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Inserting rim-hooks into reverse plane partitions

Robin Sulzgruber
∗

A new algorithm for inserting rim-hooks into reverse plane parti-
tions is presented. The insertion is used to define a bijection be-
tween reverse plane partitions of a fixed shape and multi-sets of
rim-hooks. In turn this yields a bijective proof of the fact that the
generating function for reverse plane partitions of a fixed shape,
which was first obtained by R. Stanley, factors into a product
featuring the hook-lengths of this shape. Our bijection turns out
to be equivalent to a map defined by I. Pak by different means,
and can be related to the Hillman–Grassl correspondence and the
Robinson–Schensted–Knuth correspondence.
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1. Introduction

Reverse plane partitions, like their relatives the plane partitions and semi-
standard Young tableaux, appear naturally in the context of symmetric
functions and the representation theory of the symmetric group. The gener-
ating function for reverse plane partitions was first obtained by R. Stanley.

Theorem 1.1. [13, Prop. 18.3] The generating function for reverse plane
partitions of shape λ is given by

∑
π

q|π| =
∏
u∈λ

1

1− qh(u)
,

where h(u) denotes the hook-length of the cell u ∈ λ.

A bijective proof of this result was found by A. Hillman and R. Grassl [6].
Their algorithm has since been related to the Robinson–Schensted–Knuth
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correspondence and M. Schützenberger’s jeu de taquin [4, 8], appears in

standard works [14, 12], and has become an integral part of enumerative

combinatorics. In particular, E. Gansner used the Hillman–Grassl corre-

spondence to obtain a refined generating function.

Theorem 1.2. [4, Thm. 3.2] The trace generating function for reverse plane

partitions of shape λ is given by

∑
π

∏
k∈Z

q
trk(π)
k =

∏
u∈λ

1

1− qH(u)

where

trk(π) =
∑

(i,j)∈λ
j−i=k

π(i, j) and qH(i,j) =

λi−i∏
k=j−λ′

j

qk .

Note that Theorem 1.1 is obtained from Theorem 1.2 by setting all

variables equal to q.

More recently A. Morales, I. Pak and G. Panova [9] used the Hillman–

Grassl correspondence to obtain a (trace) generating function for reverse

plane partitions of skew shape.

In this paper we present an alternative bijective proof of Theorems 1.1

and 1.2. In Section 2 we propose an algorithm for inserting rim-hooks into

reverse plane partitions. This algorithm is best perceived as a simple set of

rules for building reverse plane partitions, viewed as arrangements of stacks

of cubes, using bricks in the shape of rim-hooks. The insertion procedure is

formalised in Sections 3 and 4.

In Section 5 we address the question whether the insertion of rim-hooks

can be reversed. The full answer to this question is given in Section 6. Given

a rim-hook h and a reverse plane partition π, the insertion of h into π may

either fail or succeed. In the latter case a new reverse plane partition is

obtained, which is denoted by h∗π. Given a multi-set of rim-hooks, it might

be possible to use those rim-hooks to build multiple reverse plane partitions.

That is, there might be different ways to successively insert the rim-hooks

into the zero reverse plane partition with distinct outcome. Conversely, given

a reverse plane partition there might be distinct multi-sets of rim-hooks

that can be used to build it. However, it turns out that each reverse plane

partition can be built in a unique way if we demand that rim-hooks are

inserted in lexicographic order. This is the main result of this paper.
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Theorem 1.3. Let λ be a partition. Then for each reverse plane partition π
of shape λ there exists a unique ordered sequence h1 ≤ · · · ≤ hs of rim-hooks
of λ such that hi inserts into hi+1 ∗ · · · ∗ hs ∗ 0 for all i ∈ [s], and

π = h1 ∗ · · · ∗ hs ∗ 0 ,

where 0 denotes the reverse plane partition of shape λ with all entries equal
to zero. The correspondence π �→ (h1, . . . , hs) gives rise to a bijection Φ
between reverse plane partitions of shape λ and multi-sets of rim-hooks of λ.

A proof of Theorem 1.3 is given in Section 6. The bijection Φ is then
used to prove Theorems 1.1 and 1.2.

The inverse of our bijection extracts a rim-hook by decreasing a reverse
plane partition along a path and is especially reminiscent of the method of
A. Hillman and R. Grassl. Thus, once it can be said with some confidence
that the two maps do not coincide, the natural question arises whether one
can be easily obtained from the other. More generally, it is natural to ask
if some of the deeper connections between the Hillman–Grassl correspon-
dence and RSK mentioned above are also reflected in our map. We elab-
orate on connections between rim-hook insertion and known bijections in
Section 7.

The precise relation between our map and the Hillman–Grassl corre-
spondence remains unclear except in special cases. Some nice observations
can be made for permutation matrices and standard Young tableaux. See
Theorems 7.7 and 7.8. Instead it turns out that Φ is equivalent to a dif-
ferent bijection that already appears in the literature, although it is much
less well-known than the bijection of A. Hillman and R. Grassl. I. Pak [10]
encountered the same map in his geometric proof of the hook-length for-
mula based on polytopes. His definition of the map as a concatenation of
piecewise linear bijections is based on ideas from a paper of I. Pak and
A. Postnikov [11]. I. Pak also mentions a previous paper by A. Berenstein
and A. Kirillov [1] in which similar ideas appear in connection with jeu
de taquin. Another account on this map and its relation to RSK is due to
S. Hopkins [7] and emerged from a combinatorics seminar with A. Postnikov
held at MIT. Among other things S. Hopkins also observed that the map
can be used to obtain Theorem 1.2, which is the same as [7, Cor. 16]. Our
description differs significantly from the approach of I. Pak and S. Hop-
kins. A proof that the resulting bijections are equivalent is given in Theo-
rem 7.4.

Rim-hook insertion has also served as the motivation for some recent
work of A. Garver and R. Patrias [5] who found a common framework for
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obtaining both our bijection and the Hillman–Grassl correspondence from
RSK. An extended abstract of the present article appeared in the proceed-
ings of FPSAC 2017 in London [15].

2. Building with bricks

The aim of this section is to give an informal description of a simple and intu-
itive algorithm for building reverse plane partitions using rim-hook-shaped
bricks. A precise formal description and definitions are found in the subse-
quent sections.

A partition is a top and left justified array of cells. A reverse plane par-
tition is a top and left justified array of non-negative integers such that rows
and columns are weakly increasing. Alternatively, a reverse plane partition
can be visualised as a three-dimensional object, by placing k unit cubes on
top of the number k. Figure 1 shows examples of these three notions. Note
that we have rotated the reverse plane partition to obtain its representation
by cubes such that all stacks of cubes are visible.

0 1 2 3

1 2 2

1

Figure 1: The partition λ = (4, 3, 1), a reverse plane partition π of shape λ,
and the representation of π as stacks of cubes.

A rim-hook (or border strip or ribbon) of a partition is a connected
subset of cells that does not contain a two-by-two square, such that removing
the rim-hook yields again a partition. Figure 2 shows the rim-hooks of the
partition λ = (4, 3, 1).

Figure 2: All eight rim-hooks of the partition λ = (4, 3, 1).
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For the purpose of this section we view rim-hooks as rigid three dimen-
sional bricks of height one. See Figure 3.

Figure 3: Bricks in the shapes of rim-hooks.

A part of a rim-hook is a maximal set of cells (cubes) contained in
the same row of the partition. For example, the bottom right rim-hook in
Figure 2 has three parts of sizes two, three and one. See Figure 4.

Figure 4:

Suppose you are given a reverse plane partition π of shape λ and a rim-
hook h of λ. To insert h into π first try placing the brick on top of the reverse
plane partition such that the cells of h align with the corresponding cells of
the shape of π. See Figure 5.

Figure 5:

This try fails if π does not support the brick, that is, if the resulting
arrangement of cubes has a hole somewhere. In this case try the following:
Cut off the maximal number of parts of the brick that can be inserted
without creating holes, and place this piece of the brick on top of the reverse
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plane partition. Then shift the remainder of the brick diagonally by one and
try to insert it in the new position. See Figure 6.

Figure 6:

It is not demanded that the remainder of the brick is inserted at the
same height as the initial segment. Furthermore it is allowed to cut the
brick multiple times if needed, as long as all cuts happen between different
parts. See Figure 7 for examples.

Figure 7:

If this procedure terminates successfully we say h inserts into π and we
denote the resulting reverse plane partition by h∗π. Sometimes the algorithm
fails to produce a reverse plane partition. Figure 8 shows three examples
where h does not insert into π. Note in particular the third example, in
which insertion fails because it is demanded that each part of h remains
intact and cannot be cut in two.

Our main results can be phrased as follows. First of all every reverse
plane partition can be built as described above using only bricks of rim-
hook shape as building blocks. Secondly, given a multi-set of bricks there
is always a way to sort them (lexicographically) such that they can be suc-
cessively inserted into the zero reverse plane partition. Thirdly, each reverse
plane partition can be built in a unique way such that all building blocks
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Figure 8:

are inserted in lexicographic order. Altogether we obtain a bijective corre-
spondence between reverse plane partitions whose shape is a fixed partition
λ and the multi-sets of rim-hooks of λ.

3. Candidates and rim-hooks

In this section we fix notation concerning partitions and rim-hooks, and
introduce some concepts that will be used throughout the remainder of the
paper.

Let N = {0, 1, 2, . . . } denote the set of non-negative integers. Given
n ∈ N set [n] = {1, . . . , n}. A cell is a pair (i, j) ∈ Z

2. Denote the north,
east, south and west neighbours of u = (i, j) by

nu = (i− 1, j), eu = (i, j + 1), su = (i+ 1, j), wu = (i, j − 1).

A partition λ is a weakly decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λr > 0
of positive integers. The elements λi are called parts of the partition. The
number of parts is called the length of the partition and is denoted by �(λ).
We identify each partition with a set of cells λ = {(i, j) : i ∈ [�(λ)], j ∈ [λi]}
called the Young diagram of λ. The conjugate of a partition λ is the partition
λ′ = {(j, i) : (i, j) ∈ λ}. The hook H(u) of a cell u ∈ λ consists of the cell
u itself and those cells v ∈ λ that lie directly east of u or directly south
of u. The hook-length h(u) = λi + λ′

j − i − j + 1 denotes the cardinality of
H(u). For example, in the partition λ = (4, 3, 1) above we have H(1, 2) =
{(1, 2), (1, 3), (1, 4), (2, 2)} and thus h(1, 2) = 4.

A reverse plane partition of shape λ is a map π : λ → N such that
π(u) ≤ π(eu) and π(u) ≤ π(su) for all u ∈ λ. By convention π(i, j) = 0 if
i ≤ 0 or j ≤ 0 and π(i, j) = ∞ if i, j ≥ 1 but (i, j) /∈ λ. Let RPPλ denote
the set of reverse plane partitions of shape λ. Figure 1 shows the partition
λ = (4, 3, 1), a reverse plane partition π of shape λ and the representation
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of π as an arrangement of stacks of cubes. The map π : λ → N defined by
π(u) = 0 for all u ∈ λ is called the zero reverse plane partition. The size of
a reverse plane partition π ∈ RPPλ is defined as |π| =

∑
u∈λ π(u).

A north-east-path in λ is a sequence P = (u0, u1, . . . , us) of cells uk ∈ λ
such that uk ∈ {nuk−1, euk−1} for all k ∈ [s]. We call �(P ) = s the length,
α(P ) = u0 the head and ω(P ) = us the tail of the path P . Sometimes
it is more convenient to consider south-west-paths instead. A south-west-
path in λ is a sequence Q = (v0, v1, . . . , vs) of cells vk ∈ λ such that vk ∈
{svk−1,wvk−1} for all k ∈ [s]. Denote by P ′ = (us, . . . , u1, u0) the reverse
path of P . Clearly the reverse of a south-west-path is a north-east-path
and vice versa. Given a south-west-path Q, set �(Q) = s, α(Q) = vs and
ω(Q) = v0 so that all notions are independent of the fact whether Q is
regarded as a north-east-path or as a south-west-path. That is, α(P ) =
α(P ′), ω(P ) = ω(P ′) and so forth. If no special care is required we sometimes
say path to mean either north-east-path or south-west-path or both.

A rim-hook of λ is a north-east-path h in λ such that sα(h) /∈ λ, eω(h) /∈
λ and esu /∈ λ for all u ∈ h. For each cell (i, j) ∈ λ there is a (unique) rim-
hook h with α(h) = (λ′

j , j) and ω(h) = (i, λi). This correspondence is a
bijection between the cells of λ and the rim-hooks of λ. Denote the rim-
hook corresponding to the cell u ∈ λ by hu. Note that the length of the
rim-hook hu is equal to the hook-length of the cell u, that is, �(hu) = h(u).

A cell u ∈ λ is called outer corner if eu, su /∈ λ, and inner corner if
eu, su ∈ λ but esu /∈ λ. The content of a cell u = (i, j) is defined as

c(u) = j − i.

Let i1, . . . , ir be the contents of the inner corners of λ and o1, . . . , or+1 be
the contents of the outer corners of λ ordered such that

o1 < i1 < o2 < · · · < or < ir < or+1.

Divide λ into four regions

I = {u ∈ λ : c(u) = ik for some k ∈ [r]}
O = {u ∈ λ : c(u) = ok for some k ∈ [r + 1]}
A = {u ∈ λ : c(u) < o1 or ik < c(u) < ok+1 for some k ∈ [r]}
B = {u ∈ λ : ok < c(u) < ik for some k ∈ [r] or or+1 < c(u)}

See Figure 9. The motivation for these definitions is as follows. Let h be a
rim-hook of λ. Then α(h) ∈ A ∪ O and ω(h) ∈ O ∪ B. More generally if u
is a cell of h and u ∈ I ∪ A then eu ∈ h. Similarly, if u ∈ h and u ∈ B ∪ I
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−5

−2 1

2 3

4 7

A

A
A

B

B

Figure 9: The contents of the outer corners are −5, 1, 3, 7. The contents of
the inner corners are −2, 2, 4.

then also su ∈ h. We will consider paths that are similar to rim-hooks in
the sense that they satisfy similar properties.

Equip the cells of λ with two total orders: the reverse lexicographic order
(λ,≤) and the content order (λ,�). Let u, v ∈ λ, u = (i, j) and v = (k, �).
Then u ≤ v if and only if either j > � or j = � and i ≥ k. Moreover u � v
if and only if either c(u) > c(v) or c(u) = c(v) and i ≥ k. Both orders are
indicated for the partition λ = (4, 3, 1) in Figure 10.

8 5 3 1

7 4 2

6

6 4 2 1

7 5 3

8

0 1 2 3

1 2 2

1

Figure 10: The reverse lexicographic order (left) and the content order (mid-
dle) for the cells of the partition λ = (4, 3, 1). The set of candidates C(π)
(right) of a reverse plane partition of shape λ.

Define a total order on the rim-hooks of λ by letting hu ≤ hv if and
only if u ≤ v. Equivalently, given rim-hooks f and h we have f ≤ h if
and only if either c(α(f)) > c(α(h)) or c(α(f)) = c(α(h)) and c(ω(f)) ≤
c(ω(h)). Figure 2 shows all rim-hooks of the partition λ = (4, 3, 1) in reverse
lexicographic order starting with the minimum.

Let π be a reverse plane partition of shape λ. Define the set of candidates
of π as

C(π) =
{
u ∈ O : π(u) > π(wu)

}
∪

{
u ∈ A : π(u) > π(wu) and π(u) > π(nu)

}
.

See Figure 10 for an example. The motivation for the definition of candidates
will become clearer later on. Candidates are an important tool for the anal-
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ysis of our insertion algorithm, especially when dealing with the reverse pro-
cedure. For now we prove a simple criterion for the existence of candidates.

Lemma 3.1. Let λ be a partition and π ∈ RPPλ. Let u ∈ I ∪ A and
v ∈ A ∪ O be cells in the same row such that π(u) < π(v) and ik ≤ c(u) <
c(v) ≤ ok+1 for some k ∈ [r] or c(u) < c(v) ≤ o1. Then there exists a
candidate w ∈ C(π) with c(w) > c(u).

Proof. First note that we may assume without loss of generality that v ∈ O.
Choose x = (x1, x2) in the same row of λ as u with c(u) < c(x) ≤ c(v) such
that x2 is minimal with π(u) < π(x). Moreover choose y = (y1, y2) in the
same column of λ as x, that is, y2 = x2, with c(x) ≤ c(y) ≤ c(v) such that
y1 is minimal with π(x) = π(y). Then c(y) > c(u) and y ∈ C(π).

Note that the proof of Lemma 3.1 still works when v = (i, j) is the
southernmost outer corner of λ, that is, j − i = o1, and u = (i, 0), even
though u does not belong to λ.

Corollary 3.2. Let λ be a partition and π ∈ RPPλ a non-zero reverse plane
partition. Then C(π) 
= ∅.
Proof. Apply Lemma 3.1 to the cells u, v, where v = (i, j) is the southern-
most outer corner of λ with π(v) > 0, and u is the easternmost cell in the
same row as v with π(v) = 0. Note that if j − i = ok+1 for some k ∈ [r],
then u ∈ I ∪ A and ik ≤ c(u) < ok+1. If j − i = o1 then u ∈ A or u = (i, 0)
as in the remark above.

4. Inserting rim-hooks

This section contains a formal definition of the insertion algorithm described
in Section 2.

The insertion works by increasing a reverse plane partition along a path.
Let π be a reverse plane partition of shape λ and P be a path in λ. Define
the maps π ± P : λ → Z by

(π ± P )(u) =

{
π(u)± 1 if u ∈ P,

π(u) otherwise.

We call the pair (P, π) compatible if the following two conditions are fulfilled.

If u ∈ P and u ∈ I ∪ A then eu ∈ P and π(u) = π(eu).(4.1)

If u, su ∈ P then π(u) = π(su).(4.2)
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We say a rim-hook h of λ inserts into π if there exists a path P such that
ω(P ) = ω(h), �(P ) = �(h), (P, π) is compatible and π+P is a reverse plane
partition.

Our first goal is to show that such a path is unique if it exists at all.
Given a rim-hook h of λ construct a south-west-path P (h, π) as follows. Let
ω(P (h, π)) = ω(h) and while �(P (h, π)) < �(h) if u is the current cell then
move to

the cell

{
su if u ∈ B ∪ I and π(u) = π(su),

wu otherwise.

Lemma 4.1. Let λ be a partition, π ∈ RPPλ, h a rim-hook of λ inserting
into π and let P be a south-west-path in λ such that ω(P ) = ω(h), �(P ) =
�(h), (P, π) is compatible and π + P is a reverse plane partition. Then P =
P (h, π).

Proof. Suppose P is a south-west-path in λ such that ω(P ) = ω(h), �(P ) =
�(h), (P, π) is compatible and π + P is a reverse plane partition. Suppose
u ∈ P with u � α(P ). If u ∈ B ∪ I such that π(u) = π(su) then su ∈ P
because π+P is a reverse plane partition. Otherwise wu ∈ P because (P, π)
is compatible. Hence P agrees with the construction of P (h, π) and the claim
follows.

As a consequence of Lemma 4.1 if a rim-hook h inserts into a reverse
plane partition π then P (h, π) is the unique south-west-path P such that
ω(P ) = ω(h), �(P ) = �(h), (P, π) is compatible and π+P is a reverse plane
partition. In this case denote h ∗ π = π + P (h, π).

It is not difficult to verify that our definition of h ∗ π agrees with the
examples of Section 2. For example Figure 11 shows the insertion paths
corresponding to Figure 6.

We finish this section by proving a necessary condition for when the
insertion algorithm fails. At the same time this result is a first indication of
the importance of candidates.

0 0 0

0 0 0

1 1 1

0 0 0

0 0 0

1 1 1

Figure 11: The paths P (hu, π) for the cells u = (1, 3) (left) and u = (2, 2)
(right).
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Theorem 4.2. Let λ be a partition, π ∈ RPPλ and h a rim-hook of λ
that does not insert into π. Then there exists a candidate u ∈ C(π) with
u � α(P (h, π)).

Proof. By construction ω(P (h, π)) = ω(h), �(P (h, π)) = �(h) and P (h, π)
satisfies (4.2). Hence if h does not insert into π then P (h, π) does not satisfy
(4.1) or π + P (h, π) is not a reverse plane partition.

If P (h, π) does not satisfy (4.1) then there exists u ∈ P (h, π) with u ∈
I∪A and π(u) < π(eu). Hence Lemma 3.1 yields the existence of a v ∈ C(π)
with c(α(P (h, π))) ≤ c(u) < c(v).

On the other hand assume that P (h, π) satisfies (4.1) and that π+P (h, π)
is not a reverse plane partition. Then there exists u ∈ P (h, π) such that

π(u) = π(eu) and eu /∈ P (h, π) or(4.3)

π(u) = π(su) and su /∈ P (h, π).(4.4)

Let u ∈ P (h, π) the minimal cell with respect to the content order that
satisfies (4.3) or (4.4).

If eu /∈ P (h, π) and π(u) = π(eu) then nu ∈ P (h, π) and thus nu ∈
B ∪ I with π(u) = π(nu). Consequently π(nu) = π(enu) = π(eu). But now
either enu ∈ P (h, π) satisfies (4.4) or enu /∈ P (h, π) and nu satisfies (4.3)
contradicting the minimality of u.

If su /∈ P (h, π) and π(u) = π(su) then u ∈ A ∪ O and eu, esu ∈ λ.
If u ∈ O, eu /∈ P (h, π) and π(eu) = π(u) then we are in the case treated
above. If u ∈ O and π(eu) > π(u), then esu ∈ C(π). On the other hand if
eu ∈ P (h, π) then we may assume π(esu) > π(eu) by minimality of u and
again esu ∈ C(π).

5. Factors

In this section we address the question how and when rim-hook insertion
can be inverted.

Given a reverse plane partition π of shape λ and a rim-hook h of λ it is
natural to ask if there exists a reverse plane partition π̃ such that π = h ∗ π̃.
The main reason why extracting rim-hooks is a non-trivial task is the fact
that the reverse plane partition π̃ is in general not unique. See Figure 12.
Candidates play an important role in resolving this ambiguity.

Let us formulate in terms of reducing π along a path in λ. A rim-hook h of
λ is a factor of π if there exists a south-west-path P such that ω(P ) = ω(h),
�(P ) = �(h), (P, π) is compatible and π−P is again a reverse plane partition.
Denote the set of all factors of π by F(π).
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Figure 12:

Given a candidate v ∈ C(π) construct the north-east-path Q(v, π) in λ
as follows: Let α(Q(v, π)) = v and, if u is the current cell, move to

the cell

{
nu if u ∈ O ∪ B and π(u) = π(nu),

eu if u ∈ I ∪ A or eu ∈ λ, π(u) > π(nu),

and terminate the path if neither a north step nor an east step are possible
according to these rules, that is, if π(u) > π(nu) and eu /∈ λ. Denote by
h(v, π) the rim-hook of λ defined by ω(h(v, π)) = ω(Q(v, π)) and �(h(v, π)) =
�(Q(v, π)).

Lemma 5.1. Let λ be a partition, π ∈ RPPλ, h ∈ F(π) be a factor of π,
P be a south-west-path in λ such that ω(P ) = ω(h), �(P ) = �(h), (P, π) is
compatible and π − P is a reverse plane partition, and let v = α(P ). Then
v ∈ C(π) and P is the reverse path of Q(v, π).

Proof. First note that v ∈ A ∪ O because ω(P ) = ω(h), �(P ) = �(h) and
α(h) ∈ A ∪ O. Hence v ∈ C(π) because of (4.1) and since π − P is a
reverse plane partition. Now consider a cell u ∈ P . If π(u) = π(nu) then
nu ∈ P as π − P is a reverse plane partition. If u ∈ I ∪ A or if eu ∈ λ and
π(u) > π(nu) then eu ∈ P because (P, π) is compatible. Thus P agrees with
the construction of Q(v, π).

Lemma 5.2. Let λ be a partition, π ∈ RPPλ and h a rim-hook of λ. Then
h is a factor of π if and only if there exists π̃ ∈ RPPλ such that h inserts
into π̃ and h ∗ π̃ = π.

Proof. We begin with an observation. If π and π − P are reverse plane
partitions for some path P , then it follows directly from the definition that
(P, π) is compatible if and only if (P, π − P ) is compatible.

Now suppose that there is a reverse plane partition π̃ such that h inserts
into π̃ and h ∗ π̃ = π. Then h ∈ F(π) because ω(h) = ω(P (h, π̃)), �(h) =
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�(P (h, π̃)), (P (h, π̃), π) is compatible, and π−P (h, π̃) = π̃ is a reverse plane
partition.

Conversely suppose that h ∈ F(π), and let Q be a south-west-path in
λ such that ω(Q) = ω(h), �(Q) = �(h), (Q, π) is compatible, and π − Q is
a reverse plane partition. Then we may set π̃ = π − Q because (Q, π̃) is
compatible and π̃ +Q = π.

Note that by Lemmas 5.1 and 5.2 the reverse plane partition π̃ is unique
as long as we fix the candidate v = α(P (h, π̃)) = α(Q(v, π)). Moreover, we
have reduced the task of finding factors of π to finding suitable candidates.

The following theorem guarantees the existence of factors.

Theorem 5.3. Let λ be a partition, π ∈ RPPλ and u ∈ C(π) a candidate.
Then there exists a factor h ∈ F(π) such that h ≤ h(u, π).

Proof. Without loss of generality we may assume that u is the minimum of
C(π) with respect to the content order �. Let P be the reverse of Q(u, π) and
h = h(u, π). Then by Lemma 5.1 P is a south-west-path with ω(P ) = ω(h)
and �(P ) = �(h) satisfying (4.2). Let v ∈ I ∪ A be a cell with v � u. By
Lemma 3.1 and by choice of u we have π(v) = π(ev). Thus P satisfies (4.1).

Now suppose that π − P is not a reverse plane partition and choose
v ∈ P maximal with respect to the content order such that nv /∈ P and
π(nv) = π(v) or wv /∈ P and π(wv) = π(v). If nv /∈ P and π(nv) = π(v)
then v ∈ I∪A. By Lemma 3.1 we have π(nwv) = π(v). Hence π(wv) = π(v)
and v /∈ C(π). Since v /∈ C(π) either sv ∈ P or wv ∈ P . But wv ∈ P
contradicts the maximality of v.

We may therefore assume that wv /∈ P and π(wv) = π(v) and sv ∈ P .
Then π(sv) = π(v) by construction of P . Consequently π(swv) = π(v)
and sv /∈ C(π). By maximality of v we must have swv ∈ P . But then
π(swv) = π(wv) yields a contradiction to the maximality of v.

We conclude that π − P is a reverse plane partition and h ∈ F(π).

In particular the proof of Theorem 5.3 shows that if u is the minimum
of C(π) with respect to the content order then h(u, π) is a factor of π. We
conclude a first factorisation theorem.

Theorem 5.4. Let λ be a partition and π ∈ RPPλ. Then there exists a
sequence of rim-hooks h1, h2, . . . , hs of λ such that hi inserts into the reverse
plane partition hi−1 ∗ · · · ∗h1 ∗ 0 for all i ∈ [s] and π = hs ∗ · · · ∗h1 ∗ 0, where
0 denotes the zero reverse plane partition.

Proof. The claim follows by induction on the size of π since every non-zero
reverse plane partition has a candidate by Corollary 3.2 and thus also a
factor due to Theorem 5.3.
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To conclude this section we prove two results on the behaviour of the

set of candidates when a rim-hook is inserted or extracted.

Lemma 5.5. Let λ be a partition, π ∈ RPPλ and u, v ∈ C(π) be distinct

candidates such that (Q(v, π), π) is compatible and π −Q(v, π) is a reverse

plane partition. Then u ∈ C(π −Q(v, π)).

Proof. The claim is trivially true if v � u. Thus suppose u � v and u /∈
C(π − Q(v, π)). It follows that u ∈ Q(v, π). By construction of Q(v, π) and

since u �α(Q(v, π)) we have wu ∈ Q(v, π). But then π(wu) = π(u) by (4.1)

contradicting u ∈ C(π).

Lemma 5.6. Let λ be a partition, π ∈ RPPλ, u ∈ λ−C(π) and v ∈ C(π) such
that (Q(v, π), π) is compatible and π − Q(v, π) is a reverse plane partition.

If u � v then u /∈ C(π −Q(v, π)).

Proof. Suppose u ∈ C(π−Q(v, π)) but u /∈ C(π). First note that u ∈ A∪O.

As u ∈ C(π −Q(v, π)) and since wu ∈ Q(v, π) implies u ∈ Q(v, π) we must

have π(wu) < π(u). Thus u ∈ A and π(u) = π(nu) because u /∈ C(π).
Moreover nu ∈ A∪O and nu ∈ Q(v, π). Since nu � v it follows that nwu ∈
Q(v, π) but then π(nwu) ≤ π(wu) < π(nu) contradicts condition (4.1) for

Q(v, π).

6. A bijection

In this section rim-hook insertion is used to obtain a bijection between the

set of reverse plane partitions RPPλ and multi-sets of rim-hooks of λ.

The following two results essentially state that certain paths used in the

definitions of insertion and extraction of rim-hooks cannot cross.

Lemma 6.1. Let λ be a partition, π ∈ RPPλ, h a rim-hook of λ and u ∈
C(π). If u � α(P (h, π)) then h(u, π) < h.

Proof. The claim is trivial if c(u) > c(α(P (h, π))). Thus assume that c(u) =

c(α(P (h, π))). It suffices to show that ω(P (h, π)) � ω(Q(u, π)). If this is

not the case then there exists a cell v ∈ λ such that v,wv ∈ P (h, π) and

v, sv ∈ Q(u, π). It follows from the construction of Q(u, π) that v ∈ B ∪ I
and π(v) = π(sv), which contradicts wv ∈ P (h, π).

Lemma 6.2. Let λ be a partition, π ∈ RPPλ, h a rim-hook of λ and u ∈
C(π). If α(P (h, π)) � u then h ≤ h(u, π).
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Proof. The claim is trivial if c(u) < c(α(P (h, π))) Thus assume that c(u) =
c(α(P (h, π))). It suffices to show that ω(Q(u, π)) � ω(P (h, π)). If this is
not the case then there exists a cell v ∈ λ such that v,nv ∈ P (h, π) and
v ∈ Q(u, π) and nv /∈ Q(u, π). From the construction of P (h, π) it follows
that v ∈ O ∪ B and π(v) = π(nv). But this contradicts nv /∈ Q(u, π).

The following theorem guarantees that the successive insertion of rim-
hooks into the zero reverse plane partition never fails as long as we respect
the reverse lexicographic order on rim-hooks.

Theorem 6.3. Let λ be a partition and h1, h2, . . . , hs be rim-hooks of λ
such that hi ≤ hi+1 for all i ∈ [s− 1]. Then hi inserts into hi+1 ∗ · · · ∗ hs ∗ 0
and the minimum of C(hi ∗ · · · ∗ hs ∗ 0) with respect to the content order is
α(P (hi, hi+1 ∗ · · · ∗ hs ∗ 0)) for all i ∈ [s].

Proof. By induction on s we may assume that hi inserts into hi+1∗· · ·∗hs∗0
for all i > 1 and that the minimum of C(π) is given by α(Q) where π =
h2 ∗ · · · ∗ hs ∗ 0 and Q = P (h2, h3 ∗ · · · ∗ hs ∗ 0).

If h1 does not insert into π then by Theorem 4.2 there exists a candi-
date u ∈ C(π) with u � α(P (h1, π)). Without loss of generality assume that
u = α(Q). By Lemma 5.1 we obtain Q = Q(u, π) and hence h(u, π) = h2.
However, Lemma 6.1 implies h1 > h(u, π) = h2, which is a contradiction.

Thus h1 inserts into π. To see the second claim, assume that there is a
v ∈ C(h1 ∗ π) with v � α(P (h, π)). Then v ∈ C(π) due to Lemma 5.5, we can
assume that v = α(Q) and deduce a contradiction as above.

Let h1, h2, . . . , hs be a sequence of rim-hooks in λ such that hi ≤ hi+1 for
all i ∈ [s−1]. Then we call π = h1∗h2∗· · ·∗hs∗0 a lexicographic factorisation
of π. The next theorem implies that every reverse plane partition possesses
a lexicographic factorisation.

Theorem 6.4. Let λ be a partition and π ∈ RPPλ. Define a sequence of
rim-hooks h1, h2, . . . , hs by letting hi = h(vi, πi) for all i ∈ [s], where vi is
the minimum of C(πi) with respect to the content order, π1 = π, πi+1 = πi−
Q(vi, πi), and πs+1 is the first reverse plane partition in this sequence with
only zero entries. Then hi ≤ hi+1 for all i ∈ [s−1] and π = h1∗h2∗· · ·∗hs∗0.
Proof. Let u be the minimum of C(π). Note that h(u, π) ∈ F(π) due to
Theorem 5.3. By induction on the size of π we may assume that h2∗· · ·∗hs∗0
is a lexicographic factorisation of π2. Let v be the minimum of C(π2). By
Lemma 5.6 we have u � v. Using Lemma 6.2 and Q(u, π) = P (h1, π2) we
obtain h1 ≤ h(v, π2) = h2.

Furthermore lexicographic factorisations are unique.
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Theorem 6.5. Let λ be a partition, π ∈ RPPλ and π = h1 ∗ h2 ∗ · · · ∗ hs ∗ 0
be a lexicographic factorisation of π. Then h2 ∗ · · · ∗ hs ∗ 0 = π − Q(v, π)
where v is the minimum of C(π) with respect to the content order.

Proof. Set π̃ = h2 ∗ · · · ∗ hs ∗ 0 and assume that there exist candidates
v, w ∈ C(π) with v � w and π̃ = π − Q(w, π). By Lemma 5.5 we have
v ∈ C(π̃). Clearly π̃ = h2 ∗ · · · ∗ hs ∗ 0 is a lexicographic factorisation of π̃.
By induction on the size of π we may assume that h(u, π̃) = h2 where u�w.
Using Lemma 6.1 and Q(w, π) = P (h1, π̃) we see that h2 < h1, which is a
contradiction.

The previous results of this section are collected in main theorem of this
article. Note that this is an equivalent formulation of Theorem 1.3.

Theorem 6.6. Let λ be a partition. Then the map sending each reverse
plane partition of shape λ to its lexicographic factorisation is a bijection
between RPPλ and the multi-sets of rim-hooks of λ.

Proof. Consider the map sending a multi-set of rim-hooks h1, h2, . . . , hs to
the reverse plane partition hσ(1) ∗ hσ(2) ∗ · · · ∗ hσ(s) ∗ 0, where σ ∈ Ss re-
arranges the rim-hooks in lexicographic order. This map is well-defined by
Theorem 6.3, surjective by Theorem 6.4 and injective by Theorem 6.5. More-
over it is clearly the inverse of the map described in the theorem.

Figures 13 and 14 demonstrate that a reverse plane partition may have
multiple factorisations. However, only in Figure 14 are the rim-hooks in-
serted in reverse lexicographic order.

Moreover we remark that the lexicographic factorisation of a given re-
verse plane partition π can be obtained inductively by finding the minimal
candidate v ∈ C(π) and constructing the path Q(v, π) along which π is
reduced. For example, the lexicographic factorisation from Figure 14 is ob-
tained in Figure 15. At each step the candidates are circled. Moreover, the

Figure 13:
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Figure 14:
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Figure 15:

minimal candidate v and the path Q(v, π) are shaded. The tableaux in the
second row record the multi-set of rim-hooks that have been extracted.

Finally we demonstrate that the bijection from Theorem 6.6 can be used
to prove the generating function identity from Theorem 1.2.

Proof of Theorem 1.2. For each rim-hook h the set of contents {c(u) : u ∈ h}
is an interval {j − λ′

j , . . . , λi − i} where (i, j) is the cell corresponding to h.
Moreover if P is a north-east-path in λ with ω(P ) = ω(h) and �(P ) = �(h)
then {c(u) : u ∈ P} = {c(u) : u ∈ h}. Hence if h inserts into a reverse plane
partition π then

∏
k∈Z

q
trk(h∗π)
k =

∏
k∈Z

q
trk(π)
k ·

λi−i∏
k=j−λ′

j

qk .

The claim therefore follows from Theorem 6.6.

7. Connections to known bijections

In this section we try to shed some light on how the bijection of Theorem 6.6
is related to previous work.
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Let Tλ = {t : λ → N}. The elements t ∈ Tλ are sometimes called tableaux
of shape λ. Note that Tλ is in bijection with the multi-sets of rim-hooks of
λ. To obtain the multi-set corresponding to the function t simply take t(u)
copies of the rim-hook hu for each u ∈ λ.

We view the bijection of Theorem 6.6 as a map from tableaux to reverse
plane partitions of the same shape, and denote it by Φ : Tλ → RPPλ.

I. Pak [10, Sec. 4 and 5] describes a bijection between reverse plane par-
titions and tableaux of the same shape that is obtained inductively as the
concatenation of piecewise linear maps between certain polytopes. He uses
this map to derive a proof of the hook-length formula and notes further
connections to the Robinson–Schensted–Knuth correspondence. Similar ob-
servations are made in [7]. It turns out that this map coincides with the
bijection obtained in Section 6.

We now present the bijection defined in [10]. Let λ be a partition and
x ∈ λ an outer corner. Set μ = λ− {x}. Define a map ζλ,x : RPPλ → RPPμ

by

ζλ,x(π)(u) = max{π(nu), π(wu)}+min{π(eu), π(su)} − π(u)

if c(u) = c(x), and

ζλ,x(π)(u) = π(u)

otherwise. It is easy to see that ζλ,x(π) is indeed a reverse plane partition.
Furthermore define a map ξλ : RPPλ → Tλ inductively. Assume that ξμ

is already defined and set

ξλ,x(π)(u) =

{
π(x)−max{π(nu), π(wu)} if u = x,

ξμ ◦ ζλ,x(π)(u) otherwise.

One can show that ξλ,x is independent of the choice of the outer corner x [10,
Thm. 4]. Thus set ξλ = ξλ,x. See Figure 16 for an example.

Given an outer corner x ∈ λ define

RPPλ,x =
{
π ∈ RPPλ : π(x) = max{π(nx), π(wx)}

}
.

Note that π ∈ RPPλ,x if and only if ξλ(π)(x) = 0.
We need to consider the four regions I,O,A and B defined in Section 3

for multiple partitions at the same time. To distinguish properly denote
the corresponding subsets of λ and μ by Iλ and Iμ respectively, and use
analogous notation for the other regions.

We first establish how the map ζλ,x affects candidates and the paths
Q(v, π) defined in Section 5. The following two lemmas are slightly technical,
but not very difficult to prove.
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Figure 16:

Lemma 7.1. Let λ be a partition, x ∈ λ an outer corner, μ = λ − {x},
π ∈ RPPλ,x, ρ = ζλ,x(π), and v ∈ λ be a cell. Regard C(π) and C(ρ) as

ordered sets with respect to the content order.

(i) If c(v) /∈ {c(x)−1, c(x), c(x)+1} then v ∈ C(π) if and only if v ∈ C(ρ).
(ii) Let c(v) = c(x) and v be the minimum of C(π). Then π(v) = π(nv)

implies that nv ∈ C(ρ) and ev /∈ C(ρ). On the other hand π(v) > π(nv)

implies ev ∈ C(ρ).
(iii) Let c(v) = c(x)+1 and v be the minimum of C(ρ). Then ρ(v) ≤ ρ(swv)

implies wv ∈ C(π) and sv /∈ C(π). On the other hand ρ(v) > ρ(swv)

implies sv ∈ C(π).
(iv) Let c(v) = c(x)− 1. Then v ∈ C(π) implies v ∈ C(ρ), and v = min C(ρ)

implies v ∈ C(π).

Proof. Claim (i) is trivial.

Next consider claim (ii). From v ∈ C(π) it follows that π(v) > π(wv).

Moreover π(sv) = π(esv) ≥ π(ev) since π(esv) /∈ C(π).
If π(v) = π(nv) then nv ∈ μ and nv ∈ Aμ ∪Oμ because c(v) = c(x) and

x is an outer corner of λ. Furthermore π(nv) > π(wv) implies

ρ(nwv) = max{π(nnwv), π(nwwv)} − π(nwv) + π(wv)

≤ π(wv) < π(nv) = ρ(nv).

Thus nv ∈ C(ρ) unless nv ∈ Aμ and ρ(nv) = ρ(nnv). In that case, however,

nnv ∈ Aμ∪Oμ and ρ(nnwv) < ρ(nnv). By Lemma 3.1 there exists a candi-

date u ∈ C(ρ) with c(u) > c(x)+1. By (i) this contradicts the minimality of

v in C(π), and we conclude that nv ∈ C(ρ). Moreover ρ(v) = π(ev) = ρ(ev)

and ev /∈ C(ρ).
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On the other hand, if π(v) > π(nv) then v 
= x and ev ∈ Aμ ∪ Oμ. We
compute ρ(v) < ρ(ev), which yields ev ∈ C(ρ) by use of Lemma 3.1 and
claim (i) as above.

The proof of claim (iii) is similar. Here ρ(wv) < ρ(v) and sv ∈ λ. First
suppose ρ(v) ≤ ρ(swv). Then wv, swv ∈ μ. We compute

π(wv) = max{ρ(nwv), ρ(wwv)}+ ρ(v)− ρ(wv) > ρ(wwv) = π(wwv),

and wv ∈ C(π) since wv ∈ Oλ. If sv = x then π(x) = ρ(swv) and sv /∈ C(π).
If sv 
= x then esv ∈ μ and we claim that ρ(sv) = ρ(esv). To see this note
that if v ∈ Aμ then Lemma 3.1 and the minimality of v in C(ρ) imply
ρ(v) = ρ(ev). Hence ρ(sv) = ρ(esv) because esv /∈ C(ρ). We conclude that
ρ(esv) ≤ ρ(ssv), π(sv) = π(swv) and sv /∈ C(π) as claimed.

On the other hand suppose ρ(v) > ρ(swv). Then π(sv) ≥ ρ(v) > π(swv)
and sv ∈ C(π).

Finally turn to the proof of claim (iv). If v ∈ C(π) then v ∈ Aλ and
π(v) > π(wv). Hence v ∈ Oμ and v ∈ C(ρ).

Conversely if v ∈ C(ρ) then v ∈ Oμ, v ∈ Aλ and π(wv) < π(v). It
remains to show π(v) > π(nv). We are done if nv /∈ μ. Thus assume the
contrary, which also yields env ∈ μ because ev ∈ λ. Clearly nv ∈ Iμ and
env ∈ Aμ ∪Oμ. The minimality of v together with Lemma 3.1 provide that
ρ(env) = ρ(nv) ≤ ρ(v). Consequently

π(nv) = max{ρ(nwv), ρ(nnv)}+ ρ(env)− ρ(nv) = max{ρ(nwv), ρ(nnv)}.

On the one hand ρ(nwv) ≤ ρ(wv) < ρ(v). On the other hand ρ(nnv) =
ρ(nnwv), where we use again Lemma 3.1 and the minimality of v. Hence
ρ(nnv) ≤ ρ(nw) < ρ(v), which completes the proof.

Lemma 7.2. Let λ be a partition, x ∈ λ an outer corner, μ = λ − {x},
π ∈ RPPλ,x, ρ = ζλ,x(π), v = min C(π), and u = min C(ρ) with respect to
the content order.

(i) If c(v) > c(x) then u = v and Q(v, π) = Q(u, ρ).
(ii) If c(v) = c(x) then π(v) = π(nv) implies u = nv and π(v) > π(nv)

implies u = ev. Moreover Q(v, π) = (v,Q(u, π)).
(iii) If c(v) < c(x) and ω(Q(v, π)) � x then u = v and Q(v, π) = Q(u, ρ).
(iv) If c(v) < c(x) and ω(Q(v, π)) = x then u = v and Q(v, π) = (Q(u, ρ), x).
(v) Let c(v) < c(x) and x � ω(Q(v, π)). Then u = v and there exists a cell

y ∈ Q(v, π) with c(y) = c(x). If π(y) = π(nu) then Q(u, ρ) is obtained
from Q(v, π) by replacing y with nwy. If otherwise π(y) > π(ny) then
Q(v, π) = Q(u, ρ).
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Proof. Claim (i) follows from Lemma 7.1 (i). Claim (ii) is a consequence of

Lemma 7.1 (i)–(iii). Claims (iii) and (iv) follow from Lemma 7.1 (i)–(iv).

Finally to see claim (v) note that Lemma 7.1 (i)–(iv) imply u = v. More-

over it is easily seen that Q(v, π) contains a unique cell y with c(y) = c(x),

and that the paths Q(v, π) and Q(u, ρ) coincide up to (but not necessarily

including) that cell.

By definition of Q(v, π) the cell preceding y in Q(v, π) is wy since

wy, sy ∈ Iλ ∪ Aλ if they lie in λ at all. Furthermore π(wy) = π(y) by

minimality of v.

If π(y) = π(ny) then the cell proceeding y in Q(v, π) is ny. In particular

ny,nwy ∈ μ Note that wy ∈ Oμ ∪ Bμ. Using π(nwy) = π(nwwy) since

nwy /∈ C(π) we compute ρ(nwy) = ρ(wy). Thus the cell proceeding wy

in Q(u, ρ) is nwy. The cell nwy itself is by definition of Q(u, ρ) proceeded

by ny because nwy ∈ Iμ. Moreover ny ∈ Bλ if and only if ny ∈ Oμ and

ny ∈ Iλ if and only if ny ∈ Aμ. Thus the paths Q(v, π) and Q(u, ρ) coincide

for all remaining cells after ny.

If on the other hand π(y) > π(ny) then the cell proceeding y in Q(v, π)

is ey. Using π(nwwy) = π(nwy) since nwy /∈ C(π) we compute ρ(nwy) =

π(ny) < ρ(wy). Therefore the cell proceeding wy in Q(u, ρ) is y, which is

in turn proceeded by ey. The paths Q(v, π) and Q(u, ρ) coincide.

Suppose two partitions λ and μ both contain the cell u. The rim-hook

of λ corresponding to u might differ from the rim-hook of μ corresponding

to u. To avoid any ambiguity we denote these rim-hooks by huλ and huμ
respectively. Similarly denote by 0λ and 0μ the reverse plane partitions of

shape λ respectively μ with all entries equal to zero.

The following is the key lemma to understanding why our bijection co-

incides with the one defined by I. Pak. Both maps are defined recursively

but the two recursions are very different in nature. On the one hand ξ is

defined by inductively reducing the size of the partition. On the other hand

Φ is computed by inductively reducing the sum of the entries of a tableaux.

However, we can combine these reductions to great effect. To be more pre-

cise, there exists a kind of commutation relation between them.

Lemma 7.3. Let λ be a partition, x ∈ λ an outer corner, μ = λ − {x},
u1, u2, . . . , us ∈ μ cells satisfying ui ≤ ui+1 for all i ∈ [s − 1], and set

π = hu2

λ ∗ · · · ∗ hus

λ ∗ 0λ. Then

ζλ,x(h
u1

λ ∗ π) = hu1
μ ∗ ζλ,x(π).
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To understand the statement of Lemma 7.3 the reader should compare
Figures 17 and 18. Each reverse plane partition in the second row of Fig-
ure 17 is the image of the corresponding reverse plane partition in the second
row of Figure 18 under the map ζλ,x, where λ = (3, 3, 3) and x = (3, 3).

Proof of Lemma 7.3. Set ρ = ζλ,x(h
u1

λ ∗ π) and σ = hu1

λ ∗ π. Note that σ ∈
RPPλ,x. It follows from Theorem 6.5 and Lemma 7.2 that the lexicographic
factorisation of ρ begins with hu1

μ . Let u = min C(ρ) and v = min C(σ) with
respect to the content order. It suffices to show that

(7.1) ρ−Q(u, ρ) = ζλ,x(σ −Q(v, σ)).

Set ρ̃ = ρ−Q(u, ρ) and σ̃ = ζλ,x(σ −Q(v, σ)). By Lemma 7.2 if y ∈ μ with
c(y) 
= c(x) then y ∈ Q(u, ρ) if and only if y ∈ Q(v, σ). Consequently it
suffices to check equality in (7.1) for cells y ∈ μ with c(y) = c(x) that have
a neighbour on the path Q(u, ρ). In cases (i) or (iii) of Lemma 7.2 there
remains nothing to do.

Consider case (ii) of Lemma 7.2 and suppose that σ(v) = σ(nv). Then

(7.2) ρ̃(nwv) = max{σ(nnwv), σ(nwwv)}+ σ(wv)− σ(nwv) = σ̃(nwv).
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Moreover if v 
= x then

(7.3) ρ̃(v) = σ(nv) + min{σ(ev), σ(sv)} − σ(v) = σ̃(v).

If σ(v) > σ(nv) then v 
= x and σ(sv) < σ(esv) since esv /∈ C(σ). It follows
that ρ̃(v) = σ̃(v) as in (7.2), and if esv 
= x then ρ̃(esv) = σ̃(esv) as in (7.3).

In case (iv) of Lemma 7.2 we are done if nwx /∈ μ. Therefore assume
nwx ∈ μ. Since Q(v, σ) terminates in x, we conclude σ(x) > σ(nx). More-
over σ(nwx) = σ(nwwx) because nwx /∈ C(σ). Hence ρ̃(nwx) = σ(nx) =
σ̃(nwx).

Finally suppose we are in case (v) and let y ∈ Q(v, σ) be the cell with
c(y) = c(x). Then wy precedes y in Q(v, σ) and σ(wy) = σ(y) since y /∈
C(σ). Similarly σ(nwy) = σ(nwwy). If σ(y) = σ(ny) then the cell ny
proceeds y in Q(v, σ), and ρ̃(nwy) = σ(y) − 1 = σ̃(nwy) because nwy ∈
Q(u, ρ). Moreover if y 
= x then

ρ̃(y) = min{σ(ey), σ(sy)} = σ̃(y).

There remains the case σ(y) > σ(ny) in which ey proceeds y in Q(v, σ) and
σ(esy) = σ(sy) as esy /∈ C(σ). If y ∈ μ then ρ̃(y) = σ(ey)− 1 = σ̃(y) and if
es ∈ μ then

ρ̃(esy) = min{σ(eesy), σ(essy)} = σ̃(esy).

Having done most of the work, we conclude the main result of this sec-
tion.

Theorem 7.4. Let λ be a partition. Then Φ : Tλ → RPPλ and ξλ : RPPλ →
Tλ are inverse bijections.

Proof. Let x ∈ λ be the minimum with respect to the reverse lexicographic
order and set μ = λ−{x}. Let π ∈ RPPλ. We prove the claim by induction
on |λ|+ |π|.

If π(x) > max{π(nx), π(wx)} then define a reverse plane partition by
setting π̃(x) = π(x)− 1 and π̃(u) = π(u) for all u ∈ μ. Using the definitions
of ξ and Φ and the induction hypothesis we obtain

ξλ(π)(x) = ξλ(π̃)(x) + 1 = Φ−1(π̃)(x) + 1 = Φ−1(π)(x),

and

ξλ(π)(u) = ξλ(π̃)(u) = Φ−1(π̃)(u) = Φ−1(π)(u)

for all u ∈ μ.
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If π(x) = max{π(nx), π(wx)} then the lexicographic factorisation π =
hu1

λ ∗ · · · ∗ hus

λ ∗ 0λ satisfies ui ∈ μ for all i ∈ [s]. We compute ξλ(π)(x) = 0 =
Φ−1(π)(x) and

ξλ(π)(u) = ξμ ◦ ζλ,x(π)(u)
= Φ−1 ◦ ζλ,x(hu1

λ ∗ · · · ∗ hus

λ ∗ 0λ)(u)
= Φ−1(hu1

μ ∗ · · · ∗ hus

μ ∗ 0μ)(u)
= Φ−1(hu1

λ ∗ · · · ∗ hus

λ ∗ 0λ)(u) = Φ−1(π)(u)

for all u ∈ μ, where we use first the induction hypothesis and then Lemma 7.3.

In the remainder of the article we discuss what can be said about the
relation between the bijection Φ, the RSK correspondence and the Hillman–
Grassl correspondence.

A semi-standard Young tableau of shape λ is a reverse plane partition
π : λ → N that is column-strict, that is, π(u) > π(nu) for all cells u ∈ λ.
A standard Young tableau of shape λ is a reverse plane partition that is also
a bijection π : λ → [n], where n = |λ|.

The Hillman–Grassl correspondence HG : RPPλ → Tλ is viewed as a bi-
jection from reverse plane partitions to tableaux. The Robinson–Schensted–
Knuth correspondence RSK is viewed as a map that sends each t ∈ Tλ,
where the partition λ = (nn) is a square, to a pair (P,Q) of semi-standard
Young tableaux of the same shape μ, where μ is a partition of size |t|. More-
over, RSK restricts to a bijection from permutation matrices, which form a
subset of Tλ, to pairs (P,Q) of standard Young tableaux of the same shape
μ, where μ ranges over all partitions of n. For a thorough introduction to
these maps the reader is referred to [14, Ch. 7].

Let λ be a partition. It is very easy to read off the k-th trace of a
reverse plane partition π ∈ RPPλ directly from the corresponding tableau
t = Φ−1(π). For k ∈ Z define the rectangle

Rk =
{
(i, j) ∈ λ : i ≤ ik and j ≤ jk

}
,

where (ik, jk) ∈ λ is the south-easternmost cell of λ with content k. If λ
contains no cell of content k then let Rk = ∅.
Proposition 7.5. Let λ be a partition, k ∈ Z, t ∈ Tλ, and set π = Φ(t).
Then

trk(π) =
∑
u∈Rk

t(u).
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Proof. It is easy to see that the insertion of a hook hu increases trk if and
only if hu contains a cell with content k. But this is the case if and only if
u ∈ Rk.

A classical result states that for the Hillman–Grassl correspondence one
can not only read off the k-th trace, but also determine the partition formed
by the entries of π in the k-th diagonal of λ, solely by looking at the tableau
HG(π). This is achieved via the RSK correspondence. See for example [4,
Thm. 3.3].

An analogous statement for the map Φ that refines Proposition 7.5 is
due to A. Garver and R. Patrias.

A weak south-east-chain in λ is a sequence of cells (i1, j1), . . . , (is, js) ∈ λ
such that ik ≤ ik+1 and jk ≤ jk+1 for all k ∈ [s−1]. A strict north-east-chain
in λ is a sequence of cells (i1, j1), . . . , (is, js) ∈ λ such that ik > ik+1 and
jk < jk+1 for all k ∈ [s − 1]. The length s of such a chain C is denoted by
|C|.
Theorem 7.6. [5, Thm. 6.1] Let λ be a partition, k ∈ Z, t ∈ Tλ, π = Φ(t),
and let μ denote the partition given by the entries in the k-th diagonal of π.
Then for all r ∈ N

μ1 + · · ·+ μr = max
{
|C1|+ · · ·+ |Cr|

}
,

where the maximum is taken over all families of weak south-east-chains
C1, . . . , Cr in Rk that contain each cell u ∈ Rk at most t(u) times. Moreover
for all r ∈ N

μ′
1 + · · ·+ μ′

r = max
{
|D1|+ · · ·+ |Dr|

}
,

where the maximum is taken over all families of strict north-east-chains
D1, . . . , Dr in Rk that contain each cell u ∈ Rk at most t(u) times.

For example consider the partition μ = (4, 3, 1) in the diagonal of content
k = 0 of the reverse plane partition π in Figure 19. In this case R0 = λ =
(3, 3, 3). We may chose C1 = (1, 1)(3, 1)(3, 1)(3, 1), C2 = (1, 2)(1, 3)(1, 3),
C3 = (2, 2), D1 = (3, 1)(2, 2)(1, 3), D2 = (3, 1)(1, 2), D3 = (3, 1)(1, 3), and
D4 = (1, 1). Then μ1 + · · · + μr = |C1| + · · · + |Cr| and μ′

1 + · · · + μ′
r =

|D1|+ · · ·+ |Dr| for all r.
Theorem 7.6 relates the map Φ to RSK. See Figure 19. I. Pak was aware

of this connection between the map ξ and RSK although he provides no
proof in [10]. The analogue of Theorem 7.6 for the map ξ can be obtained
by complementing the ideas of [7, Sec. 4] with the results of either V. Danilov
and G. Koshevoy [2] or M. Farber, S. Hopkins and W. Trongsiriwat [3].
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1 1 4

2 3 4

4 4 4
π

1 1 2

0 1 0

3 0 0

RSKΦ
1 1 1 1

2 2 3

3
P

1 1 1 1

2 3 3

3
Q

Figure 19: The partitions given by the diagonals of π correspond to the
shapes of the semi-standard Young tableaux P and Q restricted to the num-
bers 1, . . . , k for k = 1, 2, 3.

Theorem 7.4 can be deduced from Theorem 7.6 and the analogue state-
ment for the map ξ. The proof given in this paper is more direct and does
not use Greene–Kleitman invariants.

Finally, combining Theorem 7.6 and its counterpart for the Hillman–
Grassl correspondence, one finds the following relation between the bijec-
tions HG and Φ in the case of standard Young tableaux respectively permu-
tation matrices.

Theorem 7.7. Let λ = (nn) be a square partition, and π ∈ RPPλ be a
reverse plane partition such that trk(π) = tr−k(π) = n − k for all k ∈
{0, . . . , n−1}. Then Φ◦HG(π) is obtained by inserting in each diagonal the
conjugate of the partition in the corresponding diagonal of π.

Theorem 7.8. Let λ = (nn) be a square partition, and σ : λ → N be a
tableau corresponding to a permutation matrix with RSK(σ) = (P,Q). Then
RSK ◦HG ◦Φ(σ) = (P ′, Q′), where P ′ and Q′ denote the conjugate standard
Young tableaux of P and Q.

Corollary 7.9. The map HG ◦Φ defines an involution on permutations.

Note that the map HG ◦Φ is not an involution in general. On the flip
side this means that one can define a non-trivial variation of RSK as in
Figure 19 by using the Hillman–Grassl correspondence instead of the map
Φ. To the best of the authors knowledge this idea has not been pursued so
far. Another open question brought up by S. Hopkins is whether there exists
an alternative description of the Hillman–Grassl correspondence in the style
of the map ξ.
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