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Two classes of modular p-Stanley sequences

Mehtaab Sawhney and Jonathan Tidor

Consider a set A with no p-term arithmetic progressions for p
prime. The p-Stanley sequence of a set A is generated by greedily
adding successive integers that do not create a p-term arithmetic
progression. For p > 3 prime, we give two distinct constructions for
p-Stanley sequences which have a regular structure and satisfy cer-
tain conditions in order to be modular p-Stanley sequences, a set
of particularly nice sequences defined by Moy and Rolnick which
always have a regular structure.

Odlyzko and Stanley conjectured that the 3-Stanley sequence
generated by {0, n} only has a regular structure if n = 3k or n =
2·3k. For p > 3 we find a substantially larger class of integers n such
that the p-Stanley sequence generated from {0, n} is a modular p-
Stanley sequence and numerical evidence given by Moy and Rolnick
suggests that these are the only n for which the p-Stanley sequence
generated by {0, n} is a modular p-Stanley sequence. Our second
class is a generalization of a construction of Rolnick for p = 3 and
is thematically similar to the analogous construction by Rolnick.

1. Introduction

For an odd prime p, a set is called p-free if it contains no p-term arithmetic
progression. Szekeres conjectured that for p an odd prime, the maximum
number of elements in a p-free subset of {0, 1, . . . , n − 1} grows as nlogp−1 p

[2]. This conjecture however has been disproved. In particular, Elkin [1]
proves the best known lower bound for 3-free sets of O(n1−o(1)) while the
best proven upper bound is O(n(log log n)5/ log n) due to recent work of
Sanders [12].

The inspiration for Szekeres’s conjecture however is of interest. In partic-
ular, Szekeres’s conjecture is based on the sequence constructed by starting
with 0 and greedily adding each subsequent integer that does not create a
p-term arithmetic progression. The sequence produced is exactly the non-
negative integers that have no digit of p − 1 in their base p expansion. In
1978, Odlyzko and Stanley generalized this construction to arbitrary sets
[9].
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Definition 1.1. Let A := {a1, . . . , an} be a finite set of nonnegative integers
that contains 0 with no nontrivial p-term arithmetic progressions. Further-
more take 0 = a1 < a2 < · · · < an and for each integer k ≥ n, let ak+1

be the least integer greater than ak such that {a1, . . . , ak, ak+1} has no p-
term arithmetic progressions. The p-Stanley sequence Sp(A), also written as
Sp(a1, . . . , an), is the sequence a1, . . . , an, an+1, . . ..

In the language of Stanley sequences the previous example is precisely
Sp(0). Odlyzko and Stanley noticed that for some sets A, the Stanley se-
quence S3(A) displays a regular pattern in terms of the ternary represen-
tations of its terms and these sequences grow as nlog2 3. In particular, they
explicitly computed S3(0, 3

k) and S3(0, 2 · 3k) and showed that these se-
quences satisfy the above properties. However, for other values of m, the
sequence S3(0,m) seems to grow chaotically and at the rate n2/ log n. In
particular, Lindhurst [5] computed S3(0, 4) for large values and observes
that it appears to follow this second growth rate.

Odlyzko and Stanley provided a heuristic argument why a randomly
chosen sequence should grow at the rate n2/ log n and conjectured that these
two behaviors are the only possible ones. Further work on the growth of
chaotic p-Stanley sequences for p > 3 can be found in [4]. This leads to the
following conjecture, which is explicitly stated for p = 3 in [9].

Conjecture 1.1 (Based on [9], [4]). A p-Stanley sequence a1, a2, . . . with p
an odd prime satisfies either:

Type 1: an = Θ(nlog(p−1) p)
Type 2: an = Θ

(
n(p−1)/(p−2)/(log n)1/(p−2)

)
.

To date however there has been no 3-Stanley sequence, or more generally
p-Stanley sequence, that has been proven to have Type 2 growth. Despite
this, there has been significant interest in studying the structure of Type
1 3-Stanley sequences ([7], [11], [10]). The most relevant class of Type 1
3-Stanley sequences stems from the work of Moy and Rolnick [7], extending
work of Rolnick [10], which gave the following class of Type 1 sequences.

Definition 1.2. Consider a set A ⊆ {0, . . . , N − 1} with 0 ∈ A such that
there is no nontrivial 3-term arithmetic progression mod N among the el-
ements of A. (Trivial arithmetic progressions refer to progressions with all
elements equal.) A set A is said to be modular if for every integer x, there
exists y ≥ z in A such that 2y − z ≡ x mod N . Note that the second con-
dition is equivalent to x, y, and z being an arithmetic progression mod N .
Furthermore we say that S3(A) is a modular Stanley sequence if A satisfies
these conditions.
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Several papers have been dedicated to understanding various properties
of these modular sequences; namely the character, repeat factor, and scaling
factor of these sequences. See [10], [7] for definitions of these properties and
[11], [6], [8] for further work on understanding these properties. Furthermore
Moy and Rolnick [7] conjecture that all 3-Stanley sequences with Type 1
growth are pseudomodular, a suitable generalization of modular sequences.
In contrast, for general p-Stanley sequences, there is no such conjectured
form for Type 1 sequences. However there is a natural analog of modular
Stanley sequences, modular p-Stanley sequences. In particular one modifies
the given definition to have no p-term arithmetic progressions and defines
an analog of the second condition. This is defined more precisely in the next
section.

In this paper we present two classes of modular p-Stanley sequences,
one of which hints a difference between 3-Stanley sequences and p-Stanley
sequences for larger primes p whereas the other appears to suggest a degree
of similarity. The first demonstrates that for p > 3, there exists a large
class of integers n for which Sp(0, n) has Type 1 growth and in fact is a
modular sequence. In particular for p ≥ 5, if 2 · pk−1 < n < pk and pk − n
has no p− 1 in its base p expansion, then Sp(0, n) has Type 1 growth. This
is notable as there exist n �= i · pk for 1 ≤ i ≤ p − 1 such that Sp(0, n)
exhibits Type 1 growth, unlike the case p = 3 where Stanley and Odlyzko
[9] conjecture that only S3(0, 3

k) and S3(0, 2 ·3k) have Type 1 growth among
sequences of the form S3(0, n). Numerical evidence given by Moy and Rolnick
[7] suggests that these are the only possible integer n and thus appears to
give a conjectural answer to a question raised by Moy and Rolnick [7] of
classifying integers n such that Sp(0, n) is modular.

The second class is a generalization of Theorem 1.2 by Rolnick [10].
These constructions are notable as they are among the first explicit con-
structions for large classes of modular p-sequences, with the only other large
class of constructions present in the literature being that of basic sequences
given by Moy and Rolnick [7].

In Section 2 we provide some definitions and basic results on modu-
lar p-Stanley sequences that are used within this paper. In Section 3 we
demonstrate the first class of modular p-Stanley sequences, and in Section
4 we demonstrate the second class of modular p-Stanley sequences. Section
5 contains some ideas for future work in these directions.

2. Definitions

This section provides the definitions and basic results on modular p-Stanley
sequences necessary to prove our results. For further exposition, see [7].
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Definition 2.1. A set A p-covers x if there exist x1, x2, . . . , xp−1 ∈ A such
that x1 < x2 < · · · < xp−1 < x is an arithmetic progression.

Proposition 2.1. The p-Stanley sequence Sp(A) is the unique sequence that
starts with A, is p-free, and p-covers all x �∈ Sp(A) with x > max(A).

Proof. Since x > max(A) there are two cases. If x is in Sp(A), its addition
to the sequence preserves that the sequence is p-free. If x is not in Sp(A),
it follows that the addition of x would have created a p-term arithmetic
progression with largest term x and with the remaining terms in Sp(A).

Definition 2.2. A set A ⊆ {0, 1, . . . , N − 1} is said to p-cover x mod N
if there exist x1, x2, . . . , xp−1 ∈ A such that x1 < x2 < · · · < xp−1 and x
form an arithmetic progression mod N . Restricting 0 ≤ x < N and given
the size restrictions for A this is equivalent to x1 < x2 < · · · < xp−1 < x or
x1 < x2 < · · · < xp−1 < x+N forming an arithmetic progression.

Definition 2.3. A set A ⊆ {0, 1, . . . , N − 1} is a modular p-free set mod N
if A contains 0, is p-free mod N , and p-covers all x with 0 ≤ x < N and
x �∈ A. A p-Stanley sequence is a modular p-Stanley sequence if it has the
form Sp(A) for a modular p-free set A.

We will refer to “p-covering” and “modular p-free” simply as “covering”
and “modular” when p is obvious. We write A+B for {a+ b | a ∈ A, b ∈ B}
and c ·A for {c ·a | a ∈ A}. The following is the main theorem on modular p-
Stanley sequences proved in [7]. It implies that a modular Stanley sequence
grows asymptotically as Sp(0).

Theorem 2.1 (Theorem 6.5 in [7]). If A is a modular p-free set mod N ,
then Sp(A) = A + N · Sp(0). Note that Sp(0) consists of all nonnegative
integers with no p− 1 in their base p expansions.

Corollary 2.1 (Corollary 6.6 in [7]). Any modular p-Stanley sequence ex-
hibits Type 1 growth.

3. First class of p-Stanley sequences

We use the notation ti(x) to refer to the digit corresponding to pi in the
base p expansion of x. We initially define a pair of sets which are critical for
this section.

Definition 3.1. Let Ak
p be the set of positive integers n such that 2 · pk−1 <

n ≤ pk with pk − n ∈ Sp(0). This is equivalent to ti(p
k − n) �= p− 1 for all i

and additionally tk−1(p
k − n) �= p− 2. Let Ap =

∞⋃
k=0

Ak
p.
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For example the set A5 begins {1, 3, 4, 5, 12, 13, 14, 15, 17, 18 . . .}.

Notation 3.1. Let Sk
p = {x | x ∈ Sp(0), x < pk}. Note by Lemma 6.4 in

[7], Sk
p is p-free mod pk and covers {0, 1, . . . , pk − 1} \ Sk

p .

In a manner closely related to the proof of Lemma 6.4 in [7], we define
a key procedure for the proof of Theorem 3.4.

Definition 3.2. For 0 ≤ x < pk define the canonical covering of x to be the

sequence x1, x1, . . . , xp−1 where xj =
∑

i t
(j)
i pi and t

(j)
i = ti(x) if ti(x) �= p−1

and t
(j)
i = j − 1 if ti(x) = p− 1.

Note that the canonical covering is contained in Sk
p and, as suggested

by its name, p-covers x. Using these definitions it possible to prove our first
result on modular p-Stanley sequences.

Theorem 3.1. For p > 3 a prime and n ∈ Ap, Sp(0, n) is a modular p-
Stanley sequence.

Proof. Suppose that k is such that pk−2 < n ≤ pk−1, and let A = {0} ∪
(n + Sk

p ) \ {pk−1(p − 1)}. Note that max(A) < pk. Therefore it suffices to

demonstrate Sp(0, n) = Sp(A) and that A is modular mod pk.

To demonstrate that Sp(0, n) = Sp(A), it suffices by Proposition 2.1 to
prove that A is p-free and covers all n < x < pk with x �∈ A. To demonstrate
that A is modular mod pk, it suffices to prove that A is p-free mod pk and
covers all 0 ≤ x < pk mod pk with x �∈ A. Thus it is sufficient to show the
slightly stronger statement that A is p-free mod pk and covers all n < x <
pk+n with x �∈ A and x �= pk. Let A′ = −n+A = {−n}∪Sk

p\{pk−1(p−1)−n}.
We demonstrate that A′ has no arithmetic progressions mod pk which will
give us the first of our two desired results.

Since Sk
p is p-free mod pk, any arithmetic progression in A′ must contain

−n. Suppose there is an arithmetic progression {ai} mod pk and define
bi ≡ ai mod pk−1 with 0 ≤ bi < pk−1. It follows that {bi} is an arithmetic
progression mod pk−1. By the definition of Ap, we know that pk−1−n ∈ Sk

p ,

so the progression {bi} is in fact an arithmetic progression mod pk−1 in Sk−1
p .

Thus the progression {bi} must be the constant arithmetic progression. It
follows that a0 ≡ a1 ≡ · · · ≡ ap−1 ≡ −n (mod pk−1) and therefore the only
possible arithmetic progression mod pk in A′ is i · pk−1 − n for 0 ≤ i < p.
However, since (p− 1)pk−1 − n �∈ A′, it follows that A′ is p-free mod pk.

To prove the second result we demonstrate that A′ covers 0 < x < pk

with x �∈ A′ and x �= pk − n. If x = pk−1(p − 1) − n, then x is covered by
{ipk−1 − n} for 0 ≤ i < p − 1. Otherwise, x �∈ Sk

p . Since x is covered by



132 Mehtaab Sawhney and Jonathan Tidor

its canonical covering in Sk
p , the only cases we have to consider are those in

which the canonical covering of x contains pk−1(p− 1)− n.
Let m = pk−1(p− 1)− n, since n ∈ Ap, we know that tk−1(m) = p− 2,

tk−2(m) < p−2, and ti(m) �= p−1 for all i. Any 0 < x < pk whose canonical
covering contains m can be written in the form

xS =

k−1∑
i=0

i �∈S

ti(m)pi +
∑
i∈S

(p− 1)pi,

where S ⊆ {0, 1, . . . , k − 1} is a set of digits such that ti(m) is the same for
all i ∈ S. We earlier assumed that x �= m and x �= pk − n = pk−1 +m. This
implies that S �= ∅, {k − 1}.

For the remainder of the proof fix an integer a and an S ⊆ {0, 1, . . . , k−1}
such that a = ti(m) for all i ∈ S and S �= ∅, {k−1}. Let j be max(S\{k−1})
and let b = tj+1(m).

We know that tk−1(m) = p− 2 and tk−2(m) < p− 2, which implies that
{k − 2, k − 1} �⊆ S. Thus this implies that if j = k − 2, then k − 1 �∈ S.

We know that 0 ≤ a, b < p− 1, and we now consider four cases.
Case 1: a = 0.
Let Δ =

∑
i∈S pi. Then {pk−1(p − 1) − n + i · Δ} for 0 ≤ i < p − 1 is

the canonical covering of xS as we are preserving all digits not equals to
p − 1 in xS and using {0, . . . , p − 2} where xS has a digit p − 1. However
{i · pk−1 − n+ i ·Δ} for 0 ≤ i < p− 1 also covers xS .

We need to check that all of these terms are in A′. Since pk−1(p− 1)−
n+ iΔ ∈ Sk

p with first digit p− 2, then i · pk−1 −n+ i ·Δ is identical except
the first digit ranges from 0 through p− 2 for 0 < i < p− 1 while for i = 0
it follows as i · pk−1 − n+ i ·Δ = −n ∈ A′.

Case 2: 0 < a < p− 1 and 0 ≤ b < (p− 3)/2.
Let j′ > j be the smallest integer such that tj′(m) ≥ (p− 1)/2. Note j′

exists since tk−1(m) = p− 2 ≥ (p− 1)/2. In this case take

Δ =

j′−1∑
i=j

pi(p− 1)/2 +
∑

i∈S\{j,j+1,...,j′}
pi,

= (pj
′ − pj)/2 +

∑
i∈S\{j,j+1,...,j′}

pi

and consider the arithmetic progression {xS − i ·Δ} for 0 < i ≤ p − 1. We
claim this set is contained in A′.
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We can compute the digits of each of these numbers. Write the digit

expansion of xS − i · Δ as xS − i · Δ =
∑

l t
(i)
l pl. For l �∈ {j, j + 1, . . . , j′},

then t
(i)
l matches the canonical covering. In particular, t

(i)
l = tl(m) if i �∈ S

and otherwise t
(i)
l = p− 1− i.

Using explicit computation it is possible to determine the remaining

digits. First note that t
(i)
j′ = tj′−
i/2�. For j+1 < l < j′, we have t(i)l = tl(m)

for i even and t
(i)
l = tl(m)+(p−1)/2 for i odd. Furthermore, t

(i)
j+1 = tl(m)+1

for i > 0 even and t
(i)
j+1 = tj+1(m) + 1 + (p − 1)/2 for i odd. Finally,

t
(i)
j = i/2− 1 for i > 0 even and t

(i)
j = (p− 1)/2 + (i− 1)/2 for i odd.

Now we check that all of these terms are in A′. The jth digit cycles
through each value when 0 ≤ i ≤ p − 1, and since it equals p − 1 when
i = 0, it never equals p− 1 in the range 0 < i ≤ p− 1 that we are using to

cover xS . Since tj′(m) ≥ (p−1)/2, t
(i)
j′ never goes below 0, and t

(i)
j′ < tj′(m).

Therefore we have t
(i)
j′ < p−1 for i > 0. Furthermore since tl(m) < (p−1)/2

for j < l < j′, neither of the two values that this digit takes is p − 1.
Furthermore the (j+1)st digit only takes on 3 values, none of which is p−1

since tj+1(m) = b < (p − 3)/2. Finally, t
(i)
j+1 �= tj+1(m) for i > 0. Since

tj+1(m) never takes on its original value again, none of the terms in this
sequence are m.

Case 3: 0 < a < p− 1 and (p− 3)/2 ≤ b < p− 1 and (a, b, p) �= (2, 1, 5).
We claim we can find 1 ≤ d ≤ b + 1 such that d �≡ p − a − 1 given the

conditions in this case. If p > 5 it is not hard to check1 that lcm(1, 2, . . . , (p−
1)/2) ≥ p− 1, so a number in this range must not divide p− a− 1 < p− 1.
If p = 5, we can use d = 2 unless a = 2 (and therefore p − a − 1 = 2).
Furthermore if p = 5, a = 2, b ≥ 2, we can use d = 3.

Let

Δ = d · pj +
∑

i∈S\{j}
pi.

We claim that the arithmetic progression {xS − i ·Δ} for 0 < i ≤ p − 1 is
contained in A′.

None of the digits of xS − i ·Δ is equal to p− 1 except for possibly the
jth and (j + 1)st digits. The jth digit decreases by d (mod p) so it only
takes on the value p− 1 when i = 0. Moreover, subtracting Δ, the jth digit

1Let
∏

i p
ei
i be the prime factorization of p−1. If p−1 is not a prime power, then

peii ∈ {1, . . . , (p− 1)/2} for all i. Otherwise, since p is odd, we can write p− 1 = 2k.
Then since k > 2, 2k−1 and 3 are elements in {1, 2, . . . , (p − 1)/2} and thus the
least common multiple is at least 3 · 2k−1 ≥ 2k = p− 1.
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forces the (j + 1)st to decrement exactly d − 1 times (due to a “borrow”).
Since p − 1 > b ≥ (p − 3)/2 ≥ d − 1, the (j + 1)st digit never takes on the
value p− 1 and never itself “borrows” from the (j + 2)nd digit.

Thus it suffices to check that no term is equal to pk−1(p− 1)− n. This
must occur before the (j +1)st digit has changed its value from tj+1(m). In
this range, the jth digit has value tj(xS)− i · d = (p− 1)− i · d. However if
(p− 1)− i · d = a, then d | p− a− 1, a contradiction. Thus this arithmetic
progression is contained in A′, as desired.

Case 4: a = 2, b = 1, and p = 5.
This special case is similar to Case 2. Note that for j < j′ < k, it is

not the case that j′ ∈ S. In particular the only possibility is j′ = k − 1,
but {j, k − 1} ⊆ S implies that tj(m) = tk−1(m) and tj(m) = a = 2
whereas tk−1(m) = p − 2 = 3. Furthermore note that j + 1 �= k − 1 since
tk−1(m) = 3 �= 1 = tj+1(m). Now if tj+2(m) ≥ 1, letting

Δ = 5j+1 + 3 · 5j +
∑

i∈S\{j}
5i,

it is easy to check that {xS − i ·Δ} for 0 < i ≤ 4 is in A′.
Otherwise, tj+2(m) = 0. Let j′ > j+2 be the smallest integer such that

tj′(m) ≥ 2. This exists for the same reason as in Case 2. Now let

Δ =

⎛
⎝

j′−1∑
i=j+2

2 · 5i
⎞
⎠+ 5j+1 + 3 · 5j +

∑
i∈S\{j,j+1,...,j′}

5i,

= (5j
′ − 5j+2)/2 + 5j+1 + 3 · 5j +

∑
i∈S\{j,j+1,...,j′}

5i.

We cover xS by {xS − i ·Δ} for 0 < i ≤ 4. By exactly the same reasoning
as in Case 2, this covering is in A′.

We conjecture, but cannot currently prove, that these are the only inte-
gers n such that S5(0, n) exhibits Type 1 growth. Computational evidence
provided by Moy and Rolnick [7] suggests that the integers less than 100
such that S5(0;n) are well-behaved and in particular modular are as follows:

1, 3, 4, 5, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 37, 39, 40, 42, 43, 44, 45,

47, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 82, 83, 84, 85,

87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99.

See Problem 6.7 in [7] for more detail. This matches exactly the integers
which Theorem 3.4 would suggest, giving some support for this conjecture.
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4. Second construction of p-Stanley sequences

This section presents a generalization of Theorem 1.2 given by Rolnick [11]
with a proof that is similar in spirit to that of Theorem 1.2. For this section,
fix an odd prime p, and recall that ti(x) refers to the ith digit of x in base
p.

Definition 4.1. We say a (positive) integer x dominates an integer y if
ti(x) ≥ ti(y) for all integers i.

Note that the set Sk
p defined in Section 3 is exactly the set of integers

dominated by
∑k−1

i=0 (p− 2)pi.

Theorem 4.1. Let T ⊆ Sk
p be a nonempty set that is downward-closed under

the domination ordering. Namely if x ∈ T and y is dominated by x, then
y ∈ T . Then Sp(T ∪ {pk}) and Sp(T ∪ {(p − 1)pk}) are modular p-Stanley
sequences.

Note that for p = 3 this is Theorem 1.2 in Rolnick [10].

Proof. In both cases, we give an explicit description of the Stanley p-se-
quences and prove that this is the correct sequence.

We claim that x ∈ Sp(T ∪ {pk}) if and only if the following three condi-
tions hold

• ti(x) �= p− 1 for i �= k,
• tk(x) = 0 implies that

∑k−1
i=0 ti(x)p

i ∈ T ,

• tk(x) = p− 1 implies that
∑k−1

i=0 ti(x)p
i �∈ T .

For convenience let L be the set of integers satisfying the above relations.
Note that L ∩ {0, 1, . . . , pk} = T ∪ {pk}. It suffices by Proposition 2.2 to
demonstrate that L does not contain any p-term arithmetic progressions
and that every integer not in L and greater than pk is covered by a p-term
arithmetic progression in L.

To show that L is p-free we proceed by contradiction. Suppose that
x1 < · · · < xp form an arithmetic progression. Let i be the smallest integer
such that ti(x1), . . . , ti(xp) are not all equal. Since p is prime and the first
i digits of x1, . . . , xp are the same, this implies that {ti(x1), . . . , ti(xp)} =
{0, . . . , p− 1}. Since ti(x) �= p− 1 for i �= k, we conclude that i = k.

Now there are some j, j′ such that tk(xj) = 0 and tk(xj′) = p−1. By the

definition of L, this implies that
∑k−1

i=0 ti(xj)p
i ∈ T and

∑k−1
i=0 ti(xj′)p

i �∈ T .
However, since ti(xj) = ti(xj′) for i < k, this is a contradiction.

It remains to show that every integer x > pk is covered by a p-term
arithmetic progression. In order to do so we explicitly construct a p-term
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arithmetic progression x1 ≤ x2 ≤ · · · ≤ xp−1 ≤ x with the xi in L. If we
have equality anywhere in this chain then x in L; otherwise x1 < x2 < · · · <
xp−1 < x as desired. For 0 ≤ i ≤ k − 1 if ti(x) = � < p − 1, then set
ti(xj) = � for 1 ≤ j ≤ p − 1. If instead ti(x) = p − 1, set ti(xj) = j − 1 for
1 ≤ j ≤ p− 1. Note that this is exactly the canonical covering from earlier.
Now we subdivide into several possible cases.

Case 1: tk(x) �= 0, p− 1
Set tk(xi) = �. For the remaining digits, use the canonical covering as

before.
Case 2: tk(x) = p− 1
We have two cases. If the last k digits of x1 are in T , then set tk(xj) =

j−1. Otherwise set tk(xj) = p−1. In either case, use the canonical covering
for the remaining digits.

Case 3: tk(x) = 0
If the last k digits of xp−1 are in T , set tk(xj) = 0 and use the canonical

covering for the remaining digits. Otherwise, set tk(xj) = j and perform the
canonical covering for x − pk+1 for the remaining higher digits. (Note that
since x > pk and tk(x) = 0 it follows that x ≥ pk+1.)

It is routine to verify in each case that the xj constructed are in L,
completing the proof that Sp(T ∪{pk}) = L. To show that this is a modular
Stanley sequence, let L∗ = {x | x ∈ L, x < pk+1}. We claim that L∗ is a
modular set. The proof of this fact is nearly identical to the above analysis.
Consider just the digits ti(x) for 0 ≤ i ≤ k.

Next we prove that S(T ∪{(p− 1)pk}) is a modular p-Stanley sequence.
This proof is similar to the above argument though slightly more involved.
We claim that x ∈ S(T ∪ {(p − 1)pk}) if and only if the following four
conditions hold

• ti(x) �= p− 1 for i �= k, k + 1,
• tk(x) �= p− 2,
• tk+1(x) = 0 implies that tk(x) = 0 and

∑k−1
i=0 ti(x)p

i ∈ T or tk(x) =
p− 1,

• tk+1(x) = p−1 implies that tk(x) �= p−2, p−1, and if tk(x) = 0, then∑k−1
i=0 ti(x)p

i �∈ T .

Again let L be the set defined by these four conditions. We show that L
is p-free and p-covers the part of its complement greater than (p− 1)pk.

For the sake of contradiction, suppose that x1 < x2 < · · · < xp form an
arithmetic progression with xi ∈ L. Using the same idea as above we see
that ti(x1) = · · · = ti(xp) for 0 ≤ i ≤ k − 1. Since tk(x) �= p − 2, it follows
that tk(x1) = · · · = tk(xp). Now if {tk+1(x1), . . . , tk+1(xp)} = {0, . . . , p− 1},
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then there exist j, j′ such that tk+1(xj) = 0 and tk+1(xj′) = p − 1. Then

we see that
∑p−1

i=0 ti(xj)p
i ∈ T and

∑p−1
i=0 ti(xj′)p

i �∈ T . Thus we conclude

that tk+1(x1) = · · · = tk+1(xp), and by the same reasoning we see that

x1 = . . . = xp, a contradiction.

It remains to show that every integer x > (p−1)pk is covered by a p-term

arithmetic progression. In order to do so, we explicitly construct a p-term

arithmetic progression, x1 ≤ x2 ≤ · · · ≤ xp−1 ≤ x with xi ∈ L. If we have

equality anywhere in this chain then x ∈ L. Otherwise, x1 < x2 < · · · < xp−1

as desired. For 0 ≤ i ≤ k − 1, if ti(x) = � < p − 1, then set ti(xj) = � for

1 ≤ j ≤ p − 1. Otherwise ti(x) = p − 1, and we set ti(xj) = j − 1 for

1 ≤ j ≤ p − 1. We will define this procedure as earlier to be the canonical

covering. Now we subdivide into several possible cases and note that several

of these cases degenerate when p = 3.

Case 1:tk+1(x) = 1, . . . , p− 2 and tk(x) �= p− 2

Set tk+1(x) = tk+1(xj) and tk(x) = tk(xj) for 1 ≤ j ≤ p − 1. For the

remaining digits, use the canonical covering.

Case 2: Either tk+1(x) = p− 1 and tk(x) = 1, . . . , p− 3 or tk+1(x) = 0

and tk(x) = p− 1

Set tk+1(x) = tk+1(xj) and tk(x) = tk(xj) for 1 ≤ j ≤ p − 1. For the

remaining digits, use the canonical covering as before.

Case 3: tk+1(x) = p− 1 and tk(x) = p− 1

Set tk+1(xj) = j − 1 and tk(xj) = j − 1 for 1 ≤ j ≤ p − 1. For the

remaining digits, use the canonical covering as before.

Case 4: tk+1(x) = 1, . . . , p− 1 and tk(x) = p− 2

Set tk+1(xj) = tk+1(x) and tk+1(xj) = j − 2 for 2 ≤ j ≤ p − 1 while

tk+1(x1) = tk+1(x)− 1 and tk(x1) = p− 1. For the remaining digits, use the

canonical covering as before.

Case 5: tk+1(x) = 0 and tk(x) = 1, . . . , p− 3

Set tk+1(xj) = j and tk(xj) = tk(x) for 1 ≤ j ≤ p− 1. For the remaining

digits, use the canonical covering x− pk+2.

Case 6: tk+1(x) = 0 and tk(x) = p− 2

Set tk+1(xj) = j and tk(xj) = j − 2 for 2 ≤ j ≤ p − 1. Also put

tk+1(x1) = 0 and tk(xj) = p− 1. For the remaining digits, use the canonical

covering x− pk+2.

Case 7: tk+1(x) = tk(x) = 0

Consider xp−1 before setting tk+1(xp−1) and tk(xp−1). If xp−1 ∈ L, then

set tk+1(xj) = tk(xj) = 0 for 1 ≤ j ≤ p − 1 and for the remaining digits,

use the canonical covering x. Otherwise, set tk+1(xj) = j and tk(xj) = 0 for
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1 ≤ j ≤ p − 1 and use the canonical covering x − pk+2 for the remaining

digits.

Case 8: tk+1(x) = p− 1 and tk(x) = 0

Consider xp−1 before setting tk+1(xp−1) and tk(xp−1). If xp−1 ∈ L, then

set tk+1(xj) = j − 1 and tk(xj) = 0 for 1 ≤ j ≤ p− 1 and for the remaining

digits, use the canonical covering x. Otherwise, set tk+1(xj) = p − 1 and

tk(xj) = 0 for 1 ≤ j ≤ p− 1 and for the remaining digits, use the canonical

covering x.

In each case it is routine to verify that the xj constructed are in L

and form an arithmetic progression with x being the largest term. Finally,

to show that this sequence is modular, let L∗ = {x | x ∈ L, x < pk+2}.
We claim that L∗ is a modular set. Demonstrating that L∗ is modular is

nearly identical to above analysis considering ti(x) for 0 ≤ i ≤ k + 1 and is

omitted.

5. Conclusions

The two constructions in this paper are among the first classes of large modu-

lar p-Stanley sequences. These constructions raise several natural questions.

The first follows naturally from the computational evidence in Section 3 and

conjecturally answers a question of Moy and Rolnick [7] regarding which sets

{0, n} generate modular p-Stanley sequences.

Conjecture 5.1. The sequence Sp(0, n) is a modular p-Stanley sequence if

and only if n ∈ Ap.

The next question deals with p-Stanley sequences generated in manners

similar to that the second construction.

Question 5.1. Consider a set S ⊆ {1, . . . , pk−1} and 1 ≤ i ≤ p−2. Under

what conditions is Sp(S ∪ {0, pk, . . . , i · pk}) a modular p-Stanley sequence?

Finally, we end on another construction of p-Stanley sequences that ap-

pears to hold for small integers x but for which an explicit characterization

appears difficult. This is the natural analog of Lemma 3.5 in Rolnick [10]

and appears to suggest a further connection between the domination order

and p-Stanley sequences.

Conjecture 5.2. Consider an integer x with no p−1 in its base p expansion.

If T is the set of all integers dominated by x, then Sp(T ) is a modular p-

Stanley sequence.
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