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Two classes of modular p-Stanley sequences

MEHTAAB SAWHNEY AND JONATHAN TIDOR

Consider a set A with no p-term arithmetic progressions for p
prime. The p-Stanley sequence of a set A is generated by greedily
adding successive integers that do not create a p-term arithmetic
progression. For p > 3 prime, we give two distinct constructions for
p-Stanley sequences which have a regular structure and satisfy cer-
tain conditions in order to be modular p-Stanley sequences, a set
of particularly nice sequences defined by Moy and Rolnick which
always have a regular structure.

Odlyzko and Stanley conjectured that the 3-Stanley sequence
generated by {0,n} only has a regular structure if n = 3% or n =
2.3%. For p > 3 we find a substantially larger class of integers n such
that the p-Stanley sequence generated from {0,n} is a modular p-
Stanley sequence and numerical evidence given by Moy and Rolnick
suggests that these are the only n for which the p-Stanley sequence
generated by {0,n} is a modular p-Stanley sequence. Our second
class is a generalization of a construction of Rolnick for p = 3 and
is thematically similar to the analogous construction by Rolnick.

1. Introduction

For an odd prime p, a set is called p-free if it contains no p-term arithmetic
progression. Szekeres conjectured that for p an odd prime, the maximum
number of elements in a p-free subset of {0,1,...,n — 1} grows as nlogp-1P
[2]. This conjecture however has been disproved. In particular, Elkin [1]
proves the best known lower bound for 3-free sets of O(n'=°(1)) while the
best proven upper bound is O(n(loglogn)®/logn) due to recent work of
Sanders [12].

The inspiration for Szekeres’s conjecture however is of interest. In partic-
ular, Szekeres’s conjecture is based on the sequence constructed by starting
with 0 and greedily adding each subsequent integer that does not create a
p-term arithmetic progression. The sequence produced is exactly the non-
negative integers that have no digit of p — 1 in their base p expansion. In
1978, Odlyzko and Stanley generalized this construction to arbitrary sets

[9]-
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Definition 1.1. Let A := {ay,...,ay} be a finite set of nonnegative integers
that contains 0 with no nontrivial p-term arithmetic progressions. Further-
more take 0 = a1 < az < --- < an and for each integer k > n, let apy1
be the least integer greater than ay such that {ai,...,ax,ar+1} has no p-
term arithmetic progressions. The p-Stanley sequence Sp(A), also written as
Sp(ai,...,an), is the sequence ai, ..., Gp, Api1, - - ..

In the language of Stanley sequences the previous example is precisely
Sp(0). Odlyzko and Stanley noticed that for some sets A, the Stanley se-
quence S3(A) displays a regular pattern in terms of the ternary represen-
tations of its terms and these sequences grow as n'°%23. In particular, they
explicitly computed S3(0,3%) and S3(0,2 - 3%) and showed that these se-
quences satisfy the above properties. However, for other values of m, the
sequence S3(0,m) seems to grow chaotically and at the rate n?/logn. In
particular, Lindhurst [5] computed S5(0,4) for large values and observes
that it appears to follow this second growth rate.

Odlyzko and Stanley provided a heuristic argument why a randomly
chosen sequence should grow at the rate n?/log n and conjectured that these
two behaviors are the only possible ones. Further work on the growth of
chaotic p-Stanley sequences for p > 3 can be found in [4]. This leads to the
following conjecture, which is explicitly stated for p = 3 in [9)].

Conjecture 1.1 (Based on [9], [4]). A p-Stanley sequence ay,az, ... with p
an odd prime satisfies either:

Type 1: a, = @(nl"g(p—l)P)
Type 2: a, = © (n(Pfl)/(pr)/(log n)l/(pr)).

To date however there has been no 3-Stanley sequence, or more generally
p-Stanley sequence, that has been proven to have Type 2 growth. Despite
this, there has been significant interest in studying the structure of Type
1 3-Stanley sequences ([7], [11], [10]). The most relevant class of Type 1
3-Stanley sequences stems from the work of Moy and Rolnick [7], extending
work of Rolnick [10], which gave the following class of Type 1 sequences.

Definition 1.2. Consider a set A C {0,...,N — 1} with 0 € A such that
there is no nontrivial 3-term arithmetic progression mod N among the el-
ements of A. (Trivial arithmetic progressions refer to progressions with all
elements equal.) A set A is said to be modular if for every integer x, there
exists y > z in A such that 2y — z = x mod N. Note that the second con-
dition is equivalent to x, y, and z being an arithmetic progression mod N.
Furthermore we say that S3(A) is a modular Stanley sequence if A satisfies
these conditions.
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Several papers have been dedicated to understanding various properties
of these modular sequences; namely the character, repeat factor, and scaling
factor of these sequences. See [10], [7] for definitions of these properties and
[11], [6], [8] for further work on understanding these properties. Furthermore
Moy and Rolnick [7] conjecture that all 3-Stanley sequences with Type 1
growth are pseudomodular, a suitable generalization of modular sequences.
In contrast, for general p-Stanley sequences, there is no such conjectured
form for Type 1 sequences. However there is a natural analog of modular
Stanley sequences, modular p-Stanley sequences. In particular one modifies
the given definition to have no p-term arithmetic progressions and defines
an analog of the second condition. This is defined more precisely in the next
section.

In this paper we present two classes of modular p-Stanley sequences,
one of which hints a difference between 3-Stanley sequences and p-Stanley
sequences for larger primes p whereas the other appears to suggest a degree
of similarity. The first demonstrates that for p > 3, there exists a large
class of integers n for which S,(0,n) has Type 1 growth and in fact is a
modular sequence. In particular for p > 5, if 2- pF~1 < n < p* and pF —n
has no p — 1 in its base p expansion, then S,(0,n) has Type 1 growth. This
is notable as there exist n # i -p* for 1 < i < p — 1 such that S,(0,n)
exhibits Type 1 growth, unlike the case p = 3 where Stanley and Odlyzko
[9] conjecture that only S3(0,3%) and S3(0,2-3%) have Type 1 growth among
sequences of the form S3(0, n). Numerical evidence given by Moy and Rolnick
[7] suggests that these are the only possible integer n and thus appears to
give a conjectural answer to a question raised by Moy and Rolnick [7] of
classifying integers n such that S,(0,n) is modular.

The second class is a generalization of Theorem 1.2 by Rolnick [10].
These constructions are notable as they are among the first explicit con-
structions for large classes of modular p-sequences, with the only other large
class of constructions present in the literature being that of basic sequences
given by Moy and Rolnick [7].

In Section 2 we provide some definitions and basic results on modu-
lar p-Stanley sequences that are used within this paper. In Section 3 we
demonstrate the first class of modular p-Stanley sequences, and in Section
4 we demonstrate the second class of modular p-Stanley sequences. Section
5 contains some ideas for future work in these directions.

2. Definitions

This section provides the definitions and basic results on modular p-Stanley
sequences necessary to prove our results. For further exposition, see [7].
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Definition 2.1. A set A p-covers x if there exist x1,22,...,2p—1 € A such
that v1 < xo < --- < xp_1 < T 18 an arithmetic progression.

Proposition 2.1. The p-Stanley sequence S,(A) is the unique sequence that
starts with A, is p-free, and p-covers all x ¢ Sp(A) with x > max(A).

Proof. Since & > max(A) there are two cases. If x is in S,(A), its addition
to the sequence preserves that the sequence is p-free. If = is not in S,(A),
it follows that the addition of z would have created a p-term arithmetic
progression with largest term x and with the remaining terms in S,(A). O

Definition 2.2. A set A C {0,1,...,N — 1} is said to p-cover x mod N
if there ewist x1,x2,...,2p—1 € A such that 1 < 29 < --- < Tp_1 and x
form an arithmetic progression mod N. Restricting 0 < x < N and given
the size restrictions for A this is equivalent to x1 < 2 < --- < xp_1 < T or
1 <22 < - <xp_1 <2+ N forming an arithmetic progression.

Definition 2.3. A set A C {0,1,...,N —1} is a modular p-free set mod N
if A contains 0, is p-free mod N, and p-covers all x with 0 < x < N and
x & A. A p-Stanley sequence is a modular p-Stanley sequence if it has the
form Sp(A) for a modular p-free set A.

We will refer to “p-covering” and “modular p-free” simply as “covering”

and “modular” when p is obvious. We write A+ B for {a+b|a € A, b€ B}
and c¢- A for {c-a | a € A}. The following is the main theorem on modular p-
Stanley sequences proved in [7]. It implies that a modular Stanley sequence
grows asymptotically as S,(0).

Theorem 2.1 (Theorem 6.5 in [7]). If A is a modular p-free set mod N,
then S,(A) = A+ N - S,(0). Note that S,(0) consists of all nonnegative
integers with no p — 1 in their base p expansions.

Corollary 2.1 (Corollary 6.6 in [7]). Any modular p-Stanley sequence ex-
hibits Type 1 growth.

3. First class of p-Stanley sequences

We use the notation t;(x) to refer to the digit corresponding to p’ in the
base p expansion of x. We initially define a pair of sets which are critical for
this section.

Definition 3.1. Let Alg be the set of positive integers n such that 2-pF~—1 <
n < p* with p* —n € S,(0). This is equivalent to t;(p* —n) # p — 1 for all i

o0

and additionally tj_1(p* —n) #p—2. Let Ay = | A’;.
k=0



Two classes of modular p-Stanley sequences 131

For example the set As begins {1,3,4,5,12,13,14,15,17,18...}.

Notation 3.1. Let S = {z | z € S,(0),z < p*}. Note by Lemma 6.4 in
[7], S;f is p-free mod p* and covers {0,1,...,p% — 1} \ S}],f.

In a manner closely related to the proof of Lemma 6.4 in [7], we define
a key procedure for the proof of Theorem 3.4.

Definition 3.2. For 0 < x < p* define the canonical covering of x to be the
sequence X1,%1,...,Tp—1 wherex; =, tl(-j)pi and tz(-]) =ti(z) ift;(x) #p—1
and tz(»J) =j—1ifti(z)=p—1.

Note that the canonical covering is contained in S’le and, as suggested
by its name, p-covers z. Using these definitions it possible to prove our first
result on modular p-Stanley sequences.

Theorem 3.1. For p > 3 a prime and n € A,, S,(0,n) is a modular p-
Stanley sequence.

Proof. Suppose that k is such that p*~2 < n < pF~! and let A = {0} U
(n+ SE)\ {p*'(p — 1)}. Note that max(A) < p*. Therefore it suffices to
demonstrate Sp(0,n) = Sp(A) and that A is modular mod p*.

To demonstrate that S,(0,n) = Sp(A), it suffices by Proposition 2.1 to
prove that A is p-free and covers all n < z < p* with z ¢ A. To demonstrate
that A is modular mod p¥, it suffices to prove that A is p-free mod p* and
covers all 0 < z < p* mod p* with ¢ A. Thus it is sufficient to show the
slightly stronger statement that A is p-free mod p* and covers all n < z <
pPnwithe ¢ Aandz # pF. Let A’ = —n+A = {—n}USS\{pk_l(p—l)—n}.
We demonstrate that A’ has no arithmetic progressions mod p* which will
give us the first of our two desired results.

Since S}’; is p-free mod p¥, any arithmetic progression in A’ must contain
—n. Suppose there is an arithmetic progression {a;} mod p* and define
b; = a; mod pF~! with 0 < b; < p*~1. It follows that {b;} is an arithmetic
progression mod p*~1. By the definition of Ap, we know that pFl—n¢c S}’;,
so the progression {b;} is in fact an arithmetic progression mod p*~! in Sgil.
Thus the progression {b;} must be the constant arithmetic progression. It
follows that ap = a1 = --- = ap—1 = —n (mod p*~1) and therefore the only
possible arithmetic progression mod p* in A’ is i - p*~1 —n for 0 < i < p.
However, since (p — 1)p*~1 —n ¢ A’, it follows that A’ is p-free mod p*.

To prove the second result we demonstrate that A’ covers 0 < x < pF
with 2 ¢ A’ and z # p¥ —n. If z = p*~'(p — 1) — n, then x is covered by
{ipF=1 —n} for 0 < i < p — 1. Otherwise, = & Sg. Since x is covered by
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its canonical covering in S]’;, the only cases we have to consider are those in
which the canonical covering of x contains p*~!(p — 1) — n.

Let m = p*~1(p — 1) — n, since n € A,, we know that t5_;(m) =p — 2,
ti_a(m) < p—2, and t;(m) # p—1 for all i. Any 0 < 2 < p* whose canonical
covering contains m can be written in the form

k—1
rs =Y ti(m)p'+ Y (p—1)p,
Z;g €S
where S C{0,1,...,k — 1} is a set of digits such that ¢;(m) is the same for
all i € S. We earlier assumed that x # m and = # p* —n = p*~! + m. This
implies that S # 0, {k — 1}.

For the remainder of the proof fix an integer a and an S C {0,1,...,k—1}
such that a = t;(m) for alli € S and S # 0, {k—1}. Let j be max(S\{k—1})
and let b =t;11(m).

We know that tx_1(m) = p—2 and tx_o(m) < p — 2, which implies that
{k—=2,k—1} € S. Thus this implies that if j = k — 2, then k — 1 ¢ S.

We know that 0 < a,b < p— 1, and we now consider four cases.

Case 1: a = 0.

Let A =Y, cop" Then {p" 1(p—1)—n+i-A}for0<i<p-—1is
the canonical covering of xg as we are preserving all digits not equals to
p—11in xzg and using {0,...,p — 2} where g has a digit p — 1. However
{i-p*~t —n+i-A} for 0 <i<p—1 also covers zg.

We need to check that all of these terms are in A’. Since p*~1(p — 1) —
n+iA € S;f with first digit p — 2, then i - p*~' —n +i- A is identical except
the first digit ranges from 0 through p — 2 for 0 < ¢ < p — 1 while for ¢ =0
it follows as i -p* ' —n+i-A=—-necA.

Case 2:0<a<p—1land 0<b< (p—3)/2.

Let 7/ > j be the smallest integer such that t;(m) > (p — 1)/2. Note j'
exists since tx_1(m) =p—2 > (p— 1)/2. In this case take

J'-1

A= Pp-1/2+ > P

iES\{j7j+17-"7j/}
=@ - Y P

i€S\{j,j+1,....5'}

and consider the arithmetic progression {zg —i-A} for 0 <i <p—1. We
claim this set is contained in A’.
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We can compute the digits of each of these numbers. Write the digit
expansion of xg —i-A as xg —1-A = thl(l)pl. Forl & {j,j+1,...,5'},
then tl(l) matches the canonical covering. In particular, tl(l) =ti(m)ifi g S
and otherwise tl(z) =p—1—1i.

Using explicit computation it is possible to determine the remaining
digits. First note that tgf) =ty —[i/2]. For j+1 <1 < j', we have tl(z) = t;(m)

for i even and tl(i) = t;(m)+(p—1)/2 for i odd. Furthermore, t§21 =t (m)+1

for i > 0 even and tgz)rl = tjp1(m) + 1+ (p — 1)/2 for i odd. Finally,
ty) =1/2—1 for i > 0 even and tg-z) =(p—1)/2+ (i—1)/2 for i odd.

Now we check that all of these terms are in A’. The jth digit cycles
through each value when 0 < ¢ < p — 1, and since it equals p — 1 when
i = 0, it never equals p — 1 in the range 0 < ¢ < p — 1 that we are using to
cover xg. Since tj(m) > (p—1)/2, tgf) never goes below 0, and tg-z,) < tj(m).
Therefore we have ty) < p—1for i > 0. Furthermore since t;(m) < (p—1)/2
for j < | < j/, neither of the two values that this digit takes is p — 1.
Furthermore the (j+ 1)st digit only takes on 3 values, none of which is p—1
since tj11(m) = b < (p — 3)/2. Finally, tﬁl # tj+1(m) for i > 0. Since
tj+1(m) never takes on its original value again, none of the terms in this
sequence are m.

Case 3:0<a<p-—1land (p—3)/2<b<p—1and (a,b,p)#(2,1,5).

We claim we can find 1 < d < b+ 1 such that d Z p — a — 1 given the
conditions in this case. If p > 5 it is not hard to check® that lem(1,2,..., (p—
1)/2) > p— 1, so a number in this range must not divide p—a—1 < p— 1.
If p =5, we can use d = 2 unless a = 2 (and therefore p —a — 1 = 2).
Furthermore if p =5, a =2, b > 2, we can use d = 3.

Let

A=d-p+ Z Pt
i€S\{j}
We claim that the arithmetic progression {xg —i- A} for 0 <i <p—11is
contained in A’.

None of the digits of xg — i - A is equal to p — 1 except for possibly the
jth and (j + 1)st digits. The jth digit decreases by d (mod p) so it only
takes on the value p — 1 when ¢ = 0. Moreover, subtracting A, the jth digit

'Let [T, p$* be the prime factorization of p—1. If p—1 is not a prime power, then
pii €{1,...,(p—1)/2} for all i. Otherwise, since p is odd, we can write p — 1 = 2*.
Then since k > 2, 2¥~! and 3 are elements in {1,2,...,(p — 1)/2} and thus the
least common multiple is at least 3-2F~1 > 2F = p — 1.
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forces the (j + 1)st to decrement exactly d — 1 times (due to a “borrow”).
Since p—1>b> (p—3)/2>d—1, the (j + 1)st digit never takes on the
value p — 1 and never itself “borrows” from the (j + 2)nd digit.

Thus it suffices to check that no term is equal to p*~'(p — 1) — n. This
must occur before the (j 4 1)st digit has changed its value from ¢;41(m). In
this range, the jth digit has value tj(zg) —i-d = (p — 1) — i - d. However if
(p—1)—i-d=a, thend|p—a—1,a contradiction. Thus this arithmetic
progression is contained in A’, as desired.

Case 4:a=2,b=1, and p=5.

This special case is similar to Case 2. Note that for j < j/ < k, it is
not the case that j/ € S. In particular the only possibility is j' = k — 1,
but {j,k — 1} C S implies that ¢j(m) = tx_1(m) and tj(m) = a = 2
whereas t;_1(m) = p — 2 = 3. Furthermore note that j +1 # k — 1 since
th—1(m) =3 # 1 =tj41(m). Now if tj12(m) > 1, letting

A=5T143.5 4+ Y 5,
ieS\{j}
it is easy to check that {zg —i-A} for 0 <i <4 isin A"

Otherwise, tj12(m) = 0. Let j/ > j+ 2 be the smallest integer such that
tj(m) > 2. This exists for the same reason as in Case 2. Now let

j'=1
A= > 2.5 +5 435+ > 5
i=j+2 i€S\{j,j+1,....7"}

= (5j’ _ 5j+2)/2 +5t 41 3.5 & Z 5e.
i€S\{j,j+1,....5"}
We cover zg by {xg —i- A} for 0 < i < 4. By exactly the same reasoning
as in Case 2, this covering is in A’. O

We conjecture, but cannot currently prove, that these are the only inte-
gers n such that S5(0,n) exhibits Type 1 growth. Computational evidence
provided by Moy and Rolnick [7] suggests that the integers less than 100
such that S5(0;n) are well-behaved and in particular modular are as follows:

1,3,4,5,12,13,14, 15,17, 18, 19, 20, 22, 23, 24, 25, 37, 39, 40, 42, 43, 44, 45,
47,57,58,59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72,73, 74, 75, 82, 83, 84, 85,
87,88, 89,90, 92, 93,94, 95,97, 98, 99.

See Problem 6.7 in [7] for more detail. This matches exactly the integers
which Theorem 3.4 would suggest, giving some support for this conjecture.
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4. Second construction of p-Stanley sequences

This section presents a generalization of Theorem 1.2 given by Rolnick [11]
with a proof that is similar in spirit to that of Theorem 1.2. For this section,
fix an odd prime p, and recall that ¢;(x) refers to the ith digit of = in base
.

Definition 4.1. We say a (positive) integer x dominates an integer y if
ti(x) > ti(y) for all integers i.

Note that the set S{; defined in Section 3 is exactly the set of integers
dominated by Zi':ol (p—2)p".

Theorem 4.1. LetT C S}],f be a nonempty set that is downward-closed under
the domination ordering. Namely if x € T and y is dominated by x, then
y € T. Then Sy(T U {p*}) and S,(T U {(p — 1)p*}) are modular p-Stanley
sequences.

Note that for p = 3 this is Theorem 1.2 in Rolnick [10].

Proof. In both cases, we give an explicit description of the Stanley p-se-
quences and prove that this is the correct sequence.

We claim that = € S,(T U {p*}) if and only if the following three condi-
tions hold

o ti(xr) #p—1fori#k, '
e t;(x) =0 implies that Zf:_ol ti(z)p' €T,
e {;(r) =p—1 implies that Zf:_ol ti(x)p' € T.

For convenience let L be the set of integers satisfying the above relations.
Note that L N {0,1,...,p*} = T U {p*}. It suffices by Proposition 2.2 to
demonstrate that L does not contain any p-term arithmetic progressions
and that every integer not in L and greater than p¥ is covered by a p-term
arithmetic progression in L.

To show that L is p-free we proceed by contradiction. Suppose that
1 < --- < xp form an arithmetic progression. Let ¢ be the smallest integer
such that t;(x1),...,ti(zp) are not all equal. Since p is prime and the first
i digits of x1,...,x, are the same, this implies that {t;(z1),...,ti(zp)} =
{0,...,p—1}. Since t;(z) # p — 1 for i # k, we conclude that i = k.

Now there are some j, j’ such that t5(z;) = 0 and tx(xj) = p— 1. By the
definition of L, this implies that Z?:_ol ti(zj)p" € T and Zf:_ol ti(zj)p' ¢ T.
However, since t;(z;) = t;(z;) for ¢ < k, this is a contradiction.

It remains to show that every integer x > p”* is covered by a p-term
arithmetic progression. In order to do so we explicitly construct a p-term
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arithmetic progression x; < zo < --- < x,_1 < o with the z; in L. If we
have equality anywhere in this chain then x in L; otherwise r1 < 9 < -+ <
zp—1 < x as desired. For 0 < ¢ < k —1if t;(z) = £ < p — 1, then set
ti(z;) = for 1 < j <p—1. If instead t;(z) = p — 1, set t;(x;) = j — 1 for
1 < j < p— 1. Note that this is exactly the canonical covering from earlier.
Now we subdivide into several possible cases.

Case 1: ti(x) #0, p—1

Set tx(x;) = . For the remaining digits, use the canonical covering as
before.

Case 2: ty(x) =p—1

We have two cases. If the last &k digits of 1 are in T', then set t;(z;) =
j—1. Otherwise set t;(z;) = p— 1. In either case, use the canonical covering
for the remaining digits.

Case 3: tx(x) =0

If the last k digits of z,—; are in T', set ¢;(x;) = 0 and use the canonical
covering for the remaining digits. Otherwise, set ¢x(x;) = j and perform the
canonical covering for  — p**! for the remaining higher digits. (Note that
since x > p¥ and t;(x) = 0 it follows that x > pF+1)

It is routine to verify in each case that the x; constructed are in L,
completing the proof that S,(7'U{p*}) = L. To show that this is a modular
Stanley sequence, let L* = {z | z € L,z < p**'}. We claim that L* is a
modular set. The proof of this fact is nearly identical to the above analysis.
Consider just the digits ¢;(z) for 0 <i < k.

Next we prove that S(TU{(p—1)p*}) is a modular p-Stanley sequence.
This proof is similar to the above argument though slightly more involved.
We claim that @ € S(T U {(p — 1)p*}) if and only if the following four
conditions hold

o ti(x)#p—1fori#kk+1,

hd tk(x) 7£ p— 2a )

e t;1(x) = 0 implies that tx(z) = 0 and Zi':ol ti(z)p" € T or t(x) =
p— 1’

tr+1(x) = p—1 implies that tx(x) # p—2,p—1, and if ¢x(x) = 0, then
k—1 i
Zizo ti(z)p' ¢ T.
Again let L be the set defined by these four conditions. We show that L
is p-free and p-covers the part of its complement greater than (p — 1)pk .
For the sake of contradiction, suppose that 1 < x2 < --- < x, form an
arithmetic progression with x; € L. Using the same idea as above we see
that t;(z1) = -+ = t;(xp) for 0 < ¢ < k — 1. Since tx(x) # p — 2, it follows
that tk(l'l) == tk(xp). Now if {tk+1($1), ce atk+1($p)} = {0, N 1},
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then there exist j,j’ such that t441(x;) = 0 and t441(xj) = p — 1. Then
we see that S2P"0 t;(z;)p' € T and Y2~ t;(x;)p* ¢ T. Thus we conclude
that tg41(x1) = -+ = tg+1(xp), and by the same reasoning we see that
1 =...= Zp, a contradiction.

It remains to show that every integer 2 > (p—1)p¥ is covered by a p-term
arithmetic progression. In order to do so, we explicitly construct a p-term
arithmetic progression, 1 < 9 < --- < zp_1 < z with x; € L. If we have
equality anywhere in this chain then € L. Otherwise, 1 < x9 < -+ < xp_1
as desired. For 0 < i < k —1, if t;(z) = ¢ < p— 1, then set t;(x;) = £ for
1 < j < p— 1. Otherwise t;(z) = p — 1, and we set t;(x;) = j — 1 for
1 < j < p—1. We will define this procedure as earlier to be the canonical
covering. Now we subdivide into several possible cases and note that several
of these cases degenerate when p = 3.

Case 1t () =1,...,p—2 and tx(x) #p —2

Set tgi1(x) = tgr1(zy) and ty(x) = tg(x;) for 1 < j < p — 1. For the
remaining digits, use the canonical covering.

Case 2: Either t;11(z) =p—1and tx(x) =1,...,p—3 or tg41(z) =0
and tgp(z) =p—1

Set typr1(z) = tgt1(xj) and t(z) = tg(x;) for 1 < j < p — 1. For the
remaining digits, use the canonical covering as before.

Case 3: ty11(z) =p—1and tg(x) =p—1

Set tpy1(zj) = j — 1 and tg(zj) = j — 1 for 1 < j < p— 1. For the
remaining digits, use the canonical covering as before.

Case 4: tj11(x)=1,...,p—1land ty(z) =p—2

Set tpr1(zj) = tpg1(x) and tyyi(z;) = j—2 for 2 < j < p — 1 while
tg+1(z1) = tpe1(z) — 1 and tx(x1) = p— 1. For the remaining digits, use the
canonical covering as before.

Case 5: tj1(x) =0 and t(z) =1,...,p— 3

Set tg+1(z;) = j and t(z;) = t(z) for 1 < j < p— 1. For the remaining
digits, use the canonical covering & — pF*2.

Case 6: t;1(x) =0 and tg(z) =p—2

Set tpyi1(z;) = j and tp(x;) = j—2 for 2 < j < p — 1. Also put
ty+1(x1) = 0 and ti(x;) = p— 1. For the remaining digits, use the canonical
covering x — pF+2.

Case 7: ti1(z) =tp(z) =0

Consider x,_; before setting t511(xp—1) and tg(xp—1). If z,—1 € L, then
set tgy1(xj) = tp(z;) = 0 for 1 < j < p—1 and for the remaining digits,
use the canonical covering z. Otherwise, set t;11(x;) = j and t;(z;) = 0 for
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k+2 for the remaining

1 < j < p-—1 and use the canonical covering x — p
digits.

Case 8: t;11(x) =p—1and tx(x) =0

Consider x,_1 before setting t511(xp—1) and tx(xp—1). If z,—1 € L, then
set tpy1(z;) =7 —1 and ty(x;) =0 for 1 <j < p—1 and for the remaining
digits, use the canonical covering x. Otherwise, set t;y1(z;) = p — 1 and
tr(xzj) =0 for 1 < j <p—1 and for the remaining digits, use the canonical
covering x.

In each case it is routine to verify that the x; constructed are in L
and form an arithmetic progression with x being the largest term. Finally,
to show that this sequence is modular, let L* = {z | € L,z < pFt2}.
We claim that L* is a modular set. Demonstrating that L* is modular is
nearly identical to above analysis considering t;(x) for 0 <i < k+ 1 and is
omitted. O

5. Conclusions

The two constructions in this paper are among the first classes of large modu-
lar p-Stanley sequences. These constructions raise several natural questions.
The first follows naturally from the computational evidence in Section 3 and
conjecturally answers a question of Moy and Rolnick [7] regarding which sets
{0,n} generate modular p-Stanley sequences.

Conjecture 5.1. The sequence S,(0,n) is a modular p-Stanley sequence if
and only if n € Ap.

The next question deals with p-Stanley sequences generated in manners
similar to that the second construction.

Question 5.1. Consider a set S C {1,...,p" —1} and 1 <i < p—2. Under
what conditions is Sp(S U {0,p,...,i-p*}) a modular p-Stanley sequence?

Finally, we end on another construction of p-Stanley sequences that ap-
pears to hold for small integers x but for which an explicit characterization
appears difficult. This is the natural analog of Lemma 3.5 in Rolnick [10]
and appears to suggest a further connection between the domination order
and p-Stanley sequences.

Conjecture 5.2. Consider an integer x with no p—1 in its base p expansion.
If T is the set of all integers dominated by x, then Sy(T) is a modular p-
Stanley sequence.
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