
Journal of Combinatorics

Volume 11, Number 1, 203–230, 2020

Enumeration of cyclic permutations in vector grid
classes

Kassie Archer and L.-K. Lauderdale

A grid class consists of permutations whose pictorial depiction can
be partitioned into increasing and decreasing parts as determined
by a given matrix. In this paper, we introduce a method for enu-
merating cyclic permutations in vector grid classes by establishing
a bijective relationship with certain necklaces. We use this method
to complete the enumeration of cyclic permutations in the length
3 vector grid classes. In addition, we define an analog of Wilf-
equivalence between these sets. We conclude by discussing cyclic
permutations in alternating grid classes.

1. Introduction

Grid classes are well-studied classes of permutations (see [1, 15, 17] for ex-
ample) that are assigned a signature in the form of a matrix M with entries
in {−1, 0, 1}, which in some way determines the structure of the permuta-
tions. More specifically, permutations in a given grid class with signature
M are comprised of increasing and decreasing parts laid out in a grid that
is determined by M . For example, a permutation in the grid class with
signature M =

[
1 1

]
is comprised of an increasing segment followed by

another increasing segment, and thus has at most one descent. We are pri-
marily concerned with the vector grid classes (i.e., those whereM is a vector,
sometimes referred to as juxtaposition classes), which received special atten-
tion in [5, 6, 4] among others. In particular, we prove a formula regarding
a relationship between cyclic permutations in vector grid classes and neck-
laces. We then use this formula to enumerate the cyclic permutations in the
length 2 and 3 vector grid classes.

Cyclic permutations in given vector grid classes have appeared in several
other papers. For example, they were used to characterize the permutations
realized by the periodic points of certain dynamical systems [4], appeared in
the character formula for a certain representation of the symmetric group [3],
and were used in the analysis of card-shuffling techniques [10]. In addition,
the descent structure of cyclic permutations, which is closely related to the
grid structure, was studied in various papers [14, 12, 7].
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In this paper, we subscribe to the convention used in [4], which is to
use a signature σ of +’s and −’s in place of the row vector matrix M of 1’s
and −1’s. Our goal in this paper is two-fold: (1) to establish an enumerative
relationship between cyclic permutations in grid classes with signature σ ∈
{+,−}k and k-ary necklaces, and (2) to use this relationship to enumerate
the set of cyclic permutations in certain grid classes, illustrating its use.

In Section 2, we provide the necessary background for this paper, in-
cluding definitions and propositions regarding necklaces. In [14], Gessel and
Reutenauer used a bijection between necklaces and permutations to deter-
mine the number of permutations with a given cycle type and descent set.
This was modified in [4] to determine the number of cyclic permutations
with signature σ = +k, σ = −k, or σ = +−. Analysis of the cycle structure
of unimodal permutations (i.e., those with signature σ = +−, can also be
found in [19, 18, 13]). In Section 3, we prove the main theorem of this paper
that generalizes these previous results to establish a formula relating cyclic
permutations in grid classes with signature σ ∈ {+,−}k and k-ary necklaces.

In Section 4, we recover the enumerations of cyclic permutations in the
four grid classes with signature σ when |σ| = 2. We also prove some neces-
sary results about unimodal cyclic permutations with a given peak position,
which will aid in the enumeration of cycles in length 3 vector grid classes.

In Section 5, we complete the enumeration of cyclic permutations in the
eight grid classes with signature σ, where |σ| = 3. The first few terms and
the OEIS reference number for each sequence can be found in Table 1.

Table 1: The signatures of the eight length 3 vector grid classes, together
with the the first few terms of the enumeration of cycles in the corresponding
grid classes and the OEIS entries [16]

σ First ten terms (starting with n = 1) OEIS entry

+ + + 1, 1, 2, 6, 18, 62, 186, 570, 1680, 4890 A303117
−−− 1, 1, 2, 6, 18, 58, 186, 570, 1680, 4878 A304200
+−+ 1, 1, 2, 5, 12, 30, 78, 205, 546, 1476 A136704
−+− 1, 1, 2, 5, 12, 30, 78, 205, 546, 1476 A136704
+ +− 1, 1, 2, 5, 15, 42, 120, 338, 952, 2671 A303980
+−− 1, 1, 2, 5, 15, 43, 120, 338, 952, 2672 A304201
−++ 1, 1, 2, 5, 15, 42, 120, 338, 952, 2671 A303980
−−+ 1, 1, 2, 5, 15, 43, 120, 338, 952, 2672 A304201

In Section 5.4, we generalize the notion of Wilf-equivalence from classical
pattern avoidance to this setting. We say that two grid classes are cyc-
Wilf-equivalent if the number of cyclic permutations of length n in one grid
class equals the number of cyclic permutations of length n in the other.
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Additionally, we say that two grid classes are weakly cyc-Wilf-equivalent if
their sizes are equal when n �≡ 2 (mod 4). The results (proven in Section 5.4)
are summarized in Table 2.

Table 2: List of cyc-Wilf- and weakly cyc-Wilf-equivalence classes

cyc-Wilf-equivalence classes weakly cyc-Wilf-equivalence classes
+ + + +++,−−−
−−− +−+,−+−

+−+,−+− ++−,+−−,−++,−−+
++−,−++
+−−,−−+

In Section 6, we show that the alternating grid classes of a given size are
cyc-Wilf-equivalent. Finally, in Section 7, we include discussion and conjec-
tures.

2. Background

The set of permutations of [n] = {1, 2, . . . , n} is denoted Sn and we write
π ∈ Sn in its one-line notation as π = π1π2 . . . πn.

2.1. Permutation statistics

We say that a permutation π ∈ Sn has a descent at position i if πi > πi+1. We
say π has an ascent at position i if πi < πi+1. For example, the permutation
4156732 has three descents, namely those at positions 1, 5, and 6, and has
three ascents, namely those at positions 2, 3, and 4.

We define a peak of the permutation π ∈ Sn to be i ∈ [n] such that
πi−1 < πi and πi > πi+1 (where π0 = πn+1 := 0). Similarly, we define a
valley of the permutation π ∈ Sn to be i ∈ [n] such that πi−1 > πi and
πi < πi+1 (where π0 = πn+1 := n + 1). For example, the permutation
4156732 has peaks at positions 1 and 5 and has valleys at positions 2 and 7.
Notice that this definition is non-standard since we allow peaks and valleys
to occur at the beginning and end of the permutation.

Finally, we say a permutation is unimodal if it has exactly one peak. Any
valleys must occur at the beginning or end of the permutation. For example,
there are eight unimodal permutations of length 4:

1234, 1243, 1342, 2341, 1432, 2431, 3421, 4321.

These permutations respectively have their unique peak at position 4, 3, 3,
3, 2, 2, 2, and 1.
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2.2. The σ-classes

For m < n, we say a permutation π ∈ Sn contains the pattern τ ∈ Sm if
there are indices i1 < · · · < im so that the subsequence πi1πi2 . . . πim is in
the same relative order as τ , and we say π avoids τ if π does not contain
it. For example, the permutation π = 142365 avoids 321 since there is no
length 3 subsequence of π that is decreasing. The set of permutations that
avoid a given pattern τ is denoted Av(τ) and the set of permutations that
avoid a set of patterns B = {τ1, τ2, . . .} is denoted Av(B). Any permutation
class (i.e., a set of permutations closed under pattern containment) may be
characterized in terms of pattern avoidance.

Let σ = σ0σ1 . . . σk−1 ∈ {+,−}k and define a partition of the set
{0, 1, . . . , k − 1} by T+

σ = {i : σi = +} and T−
σ = {i : σi = −}. That

is, T+
σ is the set of locations of + in σ, and T−

σ is the set of locations of
− in σ. For example, if σ = + + −+, then T+

σ = {0, 1, 3} and T−
σ = {2}.

We define the σ-class, denoted Sσ, as in [2, 4, 6], to be the set of permuta-
tions comprised of k contiguous (possibly empty or singleton) segments, so
that the i-th such segment is increasing when i ∈ T+

σ and decreasing when
i ∈ T−

σ . For example S+− is the set of unimodal permutations and S+++ is
the set of permutations with at most two descents. A σ-class is an example
of a row vector grid class as defined in [1, 15, 17]. Indeed, it is exactly the
length k vector grid class for the matrix M = [M0M1 · · · Mk−1], where

Mi =

{
+1 if σi = +

−1 if σi = −,

and can be drawn on a series of line segments each with slope ±1, as deter-
mined by σ.

Any π ∈ Sσ
n := Sσ ∩Sn must admit a σ-segmentation defined in [4] (and

referred to as a gridding in [1, 8, 9]) to be a sequence e = (e0, e1, . . . , ek) such
that 0 = e0 ≤ e1 ≤ · · · ≤ ek = n and each segment πei+1πei+2 · · ·πei+1

is
increasing if i ∈ T+

σ and decreasing if i ∈ T−
σ . For example, if σ = ++−, then

the permutation τ = 268147953 has two σ-segmentations, namely (0, 3, 6, 9)
and (0, 3, 7, 9). If σ = −+−, then the permutation τ ′ = 862347951 has four
σ-segmentations: (0, i, j, 9), where i ∈ {2, 3} and j ∈ {6, 7}. The pictorial
representations of the permutations τ and τ ′ are seen in Figure 1 below.

Every σ-class is a permutation class and can therefore be characterized
in terms of pattern avoidance. For example, S+− = Av(213, 312). In [5],
Atkinson gives a constructive proof that all permutations of a σ-class can
be characterized as avoiding a finite set of patterns.
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Figure 1: Pictorial representations of the permutations τ = 268147953 and
τ ′ = 862347951 in S++−

9 and S−+−
9 respectively.

2.3. Cyclic permutations

Let Cn denote the set of cyclic permutations of Sn (i.e., the permutations in
Sn that are composed of a single cycle with length n). The map defined in
[11] by

θ : Sn → Cn
τ �→ π

sends a permutation τ = τ1τ2 . . . τn ∈ Sn to the cyclic permutation

π = (τ1τ2 . . . τn) = π1π2 . . . πn ∈ Cn.

For example, θ(24513) = (24513) = 34251. Let S̄n denote the set of equiv-
alence classes of permutations in Sn up to cyclic rotation. For example,
|S̄3| = 2 since [123] = {123, 231, 312} and [132] = {132, 321, 213} are the only
two elements. Clearly, we can define a bijection θ̄ : S̄n → Cn by θ̄([τ ]) = θ(τ).

Additionally, we denote by Cσ the set of cyclic permutations in the σ-
class (i.e., Cσ

n := Cn ∩ Sσ). For a signature σ, we set cσ(n) := |Cσ
n |. The

proposition below implies that c++−(n) = c−++(n) and that c+−−(n) =
c−−+(n). As a result, the signatures ++− and −++ are cyc-Wilf-equivalent,
as are the signatures +−− and −−+.

Proposition 2.1 ([4, Proposition 2.7]). For σ = σ0σ1 . . . σk−1 ∈ {+,−}k,
let σr denote the signature σk−1σk−2 . . . σ0. Then |Cσ

n | = |Cσr

n |.
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The complementary signature σc, defined as σc
i = + if σi = − and

σc
i = − if σi = +, is not necessarily cyc-Wilf-equivalent to σ. For example,

if σ = + − −, then σc = − + + and these are not cyc-Wilf-equivalent. We
conjecture in Section 7 that σ and σc are always weakly cyc-Wilf-equivalent.

2.4. Words and necklaces

A word of length n on k letters is a sequence s = s1s2 . . . sn with si ∈
{0, 1, . . . , k − 1} for all i ∈ [n]. We denote the set of all such words by
Wk(n). For example,

W3(2) = {00, 01, 02, 10, 11, 12, 20, 21, 22}.

A word s is r-periodic if it can be written as the concatenation of r copies
of a word q of length n

r (i.e., if s = qr), and a word is primitive if it not
r-periodic for any r > 1. In other words, we say a word is primitive if it
cannot be written as the concatenation of two or more copies of a shorter
word. For example, the word 0020112 is primitive and the word 00120012 is
2-periodic. As another example, all binary words of length 7 are primitive
with the exceptions of the word 0000000 and the word 1111111.

We define the evaluation of a word to be the sequence (a0, a1, . . . , ak−1),
where ai is defined as

ai = |{j ∈ [n] : sj = i}|.

That is, the evaluation of a word records the number of times each letter
appears in the word. For example, the evaluation of the word 0012001022
is (5, 2, 3) since there are five 0’s, two 1’s and three 2’s. The evaluation of
0020020 is (5, 0, 2) since there are five 0’s, zero 1’s, and two 2’s.

We denote the cyclic rotation of the word s = s1s2 . . . sn starting with
si by

s[i,→] = sisi+1 . . . sns1 . . . si−1.

For example, if s = 010111, then s[4,→] = 111010 and s[6,→] = 101011. We
denote the set of cyclic rotations of s by [s], so that

[s] = {s[i,→] : i ∈ [n]}.

For example,

[01011] = {01011, 10110, 01101, 11010, 10101}.
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Notice that the relation given by “s ∼ t if s ∈ [t]” is an equivalence relation.
This equivalence relation preserves periodicity. That is, if s ∼ t and s is
r-periodic, then t is r-periodic. In particular, if s is primitive, then so is t.
We refer to a single equivalence class [s] as a necklace.

We refer to the set {[s] : s ∈ Wk(n)} as the set of necklaces of length n on
k letters and denote it by Wk(n). A necklace [s] is called r-periodic (respec-
tively, primitive) if a representative s of the equivalence class is r-periodic
(respectively, primitive). Let Nk(n) denote the set of primitive necklaces on
k letters of length n, and let Lk(n) denote the number of such necklaces.
(This notation is standard as Lk(n) is the number of Lyndon words, where a
Lyndon word refers to a specific representative of a given necklace.) The fol-
lowing proposition is well-known and is easily shown using Möbius inversion.
We let μ denote the number-theoretic Möbius function.

Proposition 2.2. If n ≥ 1, the number of necklaces of length n on k letters
is equal to

Lk(n) =
1

n

∑
d|n

μ(d)k
n

d .

For a given σ ∈ {+,−}k and word s ∈ Wk(n), we define oσ(s) to be

oσ(s) = |{i ∈ [n] : si ∈ T−
σ }|.

That is, oσ(s) is the number of terms in s that are locations of − in σ. We
define oσ([s]) = oσ(s) for any necklace [s] as well.

Example 2.3. If σ = +−, then T−
σ = {1}, so oσ(s) is the number of 1’s

that appear in s. Thus, we have oσ(01001) = 2 and oσ(01111) = 4.

Example 2.4. If σ = −+−−, then T−
σ = {0, 2, 3}, so oσ(s) is the number of

0’s, 2’s, or 3’s that appear in s. Thus, oσ(1203123) = 5 and oσ(0000103) = 6.

Let Lo
k(n;σ) denote the size of the set of primitive necklaces [s] so

that s is a primitive word of size n for which oσ(s) is odd. We define
N ∗

k (n;σ) ⊆ Wk(n) to be the set of primitive necklaces together with all
2-periodic necklaces [s] = [q2] such that q is a primitive word of length n

2
for which oσ(q) is odd. Notice that when n is odd these necklaces are ex-
actly those from Nk(n) and when n is even, the size of this set is exactly
Lk(n) + Lo

k(
n
2 ;σ). For ease of notation, we set L∗

k(n;σ) := Lk(n) + Lo
k(

n
2 ;σ)

with the assumption that Lo
k

(
n
2 ;σ

)
= 0 when n is odd.

Example 2.5. Suppose σ = +− and n = 8. Then N ∗
2 (8;+−) is comprised

of all the primitive necklaces given by the set N2(8) together with the 2-
periodic necklaces [00010001] and [01110111].
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The set N ∗
k (n;σ) appears in many proofs in this paper and is a major

part of the statement and proof of our main theorem, Theorem 3.1. Using
Möbius inversion, it is a straightforward exercise to compute Lo

k(n;σ) and
L∗
k(n;σ) for a given σ of length 2 or 3 (as in the proof of Theorem 5.10).

Therefore, in this paper we present the enumeration of Cσ
n for each σ ∈

{+,−}3 in terms of these numbers.

Lemma 2.6. If n ≥ 1, then L∗
3(n;σ) = L∗

3(n;σr).

Proof. It is enough to show that Lo
3(

n
2 ;σ) = Lo

3(
n
2 ;σr). When n is odd, the

equality is clear, and thus we assume n is even. We define the following
bijection from necklaces [s] of length n

2 with oσ(s) odd to necklaces [s′] of
size n

2 with oσr
(s′) odd. Let [s] be a primitive necklace of length n

2 for which
oσ(s) is odd and take [s′] to be the necklace obtained by setting s′i = k−1−si.
Notice that T−

σr
= {k−1−i : i ∈ T−

σ }, and thus oσr
(s′) = |{i ∈ [n2 ] : s

′
i ∈ T−

σr
}|

is equal to oσ(s). Therefore, oσr
(s′) is odd and so Lo

3(
n
2 ;σ) = Lo

3(
n
2 ;σr).

2.5. An ordering on words and necklaces

Let s = s1s2 . . . sn and t = t1t2 . . . tn be words. Let ≺σ be the linear order
on Wk(n) defined by s ≺σ t if one of the following holds:

(1) s1 < t1,
(2) s1 = t1 ∈ T+

σ and s2s3 . . . sn ≺σ t2t3 . . . tn, or
(3) s1 = t1 ∈ T−

σ and t2t3 . . . tn ≺σ s2s3 . . . sn.

Equivalently, s ≺σ t if, letting j ≥ 1 be the smallest such that sj �= tj , either
oσ(s1s2 . . . sj−1) is even and sj < tj , or oσ(s1s2 . . . sj−1) is odd and sj > tj .

Example 2.7. If σ = +k, then s ≺σ t exactly when s < t under the standard
lexicographical ordering. However, if σ = +−−, then 02212 ≺σ 02211 since
their first four terms agree, an odd number of these first four terms are
elements of T−

σ , and in the fifth position 2 > 1.

For σ ∈ {+,−}k, let us define a map Πσ : N ∗
k (n;σ) → S̄n. First, suppose

s = [s1s2 . . . sn] is a primitive necklace. Then the words s[i,→] are all distinct
for i ∈ [n]. Thus, there exists a unique permutation τ ∈ Sn such that τi < τj
if and only if s[i,→] ≺σ s[j,→]. That is, τ records the ordering under ≺σ of the
shifts of s. In this case, let Πσ([s]) = [τ ]. If [s] is not a primitive necklace,
then s = q2 for some primitive word q of length r := n

2 so that oσ(q) is odd.
In this case, the s[i,→] are all distinct for 1 ≤ i ≤ n

2 and s[i,→] = s[i−r,→] for
all n

2 < i ≤ n. For [s] non-primitive, we define Πσ([s]) = [τ ], where for a
given representative s = s1s2 . . . sn, τ is the unique permutation such that:
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• τi < τj when s[i,→] ≺σ s[j,→];
• τ1 < τr+1; and
• for all 1 ≤ i < n

2 ,

– if τi < τr+i and si ∈ T+
σ , then τi+1 < τr+i+1,

– if τi < τr+i and si ∈ T−
σ , then τi+1 > τr+i+1,

– if τi > τr+i and si ∈ T+
σ , then τi+1 > τr+i+1, and

– if τi > τr+i and si ∈ T−
σ , then τi+1 < τr+i+1.

Under this definition, though taking different representatives s(1) and s(2)

of the necklace [s] would result in different permutations τ (1) and τ (2), they
would be the same up to cyclic rotation. That is, we would have that [τ (1)] =
[τ (2)], and thus Πσ is well-defined. First, let us see an example of Πσ for a
primitive necklace.

Example 2.8. Suppose σ = +− and [s] = [0010011]. Taking s = 0010011,
there are seven distinct words to compare under the ordering ≺σ, namely

s[1,→] = 0010011,

s[2,→] = 0100110,

s[3,→] = 1001100,

s[4,→] = 0011001,

s[5,→] = 0110010,

s[6,→] = 1100100, and

s[7,→] = 1001001.

Under this ordering, we clearly have that s[1,→], s[2,→], s[4,→] and s[5,→] are
the four smallest words under the ordering determined by ≺σ since in each
case, their first element is 0. To compare each pairwise, we check up to the
first place the two words disagree. If they disagree in the i-th position and
there are an even number of ones preceding that, the word with 0 in the i-th
position is smaller. If there are an odd number of ones, the word with 1 in
the i-th place is smaller.

For example, s[1,→] and s[4,→] disagree for the first time in the 4-th
position. The first three elements, 001, have an odd number of ones, so
s[4,→] is smaller than s[1,→]. Continuing this process, we obtain that τ1 = 2,
τ2 = 4, τ4 = 1, and τ5 = 3. Similarly, we can compare s[3,→], s[6,→] and s[7,→]

and find that τ3 = 7, τ6 = 5, and τ7 = 6. Thus Πσ([0010011]) = [2471356].

Now, let us consider a non-primitive necklace as an example.
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Example 2.9. Suppose that σ = + − − and [s] = [01210121]. Let us take
the representative s = 01210121 and compute the corresponding τ . Clearly,
we can see that

s[1,→] = s[5,→] ≺σ s[2,→] = s[6,→] ≺σ s[4,→] = s[8,→] ≺σ s[3,→] = s[7,→].

Now, τi < τj if s[i,→] ≺σ s[j,→]. When j = i + 4, we must decide what
occurs. We take τ1 < τ5. Since s1 = 0 ∈ T+

σ , we also have τ2 < τ6. Since
s2 = 1 ∈ T−

σ , we have τ3 > τ7. Since s3 = 2 ∈ T−
σ , we obtain τ4 < τ8. Taken

together, we get [τ ] = [13852476].

3. Main theorem

This section includes the main theorem in this paper, Theorem 3.1, which
states that, for σ ∈ {+,−}k, the set of σ-segmentations of permutations in
Cσ
n is equinumerous to N ∗

k (n;σ). We will use Theorem 3.1 to enumerate the
set of cyclic permutations in several vector grid classes in Sections 4 and 5.

Theorem 3.1. For k ≥ 2, n ≥ 3 and σ ∈ {+,−}k,

L∗
k(n;σ) =

∑
π∈Cσ

n

|{e : e is a σ-segmentation of π}|.

Furthermore, the number of necklaces in N ∗
k (n;σ) with evaluation a =

(a0, a1, . . . , ak−1) is equal to the number of permutations π ∈ Cσ
n that ad-

mit the σ-segmentation e = (e0, e1, . . . , ek), where e0 = 0 and ei =
∑
j<i

aj

for i ∈ [k].

For any σ ∈ {+,−}k and any n ≥ 1, let us define the set SS(n;σ) as

SS(n;σ) = {(π, e) : π ∈ Cσ
n , e is a σ-segmentation of π}.

That is, SS(n;σ) consists of all cyclic gridded permutations [1, 8, 9]. To
prove Theorem 3.1, we construct a bijection from N ∗

k (n;σ) to SS(n;σ) that
sends a necklace with evaluation a = (a0, a1, . . . , ak−1) to some (π, e), where
π ∈ Cσ

n admits a σ-segmentation e = (e0, e1, . . . , ek) with e0 = 0 and ei =∑
j<i aj for i ∈ [k]. This bijection associates a permutation to the necklace

by observing the relative order of the elements that comprise the necklace
with respect to a certain ordering determined by σ. This proof requires
several lemmas and a few additional definitions.
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Let N0 denote the set of nonnegative integers and let Nk
0 denote the set

of sequences with length k and entries from N0. Suppose σ ∈ {+,−}k and let
ϕσ : N ∗

k (n;σ) → Sn×N
k
0 be defined by ϕσ([s]) = (π, e) where π = θ̄◦Πσ([s])

and given that the evaluation of [s] is a = (a0, a1, . . . , ak−1), we have that
e = (e0, e1, . . . , ek) with e0 = 0 and ei =

∑
j<i aj for i ∈ [k]. We will show in

Lemmas 3.5 through 3.8 that ϕσ([s]) is indeed an element of SS(n;σ) and
that the map ϕσ is a bijection. First, consider the following two examples
that demonstrate that ϕσ([s]) ∈ SS(n;σ).

Example 3.2. Suppose σ = +− and consider the necklace [s] = [0010011].
Notice that [s] has evaluation a = (4, 3) since it has four 0’s and three 1’s. In
Example 2.8, we saw that Πσ([0010011]) = [2471356]. Thus, ϕσ([0010011]) =
(π, e), where π = (2471356) = 3457621 and e = (0, 4, 7). Notice that
3457621 ∈ Cσ

7 since it is increasing, then decreasing, and that e is a σ-
segmentation of π.

Example 3.3. Suppose σ = +−− and [s] = [01210121], which has evalua-
tion a = (2, 4, 2). We saw in Example 2.9 that Πσ([01210121]) = [13852476].
Thus, ϕσ([01210121]) = (π, e), where π = (13852476) = 34872165 and
e = (0, 2, 6, 8). Notice that 34872165 ∈ Cσ

8 since 34 is increasing, 8721 is
decreasing, and 65 is decreasing, and that e = (0, 2, 6, 8) is a σ-segmentation
of π.

In both examples above, we have that ϕσ([s]) ∈ SS(n;σ). We will see in
Lemma 3.5 that in general this will happen.

Given a permutation τ of length n and a vector e = (e0, e1, . . . , ek)
with 0 = e0 ≤ e1 ≤ · · · ≤ ek = n, let us define the τ -monotone word
s = s1s2 . . . sn induced by e by letting si = t whenever et < τi ≤ et+1.
For example, if τ = 34872165 and e = (0, 2, 6, 8), then s = 11220011 is
the τ -monotone word induced by e. Notice that if the evaluation of s is
a = (a0, a1, . . . , ak−1), then ei =

∑
j<i aj for all i ∈ [k]. We say that [s] is

the [τ ]-monotone necklace if s is a τ -monotone word for some representatives
s and τ of [s] and [τ ], respectively.

Let σ ∈ {+,−}k be arbitrary and let ψσ : SS(n;σ) → Wk(n) be defined
by ψσ((π, e)) = [s], where [s] = [s1s2 . . . sn] is the [τ ]-monotone necklace for
[τ ] = θ̄−1(π). We will show that ϕσ gives a bijection from N ∗

k (n;σ) onto
SS(n;σ) and that ψσ is the inverse of ϕσ.

Example 3.4. Suppose σ = ++−. Let us consider the cyclic permutation
π = 46723581 = (14265378) ∈ Cσ

8 together with the σ-segmentation e =
(0, 3, 7, 8). Then ψσ((π, e)) will have three 0’s, four 1’s, and one 2. The
cycle notation of π informs us where to place each letter. Thus, we obtain
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ψσ((π, e)) = [01011012]. Notice that ϕσ([01011012]) = (π, e). If we consider
instead the σ-segmentation f = (0, 3, 6, 8) of π, then we obtain ψσ((π, f)) =
[01011022]. Again, we get that ϕσ([01011022]) = (π, f).

Lemma 3.5. Suppose n, k ≥ 1 and σ ∈ {+,−}k. Let [s] ∈ N ∗
k (n;σ). Then

ϕσ([s]) ∈ SS(n;σ).

Proof. Let Πσ(s) = τ and ϕσ(s) = (π, e), where e = (e0, e1, . . . , ek). It is
clear from the definition of Πσ that for all a, b ∈ [n], τa < τb implies sa ≤ sb.
It follows that for 0 ≤ t < k, si = t if and only if et < τi ≤ et+1. Now,
suppose that et < τi < τj ≤ et+1, and so s[i,→] �σ s[j,→] with si = sj = t. If
t ∈ T+

σ , then s[i+1,→] ≺σ s[j+1,→], and so τi+1 < τj+1. Similarly, if t ∈ T−
σ ,

then s[j+1,→] ≺σ s[i+1,→], and so τi+1 > τj+1.
Now let 0 ≤ t < k, and suppose that the indices j such that sj = t

are j1, . . . , jm, ordered in such a way that τj1 < τj2 < · · · < τjm , where
m = et+1 − et. Then τj� = et−1 + � for 1 ≤ � ≤ m, and by the previous
paragraph, we also have that τj1+1 < τj2+1 < · · · < τjm+1 if t ∈ T+

σ , and
τj1+1 > τj2+1 > · · · > τjm+1 if t ∈ T−

σ . Using that τj�+1 = πτj� = πet+�, this
is equivalent to πet+1 < πet+2 < · · · < πet+m if t ∈ T+

σ , and πet+1 > πet+2 >
· · · > πet+m if t ∈ T−

σ . Note that et+m = et+1, so this condition states that
e is a σ-segmentation of π. Since π is a cyclic permutation, this proves that
π ∈ Cσ.

Lemma 3.6. Let σ ∈ {+,−}k be arbitrary, let τ ∈ Sn with π = θ(τ) ∈ Cσ,
and suppose that e = (e0, e1, . . . , ek) is a σ-segmentation of π. Suppose that
et < τi < τj ≤ et+1 for some 1 ≤ i, j ≤ n. Then τi+1 < τj+1 if t ∈ T+

σ , and
τi+1 > τj+1 if t ∈ T−

σ , where we let τn+1 := τ1.

Proof. Since et < τi < τj ≤ et+1, both πτi and πτj lie in the segment
πet+1 . . . πet+1

. If t ∈ T+
σ , this segment is increasing, so τi+1 = πτi < πτj =

τj+1. The argument is analogous if t ∈ T−
σ .

Lemma 3.7. Suppose n, k ≥ 1 and σ ∈ {+,−}k. Let π ∈ Cσ
n and e be a

σ-segmentation of π. Then ψσ((π, e)) ∈ N ∗
k (n;σ).

Proof. Let ψσ((π, e)) = [s] and τ = θ−1(π). Assume that e = (e0, e1, . . . , ek).
If s is primitive, we are done. Suppose that s is not primitive, so it can be
written as qm for some m ≥ 2 and some primitive word q with |q| = r = n

m .
Then, si = si+r for all i (using addition modulo n in the index for the
remainder of the proof). Fix i, and let t = si = si+r. Because of the way that
s is defined, we must have et < τi, τi+r ≤ et+1, so we can apply Lemma 3.6
to this pair.

Suppose first that g = oσ(q) is even. If τi < τi+r, then applying Lemma 3.6
r times we get τi+r < τi+2r, since the inequality involving τi+� and τi+r+�
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switches exactly g times as � increases from 0 to r. Starting with i = 1 and
applying this argument repeatedly, we see that if τ1 < τ1+r, then

τ1 < τ1+r < τ1+2r < · · · < τ1+(m−1)r < τ1+mr = τ1,

which is a contradiction. A symmetric argument shows that if τ1 > τ1+r,
then

τ1 > τ1+r > τ1+2r > · · · > τ1+(m−1)r > τ1+mr = τ1,

also a contradiction.
It remains to consider the case that g = oσ(q) is odd. If m is even and

m ≥ 4, then letting q′ = q2 we have s = (q′)
m

2 . Letting r′ = |q′| = 2r
and g′ = oσ(q

′) = 2g, the same argument as above using r′ and g′ yields
a contradiction. If m is odd, suppose without loss of generality that τ1 <
τ1+r. Note that applying Lemma 3.6 r times to the inequality τi < τi+r

(respectively τi > τi+r) yields τi+r > τi+2r (respectively τi+r < τi+2r) in this
case, since the inequality involving τi+� and τi+r+� switches an odd number
of times. Consider two cases:

• If τ1 < τ1+2r, then Lemma 3.6 applied repeatedly in blocks of 2r times
yields τ1 < τ1+2r < τ1+4r < · · · < τ1+(m−1)r. Applying now Lemma 3.6
r times starting with τ1 < τ1+(m−1)r gives τ1+r > τ1+mr = τ1, which
contradicts the assumption τ1 < τ1+r.

• If τ1 > τ1+2r, applying Lemma 3.6 r times we get τ1+r < τ1+3r, and by
repeated application of the lemma in blocks of 2r times it follows that
τ1+r < τ1+3r < τ1+5r < · · · < τ1+(m−2)r < τ1+mr = τ1, contradicting
again the assumption τ1 < τ1+r.

The only case left is when g is odd and m = 2, that is, when s1s2 . . . sn =
q2 and q has an odd number of letters in T−

σ . Thus, we have shown that
[s] ∈ N ∗

k (n;σ).

Lemma 3.8. Suppose k ≥ 1 and σ ∈ {+,−}k. Then ϕσ is a bijection from
N ∗

k (n;σ) onto SS(n;σ), and its inverse is ψσ.

Proof. Fix n ≥ 1. We will first show that for a given π ∈ Cσ
n and a σ-

segmentation e of π, we have that (π, e) = ϕσ(ψσ((π, e))). Let τ ∈ Sn so
that θ(τ) = π and let s = s1s2 . . . sn be the τ -monotone word induced by
the σ-segmentation e. We need to show that Πσ([s]) = [τ ].

Suppose that τi < τj . If s[i,→] �= s[j,→], let a ≥ 0 be the smallest such
that si+a �= sj+a, and let h = |{0 ≤ � ≤ a−1 : si+� ∈ T−

σ }|. If h is even, then
Lemma 3.6 applied a times shows that τi+a < τj+a. Since si+a �= sj+a, we
must then have si+a < sj+a because of τ -monotonicity. Thus, s[i,→] ≺σ s[j,→]
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by definition of ≺σ, since the word sisi+1 . . . si+a−1 = sjsj+1 . . . sj+a−1 has
an even number of letters in T−

σ . Similarly, if h is odd, then Lemma 3.6 shows
that τi+a > τj+a. Since si+a �= sj+a, we must have si+a > sj+a, and thus
s[i,→] ≺σ s[j,→] by definition of ≺σ. If s is primitive, the case s[i,→] = s[j,→]

can never occur when i �= j, and so πi < πj if and only if s[i,→] ≺σ s[j,→]. It
follows that Πσ([s]) = [τ ].

Let r := n
2 . If s is not primitive, we can only have s[i,→] = s[j,→] if

i = j± r. Suppose ρ = Πσ([s]). In this case, we have that ρ1 < ρ1+r, and for
1 < i ≤ r, ρi < ρi+r exactly when either ρi−1 < ρi+r−1 with si−1 ∈ T+

σ or
ρi−1 > ρi+r−1 with si−1 ∈ T−

σ . Thus, if τ1 < τ1+r, we get ρ = τ . If τ1 > τ1+r,
we get ρ = τr+1 . . . τnτ1 . . . τr, a cyclic rotation of τ . Either way, [ρ] = [τ ]
and so Πσ([s]) = [τ ].

Let [s] ∈ N ∗
k (n;σ) with evaluation a = (a0, a1, . . . , ak−1). We will see

that ψσ(ϕσ([s])) = [s]. Let [τ ] = Πσ([s]) and let e = (e0, e1, . . . , ek) be the
partial sums given by e0 = 0 and ei =

∑
j<i aj for i ∈ [k]. It is enough to

show that the [τ ]-monotone necklace induced by e is [s]. However, this is
clear from the first paragraph of the proof of Lemma 3.5.

Proof of Theorem 3.1. Since the left hand side of the formula is the size of

the set N ∗
k (n;σ) and the right hand side is the size of the set SS(n;σ),

Lemma 3.8 implies the equality. Since ϕσ sends necklaces with evalua-
tion a = (a0, a1, . . . , ak−1) to permutations π ∈ Cσ

n and the associated σ-

segmentation e = (e0, e1, . . . , ek) with e0 = 0 and ei =
∑
j<i

aj for i ∈ [k], we

are done.

4. Cycles in length 2 vector grid classes

Here, we provide the enumeration of C++
n , C+−

n , C−+
n , and C−−

n as corollaries
of Theorem 3.1. These theorems also appear in [14, 4]. We also enumerate
the number of permutations in C+−

n with a peak at i, which will be useful
for enumerating Cσ

n for σ ∈ {+,−}3 in Section 5.

4.1. Enumerating C++
n , C+−

n , C−+
n , and C−−

n

Theorem 4.1. If n ≥ 2, then |C++
n | = L2(n) and |C−−

n | = L∗
2(n;−−).

Proof. First suppose σ = ++ and π ∈ Cσ
n . Then π is a cyclic permutation

with at most one descent. Since π is cyclic and n ≥ 2, π must have exactly
one descent. Suppose the descent of π occurs at position i. Then there is
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only one σ-segmentation of π, namely (0, i, n). Thus |C++
n | = L∗

2(n;σ). Since

T−
σ = ∅ in this case, we obtain |C++

n | = L2(n).

Similarly, if π ∈ C−−
n , then π has exactly one ascent and thus one σ-

segmentation. Thus the result follows.

Theorem 4.2. If n ≥ 2, then

|C+−
n | = |C−+

n | = L∗
2(n; +−)

2
.

Proof. By Proposition 2.1, it is enough to consider |C+−
n | only. If π ∈ C+−

n

and π has a peak at position i, then there are two σ-segmentations of π,

namely (0, i− 1, n) and (0, i, n). Since this is true for all π ∈ C+−
n , the result

follows.

4.2. Unimodal cycles with a given peak

In this section, we enumerate the number of cyclic unimodal permutations

(i.e., those permutations in C+−
n ) with its peak in a given position. We let

σ̄ = +− and denote by Λ(n) the size of the set Cσ̄
n .

Recall that we say there is a peak at i if πi > πi−1 and πi > πi+1,

or if i = 1 and π1 > π2, or if i = n and πn−1 < πn. Let Λ(n, i) denote

the number of cyclic permutations in Cσ̄
n with a peak at position i (i.e., the

number of permutations π ∈ Cσ̄
n with πi = n). In order to enumerate the

cyclic permutations in the + + −- and + − −-classes in Section 5, we will

find Λ(n, i), whose formula is given in Lemma 4.6.

Let L2(n, i) denote the number binary Lyndon words of length n with i

1’s, whose formula is well-known. Using Möbius inversion, one can find that

L2(n, i) =
1

n

∑
d|gcd(n,i)

μ(d)

(
n/d

i/d

)
.

Lemma 4.3. If n ≥ 1 and 0 ≤ i ≤ n, then L2(n, i) = L2(n, n− i).

Proof. By interchanging the 0’s and 1’s in each word, we obtain the result.

Lemma 4.4. If n ≥ 1 and i ∈ [n− 1], then

Λ(n, i) + Λ(n, i+ 1) = L2(n, i)
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except in the case when n is even and n+ i ≡ 2 (mod 4); in this case,

Λ(n, i) + Λ(n, i+ 1) = L2(n, i) + L2

(n

2
,
i

2

)
.

Proof. Consider the second statement in Theorem 3.1 for σ̄ = +−. It implies
that the number of necklaces in N ∗

2 (n; σ̄) with i zeros and n− i ones is equal
to the number of cyclic permutations in Cσ̄

n that admit the σ̄-segmentation
(0, i, n). These are exactly the permutations with a peak at i or i + 1. In
the case when either n is odd or n is even and n + i �≡ 2 (mod 4), the
number of necklaces in N ∗

2 (n; σ̄) with i zeros and n − i ones is exactly
L2(n, n − i). When n is even and n + i ≡ 2 (mod 4), the number of such
necklaces is L2(n, n − i) + L2(

n
2 ,

n−i
2 ). Since L2(n, n − i) = L2(n, i) and

L2(
n
2 ,

n−i
2 ) = L2(

n
2 ,

i
2) by Lemma 4.3, the result follows.

Lemma 4.5. If n ≥ 1 and n �≡ 2 (mod 4), then for i ∈ [n],

Λ(n, i) = Λ(n, n− i+ 1).

Proof. The cases when n ≤ 2 are easily checked. Now let n > 2. If i = 1, then
Λ(n, 1) = 0 = Λ(n, n). We proceed by induction on i. Assume Λ(n, i− 1) =
Λ(n, n− i + 2) for some i ∈ {2, 3, . . . , n − 1}. First suppose n is odd. Since
L2(n, i − 1) = L2(n, n − i + 1), applying Lemma 4.4 twice and Lemma 4.3
we obtain

Λ(n, i− 1) + Λ(n, i) = L2(n, i− 1)

= L2(n, n− i+ 1)

= Λ(n, n− i+ 1) + Λ(n, n− i+ 2).

The result now follows from our inductive hypothesis.
Now suppose n ≡ 0 (mod 4). If i− 1 �≡ 2 (mod 4), then the above argu-

ment can be made by again using Lemma 4.4 twice and Lemma 4.3 once.
If i − 1 ≡ 2 (mod 4), notice that n − i + 1 ≡ 2 (mod 4) as well. Therefore,
using the same lemmas,

Λ(n, i− 1) + Λ(n, i) = L2(n, i− 1) + L2

(
n

2
,
i− 1

2

)

= L2(n, n− i+ 1) + L

(
n

2
,
n− i+ 1

2

)
= Λ(n, n− i+ 1) + Λ(n, n− i+ 2).

The result follows from our inductive hypothesis.
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Lemma 4.6. Let n ≥ 3 and i ∈ [n]. If n is odd, then

Λ(n, i) =

i−1∑
j=1

(−1)i+j+1L2(n, j),

and if n is even, then

Λ(n, i) =

i−1∑
j=1

(−1)i+j+1L2(n, j) + (−1)i+1
∑
k<i

4|(n+k+2)

L2

(
n

2
,
k

2

)
.

Proof. Observe that Λ(n, i) is only defined for i ∈ [n]. Since Λ(n, 1) = 0
the result is clear for i = 1. Thus, we assume i > 1 and induct on i with
i ∈ {2, 3, . . . , n− 1}. If i = 2, then from Lemma 4.4 we obtain the equality

Λ(n, 1) + Λ(n, 2) = L2(n, 1)

and the result holds. Thus, we assume the result holds true for all permissible
integers less than i. First suppose n is an odd integer. It follows that

Λ(n, i− 1) + Λ(n, i) = L2(n, i− 1)

by Lemma 4.4; therefore

Λ(n, i) = L2(n, i− 1)− Λ(n, i− 1)

= L2(n, i− 1)−
i−2∑
j=1

(−1)i+jL2(n, j)

= L2(n, i− 1) +

i−2∑
j=1

(−1)i+j+1L2(n, j)

=

i−1∑
j=1

(−1)i+j+1L2(n, j),

where the second equality holds by inductive hypothesis.
Now assume that n is even and i satisfies n+ i− 1 ≡ 2 (mod 4). Then

Λ(n, i− 1) + Λ(n, i) = L2(n, i− 1) + L2

(
n

2
,
i

2

)
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by Lemma 4.4. Following a similar argument as above,

Λ(n, i) = L2(n, i− 1)− Λ(n, i− 1) + L2

(
n

2
,
i− 1

2

)

= L2(n, i− 1)−
i−2∑
j=1

(−1)i+jL2(n, j)

− (−1)i
∑

k<i−1
4|(n+k+2)

L2

(
n

2
,
k

2

)
+ L2

(
n

2
,
i− 1

2

)

= L2(n, i− 1) +

i−2∑
j=1

(−1)i+j+1L2(n, j)

+ (−1)i+1
∑
k<i

4|(n+k+2)

L2

(
n

2
,
k

2

)

=

i−1∑
j=1

(−1)i+j+1L2(n, j) + (−1)i+1
∑
k<i

4|(n+k+2)

L2

(
n

2
,
k

2

)
.

A similar argument holds when n is even and n+ i− 1 �≡ 2 (mod 4). In
this case, the rightmost sum does not acquire an extra term when rewriting
it as a sum over k < i.

5. Cycles in length 3 vector grid classes

In this section, we enumerate cyclic permutations in each vector grid class
of length 3. In Section 5.1, we enumerate C+++

n and C−−−
n , in Section 5.2, we

enumerate C+−+
n and C−+−

n , and in Section 5.3, we enumerate C++−
n , C+−−

n ,
C−++
n , and C−−+

n . Finally, in Section 5.4, we determine Wilf-equivalence
classes for the length 3 vector grid classes.

5.1. Enumerating C+++
n and C−−−

n

In Theorem 5.1, we enumerate both C+++
n and C−−−

n .

Theorem 5.1. If n ≥ 1, then

c+++(n) = L3(n)− nL2(n),
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and if n ≥ 3, then

c−−−(n) = L∗
3(n;−−−)− nL∗

2(n;−−).

Proof. First, let us find c+++(n). The cases when n is 1 or 2 are easily
checked. Suppose n ≥ 3. Notice that c+++(n) = |C+++

n \ C++
n | + |C++

n |.
We know also from Theorem 4.1 that |C++

n | = L2(n). We also know that
permutations in C++

n have exactly one descent, since the only permutation
with fewer descents is the increasing permutation, which is not cyclic when

n ≥ 2.

If π ∈ C+++
n \ C++

n , then π must have exactly 2 descents. Suppose the
descent set is {i, j}, with i < j. Then we must have that the + + +-

segmentation of π is (0, i, j, n). Thus, there is only one +++-segmentation.
If π ∈ C++

n , then π has exactly one descent. If the descent is at position i,

then the +++-segmentation is (0, e1, e2, n), where {e1, e2} = {i, j} for any
j ∈ {0, 1, 2, . . . , n}. Thus, by Theorem 3.1, we obtain that

L∗
3(n; + + +) = |C+++

n \ C++
n |+ (n+ 1)|C++

n |.

Taken with the formula for c+++(n) in the second sentence of this proof and

the fact that L∗
3(n;σ) = L3(n), we obtain the result c+++(n) = L3(n) −

nL2(n). The formula for c−−−(n) is found similarly.

As stated in the introduction, the theorem above is a special case of

theorems that appear in [14] and [4]. The general theorem is stated below.
Let n ≥ 1 and Cn(t) =

∑
π∈Cn

tdes(π), where des(π) is the number of descents
of π.

Theorem 5.2 ([14, Theorem 6.1]). If n ≥ 1, then

Cn(t)

(1− t)n+1
=

1

n

∑
d|n

μ(d)

∞∑
m=0

mn/dtm.

Notice that Theorem 5.1 implies that the signatures + + + and − − −
are weakly cyc-Wilf-equivalent since when n �≡ 2 (mod 4), we must have
L∗
2(n;−−) = L2(n) and L∗

3(n;−−−) = L3(n). Clearly, the second statement

of Theorem 5.1 is equivalent to

c−−−(n) =

{
L3(n)− nL2(n) when n �≡ 2 (mod 4)

L3(n) + L3(
n
2 )− n(L2(n) + L2(

n
2 )) when n ≡ 2 (mod 4).
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It is straightforward to see that in the case when n ≡ 2 (mod 4), we have
that

d3(n) := c−−−(n)− c+++(n) = L3

(
n

2

)
− nL2

(
n

2

)
.

A table of these values can be seen in Table 3.

Table 3: A table of the first eight values of d3 := c−−−(n) − c+++(n) for n
satisfying n > 2 and n ≡ 2 (mod 4)

n 6 10 14 18 22 26 30 34
d3(n) −4 −12 60 1176 12012 106260 891116 7334340

5.2. Enumerating C+−+
n and C−+−

n

In this section, we enumerate the set of cyclic permutations in the +−+-class
and the −+−-class. Recall that we define a peak of the permutation π ∈ Sn

to be i ∈ [n] so that πi−1 < πi and πi > πi+1 (where π0 = πn+1 := 0).
Similarly, we define a valley of the permutation π ∈ Sn to be i ∈ [n] so
that πi−1 > πi and πi < πi+1 (where π0 = πn+1 := n + 1). For example,
the permutation 4156732 has peaks at positions 1 and 5 and has valleys at
positions 2 and 7.

Lemma 5.3. Let n ≥ 3. For any permutation π ∈ C+−+
n , there is a unique

choice of i, j ∈ [n] with i < j so that i is a peak and j is a valley.

Proof. Suppose that π ∈ C+−+
n . If e = (0, e1, e2, n) is a +−+-segmentation of

π, then π1π2 . . . πe1 is increasing, πe1+1 . . . πe2 is decreasing, and πe2+1 . . . πn
is increasing. If we have strict inequalities 0 < e1 < e2 < n, then clearly,
i = e1 if πe1 > πe1+1 and i = e1+1 otherwise, and j = e2 if πe2 > πe2+1 and
j = e2 + 1 otherwise. In this case, we do not have i = j since that would
imply that π is the increasing permutation, which is not cyclic. Similarly, at
least two of the inequalities 0 ≤ e1 ≤ e2 ≤ n are strict inequalities, otherwise
π would be the increasing or decreasing permutation.

If we have that e1 = 0, then π ∈ C−+
n . In this case, we can take i = 1 and

j as above. Again, we do not have i = j as that would imply π is strictly
increasing. If we have that e2 = n, we can take j = n and i as above. We
similarly do not have i = j. Finally, if e1 = e2, then i = e1 and j = e1+1.

For example, consider the permutation π = 356894127 ∈ C+−+
9 . There

are two peaks (namely 5 and 9) and two valleys (namely 1 and 7), but there
is a unique pair i = 5 and j = 7 satisfying the condition that i < j, where i
is a peak and j is a valley.
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Theorem 5.4. For n ≥ 3, c+−+(n) =
L∗
3(n; +−+)

4
.

Proof. Let σ := + − + for the duration of this proof. By Theorem 3.1, we
have

L∗
3(n;σ) =

∑
π∈C+−+

n

|{e : e is a σ-segmentation of π}|.

If π ∈ Cσ
n , then there exists some unique i, j ∈ [n] with i < j such that i is

a peak and j is a valley. Suppose e = (0, e1, e2, n) is a σ-segmentation of π.
Certainly, e1 ≤ i. If e1 < i−1, then e2 ∈ {e1, e1+1} and thus e2 < i. Since i is
a peak, it is followed by a descent and thus the σ-segmentation constructed is
not valid. Therefore, we must have that e1 ∈ {i− 1, i}. For similar reasons,
e2 ∈ {j − 1, j} and so the following list of four σ-segmentations of π is
complete:

(a) (0, i− 1, j − 1, n),
(b) (0, i− 1, j, n),
(c) (0, i, j − 1, n),
(d) (0, i, j, n).

Therefore, L∗
3(n;σ) = 4cσ(n) and the result follows.

Notice that for a permutation π ∈ C−+−
n , there is a unique i, j ∈ [n] with

i < j so that i is a valley and j is a peak. Thus, we omit the proof of the
following theorem due to its similarities to the proof of Theorem 5.4.

Theorem 5.5. For n ≥ 3, c−+−(n) =
L∗
3(n;−+−)

4
.

5.3. Enumerating C++−
n , C+−−

n , C−++
n , and C−−+

n

In this section, we enumerate the set Cσ
n for the four remaining signatures

σ ∈ {+,−}3.
Theorem 5.6. Let Λ(n, i) be the value given in Lemma 4.6. If n ≥ 2, then

c++−(n) =
L∗
3(n; + +−)

2
−

n−1∑
i=2

i · Λ(n, i).

Proof. Let σ := ++− for the duration of this proof. If a permutation is an
element of C++−

n \ C+−
n , then it has two σ-segmentations. As a result, the

equality

cσ(n) = |C++−
n \ C+−

n |+ Λ(n)
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and Theorem 3.1 imply

L∗
3(n;σ) =

∑
π∈Cσ

n

|{e : e is a σ-segmentation of π}|

= 2
(
cσ(n)− Λ(n)

)
+

∑
π∈C+−

n

|{e : e is a σ-segmentation of π}|.

Notice there are 2(i + 1) σ-segmentations of each π ∈ C+−
n with a peak at

i. Specifically, each of these σ-segmentations will have one of the following
forms:

(a) (0, j, i− 1, n) for each j ∈ {0, 1, . . . , i− 1},
(b) (0, j, i, n) for each j ∈ {0, 1, . . . , i},
(c) (0, i, i+ 1, n).

A similar argument to the one in the proof of Theorem 5.4 shows that these
are the only σ-segmentations of π.

Let C+−
n,i denote the set of permutations π ∈ C+−

n with a peak in position
i. Then

∑
π∈C+−

n

|{e : e is a σ-segmentation of π}| =

n−1∑
i=2

∑
π∈C+−

n,i

2(i+ 1)

=

n−1∑
i=2

2(i+ 1)Λ(n, i)

and

L∗
3(n; + +−) = 2c++−(n)− 2Λ(n) +

n−1∑
i=2

2(i+ 1)Λ(n, i).

Since Λ(n) =
∑

Λ(n, i), the theorem follows from the equality above.

Theorem 5.7. Let Λ(n, i) be the value given in Lemma 4.6. If n ≥ 2, then

c+−−(n) =
L∗
3(n; +−−)

2
−

n−1∑
i=2

(n− i+ 1)Λ(n, i).

Proof. Let σ := + − − for the duration of this proof. As in the proof of
Theorem 5.6, there are exactly two σ-segmentations of π whenever π ∈
C+−−
n \ C+−

n . Furthermore, for π ∈ C+−
n with a peak at i, a similar argument

to the one in the proof above shows that the σ-segmentations of each of
these permutations will have one of the following forms:
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(a) (0, i− 1, j, n) for each j ∈ {i− 1, i, . . . , n},
(b) (0, i, j, n) for each j ∈ {i, i+ 1, . . . , n},
(c) (0, i− 2, i− 1, n).

Thus

∑
π∈C+−

n

|{e : e is a σ-segmentation of π}| =

n−1∑
i=2

∑
π∈C+−

n,i

2(n+ i+ 2)

=

n−1∑
i=2

2(n+ i+ 2)Λ(n, i)

and the result now follows.

The following corollaries are immediate results of Proposition 2.1 and

Lemma 2.6.

Corollary 5.8. The signatures + + − and − + + are cyc-Wilf-equivalent,

and thus if n ≥ 2,

c−++(n) =
L∗
3(n;−++)

2
−

n−1∑
i=2

i · Λ(n, i).

Corollary 5.9. The signatures + − − and − − + are cyc-Wilf-equivalent,

and thus if n ≥ 2,

c−−+(n) =
L∗
3(n;−−+)

2
−

n−1∑
i=2

(n− i+ 1)Λ(n, i).

5.4. cyc-Wilf-equivalence

In this section, we discuss the equivalence classes of the cyclic permutations

in the length 3 vector grid classes. Recall two classes are cyc-Wilf-equivalent

if the sets of cyclic permutations in each class are equinumerous, and we say

two classes are weakly cyc-Wilf-equivalent if they are equinumerous when

n �≡ 2 (mod 4).

Theorem 5.10. For n ≥ 1, c+−+(n) = c−+−(n) and thus the signature

+−+ is cyc-Wilf-equivalent to the signature −+−.
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Proof. For n = 1 and n = 2, this is easily checked and thus we assume n ≥ 3.

By Theorems 5.4 and 5.5, it is enough to show Lo
3(

n
2 ; +−+) = Lo

3(
n
2 ;−+−).

Since these are both 0 when n is odd, we need only consider the cases when

n is even. It suffices to show that the number of necklaces [s] of length n
2

when o+−+(s) is odd is equal to the number of necklaces [s′] of length n
2

when o−+−(s) is odd. Note that for a necklace [s] with si ∈ {0, 1, 2} of length
n
2 , we have o+−+(s) = |{i ∈ [n] : si = 1}| and o−+−(s) = |{i ∈ [n] : si �= 1}|
by definition. We proceed by cases.

Case 1. When n ≡ 0 (mod 4), n
2 is even, and thus for any necklace

[s] of length n
2 , o+−+(s) is odd if and only if o−+−(s) is odd. Therefore,

Lo
3(

n
2 ; +−+) = Lo

3(
n
2 ;−+−).

Case 2. When n ≡ 2 (mod 4), n
2 is odd and we will show using Möbius

inversion that exactly half of necklaces of length n
2 have o+−+(s) odd. This

in turn implies that there are equally many necklaces with o+−+(s) odd as

there are with o+−+(s) even (or equivalently, o−+−(s) odd).
Take m := n

2 for simplicity of notation. Let a(m) be the number of

ternary primitive words with o+−+(s) odd and let b(m) be the number of

ternary words (which are not necessarily primitive) with o+−+(s) odd. It is

easily checked that b(m) = 3n−1
2 . Also, for any m,

b(m) =
∑
d|m
d odd

a(m/d).

Since m is odd, all its divisors are also odd, so we can write

b(m) =
∑
d|m

a(m/d) =
∑
d|m

a(d).

Using Möbius inversion, we rewrite this sum as

a(m) =
∑
d|m

μ(d)b(m/d).

This sum becomes

a(m) =
1

2

∑
d|m

μ(d)(3n/d − 1) =
1

2

∑
d|m

μ(d)3n/d,

where the equality follows from the well-known fact that
∑

μ(d) = 0 when
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the sum is taken over all divisors d | m for any integer m ≥ 2. It follows that

Lo
3(m; +−+) =

1

m
a(m) =

1

2m

∑
d|m

μ(d)3n/d

which is exactly half of L3(m). The result follows.

Theorem 5.11. If n ≥ 1 and n �≡ 2 (mod 4), then c++−(n) = c+−−(n) and
thus the signatures ++− and +−− are weakly cyc-Wilf-equivalent.

Proof. It is enough to show that when n �≡ 2 (mod 4),

n−1∑
i=2

i ·Λ(n, i) =
n−1∑
i=2

(n− i+ 1)Λ(n, i) and L∗
3(n; ++−) = L∗

3(n; +−−).

Setting i := n− j + 1 and using Lemma 4.5, we obtain the equalities

n−1∑
i=2

i · Λ(n, i) =
n−1∑
j=2

(n− j + 1)Λ(n, n− j − 1) =

n−1∑
j=2

(n− j + 1)Λ(n, j).

If n is odd, it is clear that L∗
3(n; + + −) = L∗

3(n; + − −). When n ≡ 0

(mod 4), it is enough to show that Lo
3(

n
2 ; + + −) = Lo

3(
n
2 ; + − −). Observe

Lo
3(

n
2 ; + +−) is the size of the set of primitive necklaces of length n

2 which

have an odd number of 2’s. Since n
2 is even, the number of 0’s and 1’s must

be odd as well. Therefore, Lo
3(

n
2 ; ++−) = Lo

3(
n
2 ;−−+) and thus the equality

Lo
3(

n
2 ; + +−) = Lo

3(
n
2 ; +−−) follows from Lemma 2.6.

6. Alternating grid classes

In this section, we prove cyc-Wilf-equivalence for a more general set of grid

classes. Define the k-th up-down alternating grid class to have signature

σ+k
alt = +−+−· · · ∈ {+,−}k and the k-th down-up alternating grid class to

have signature σ−k
alt = −+−+· · · ∈ {+,−}k. In this section, we show that the

number of cyclic permutations in the up-down alternating grid class is equal

to the number of cyclic permutations in the down-up alternating grid class

(i.e., they are cyc-Wilf-equivalent). When k is even, this is automatically

true by Proposition 2.1, so it remains to show this is true when k is odd.

Lemma 6.1. For all odd k ≥ 3 and n ≥ 3, L∗
k(n;σ

+k
alt ) = L∗

k(n;σ
−k
alt ).



228 Kassie Archer and L.-K. Lauderdale

The proof of this lemma is exactly the proof of Theorem 5.10, modified to
enumerate k-ary necklaces of length n

2 with oσ+k
alt
(s) odd. Again, one may use

Möbius inversion to show that when n
2 is odd, exactly half of the primitive

k-ary necklaces of length n
2 have oσ+k

alt
(s) odd.

Theorem 6.2. For all k ≥ 2, the signatures σ+k
alt and σ−k

alt are cyc-Wilf-
equivalent.

Proof. As stated above, this is automatically true if the length of the signa-
tures is even. Assume the length k is odd. The theorem follows inductively
from Lemma 6.1 and Theorem 3.1.

7. Discussion and conjectures

Recall that for σ ∈ {+,−}k, we define the complementary signature as
σc = σ0

cσ
1
c . . . σ

k−1
c with σi

c = + if σi = − and σi
c = − if σi = +.

Conjecture 7.1. For all k ≥ 2 and σ ∈ {+,−}k, σ is weakly cyc-Wilf-
equivalent to σc.

A signature σ has k corners if there are k changes in sign. For example,
σ = +++ has 0 corners, σ = +−+−+− has 5 corners, and σ = ++−−−+
has 2 corners. The following conjecture subsumes the one above since a
signature and its complement have the same number of corners.

Conjecture 7.2. For all k ≥ 2 and σ ∈ {+,−}k, signatures with k corners
are all weakly cyc-Wilf-equivalent.

More generally, one could use Theorem 3.1 to enumerate the set of cyclic
permutations in other families of grid classes. Furthermore, one could gen-
eralize this theorem to a bijection between σ-segmentations of permutations
with other cycle types and multisets of necklaces in order to enumerate per-
mutations in grid classes by their cycle type. Some progress towards this for
σ = +− and σ = +k can be found in [18] and [14].
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