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Monochromatic balanced components, matchings,
and paths in multicolored complete bipartite graphs

Louls DEBI1ASIO*, ANDRAS GYARFAST, ROBERT A. KRUEGER,
MIkLOS RUSZINKO!, AND GABOR N. SARKOzYS

It is well-known that in every r-coloring of the edges of the com-
plete bipartite graph K, , there is a monochromatic connected
component with at least 27" vertices. It would be interesting to
know whether we can additionally require that this large compo-
nent be balanced; that is, is it true that in every r-coloring of K, ,
there is a monochromatic component that meets both sides in at
least n/r vertices?

Over forty years ago, Gydrfds and Lehel [12] and independently
Faudree and Schelp [7] proved that any 2-colored K, , contains
a monochromatic P,. Very recently, Buci¢, Letzter and Sudakov
[4] proved that every 3-colored K, , contains a monochromatic
connected matching (a matching whose edges are in the same con-
nected component) of size [n/3]. So the answer is strongly “yes”
for 1 <r <3.

We provide a short proof of (a non-symmetric version of) the
original question for 1 < r < 3; that is, every r-coloring of K, ,,
has a monochromatic component that meets each side in a 1/r pro-
portion of its part size. Then, somewhat surprisingly, we show that
the answer to the question is “no” for all » > 4. For instance, there
are 4-colorings of K, ,, where the largest balanced monochromatic
component has n/5 vertices in both partite classes (instead of n/4).
Our constructions are based on lower bounds for the r-color bipar-
tite Ramsey number of Py, denoted f(r), which is the smallest
integer ¢ such that in every r-coloring of the edges of K, there
is a monochromatic path on four vertices. Furthermore, combined
with earlier results, we determine f(r) for every value of r.
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1. Introduction, results

Let P, C,, denote the path and the cycle on m vertices, respectively. There
are many results about monochromatic connected components of edge col-
ored graphs and hypergraphs. Here we just refer to surveys [9], [10] and [15].
This note is about the case when the colored host graph is a complete bipar-
tite graph (see [9, Section 3.1]). We start with the following result about the
size of the largest monochromatic connected component (for brevity referred
here as a monochromatic component).

Theorem 1.1 ([11]). In every r-coloring of the edges of Ky, , there is a

monochromatic component with at least m;f” vertices.

Mubayi [20] and Liu, Morris, and Prince [17] obtained independently
a stronger result: one can require that the monochromatic component in
Theorem 1.1 is a double star (a tree obtained by joining the centers of two
disjoint stars by an edge). A slight possible improvement of Theorem 1.1
was conjectured in [3]: the size of the monochromatic component could be
at least [7] + [2].

Here we address another natural possible improvement of Theorem 1.1,
asking whether the large component can be balanced.

Question 1.2. Is it true that in every r-coloring of the edges of Ky, , there
is a monochromatic component that intersects the partite classes in at least
m/r and n/r vertices, respectively?

For the diagonal case, m = n, Question 1.2 has been studied in stronger
forms. The most important examples are connected matchings (a matching
whose edges are in the same connected component), even paths, and cy-
cles. For r = 2 an affirmative answer to Question 1.2 has been known in
its strongest form for more than forty years: Gyérfas and Lehel [12] and
independently Faudree and Schelp [7] proved that any 2-colored K, , con-
tains a monochromatic P,. For r = 3 an affirmative answer was recently
provided by Buci¢, Letzter and Sudakov [4] (In fact, the authors of this note
independently proved the same result, but with a less elegant proof).

Theorem 1.3 ([4]). In every 3-coloring of the edges of K, there is a
monochromatic connected matching of size [n/3].

The significance of connected matchings is that with the connected
matching-Regularity Lemma method established by Luczak [18], it is pos-
sible to transfer results on connected matchings to asymptotic results for
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paths and even cycles. For example, this method is used to transfer Theo-
rem 1.3 to asymptotic results for even cycles and paths in [4]. For similar
applications, see, for example, [2], [8], [14], [16], and [19].

In this note, we provide a short proof which answers Question 1.2 in the
affirmative for the non-diagonal case when 1 < r < 3.

Theorem 1.4. Let 1 < r < 3. In every r-coloring of the edges of K, n, there
s a monochromatic component that intersects the partite classes in at least
m/r and n/r vertices, respectively.

However, somewhat surprisingly, we provide a construction which an-
swers Question 1.2 negatively for all » > 4. For instance, there are 4-colorings
of Ky, , where the largest balanced monochromatic component has n/5 ver-
tices in both partite classes (instead of n/4). Our constructions are based
on the r-color bipartite Ramsey number of Py, denoted f(r), defined as the
smallest integer ¢ such that in every r-coloring of the edges of K, there is
a monochromatic Py. While for complete host graphs, multicolor Ramsey
numbers of P have been determined (see [21, Section 6.4.2]) their bipartite
analogue has seemingly not been studied explicitly. However, it turns out
that the multicolor bipartite Ramsey number of P is equivalent to a well
studied graph parameter, the star arboricity of a graph G, denoted st(G),
defined to be the minimum number of star forests' needed to partition the
edge set of GG. Then, since a bipartite graph is Py-free if and only if it is a
star forest, we get

Observation 1.5. f(r) — 1 is the largest n for which st(Ky ) = 1.

Theorem 1.6. f(1) = 2,f(2) = 3,f(3) = 4,f(4) = 6 and for r > 5,
f(r)=2r—3.

Regarding Theorem 1.6, the cases r = 1,2 are trivial and the case r = 3
follows from Theorem 1.3 (and it easy to prove directly). While it is not hard
to see that f(4) < 6, it took some time (and faith) to find a 4-coloring of
K5 5 that does not contain a monochromatic Py. In fact, a computer search
later showed that there is (up to isomorphism) only one such coloring. In
the language of star arboricity, Egawa, Fukuda, Nagoya and Urabe [6] gave
a proof of Theorem 1.6 when r > 5. While their inductive step for the
upper bound is nice, they do not address the problem how to launch the
induction, i.e. they do not prove a base case. In Section 3, we correct this

'We define a star to be a tree having at most one vertex of degree greater than
one (this includes isolated vertices and single edges) and a star forest to be a forest
in which each component is a star.
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oversight by proving Theorem 1.6. Finally, Section 4 provides the lower
bound construction for Theorem 1.6.
Blowing up the Ramsey graphs with f(r)—1 vertices we get the following.

Proposition 1.7. Let r, k be positive integers and n = (f(r) — 1)k. There

exists an r-coloring of K, ,, such that every monochromatic component in-

tersects one of the sides in exactly # vertices. In particular, the size

of the largest monochromatic connected matching is W and the largest

monochromatic monochromatic even path/cycle has f(E?—l vertices.

Proof. Let G be a complete balance bipartite graph with f(r) — 1 vertices
in each part, colored with r colors so that there is no monochromatic P;.
Replacing each vertex by k vertices and using the color of uwv for all edges

between the sets replacing u, v, we have the required coloring. O
Notethat#:%forrzél,and#:ﬁforrzE).Wecan

get a lower bound on the size of a monochromatic connected matching in
an r-colored K, , for » > 4 by considering the majority color class which
has at least n?/r edges and applying the following Erdés-Gallai-type result
for bipartite graphs proved by Gyérfas, Rousseau, and Schelp [13]: If G is
a balanced bipartite graph on 2n vertices with at least n?/r edges, then G
has a path on at least (1 — /1 — 2/r)n vertices (which implies a connected
matching of size 2(1—+/1 — 2/r)n). Note that for 7 > 4, a simple calculation

2
shows
1 1 1
<=(1-+1-2/r)< T

2r—1 2
Improving the bounds for r» > 4 would be very interesting.

2. Balanced components

Proof of Theorem 1.4. Assume that K = K, ,, has partite classes X, Y with
| X| = m,|Y| = n and the three colors are A, B, C. The theorem is trivial for
r = 1. Assume that r = 2. By Theorem 1.1 there is a monochromatic com-
ponent, say A; in color A with at least mTJr” vertices. Set X7 = A1NX,Y; =
A1NY. We may assume that |Y7| < n/2 and | X1| > m/2, otherwise A; satis-
fies the claim of the theorem. Now the biclique [X1, Y\ Y1] is monochromatic
in color B and satisfies the claim of the theorem.

For » = 3 we proceed similarly. By Theorem 1.1 there is a monochromatic
component, say A; in color A with at least m;” vertices. Set X1 = A1 N
X, Y1 = A;NY. We may assume that |Y1| < n/3 and | X;| > m/3, otherwise
A satisfies the claim of the theorem. The biclique K7 = [X7, Y\ Y1] is colored
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with colors B, C. Applying the r = 2 case to K7, we get a monochromatic
component, say By in color B such that |By N (Y \ Y1) > 3% = n/3. The
set X7 \ By is nonempty, otherwise | X; N B1| = |X1| > m/3 and B satisfies
the claim of the theorem.

Note that the biclique [X; \ Bi,B1 N (Y \ Y1)] is monochromatic in
color C'; determining a monochromatic component C; in K;. We extend the
components B, C; to components BT, C} of K, by using all edges of color
B and C that go from By N (Y \ Y1) to X \ X1. If [ X N Bf| or | X NCf| is
at least m/3, the component Bf or Cf satisfies the claim of the theorem.
Otherwise | B} UCY| < 2m/3 and the biclique [X \ (Bf UCY),B1 N (Y \ Y1)]
is monochromatic in color A with at least n/3,m/3 vertices in its partite
classes, giving the desired monochromatic component. O

Colorings of K, where all monochromatic components are complete
bipartite graphs are called bi-equivalence colorings. It was conjectured by
Gyarfas and Lehel [11] that bi-eqivalence r-colorings of complete bipartite
graphs have vertex coverings by at most 2r — 2 monochromatic components.
This was proved for » < 5 in [5]. Applying Theorem 1.4 to bi-eqivalence
3-colorings, we get the following corollary.

Corollary 2.1. In every bi-eqivalence 3-coloring of K,  there exists a
monochromatic Ky, /31, (n/3]-

Corollary 2.1 is sharp. Let m1 > mo > mg be integers, as equal as possi-
ble, such that mq + mo + mg = m, and likewise for ny > n9 > ngz. Consider
the unique 1-factorization of K33 coloring the edges of each matching with
a different color, then blow-up the vertices of K33 into vertex sets of sizes
m1, mo, ms and ni, no, n3 respectively, extending the coloring in the natural
way. In the resulting coloring, the largest monchromatic complete bipartite
graph has m; = [m/3] vertices on one side and n; = [n/3] vertices on the
other.

3. The Ramsey number f(4) and f(r) < 2r —3 forr > 5

Proposition 3.1. f(4) =6, i.e. st(Ks55) = 4.

Proof. First note that the upper bound follows from Lemma 3.3. The con-
struction showing f(4) > 6 is defined as follows. Denote the vertex set of
Ks5 by {A1,...,As,B1,...,Bs} where the A;’s form one side of the bipar-
tition and the B;’s form the other. All color classes have three components
and components but one are P3-s. The exceptional component is a star with
three edges.
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A1B1 Ay, A3B3 Ay, By As By
A1By Ay, Ay By A, B1 A5 B3
AsB5 Ay, B1A3By, Bo A1 Bs
B1AyBy, B3Ay By, Bs; A1 Ag As

Ll s

Figure 1: The construction showing f(4) > 6.

We use the convention that XY Z denotes the path with edges XY, Y Z
and X; A, B, C denotes the star with edges XA, X B, XC. O

Proposition 3.2. For all integers r with r > 5, f(r) = 2r — 3, i.e.
st(Kar—32r—3) =7+ 1.

The proof uses the induction idea of [6] but we (necessarily) reduce the
K77 case to the K5 ¢ case. The center vertex of a star is its unique vertex of
maximum degree, except for the one-edge star, in which case we arbitrarily
choose one of the two vertices to be designated as the center. We say that
a star is non-trivial if it has at least one edge. In a Py-free coloring of a
complete bipartite graph a vertex is a special center vertex of color i if it
is a center vertex of a star of color ¢ but not a center vertex of any star of
any other color. Note that special central vertices v, w of color ¢ cannot be
in different partite classes, otherwise the edge vw, which has color j # 14, is
not incident with the center of a star in color j, a contradiction.

We first prove the following lemma.

Lemma 3.3. In every 4-coloring of Ks¢ there exists a monochromatic Pj.

Proof. Let X,Y be the vertex classes of K56 with | X| =5 and |Y| = 6 and
suppose for contradiction that we are given a Py-free 4-coloring of the edges.
Suppose there are two special center vertices yi1,y2 € Y of the same color,
say red. Since y; and yo are each incident with five edges, at most one of
each color other than red, both y; and yo have red degree at least 2. Now
any four red neighbors of y1, y2 together with the four vertices of Y\ {y1, y2}
define a Py-free K44, colored with three colors, contradicting the fact that
f(3) =4. Thus Y contains at most one special center vertex of each color.
Now suppose that there are two special center vertices z1,z2 € X of
the same color, say red. Since x1 and xo are each incident with six edges,
at most one of each color other than red, both z; and z2 have red degree
at least 3. So 1 and z2 have red degree exactly 3, implying that the red
color class is completely determined, i.e. it has two 3-edge stars with centers
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x1, 2. Since |X| = 5, there are at most two colors which have exactly two
special center vertices in X.

Combining the two observations above with the fact that special center
vertices of the same color cannot appear on opposite sides of the bipartition,
we have that there are at most six special center vertices total. Since every
vertex is a center of at least two star components, except for the special
central vertices, there are at least 2 x 11 — 6 = 16 star components total.
The number of edges in color class i is 11 — ¢; where ¢; is the number of
components in color class ¢ (including trivial stars). So the total number of
edges is at most 4 x 11 — 16 = 28 < 30, a contradiction. O

Proof of Proposition 3.2. Let r be an integer with » > 5 and suppose that
every (r — 1)-coloring of Ko,_59,—4 has a monochromatic Py — note that
Lemma 3.3 provides the base case. Let X,Y be the vertex classes of
Ko,_39,—3 and suppose for contradiction that we are given a Pj-free r-
coloring of the edges. Suppose that there are two special center vertices of
the same color, say red, on the same side of the bipartition, say z1,zs € X.
Since x1 and x4 are each incident with 2r —3 edges, at most one of each color
other than red, both z1 and x2 have red degree at least 2r—3—(r—1) = r—2.
Thus we can select a set A in Y consisting of » — 2 red neighbors of z; and
r—2 red neighbors of z5. Then the complete bipartite graph [A, X \ {z1, x2}]
is a Py-free Kop_52,—4 colored with (r — 1)-colors, contradicting the induc-
tive hypothesis. Combined with the fact that special center vertices of the
same color cannot appear on opposite sides of the bipartition, this implies
that there is at most one special center vertex in all colors, a total of at most
r special center vertices.

Since every vertex is a center of at least two star components, except for
the special center vertices, there are at least 2 x 2(2r —3) —r = 7r — 12 star
components. The number of edges in color class i is 2(2r — 3) — ¢; where ¢;
is the number of components in color class ¢ (including trivial stars). So the
total number of edges is at most

rx2(2r —3)— (Tr —12) = 4r2 — 13r +12 = (2r — 3)? — (r — 3) < (2r — 3)?,
a contradiction. O

4. Construction: f(r) > 2r — 3

Yongqi, Yuansheng, Feng, and Bingxi [22] gave new lower bounds for the
multicolor Ramsey numbers of paths and even cycles by constructing a col-
oring of the complete graph Ko._4 with r — 1 colors such that all but one
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of the color classes are the union of two stars of size r — 2 and one color
class forms a perfect matching. Note that this construction also shows that
st(Kop—4) < r — 1. Indeed, in the language of star arboricity, this example
was independently discovered by Akiyama and Kano [1].

In [6], the authors give an example to show that st(K,, ) < [n/2]+2 for
n > 7 which implies f(r) > 2r — 3 for » > 5. However, it is worth showing
how to transform the (r—1)-coloring of Ka,_4 given above into the r-coloring
of Kop_49r—4 required for Theorem 1.6 (which was how we discovered the
lower bound originally). The transformation used here is explored many
times in graph theory, transforming K,, into K, , by replacing its vertices
by a 1-factor and its edges by symmetric pairs of edges.

Figure 2: The construction showing f(r) > 2r — 3 in the case where r = 5.

Consider the complete graph on vertex set { X1, Xo, ..., Xo,_4} with the
following (r— 1)-coloring, where indices are computed (mod 2r—4). For each
i € [r — 2] color class i consists of two vertex disjoint stars, one centered
at X; with leaves X;41,...,X;t+r—3 and the other centered at X;,,_o with
leaves X;4r—1,...,X;+2r—5, and color class r — 1 consists of a matching
{X1 X1, XX, ..., X, —2Xor_4} (see Figure 2).

Now consider the following r-coloring of the complete bipartite graph
with vertex sets {A1,..., Aop—a},{B1,..., Bar—a}: For all i # j, color A;B;
with the color of X;X; and for all i € [2r —4], color A;B; with color r. Since
each color class is a monochromatic star-forest, there are no monochromatic
P4’S.
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