Multiplication of
these matrices is defined in the usual way: if X = (Xij) and Y = (Yij), then

(XY )ij =
∑
k∈Z

XikYkj .

The hypothesis that Xij = 0 for i − j sufficiently large ensures that each
of these sums is finite, so the product is well-defined. It is clear that the
product of two n-periodic matrices is n-periodic.

Given an n-periodic matrix X = (Xij), define Xc = (−1)i+jXij . If X is
invertible, define X−c = (X−1)c. It is easy to see that (XY )c = XcY c, and
(Xc)−1 = X−c.

Definition 2.5. Let a(1), . . . , a(n) be variables. The whirl M(a(1), . . . , a(n))
is the n-periodic matrix (Mij) with Mii = 1, Mi,i+1 = a(i) (interpret the
superscripts mod n), and all other entries zero. The curl N(a(1), . . . , a(n)) is
the n-periodic matrix N(a(1), . . . , a(n)) = M(a(1), . . . , a(n))−c.

For example, when n = 3,

M(a(1), a(2), a(3)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 a(1) 0 0 0

0 1 a(2) 0 0

0 0 1 a(3) 0 . . .

0 0 0 1 a(1)

0 0 0 0 1
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and

N(a(1), a(2), a(3)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 a(1) a(2)a(1) a(3)a(2)a(1) a(1)a(3)a(2)a(1)

0 1 a(2) a(3)a(2) a(1)a(3)a(2)

0 0 1 a(3) a(1)a(3) . . .

0 0 0 1 a(1)

0 0 0 0 1
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we are depicting only the quadrant of the matrix with i, j ≥ 1.

It is straightforward to show that loop elementary (resp., homogeneous)

symmetric functions are the matrix entries of a product of whirls (resp.,

curls).

Lemma 2.6 ([15, §7.2]). Set

A = M(x1)M(x2) · · ·M(xm), B = A−c = N(xm)N(xm−1) · · ·N(x1).

Then

Aij = e
(i)
j−i(x1, . . . ,xm) and Bij = h

(j−1)
j−i (x1, . . . ,xm).2

Example 2.7. When n = 2 and m = 3,

M(x1)M(x2)M(x3) =⎛
⎜⎜⎜⎜⎜⎜⎝

1 x
(1)
1 + x

(1)
2 + x

(1)
3 x

(1)
1 x

(2)
2 + x

(1)
1 x

(2)
3 + x

(1)
2 x

(2)
3 x

(1)
1 x

(2)
2 x

(1)
3

0 1 x
(2)
1 + x

(2)
2 + x

(2)
3 x

(2)
1 x

(1)
2 + x

(2)
1 x

(1)
3 + x

(2)
2 x

(1)
3 . . .

0 0 1 x
(1)
1 + x

(1)
2 + x

(1)
3

0 0 0 1

..

.
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The entries in the top row of this matrix are e
(1)
0 , e

(1)
1 , e

(1)
2 , e

(1)
3 (followed by

e
(1)
4 = e

(1)
5 = · · · = 0), in agreement with Lemma 2.6.

Remark 2.8. Theorem 2.4 (combined with Lemma 2.6) shows that loop

skew Schur functions are precisely the minors of the matrixN(xm) · · ·N(x1).

Loop Schur functions are the minors using consecutive columns; minors using

consecutive rows are the loop skew Schur functions of anti-partition shape

2The discrepancy between this formula and that of [15, Lem. 7.3] is explained
by the previous footnote.
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(i.e., of shape λ/μ where λ is a rectangle). A similar statement can be made

about minors of M(x1) · · ·M(xm).3

2.4. The birational Sm action

Symmetric polynomials in m variables are the invariants of the natural ac-

tion of Sm on the polynomial ring in m variables. Loop symmetric functions

are the invariants of a more complicated Sm action on Q(x
(j)
i ), as we now

explain.

Let x = (x(1), . . . , x(n)) and y = (y(1), . . . , y(n)). For r ∈ Z/nZ, set

κ(r)(x,y) = h
(r−1)
n−1 (x,y) =

n−1∑
s=0

x(r−1) · · ·x(r−s)y(r−s+1) · · · y(r−n+1)

where, as usual, the superscripts live in Z/nZ.

Definition 2.9. For i = 1, . . . ,m − 1, define si : Q(x
(j)
i ) → Q(x

(j)
i ) to be

the Q-algebra homomorphism which fixes x
(j)
k for k �= i, i + 1, and acts on

x
(j)
i , x

(j)
i+1 by

si(x
(j)
i ) = x

(j+1)
i+1

κ(j+1)(xi,xi+1)

κ(j)(xi,xi+1)
, si(x

(j)
i+1) = x

(j−1)
i

κ(j−1)(xi,xi+1)

κ(j)(xi,xi+1)
.

If M = (fab) is a matrix with entries in Q(x
(j)
i ), we define si(M) to be the

matrix (si(fab)).

Theorem 2.10 ([27, §2] [15, §6]).

1. For i = 1, . . . ,m− 1,

M(xi)M(xi+1) = si(M(xi)M(xi+1)).

2. The maps si satisfy the relations

s2i = id, sisj = sjsi if |i− j| ≥ 2, sisi+1si = si+1sisi+1.

3One must reflect a submatrix of M(x1) · · ·M(xm) over the anti-diagonal (or
equivalently, transpose and rotate the submatrix 180◦) to obtain the matrix of
loop elementary symmetric functions appearing in Theorem 2.4. Thus, loop Schur
functions are the minors of M(x1) · · ·M(xm) using consecutive rows.
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Remark 2.11. The deepest part of Theorem 2.10 is the fact that the maps
si and si+1 satisfy the braid (or Yang–Baxter) relation. Many different proofs
of this result have appeared in the literature: in addition to [27, 15], see [4],
[16, §6.5], [5, §5.2], and the combination of [2, §8.7] and [1, §6.2].

Theorem 2.10(2) shows that the maps si generate an action of Sm on

Q(x
(j)
i ). We call this the birational Sm action (it is also called the bira-

tional R-matrix in the literature). Theorem 2.10(1) and Lemma 2.6 imply
that the loop elementary symmetric functions (and thus all loop symmetric
functions) are invariant under this action. In fact, the loop elementary sym-
metric functions are algebraically independent generators of the subring of
polynomial invariants for this action [14], but we will not use this result.

2.5. Loop power sums

We will need one additional class of loop symmetric functions. For i =
1, . . . ,m, set

πi = x
(1)
i x

(2)
i · · ·x(n)i .

Lemma 2.12. For w ∈ Sm, we have w(πi) = πw(i).

Proof. Since Sm is generated by the si, it suffices to show that si(πj) = πsi(j)
for each i, j. We compute

si(πi) = si(x
(1)
i )si(x

(2)
i ) · · · si(x(n)i ) = x

(2)
i+1

κ
(2)
i

κ
(1)
i

x
(3)
i+1

κ
(3)
i

κ
(2)
i

· · ·x(1)i+1

κ
(1)
i

κ
(n)
i

= πi+1.

Similarly, si(πi+1) = πi, and clearly si(πj) = πj if j �= i, i+ 1.

Definition 2.13. For each positive integer k, define the loop power sum
symmetric function

pk = pk(x1, . . . ,xm) =

m∑
i=1

πk
i .

By Lemma 2.12, the polynomials pk are invariant under the birational
Sm action. The loop Murnaghan–Nakayama rule (Theorem 4.1) expresses
pk as an alternating sum of loop Schur functions.

3. Alternants

Schur polynomials were originally defined by the formula sλ(x1, . . . , xm) =
aλ+δ/aδ, where aα is the determinant of the matrix (xαi

j ), and δ is the
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staircase partition (m − 1,m − 2, . . . , 1, 0). These determinants are called

alternants because they are anti-symmetric (or alternating) with respect to

permutation of the variables. We now present a generalization of alternants

to the loop setting, following [13].

For a sequence α = (α1, ..., αm) of non-negative integers, define an m×m

matrix A
(r)
α by

(A(r)
α )ij = tj,m(x(r+m−1)

m x(r+m−2)
m · · ·x(r+m−αi)

m )

where ta,b is the transposition in Sm which swaps a and b, acting on Q(x
(j)
i )

by the birational Sm action. For example, if n = 3 and m = 2, then

(1) A
(2)
(4,2) =

⎛
⎜⎜⎝

t1,2

(
x
(3)
2 x

(2)
2 x

(1)
2 x

(3)
2

)
x
(3)
2 x

(2)
2 x

(1)
2 x

(3)
2

t1,2

(
x
(3)
2 x

(2)
2

)
x
(3)
2 x

(2)
2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(2)
1 x

(1)
1 x

(3)
1 x

(2)
1

x
(1)
1 x

(3)
1 + x

(1)
1 x

(3)
2 + x

(1)
2 x

(3)
2

x
(2)
1 x

(1)
1 + x

(2)
1 x

(1)
2 + x

(2)
2 x

(1)
2

x
(3)
2 x

(2)
2 x

(1)
2 x

(3)
2

x
(2)
1 x

(1)
1

x
(3)
1 x

(2)
1 + x

(3)
1 x

(2)
2 + x

(3)
2 x

(2)
2

x
(2)
1 x

(1)
1 + x

(2)
1 x

(1)
2 + x

(2)
2 x

(1)
2

x
(3)
2 x

(2)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Set a
(r)
α = det(A

(r)
α ). It is easy to see that a

(r)
α is anti-symmetric with respect

to the birational Sm action; we call this determinant a loop alternant. The

following result was stated without proof in [13].4

Theorem 3.1. For λ a partition with at most m parts, we have

(2) s
(r)
λ (x1, . . . ,xm) =

a
(r)
λ+δ

a
(r)
δ

,

where δ = (m− 1,m− 2, . . . , 1, 0).

Before proving this result, we derive several corollaries. Recall that πi =

x
(1)
i · · ·x(n)i .

4The original statement of this result ([13, Thm. 5.6]) is incorrect; using the
indexing conventions of that paper, the superscript of the loop Schur function should
be r −m+ 1 rather than r − 1.



368 Gabriel Frieden

Corollary 3.2. For r ∈ Z/nZ, we have

(3) a
(r)
δ =

∏
1≤i<j≤m

(πi − πj)

s
(r)
(n−1)δ(x1, . . . ,xm)

where kδ = (k(m− 1), k(m− 2), . . . , k, 0).

Proof. Taking λ = (n− 1)δ in Theorem 3.1, we have

a
(r)
δ =

a
(r)
nδ

s
(r)
(n−1)δ(x1, . . . ,xm)

.

The last column of A
(r)
nδ has entries (A

(r)
nδ )i,m = πm−i

m . Since the birational Sm

action permutes the πj , we have (A
(r)
nδ )i,j = πm−i

j , so A
(r)
nδ has determinant∏

i<j(πi − πj).

We now combine Theorem 3.1 and Corollary 3.2 with results of Lam and

Pylyavskyy [17] to obtain a variant of Theorem 3.1 which expresses s
(r)
λ as

a ratio of two polynomials.

For k ≥ 1 and r ∈ Z/nZ, let

σ
(r)
k (xa, . . . ,xb) =

∑
x
(r)
i1

x
(r−1)
i2

· · ·x(r−k+1)
ik

,

where the sum is over weakly increasing sequences a ≤ i1 ≤ · · · ≤ ik ≤ b,

such that each of the numbers a+ 1, a+ 2, . . . , b appears in the sequence at

most n− 1 times. Set σ
(r)
0 = 1. For example, if n = 3, then

σ
(2)
4 (x1,x2) = x

(2)
1 x

(1)
1 x

(3)
1 x

(2)
1 + x

(2)
1 x

(1)
1 x

(3)
1 x

(2)
2 + x

(2)
1 x

(1)
1 x

(3)
2 x

(2)
2

= x
(2)
1 x

(1)
1 σ

(3)
2 (x1,x2).

For a sequence α = (α1, . . . , αm) of non-negative integers, define an

m×m matrix B
(r)
α by

(B(r)
α )ij = x

(r+j−1)
j x

(r+j−2)
j · · ·x(r+j−αi)

j σ
(r+j−αi−1)
(n−1)(m−j)(xj , . . . ,xm).

Set b
(r)
α = det(B

(r)
α ).
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Theorem 3.3. For λ a partition with at most m parts, we have

(4) s
(r)
λ (x1, . . . ,xm) =

b
(r)
λ+δ

b
(r)
δ

=
b
(r)
λ+δ∏

1≤i<j≤m

(πi − πj)
.

Example 3.4. Let n = 3,m = 2, and λ = (3, 2). Then

B
(2)
λ+δ = B

(2)
(4,2)

=

⎛
⎜⎝

x
(2)
1 x

(1)
1 x

(3)
1 x

(2)
1 (x

(1)
1 x

(3)
1 + x

(1)
1 x

(3)
2 + x

(1)
2 x

(3)
2 ) x

(3)
2 x

(2)
2 x

(1)
2 x

(3)
2

x
(2)
1 x

(1)
1 (x

(3)
1 x

(2)
1 + x

(3)
1 x

(2)
2 + x

(3)
2 x

(2)
2 ) x

(3)
2 x

(2)
2

⎞
⎟⎠

(cf. (1)). The determinant of this matrix is

b
(2)
(4,2) = x

(2)
1 x

(1)
1 x

(3)
2 x

(2)
2

(
x
(3)
1 x

(2)
1 x

(1)
1 x

(3)
1 + x

(3)
1 x

(2)
1 x

(1)
1 x

(3)
2

−x
(3)
1 x

(2)
2 x

(1)
2 x

(3)
2 − x

(3)
2 x

(2)
2 x

(1)
2 x

(3)
2

)
.

Similarly, one computes b
(2)
(1,0) = x

(1)
1 x

(2)
1 x

(3)
1 − x

(1)
2 x

(2)
2 x

(3)
3 , and the ratio

b
(2)
(4,2)/b

(2)
(1,0) is indeed equal to the loop Schur function s

(2)
(3,2) from Example

2.3.

Proof of Theorem 3.3. The entries of the matrix A
(r)
α are given by

(A(r)
α )ij = tj,m(x(r+m−1)

m x(r+m−2)
m · · ·x(r+m−αi)

m )

= sjsj+1 · · · sm−2sm−1(x
(r+m−1)
m x(r+m−2)

m · · ·x(r+m−αi)
m ),

where the second equality comes from writing

tj,m = sjsj+1 · · · sm−2sm−1sm−2 · · · sj+1sj

and observing that the maps sj , . . . , sm−2 do not affect the variables x
(a)
m .

By [17, Lem. 3.1],

sjsj+1 · · · sm−2sm−1(x
(a)
m ) = x

(a−m+j)
j

σ
(a−m+j−1)
(n−1)(m−j)(xj , . . . ,xm)

σ
(a−m+j)
(n−1)(m−j)(xj , . . . ,xm)

,
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so

(A(r)
α )ij = x

(r+j−1)
j x

(r+j−2)
j · · ·x(r+j−αi)

j

σ
(r+j−αi−1)
(n−1)(m−j)(xj , . . . ,xm)

σ
(r+j−1)
(n−1)(m−j)(xj , . . . ,xm)

=
(B

(r)
α )ij

σ
(r+j−1)
(n−1)(m−j)(xj , . . . ,xm)

.

Taking determinants, we have

(5) a(r)α =
b
(r)
α∏m

j=1 σ
(r+j−1)
(n−1)(m−j)(xj , . . . ,xm)

.

This identity holds for all α ∈ (Z≥0)
m, so

b
(r)
λ+δ

b
(r)
δ

=
a
(r)
λ+δ

a
(r)
δ

= s
(r)
λ (x1, . . . ,xm)

by Theorem 3.1, proving the first equality in (4). The denominator of (5) is

equal to s
(r)
(n−1)δ(x1, . . . ,xm) by [17, Thm. 2.5], so the second equality follows

from Corollary 3.2.

Proof of Theorem 3.1. This proof is adapted from an argument in [21, §I.3].
Unless otherwise noted, all loop symmetric functions are in the variables

x1, . . . ,xm.

Set α = λ+ δ. Define an m×m matrix H
(r)
α by

(H(r)
α )ij = h

(r+j−1)
αi−m+j = h

(r+j−1)
λi−i+j .

Note that det(H
(r)
α ) = s

(r)
λ by Theorem 2.4. Define an m × m matrix E(r)

by

(E(r))ij = (−1)m−itj,m(e
(r+i)
m−i [m̂])

where e
(r)
k [m̂] = e

(r)
k (x1, . . . ,xm−1). We will show that

(6) H(r)
α E(r) = A(r)

α .
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To this end, set X = N(xm) · · ·N(x1) and Y = M(x1)
c · · ·M(xm−1)

c.
Clearly XY = N(xm), so

(7) (XY )uv =
∑
k

XukYkv = h
(v−1)
v−u (xm)

by Lemma 2.6. Applying tj,m to (7) and using the fact that every matrix
entry of X is fixed by the birational Sm action (by Theorem 2.10(1)), we
obtain

(8)
∑
k

Xuktj,m(Ykv) = tj,m(h
(v−1)
v−u (xm)).

By Lemma 2.6, (8) is the identity

(9)
∑
k

h
(k−1)
k−u (−1)k+vtj,m(e

(k)
v−k[m̂]) = tj,m(h

(v−1)
v−u (xm)).

Setting u = r +m− αi, v = r +m, and k = r + s, (9) becomes

(10)
∑
s

h
(r+s−1)
αi−m+s(−1)s+mtj,m(e

(r+s)
m−s [m̂]) = tj,m(h(r+m−1)

αi
(xm)).

Since e
(r+s)
m−s [m̂] = 0 unless 0 ≤ m − s ≤ m − 1, we only need to sum over

values of s between 1 and m. Thus, the two sides of (10) are precisely the
i, j entries of the two sides of (6).

To complete the proof, observe that H
(r)
δ is upper triangular with 1’s on

the diagonal, so it has determinant 1, and thus (6) with α = δ implies

det(E(r)) = det(A
(r)
δ ) = a

(r)
δ .

Taking determinants of (6), we obtain

s
(r)
λ a

(r)
δ = a

(r)
λ+δ.

Remark 3.5. If colors are identified (i.e., if x
(j)
i is specialized to yi for all j)

then the birational Sm action reduces to the permutation of the variables

yi, so (A
(r)
α )ij = yαi

j , and Theorem 3.1 specializes to the original definition

of the Schur polynomials. Under this specialization, we also have (B
(r)
α )ij =

yαi

j σ(n−1)(m−j)(yj , . . . , ym), where σi(yj , . . . , ym) is the sum of monomials of
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degree i in yj , . . . , ym such that the exponents of yj+1, . . . , ym are at most

n− 1. Thus, b
(r)
α becomes

(11) aα

m∏
j=1

σ(n−1)(m−j)(yj , . . . , ym),

and Theorem 3.3 is trivially equivalent to Theorem 3.1 in this case.

Remark 3.6. There is some interesting combinatorics associated to the
product in (11). It is easy to see that

σ(n−1)(m−j)(yj , . . . , ym) =

m∏
k=j+1

(yn−1
j + yn−2

j yk + · · ·+ yjy
n−2
k + yn−1

k ),

so

m∏
j=1

σ(n−1)(m−j)(yj , . . . , ym) =
∏

1≤j<k≤m

ynj − ynk
yj − yk

=
anδ
aδ

= s(n−1)δ(y1, . . . , ym).

Jucis [10] gave a bijective proof of this identity using Schensted insertion.
As mentioned in the proof of Theorem 3.3, Lam and Pylyavskyy [17] proved
a “colored refinement” of this identity:

m∏
j=1

σ
(r+j−1)
(n−1)(m−j)(xj , . . . ,xm) = s

(r)
(n−1)δ(x1, . . . ,xm).

(They used this formula to show that the loop Schur function s
(n)
(n−1)δ tropi-

calizes to the intrinsic energy function for tensor products of one-row crystals

of type A
(1)
n−1.) Their proof is algebraic; we would like to have a combina-

torial proof, perhaps using a “colored refinement” of Schensted insertion. It
would also be nice to have a combinatorial proof of Theorem 3.3, perhaps
along the lines of the argument in [3].

4. The loop Murnaghan–Nakayama rule

The Murnaghan–Nakayama rule gives the Schur expansion of the product of
a power sum symmetric function and a Schur function. A loop generalization
of this rule was stated in [13], and proved combinatorially by Ross [24]. Here
we give a short proof based on Theorem 3.1.



A ratio of alternants formula for loop Schur functions 373

Recall the loop power sums pk =
∑m

i=1 π
k
i , where πi = x

(1)
i x

(2)
i · · ·x(n)i .

Recall also that a ribbon (or border strip, or rim hook) is a connected5 skew

Young diagram that does not contain any 2×2 squares. The size of a ribbon

is the number of boxes it contains, and the height of a ribbon (denoted ht)

is one less than the number of rows it contains.

Theorem 4.1. Let λ be a partition with at most m parts, and k a positive

integer. Then

pk(x1, . . . ,xm)s
(r)
λ (x1, . . . ,xm) =

∑
(−1)ht(μ/λ)s(r)μ (x1, . . . ,xm),

where the sum is over all partitions μ (with at most m parts) such that μ/λ

is a ribbon of size kn.

Proof. All loop symmetric functions are in the variables x1, . . . ,xm. Since

the birational Sm action permutes the πi, and each color appears the same

number of times in πi, we have

pka
(r)
λ+δ

=

m∑
i=1

πk
i

∑
w∈Sm

sgn(w)

m∏
j=1

tw(j),m(x(r+m−1)
m x(r+m−2)

m · · ·x(r+m−(λ+δ)j)
m )

=
∑
w∈Sm

sgn(w)

m∑
i=1

πk
w(i)

m∏
j=1

tw(j),m(x(r+m−1)
m x(r+m−2)

m · · ·x(r+m−(λ+δ)j)
m )

=
∑
w∈Sm

sgn(w)

m∑
i=1

m∏
j=1

tw(j),m(x(r+m−1)
m x(r+m−2)

m · · ·x(r+m−(λ+δ)j−knρi,j)
m )

=

m∑
i=1

a
(r)
λ+δ+knεi

,

where ρi,j is 1 if i = j and 0 otherwise, and εi is the i
th standard basis vector

in Zm. Since a
(r)
α is anti-symmetric with respect to permuting parts of α, a

bit of bookkeeping (as in [21, §I.3, Ex. 11]) shows that

m∑
i=1

a
(r)
λ+δ+knεi

=
∑

(−1)ht(μ/λ)a
(r)
μ+δ,

5Two boxes that share only a vertex are not considered to be connected; thus,
the diagram (2, 1)/(1) is not connected.
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where the sum is over all partitions μ (with at most m parts) such that μ/λ

is a ribbon of size kn. Now divide by a
(r)
δ and apply Theorem 3.1.
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