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An identity of Chung, Graham and Knuth involving binomial co-
efficients and Eulerian numbers motivates our study of a class
of polynomials that we call binomial-Eulerian polynomials. These
polynomials share several properties with the Eulerian polynomi-
als. For one thing, they are h-polynomials of simplicial polytopes,
which gives a geometric interpretation of the fact that they are
palindromic and unimodal. A formula of Foata and Schützenberger
shows that the Eulerian polynomials have a stronger property,
namely γ-positivity, and a formula of Postnikov, Reiner and
Williams does the same for the binomial-Eulerian polynomials. We
obtain q-analogs of both the Foata-Schützenberger formula and
an alternative to the Postnikov-Reiner-Williams formula, and we
show that these q-analogs are specializations of analogous symmet-
ric function identities. Algebro-geometric interpretations of these
symmetric function analogs are presented.
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1. Introduction

In [10], Chung, Graham, and Knuth give several proofs of the following inter-
esting symmetry involving Eulerian numbers an,j and binomial coefficients.
For nonnegative integers r, s,

(1.1)

r+s∑
m=1

(
r + s

m

)
am,r−1 =

r+s∑
m=1

(
r + s

m

)
am,s−1.

A q-analog of this identity was subsequently obtained independently by
Chung and Graham [9] and Han, Lin, and Zeng [20].

Equation (1.1) is equivalent to palindromicity of the polynomial

Ãn(t) =

n∑
j=0

ãn,jt
j := 1 + t

n∑
m=1

(
n

m

)
Am(t),

for all n ≥ 0, where Am(t) is the Eulerian polynomial. We refer to Ãn(t)
as a binomial-Eulerian polynomial and ãn,j as a binomial-Eulerian number.
It is well known and easy to prove that the Eulerian polynomials are palin-
dromic as well. Hence it is natural to ask whether the binomial-Eulerian
polynomials share any other properties with the Eulerian polynomials, such
as unimodality.

A polynomial A(t) =
∑d

j=0 ajt
j ∈ R[t] is said to be palindromic if aj =

ad−j for all j = 0, . . . , d, and it is said to be positive and unimodal if for
some c

0 ≤ a0 ≤ a1 ≤ · · · ≤ ac ≥ · · · ≥ ad−1 ≥ ad ≥ 0.

For example, A5(t) = 1 + 26t + 66t2 + 26t3 + t4 is clearly palindromic,
positive, and unimodal. Many important polynomials arising in algebra,
combinatorics, and geometry are palindromic, positive and unimodal, see
e.g., [35, 36, 6].

One can easily see that A(t) is palindromic if and only if there exist
γ0, . . . , γ� d

2
� ∈ R such that

(1.2) A(t) =

� d

2
�∑

k=0

γkt
k(1 + t)d−2k.

The palindromic polynomial A(t) is said to be γ-positive if γk ≥ 0 for all k. It
is well known and not difficult to see that γ-positivity implies unimodality.
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The Eulerian polynomials An(t) are γ-positive as is evident from the
Foata-Schützenberger formula [14, Theorem 5.6],

(1.3) An(t) =

�n−1

2
�∑

k=0

γn,k t
k(1 + t)n−1−2k,

where γn,k = |Γn,k| and Γn,k is the set of permutations σ ∈ Sn with

• no double descents1,
• no final descent,
• des(σ) = k.

For example A5(t) = 1 + 26t+ 66t2 + 26t3 + t4 is γ-positive since

A5(t) = 1t0(1 + t)4 + 22t1(1 + t)2 + 16t2(1 + t)0.

Recent interest in γ-positivity stems from Gal’s strengthening [16] of the
Charney-Davis conjecture [8] by asserting that the h-polynomial of every flag
simplicial sphere is γ-positive2. Since, as is well known, the Eulerian polyno-
mials are the h-polynomials of dual permutohedra, the Foata-Schützenberger
formula confirms Gal’s conjecture for dual permutohedra.

The permutohedron is an example of a chordal nestohedron. In [26,
Section 11.2], Postnikov, Reiner, and Williams confirm Gal’s conjecture for
all dual chordal nestohedra by giving explicit combinatorial formulae for the
γ-coefficients. Another example of a chordal nestohedron, discussed in [26,
Section 10.4], is the stellohedron, and the h-polynomial of its dual turns out
to be equal to Ãn(t). It follows that palindromicity of Ãn(t) is equivalent to
the Dehn-Sommerville equations for the dual stellohedron.

The γ-positivity formula of Postnikov, Reiner, and Williams in the case
of the stellohedron says that

(1.4) Ãn(t) =

�n

2
�∑

k=0

γ̄n,k t
k(1 + t)n−2k,

where γ̄n,k is the number of σ ∈ Sn+1 such that σ has no double descents,
no final descent, σ(1) < σ(2) < · · · < σ(m) = n + 1, for some m ≥ 1, and
des(σ) = k.

1The terminology used here is defined in Section 2.
2The terminology used here is defined in Section 5.
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Here we obtain a γ-positivity formula3 for Ãn(t) that is somewhat sim-

pler than the Postnikov-Reiner-Williams formula and is similar to the Foata-

Schutzenberger formula for An(t). For all n ≥ 1,

(1.5) Ãn(t) =

�n

2
�∑

k=0

γ̃n,k t
k(1 + t)n−2k,

where γ̃n,k = |Γ̃n,k| and Γ̃n,k is the set of permutations σ ∈ Sn with

• no double descents,

• des(σ) = k.

(A nice bijection between Γ̃n,k and the set of permutations enumerated in

the Postnikov-Reiner-Williams formula (1.4) was obtained by Ellzey [11].)

Moreover, we present q-analogs of this γ-positivity formula (1.5) and of the

Foata-Schützenberger formula (1.3), and observe that they are specializa-

tions of analogous symmetric function identities. Algebro-geometric inter-

pretations of these symmetric function analogs are also presented, which

suggest an equivariant version of the Gal phenomenon.

The q-analogues of the Eulerian numbers and Eulerian polynomials that

we consider were first examined in previous work [30, 31] of the authors on

the joint distribution of the excedance statistic and the major index4. They

are used in the Chung-Graham, Han-Ling-Zeng q-analog of (1.1) mentioned

above. The q-analog an,j(q) of the Eulerian number an,j and the q-analog

An(q, t) of the Eulerian polynomial An(t) are polynomials in Z[q] and Z[q][t],

respectively, defined by

(1.6) An(q, t) =

n−1∑
j=0

an,j(q)t
j :=

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ),

for n ≥ 1, and An(q, t) := 1, for n = 0. For example,

A2(q, t) = 1 + t

A3(q, t) = 1 + (2 + q + q2)t+ t2

A4(q, t) = 1 + (3 + 2q + 3q2 + 2q3 + q4)t+ (3 + 2q + 3q2 + 2q3 + q4)t2 + t3.

3An alternative proof of (1.5) using poset topological techniques will appear
in [19].

4The permutation statistics terminology is defined in Section 2.
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Another combinatorial description of An(q, t) is given in more recent work
[32, 33] of the authors.

In [30, 31], the authors obtain a q-analog of Euler’s formula for the
exponential generating function of the Eulerian polynomials,

(1.7)
∑
n≥0

An(q, t)
zn

[n]q!
=

expq(z)(1− t)

expq(tz)− t expq(z)
.

(As is standard, [n]q! :=
∏n

j=1[j]q, where [j]q :=
∑j−1

i=0 q
i. Also, expq(z) :=∑

n≥0
zn

[n]q!
.)

The q-analog ãn,j(q) of the binomial-Eulerian number ãn,j and the q-
analog Ãn(q, t) of the binomial-Eulerian polynomial Ãn(t) are polynomials
in Z[q] and Z[q][t], respectively, defined by

Ãn(q, t) =

n∑
j=0

ãn,j(q)t
j := 1 + t

n∑
m=1

(
n

m

)
q

Am(q, t).

For example,

Ã2(q, t) = 1 + (2 + q)t+ t2

Ã3(q, t) = 1 + (3 + 2q + 2q2)t+ (3 + 2q + 2q2)t2 + t3.

The following q-analog of (1.3) is proved in [23, Equations (1.4) and
(6.1)] and also appears in Lin and Zeng [22] (with a different proof). For
n ≥ 1,

(1.8) An(q, t) =

�n−1

2
�∑

k=0

γn,k(q) t
k(1 + t)n−1−2k,

where

γn,k(q) :=
∑

σ∈Γn,k

qinv(σ).

Here we give an alternative derivation5 of (1.8) and we derive the q-analog
of (1.5),

(1.9) Ãn(q, t) =

�n

2
�∑

k=0

γ̃n,k(q) t
k(1 + t)n−2k,

5This approach is discussed in earlier work [31, Remark 5.5] of the authors,
though the γn,k(q) are not given.
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where

γ̃n,k(q) :=
∑

σ∈Γ̃n,k

qinv(σ).

We derive (1.8) and (1.9) by specializing analogous symmetric func-
tion identities. These identities involve the symmetric function polynomials
Qn(x, t) and Q̃n(x, t), which specialize to An(q, t) and Ãn(q, t), respectively,
and are defined as follows. For x = (x1, x2, . . . ), let

(1.10)
∑
n≥0

Qn(x, t)z
n :=

(1− t)H(z)

H(tz)− tH(z)
,

where

H(z) :=
∑
n≥0

hn(x)z
n,

and hn(x) is the complete homogeneous symmetric function of degree n. For
n ≥ 0, let

(1.11) Q̃n(x, t) := hn(x) + t

n∑
m=1

hn−m(x)Qm(x, t).

For all n ≥ 1 and k ≥ 0, let

γn,k(x) :=
∑

D∈Hn,k

sD(x),

where sD(x) is the skew Schur function of shape D and Hn,k is the set of
skew hooks of size n for which k columns have size 2 and the remaining n−2k
columns, including the last column, have size 1. From an interpretation of
Qn(x, t) due to Gessel [18], we have the identity,

(1.12) Qn(x, t) =

�n−1

2
�∑

k=0

γn,k(x) t
k(1 + t)n−1−2k,

for all n ≥ 1. We use (1.12) to derive the identity

(1.13) Q̃n(x, t) =

�n

2
�∑

k=0

γ̃n,k(x) t
k(1 + t)n−2k,
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where

γ̃n,k(x) =
∑

H∈H̃n,k

sH(x)

and H̃n,k is the set of skew hooks of size n for which k columns have size 2
and the remaining n− 2k columns have size 1.

It was shown by Danilov and Jurkiewicz (see [36, eq. (26)]) that the h-
polynomial of a simplicial polytope is equal to the Poincaré polynomial of the
toric variety associated with the polytope. In [36] Stanley, using a formula
of Procesi [27], gives a representation theoretic interpretation of Qn(x, t)
involving the toric variety associated with the dual permutohedron. This
and an equivariant version of the hard Lefschetz theorem yield a geometric
proof that Qn(x, t) is palindromic, Schur-positive and Schur-unimodal. Here
we give an analogous interpretation for Q̃n(x, t) involving the dual stellohe-
dron. This leads to the formulation of an equivariant version of the Gal
phenomenon, with the symmetric group actions on the dual permutohedron
and the dual stellohedron exhibiting this phenomenon.

The paper is organized as follows. In Section 2, we recall some basic facts
about Eulerian polynomials, permutation statistics, q-analogs, and symmet-
ric functions. The formulae (1.12) and (1.13) are obtained in Section 3 and di-
rect proofs of palindromicity and Schur-unimodality of Qn(x, t) and Q̃n(x, t)
are given. In Section 4, we show how these formulae specialize to (1.8) and
(1.9), respectively. Algebro-geometic interpretations of the results in Sec-
tion 3 are presented in Section 5. In Section 6, we discuss derangement
analogs of the results of the previous sections.

2. Preliminaries

While investigating divergent series in [12], Euler showed that, for each pos-
itive integer n, there is a monic polynomial An(t) ∈ Z[t] of degree n−1 such
that ∑

k≥0

(k + 1)ntk =
An(t)

(1− t)n+1
.

Let us write

An(t) =

n−1∑
j=0

an,jt
j .

The coefficients an,j of the Eulerian polynomial An(t) are called Eulerian
numbers.
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For a permutation σ ∈ Sn, the descent set of σ is

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i+ 1)}

and the descent number of σ is

des(σ) := |DES(σ)|.

The fact that

(2.1)
∑
σ∈Sn

tdes(σ) = An(t)

for all n seems to have been observed first by Riordan in [28]. Earlier,
MacMahon had shown in [24, Vol. I, p.186] that, with the excedance number
of σ ∈ Sn defined as

exc(σ) := |{i ∈ [n− 1] : σ(i) > i}|,

the equation

(2.2)
∑
σ∈Sn

texc(σ) =
∑
σ∈Sn

tdes(σ)

holds for all n.
Recall that the q-binomial coefficients are defined by

(
n

k

)
q

:=

{
[n]q!

[k]q![n−k]q!
0 ≤ k ≤ n,

0 otherwise.

There are two additional fundamental permutation statistics, the major
index

maj(σ) :=
∑

i∈DES(σ)

i

and the inversion number

inv(σ) := |{(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}|.

MacMahon [24] introduced the major index and proved the first equality in∑
σ∈Sn

qmaj(σ) = [n]q! =
∑
σ∈Sn

qinv(σ)
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after the second equality had been obtained in [29] by Rodrigues.

In [30, 31], the authors define a fixed point version of the q-Eulerian poly-

nomial, which refines the q-Eulerian polynomial given in (1.6). For n ≥ 1,

let

An(q, t, r) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)rfix(σ),

where fix(σ) is the number of fixed points of σ, and let A0(q, t, r) := 1. So

An(q, t, 1) = An(q, t) for all n ≥ 0. In [30, 31], the refinement of (1.7),

(2.3)
∑
n≥0

An(q, t, r)
zn

[n]q!
=

expq(rz)(1− t)

expq(tz)− t expq(z)

is derived.

As mentioned in the introduction, the Foata-Schutzenberger formula

(1.3) establishes γ-positivity of the Eulerian polynomials and the Postnikov-

Reiner-Williams formula (1.4) establishes γ-positivity of the binomial-

Eulerian polynomials. We now give precise definitions of the terminology

used in these formulas. We say σ ∈ Sn has

• a double descent if there exists i ∈ [n− 2] such that σ(i) > σ(i+ 1) >

σ(i+ 2)

• an initial descent if σ(1) > σ(2)

• a final descent if σ(n− 1) > σ(n).

We say that a polynomial f(q) ∈ R[q] is q-positive if its coefficients are

nonnegative. Given polynomials f(q), g(q) ∈ R[q] we say that f(q) ≤q g(q)

if g(q)− f(q) is q-positive. More generally, let R be an algebra over R with

basis b. An element s ∈ R is said to be b-positive if the expansion of s in

the basis b has nonnegative coefficients. Given r, s ∈ R, we say that r ≤b s

if s− r is b-positive.

The R-algebras considered in this paper are R = R, R[q], and the algebra

Λ of symmetric functions over R. If R = R and b = {1} then b-positive is

the same as positive and <b is the usual numerical < relation. If R = R[q]

and b = {qi : i ∈ N} then b-positive is what we called q-positive above

and <b is the same as <q. For R = Λ, we consider the basis of Schur

functions {sλ(x) : λ ∈ ∪n≥0 Par(n)} and the basis of complete homogeneous

symmetric functions {hλ(x) : λ ∈ ∪n≥0 Par(n)}, where Par(n) is the set of

partitions of n. It is a basic fact that h-positive implies Schur-positive (see

for example [38, Proposition 7.18.7]).
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Definition 2.1. Let R be an R-algebra with basis b. We say that a polyno-
mial A(t) := a0 + a1t+ · · ·+ ant

n ∈ R[t] is

• b-positive if each coefficient ai is b-positive,
• b-unimodal if for some c,

a0 ≤b a1 ≤b · · · ≤b ac ≥b ac+1 ≥b ac+2 ≥b · · · ≥b an,

• palindromic with center of symmetry n
2 if aj = an−j for 0 ≤ j ≤ n,

• b-γ-positive if there exist b-positive γ0, . . . , γ� d

2
� ∈ R such that

A(t) =

� d

2
�∑

k=0

γkt
k(1 + t)d−2k.

The following results are well known, at least in the case that R = R

(see [33, Appendix B]).

Proposition 2.2 (see [36, Proposition 1]). Let R be an R-algebra with ba-
sis b. Let A(t) and B(t) be palindromic, b-positive, b-unimodal polynomials
in R[t] with respective centers of symmetry cA and cB. Then

1. A(t)B(t) is palindromic, b-positive, b-unimodal with center of symme-
try cA + cB.

2. If cA = cB then A(t)+B(t) is palindromic, b-positive, b-unimodal with
center of symmetry cA.

Corollary 2.3. If A(t) ∈ R[t] is b-γ-positive then A(t) is palindromic, b-
positive, and b-unimodal.

3. Schur-γ-positivity

In this section we establish Schur-γ-positivity of the symmetric function
analogs Qn(x, t) and Q̃n(x, t) given in (1.10) and (1.11), and we present
combinatorial formulae for the γ-coefficients. We also present direct proofs
of palindromicity, Schur-positivity, and Schur-unimodality, which don’t rely
on Schur-γ-positivity.

It is an easy consequence of the following result of Gessel that Qn(x, t)
is Schur-γ-positive. Let Pn be the set of words of length n over the alphabet
of positive integers P. Given a word w ∈ Pn, we let wi denote its ith letter.
That is, w = w1w2 . . . wn. Just as for permutations, let des(w) equal the
number of i ∈ [n − 1] such that wi > wi+1. A word w is said to have a
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double descent if there exists an i ∈ [n− 2] such that wi > wi+1 > wi+2. Let
NDDn be the set of words in Pn with no double descents. For w ∈ Pn, let
xw := xw1

xw2
. . . xwn

.

Theorem 3.1 (Gessel [18], see [31, Theorem 7.3]).

(3.1) 1 +
∑
n≥1

zn
∑

w ∈ NDDn

wn−1 ≤ wn

xw tdes(w)(1 + t)n−1−2des(w) =
(1− t)H(z)

H(zt)− tH(z)
,

where w0 = 0.

The symmetric function polynomial Qn(x, t) defined in (1.10) can now
be given an explicit expansion which establishes Schur-γ-positivity. The γ-
coefficients are described in terms of hook shaped skew Schur functions.
A skew hook is a connected skew diagram with no 2 × 2 square. Let Hn,k

be the set of skew hooks of size n for which k columns have size 2 and
the remaining n − 2k columns, including the last column, have size 1. For
example,

∈ H9,2.

Corollary 3.2. Let

(3.2) γn,k(x) :=
∑

D∈Hn,k

sD(x),

where sD(x) is the skew Schur function of shape D. Then

(3.3) Qn(x, t) =

�n−1

2
�∑

k=0

γn,k(x) t
k(1 + t)n−1−2k.

Consequently the polynomial Qn(x, t) is Schur-γ-positive.

Proof. By (3.1), for n ≥ 1,

Qn(x, t) =
∑

w ∈ NDDn

wn−1 ≤ wn

xw tdes(w)(1 + t)n−1−2des(w).

Note that the semistandard tableaux of hook shape in Hn,k correspond bi-
jectively to words w ∈ NDDn with wn−1 ≤ wn and with k descents. Indeed,
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by reading the entries of such a semistandard tableau from southwest to

northeast, one gets such a word. For example, the semistandard tableau

2 8

1 1 8 9

2 5 5

corresponds to the word 255118928 ∈ NDD9, which has 2 descents. It fol-

lows that ∑
w ∈ NDDn

wn−1 ≤ wn

des(w) = k

xw =
∑

D∈Hn,k

sD(x).

The consequence follows from the fact that skew Schur functions are

Schur-positive.

Next we derive an analogous Schur-γ-positivity result for Q̃n(x, t), which

was defined in (1.11). We begin with a generating function formula.

Proposition 3.3.

(3.4)
∑
n≥0

Q̃n(x, t)z
n =

(1− t)H(z)H(tz)

H(tz)− tH(z)
.

Equivalently, for all n ≥ 0,

(3.5) Q̃n(x, t) =

n∑
m=0

hn−m(x)Qm(x, t)tn−m.

Proof. By the definitions (1.11) and (1.10),

∑
n≥0

Q̃n(x, t)z
n = H(z)(1 + t

∑
n≥1

Qn(x, t)z
n)

= H(z)(1 + t(
(1− t)H(z)

H(tz)− tH(z)
− 1))

= H(z)
H(tz)(1− t)

H(tz)− tH(z)
.

Let H̃n,k be the set of skew hooks of size n for which k columns have

size 2 and the remaining n− 2k columns have size 1.
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Theorem 3.4. Let

(3.6) γ̃n,k(x) :=
∑

D∈H̃n,k

sD(x),

where sD(x) is the skew Schur function of shape D. Then

(3.7) Q̃n(x, t) =

�n

2
�∑

k=0

γ̃n,k(x) t
k(1 + t)n−2k.

Consequently the polynomial Q̃n(x, t) is Schur-γ-positive.

Proof. For n ≥ 1, let

Wn(x, t) :=
∑

w ∈ NDDn

wn−1 ≤ wn

xw tdes(w)(1 + t)n−1−2des(w)

and let

W̃n(x, t) :=
∑

w∈NDDn

xw tdes(w)(1 + t)n−2des(w).

By (3.1), we have

(3.8) Wn(x, t) = Qn(x, t).

We will show that

(3.9) W̃n(x, t) = hn(x)t
n +

n∑
m=1

hn−m(x)Wm(x, t)tn−m.

It follows from this, (3.5), and (3.8) that W̃n(x, t) = Q̃n(x, t). This is

equivalent to the desired result since the semistandard tableaux of skew

hook shape in H̃n,k correspond bijectively to words in NDDn with k de-

scents.

Let In be the set {α ∈ Pn : α1 ≤ · · · ≤ αn} of weakly increasing words

of length n. The right side of (3.9) equals
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∑
u∈In

tnxu +

n∑
m=1

∑
w ∈ NDDm

wm−1 ≤ wm

tdes(w)(1 + t)m−1−2des(w)xw

∑
u∈In−m

tn−mxu

=
∑
u∈In

tnxu +

n∑
m=1

∑
w ∈ NDDm

wm−1 ≤ wm

u ∈ In−m

tdes(w)+(n−m)(1 + t)m−1−2des(w)xw·u

where w · u denotes concatenation of words w and u.

For v ∈ Pn we seek the coefficient of xv. Note that the coefficient is 0 if

v has a double descent. For v ∈ NDDn, let j be the smallest integer such

that vj ≤ vj+1 ≤ · · · ≤ vn. So j − 1 is either 0 (when v is weakly increasing)

or the position of the last descent. Each m ∈ {j + 1, . . . , n} determines a

decomposition of v into w ·u, where w ∈ NDDm, wm−1 ≤ wm and u ∈ In−m.

Note that des(v) = des(w).

The only other value of m that determines a decomposition of v into

w · u for which w ∈ NDDm, wm−1 ≤ wm and u ∈ In−m, is m = j − 1. In

this case, if j − 1 > 0 we have des(v) = des(w) + 1. It follows that if j > 1,

the coefficient cv of xv is given by

cv = tdes(v)+n−j(1 + t)j−2des(v) +

n∑
m=j+1

tdes(v)+n−m(1 + t)m−1−2des(v).

We have

n∑
m=j+1

tdes(v)+n−m(1 + t)m−1−2des(v)

= tdes(v)+n−j−1(1 + t)j−2des(v)
n−j−1∑
k=0

(
1 + t

t

)k

= tdes(v)+n−j(1 + t)j−2des(v)

((
1 + t

t

)n−j

− 1

)

= tdes(v)(1 + t)n−2des(v) − tdes(v)+n−j(1 + t)j−2des(v),(3.10)

from which we conclude that cv = tdes(v)(1 + t)n−2des(v).

Now if j = 1 then v is a weakly increasing word and the coefficient of

xv is given by
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cv = tn +

n∑
m=1

tn−m(1 + t)m−1.

A simple computation shows that the summation is equal to (1 + t)n − tn.

Hence cv = (1+ t)n = tdes(v)(1+ t)n−2des(v), as in the previous case. We have

therefore shown that the right hand side of (3.9) is equal to

∑
v∈NDDn

tdes(v)(1 + t)n−2des(v)xv,

which by definition is the left side of (3.9).

Remark 3.5. It was pointed out to us by González D’León that another

identity of Gessel [17, Theorem 4.2] can be used to give an alternative proof

of Theorem 3.4, or equivalently of Q̃n(x, t) = W̃n(x, t). By inverting (3.9),

one can conclude from this that Qn(x, t) = Wn(x, t), which is equivalent to

Gessel’s unpublished result (3.1). Hence [17, Theorem 4.2] can be used to

prove (3.1). Gessel [18] has a more direct proof of (3.1) however.

The following result for Qn(x, t) was first obtained by Stanley [36] from

the algebro-geometric interpretation of Qn(x, t) given in (5.1).

Corollary 3.6. For all n ≥ 0, the symmetric function polynomials Qn(x, t)

and Q̃n(x, t) are palindromic, Schur-positive, and Schur-unimodal.

Proof. Use Corollary 2.3.

A stronger result for Qn(x, t) was proved by Stembridge [39], namely

h-positivity and h-unimodality of Qn(x, t). A simpler proof of this result

given in [33, Corollary C.5] relies on the formula

(3.11)
∑
n≥0

Qn(x, t)z
n = 1 +

∑
n≥1[n]thnz

n

1− t
∑

n≥2[n− 1]thnzn

and Proposition 2.2. Here we give an alternative proof of Corollary 3.6 for

Q̃n(x, t) that does not rely on Theorem 3.4.

Alternative proof of Corollary 3.6 for Q̃n(x, t). Let Q0
n(x, t) be defined by

∑
n≥0

Q0
n(x, t)z

n =
1− t

H(tz)− tH(z)
=

1

1− t
∑

n≥2[n− 1]thnzn
.
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It follows from Proposition 2.2 that Q0
n(x, t) is palindromic, h-positive and

h-unimodal with center of symmetry n
2 . By Proposition 3.3,

(3.12) Q̃n(x, t) =
∑
k≥0

⎛
⎝ k∑

j=0

tjhjhk−j

⎞
⎠Q0

n−k(x, t).

It is easy to see that
∑k

j=0 t
jhjhk−j is palindromic with center of sym-

metry k
2 . It is clearly h-positive, which implies that it is Schur-positive.

We claim that it is also Schur-unimodal. If j ≤ k − j then by Pieri’s rule
hjhk−j =

∑j
i=0 sk−i,i. From this we can see that

∑k
j=0 t

jhjhk−j is Schur-

unimodal. By Proposition 2.2, we have that
(∑k

j=0 t
jhjhk−j

)
Q0

n−k(x, t) is

palindromic, Schur-positive, and Schur unimodal with center of symmetry
equal to k

2+
n−k
2 = n

2 . Again by Proposition 2.2, we can conclude from (3.12)

that Q̃n(x, t) is palindromic, Schur-positive, and Schur-unimodal with center
of symmetry n

2 .

4. q-γ-positivity of the q-Eulerian and q-binomial-Eulerian
polynomials

It this section we use the results of the previous section to prove that the
q-Eulerian polynomials

An(q, t) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

and q-binomial-Eulerian polynomials

Ãn(q, t) := 1 + t

n∑
m=1

(
n

m

)
q

Am(q, t)

are q-γ-positive.

From any symmetric function G(x1, x2, . . .) one obtains a power series
in a single variable q by the stable principal specialization, in which each xi
is replaced by qi−1. Let

psq(G) := G(1, q, q2, . . .).

This definition can be extended to polynomials in Λ[t] by defining,
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psq

(
d∑

i=o

Gi(x)t
i

)
:=

d∑
i=0

psq(Gi(x))t
i.

Let SY TD denote the set of standard Young tableaux of skew shape D.

For T ∈ SY TD (written in English notation), let DES(T ) be the set of entries

i of T for which i is in a higher row than i+1, and let maj(T ) =
∑

i∈DES(T ) i.

It is well known (see [38, Proposition 7.19.11]) that

(4.1) psq(sD) =

∑
T∈SY TD

qmaj(T )

(1− q) . . . (1− qn)
,

where n is the number of cells of D. It follows from this (and is easy to see

directly) that

psq(hn) =
1

(1− q) . . . (1− qn)
.

By taking stable principal specialization of both sides of (1.10), one can

see that the following result is equivalent to (1.7). In fact, in [31] this result

was used to prove (1.7).

Theorem 4.1 (Shareshian and Wachs [31]). For all n ≥ 0,

psq(Qn(x, t)) =
An(q, t)

(1− q) . . . (1− qn)

An analogous result holds for the q-binomial-Eulerian polynomials.

Corollary 4.2. For all n ≥ 0,

psq(Q̃n(x, t)) =
Ãn(q, t)

(1− q) . . . (1− qn)
.

Proof. Starting with the definition of Q̃n(x, t) given in (1.11), we have

psq(Q̃n(x, t)) = psq(hn) + t

n∑
m=1

psq(hn−m)psq(Qm(x, t))

=
1∏n

i=1(1− qi)
+ t

n∑
m=1

Am(q, t)∏m
i=1(1− qi)

∏n−m
i=1 (1− qi)
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=
1 + t

∑n
m=1

(
n
m

)
q
Am(q, t)∏n

i=1(1− qi)

=
Ãn(q, t)∏n
i=1(1− qi)

,

with the second equality following from Theorem 4.1.

By taking the stable principal specialization of both sides of (3.4), one
gets the following result. The consequences follow from (1.7) and (2.3), re-
spectively.

Proposition 4.3.

∑
n≥0

Ãn(q, t)
zn

[q]n!
=

(1− t) expq(z) expq(tz)

expq(tz)− t expq(z)
.

Consequently

Ãn(q, t) =

n∑
m=0

(
n

m

)
q

Am(q, t)tn−m

and

Ãn(q, t) =

n∑
m=0

(
n

m

)
q

Am(q, t, t).

In [31, Remark 5.5], the authors mention that (3.1) can be used to estab-
lish q-γ-positivity of An(q, t). Now we carry this out by using (3.3) to obtain
the γ-coefficients. The following result is proved in [23, Equations (1.4) and
(6.1)] without the use of (3.1).

Theorem 4.4. Let Γn,k be the set of permutations σ ∈ Sn with no double
descents, no final descent, and with des(σ) = k, and let

γn,k(q) :=
∑

σ∈Γn,k

qinv(σ) (=
∑

σ∈Γn,k

qmaj(σ−1)).

Then

(4.2) An(q, t) =

�n−1

2
�∑

k=0

γn,k(q) t
k(1 + t)n−1−2k.

Consequently the q-Eulerian polynomials An(q, t) are q-γ-positive.
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Proof. By applying stable principal specialization to both sides of (3.3) we

have

(4.3) psq(Qn(x, t)) =

�n−1

2
�∑

k=0

psq(γn,k(x)) t
k(1 + t)n−1−2k.

By (3.2) and (4.1), we have

psq(γn,k(x)) =
∑

D∈Hn,k

psq(sD(x))(4.4)

=
∑

D∈Hn,k

∑
T∈SY TD

qmaj(T )

(1− q) . . . (1− qn)
.

If D is a skew hook then SY TD corresponds bijectively to the set of

permutations in Sn with a fixed descent set determined by D. Indeed, by

reading the entries of T ∈ SY TD from southwest to northeast, one gets a

permutation ϕ(T ) ∈ Sn. Descents are encountered whenever one goes up a

column. So DES(ϕ(T )) equals the set of all i ∈ [n− 1] such that the ith cell

of D (ordered from southwest to northeast) is directly below the (i + 1)st

cell of D. It follows that if D ∈ Hn,k and T ∈ SY TD then ϕ(T ) ∈ Γn,k.

Note also that for T ∈ SY TD, DES(T ) = DES(ϕ(T )−1). We can now

conclude that

(4.5)
∑

D∈Hn,k

∑
T∈SY TD

qmaj(T ) =
∑

σ∈Γn,k

qmaj(σ−1).

For each J ⊂ [n−1], the descent class of J is the set {σ ∈ Sn : DES(σ) =

J}. Note that Γn,k is a union of descent classes. By the Foata-Schützenberger

result [15, Theorem 1] that inv(σ) and maj(σ−1) are equidistributed on

descent classes, we have

∑
σ∈Γn,k

qmaj(σ−1) =
∑

σ∈Γn,k

qinv(σ).

Combining this with (4.5) and substituting in (4.4) results in

psq(γn,k(x)) =

∑
σ∈Γn,k

qinv(σ)

(1− q) . . . (1− qn)
.
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It follows that the right side of (4.3) equals

∑�n−1

2
�

k=0

∑
σ∈Γn,k

qinv(σ) tk(1 + t)n−1−2k

(1− q) . . . (1− qn)
,

while, by Theorem 4.1, the left side equals

An(q, t)

(1− q) . . . (1− qn)
,

thereby completing the proof.

By taking the stable principal specialization of both sides of equation
(3.7) and using an argument analogous to the proof of Theorem 4.4, we
obtain the following result.

Theorem 4.5. Let Γ̃n,k be the set of permutations σ ∈ Sn with no double
descents and with des(σ) = k, and let

(4.6) γ̃n,k(q) :=
∑

σ∈Γ̃n,k

qinv(σ) (=
∑

σ∈Γ̃n,k

qmaj(σ−1)).

Then

(4.7) Ãn(q, t) =

�n

2
�∑

k=0

γ̃n,k(q) t
k(1 + t)n−2k.

Consequently, the q-binomial-Eulerian polynomials Ãn(q, t) are q-γ-positive.

The following result for An(q, t) was first obtained by the authors in [31].

Corollary 4.6. For all n ≥ 0, the polynomials An(q, t) and Ãn(q, t) are
palindromic and q-unimodal.

Just as for Corollary 3.6, an alternative proof of Corollary 4.6 can be
given which doesn’t make use of Theorems 4.4 and 4.5. For An(q, t) a simple
proof is given in Appendix C.1 of [33] by using the formula

1 +
∑
n≥1

An(q, t)
zn

[n]q!
= 1 +

∑
n≥1[n]t

zn

[n]q!

1− t
∑

n≥2[n− 1]t
zn

[n]q!

obtained by manipulating (1.7).
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Alternative proof of Corollary 4.6 for Ãn(q, t). By (2.3) and Proposition 4.3,

Ãn(q, t) =
∑
k≥0

⎛
⎝ k∑

j=0

(
k

j

)
q

tj

⎞
⎠An−k(q, t, 0).

Since∑
n≥0

An(q, t, 0)
zn

[n]q!
=

(1− t)

expq(tz)− t expq(z)
=

1

1− t
∑

n≥2[n− 1]t
zn

[n]q!

,

it follows from Proposition 2.2 that An(q, t, 0) is palindromic and q-unimodal
with center of symmetry n

2 . It is well known that
∑k

j=0

(
k
j

)
q
tj is palindromic

and q-unimodal with center of symmetry k
2 . Note that this follows from tak-

ing the stable principal specialization of
∑k

j=0 hjhk−jt
j , which we observed

to be Schur-unimodal in the alternative proof of Corollary 3.6. By Proposi-
tion 2.2, Ãn(q, t) is a sum of palindromic, q-positive, q-unimodal polynomials
with center of symmetry k

2 + n−k
2 . It therefore follows again from Proposi-

tion 2.2 that Ãn(q, t) is palindromic and q-unimodal.

Note that palindromicity of Ãn(q, t) is equivalent to the following q-
analog of (1.1).

Corollary 4.7 (Chung-Graham [9] and Han-Lin-Zeng [20]). For positive
integers r, s,

r+s∑
m=1

(
r + s

m

)
q

am,r−1(q) =

r+s∑
m=1

(
r + s

m

)
q

am,s−1(q).

A symmetric function analog is given by the following result, which is
equivalent to palindromicity of Q̃n(x, t). (A more general result appears as
Theorem 2 in the preprint [21] of Z. Lin.)

Corollary 4.8. For positive integers r, s,

r+s∑
m=1

hr+s−mQm,r−1 =

r+s∑
m=1

hr+s−mQm,s−1.

5. Geometric interpretation: equivariant Gal phenomenon

In this section, we will present interpretations of results in Section 3 using
geometry and representation theory. The idea behind such interpretations
was, to our knowledge, first employed by Stanley, and is discussed in [36].
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Herein, a polytope is the convex hull of a finite set of points in some

Rd. A polytope is simplicial if every proper face is a simplex. Let P be a

d-dimensional simplicial polytope. Associated with P is the h-polynomial

defined by

hP (t) :=

d∑
j=0

fj−1(t− 1)d−j ,

where fi is the number of faces of P of dimension i. It is well known that

the h-polynomial of every simplicial polytope is palindromic and unimodal.

Indeed, palindromicity is equivalent to the Dehn-Sommerville equations, and

unimodality was proved by Stanley [34] as part of the g-Theorem of Billera,

Lee and Stanley (see e.g., [35, 4]).

A simplicial complex is said to be flag if it is the clique complex of

its 1-skeleton; that is, its faces are the cliques of its 1-skeleton. Examples

of flag simplicial complexes include barycentric subdivisions of simplicial

complexes, or more generally order complexes of posets. Gal formulated the

following strengthening of the long standing Charney-Davis conjecture [8].

Conjecture 5.1 (Gal [16]). If P is a flag simplicial polytope (or more gen-

erally a flag simplicial sphere) then hP (t) is γ-positive.

Gal’s conjecture has been proved for certain special classes and exam-

ples; see [25, Section 10.8]. One such example is the dual of the permutohe-

dron. The permutohedron Pn is the convex hull of the set {(σ(1), . . . , σ(n)) :
σ ∈ Sn}. The dual permutohedron P ∗

n is combinatorially equivalent to the

barycentric subdivision of the boundary of the (n− 1)-simplex. Clearly P ∗
n

is a flag simplicial polytope. It is well known that

hP ∗
n
(t) = An(t).

Hence by (1.3), hP ∗
n
(t) is γ-positive.

We will say that a flag simplicial polytope P exhibits Gal’s phenomenon

if hP (t) is γ-positive. So P ∗
n exhibits Gal’s phenomenon. The permutohe-

dron and another polytope called the stellohedron belong to a class of poly-

topes called chordal nestohedra. In [26, Section 11.2] Postnikov, Reiner,

and Williams show that the duals of chordal nestohedra exhibit Gal’s phe-

nomenon and they give a combinatorial formula for the γi.

Let Δn be the simplex in Rn with vertices 0, e1, . . . , en, where ei is the

ith standard basis vector. The stellohedron Stn is obtained from Δn by trun-

cating all faces not containing 0 in an order such that if F,G are such faces
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and dimF < dimG then F is truncated before G. Stellohedra are discussed
in various papers, including [26, Section 10.4] and [7].

Stellohedra are simple polytopes. Therefore, each dual polytope St∗n is
a simplicial polytope. If F is a face of a polytope P and PF is obtained
from P by truncating F , then P ∗

F is obtained from P ∗ by stellar subdivision
of the dual face F ∗ (see for example [13, Theorem 2.4]). Therefore, St∗n
is (combinatorially equivalent to) the polytope obtained from Δn through
stellar subdivision of all faces not contained in the convex hull of {e1, . . . , en}
in an order such that if F,G are such faces and dimF < dimG then F is
subdivided after G.

Postnikov, Reiner, and Williams [26, Section 10.4] observe that

hSt∗n(t) = Ãn(t).

Hence γ-positivity of Ãn(t) is a consequence of their general result on chordal
nestohedra, as is their formula (1.4).

Associated to any simplicial polytope P is a toric variety X(P ). Danilov
and Jurkiewicz (see [36, eq. (26)]) showed that for any simplicial polytope P ,

hP (t) =
∑
j≥0

dimH2j(X(P ))tj ,

where H i(X(P )) is the degree i singular cohomology of X(P ) over C. From
this, one has the algebro-geometric interpretation of the Eulerian and bino-
mial-Eulerian polynomials given by,

An(t) =

n−1∑
j=0

dimH2j(X(P ∗
n))t

j

and

Ãn(t) =

n∑
j=0

dimH2j(X(St∗n))t
j .

The purpose of this section is to discuss equivariant versions of these inter-
pretations.

Any simplicial action of a finite group G on P determines an action of G
on X(P ) and thus a representation of G on each cohomology group of X(P ).
If G is the symmetric group Sn, the Frobenius characteristic, denoted by ch
herein, assigns to each representation (up to isomorphism) of G a symmetric
function, as discussed in [38, Section 7.18]. The symmetric group Sn acts
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simplicially on P ∗
n and St∗n. For P = P ∗

n , Stanley [36], using a recurrence of
Procesi [27] obtained the interpretation,

(5.1) Qn(x, t) =

n−1∑
j=0

ch(H2j(X(P ∗
n))t

j .

From this interpretation, Stanley concluded that palindromicity and Schur-
unimodality of Qn(x, t) are consequences of an equivariant version of the
hard Lefschetz theorem. Here, using (5.1) and Procesi’s technique, we ob-
tain an analogous result for Q̃n(x, t), which enables us to also interpret
palindromicity and unimodality of Q̃n(x, t) as a consequence of the equiv-
ariant version of the hard Lefschetz theorem.

Theorem 5.2. For all n ≥ 1,

Q̃n(x, t) =

n∑
j=0

ch(H2j(X(St∗n))t
j .

Proof. Let Δn be the n-simplex with vertex set {0, e1, . . . , en}. Let Fi be
the set of i-dimensional faces of Δn containing 0. Let Tn = Δn and, for
1 ≤ i ≤ n − 1, let Ti be the polytope obtained from Ti+1 by simultaneous
stellar subdivision of all faces in Fi. Note that if F ∈ Fi then F is a indeed
face of Ti+1. Moreover, the link LF of F in the boundary complex of Ti+1

has one vertex for each face of the boundary of Δn strictly containing F .
Indeed, when applying stellar subdivision to such a face E, we remove E and
add a cone over the boundary of E. Call the vertex of this cone φ(E). The
vertices of LF are all such φ(E), and a set {φ(Ei)} of such vertices forms a
face of LF if and only if {Ei} is a chain in the face poset of the boundary of
Δn. Thus LF is isomorphic to the barycentric subdivision of the link of F in
the boundary of Δn, which is equal to L̄F\{0}, the barycentric subdivision
of the link of F \ {0} in the boundary of the (n− 1)-simplex with vertex set
{e1, . . . , en}.

Note that T1 = St∗n. The action of Sn on {e1, . . . , en} by permutation
of indices induces a simplicial action on each Ti. Thus we can consider the
representations of Sn on the cohomology groups of the varieties X(Ti). If
F = {0, ei1 , . . . , eik}, where 1 ≤ i1 < · · · < ik ≤ n, then S[n]\{i1,...,ik} acts
simplicially on LF and this action is equivalent to the action of S[n]\{i1,...,ik}
on L̄F\{0}. By viewing LF and L̄F\{0} as simplicial polytopes, we have that
these actions induce isomorphic representations of S[n]\{i1,...,ik} on cohomol-
ogy of the corresponding varieties X(LF ) and X(L̄F\{0}).
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For 1 ≤ i ≤ n, we write Xi for X(Ti). Then Xn is the projective space

Pn. As explained in [13, Section VI.7], Xi is obtained from Xi+1 by a series

of equivariant blowups. For each i ∈ {1, . . . , n} and each F ∈ Fi, let LF be

the link of F in the boundary complex of Ti+1, as above. As discussed in

[27, Section 3], there is an isomorphism of graded vector spaces,

(5.2) H∗(Xi) ∼= H∗(Xi+1)⊕
⊕
F∈Fi

H∗(X(LF ))⊗H+(Pi),

where H+(Pk) := ⊕j>0H
2j(Pk).

In fact, we can extend (5.2) to an isomorphism of Sn-representations.

Note that Sn acts transitively on Fi, with the stabilizer of the face Fi :=

conv{0, e1, . . . , ei} being the subgroup Gi := S{1,...,i} ×S{i+1,...,n}. The fac-

tor S{i+1,...,n} in Gi acts on H∗(X(LFi
)) as it does on H∗(X(L̄Fi\{0})),

as mentioned above. This is equivalent to the representation of Sn−i on

H∗(X(P ∗
n−i)). The factor S{1,...,i} acts trivially on H+(Pi), as explained in

[27, Section 3].

We see now that the representation of Sn on H∗(Xi) is the direct sum

of the representation on H∗(Xi+1) with the representation induced from

that of Gi on H∗(X(LFi
)) ⊗ H+(Pi) determined by the representations of

S{i+1,...,n} and S{1,...,i} on the respective tensor factors. Recalling the well

known fact that H2j(Pi) has dimension one for 1 ≤ j ≤ i and taking Frobe-

nius characteristics, we obtain, for 1 ≤ i ≤ n,

Ri(x, t) = Ri+1(x, t) + t[i]thi(x)

n−i−1∑
j=0

ch(H2j(X(P ∗
n−i))t

j ,

where

Ri(x, t) :=
∑
j≥0

ch(H2j(Xi))t
j .

By (5.1) we may conclude that

(5.3) Ri(x, t) = Ri+1(x, t) + t[i]thi(x)Qn−i(x, t).

By induction, we have

Ri(x, t) = hn(x)[n+ 1]t +

n−1∑
m=i

t[m]thm(x)Qn−m(x, t).
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Setting i = 1 yields,

(5.4)

n∑
j=0

ch(H2j(X(St∗n))t
j = hn(x)[n+1]t+

n−1∑
m=1

t[n−m]thn−m(x)Qm(t).

We will manipulate the symmetric function on the right side of (5.4) to

obtain the desired result. Setting r = 1 in [31, Corollary 4.1], we obtain

(5.5) Qn(x, t) = hn(x) +

n−2∑
k=0

Qk(x, t)hn−k(x)t[n− k − 1]t.

Now

hn(x)[n+ 1]t +

n−1∑
m=1

hn−m(x)Qm(x, t)t[n−m]t

= hn(x)[n+ 1]t + h1(x)Qn−1(x, t)t− hn(x)t[n]t

+

n−2∑
m=0

hn−m(x)Qm(x, t)t[n−m]t

= hn(x) + h1(x)Qn−1(x, t)t+

n−2∑
m=0

hn−m(x)Qm(x, t)t[n−m− 1]t

+

n−2∑
m=0

hn−m(x)Qm(x, t)tn−m

= Qn(x, t) + h1(x)Qn−1(x, t)t+

n−2∑
m=0

hn−m(x)Qm(x, t)tn−m

=

n∑
m=0

hn−m(x)Qm(x, t)tn−m,

the third equality following from (5.5). The result now follows from (5.4)

and Proposition 3.3.

Corollary 5.3. For 0 ≤ j ≤ n− 1,

psq(ch(H
2j(X(P ∗

n))) =
an,j(q)

(1− q) . . . (1− qn)
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and for 0 ≤ j ≤ n,

psq(ch(H
2j(X(St∗n))) =

ãn,j(q)

(1− q) . . . (1− qn)
.

Proof. The first equation is a consequence of (5.1) and Theorem 4.1, while
the second equation is a consequence of Theorem 5.2 and Corollary 4.2.

The next result follows from combining (5.1) with Corollary 3.2 and
combining Theorem 5.2 with Theorem 3.4.

Corollary 5.4. For P ∈{P ∗
n , St

∗
n−1}, the polynomial

∑n−1
j=0 ch(H

2j(X(P ))tj

is Schur-γ-positive.

Corollary 5.4 suggests an equivariant version of Gal’s phenomenon.

Definition 5.5. Let P be a flag simplicial d-dimensional polytope on which
a finite group G acts simplicially. The action of G induces a graded rep-
resentation of G on cohomology of the associated toric variety X(P ). We
say that (P,G) exhibits the equivariant Gal phenomenon if there exist G-
modules ΓP,k such that

d∑
j=0

H2j(X(P ))tj =

� d

2
�∑

k=0

ΓP,k tk(1 + t)d−2k.

Corollary 5.4 says that (P ∗
n ,Sn) and (St∗n,Sn) both exhibit the equiv-

ariant Gal phenomenon.
It is not the case that every group action on a flag simplicial polytope

exhibits the equivariant Gal phenomenon. Indeed, for i ∈ [n], let ei be the
ith standard basis vector in Rn. Consider the cross-polytope CPn, which
is the convex hull of {±ei : i ∈ [n]}. It is straightforward to see that (the
boundary of) CPn is a flag simplicial polytope. The convex hull of some set
S of vertices of CPn is a boundary face if and only if there is no i such that
S contains both ei and −ei.

Let T ≤ GLn(R) be the group of all diagonal matrices whose nonzero
entries are 1 or −1 and let S ≤ GLn(R) be the set of all n× n permutation
matrices. The semidirect productW = S�T preserves CPn. It is well known
and not hard to see that the h-polynomial of CPn is (1+ q)n. The action of
W onH0(X(CPn)) is trivial. It follows that ifG ≤ W and (CPn, G) exhibits
the equivariant Gal phenomenon, then G acts trivially on H∗(X(CPn)).

Consider the element c ∈ W satisfying e1c = e2, e2c = −e1 and eic = −ei
for 3 ≤ i ≤ n. Note that c and c3 fix no boundary face of CPn and that c2
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fixes those boundary faces not including any of ±e1, ±e2. It follows that the
action of C on CPn is proper, that is, the stabilizer in C of any face F of
CPn fixes F pointwise. This allows us to apply results of Stembridge. We
observe that

det(I − qc) = (1 + q2)(1 + q)n−2.

On the other hand, according to Theorem 1.4 and Corollary 1.6 of [40], any
w ∈ W not having 1 as an eigenvalue and acting trivially on H∗(X(CPn))
satisfies

det(I − qw) = (1 + q)n.

(Indeed, using the notation from [40], any such w satisfies PΔw(q) = 1 and
δ(w) = 0.)

We see that if G ≤ W contains (any conjugate of) c, then (CPn, G)
does not exhibit the equivariant Gal phenomenon. It would be interesting
to find classes, beyond (P ∗

n ,Sn) and (St∗n,Sn) that exhibit the equivariant
Gal phenomenon.

6. Remarks on derangement polynomials

One can modify the q-Eulerian polynomials An(q, t) and q-Eulerian num-
bers an,j(q) by summing over all derangements in Sn instead of over all
permutations in Sn. That is, let Dn be the set of derangements in Sn and
let

Dn(q, t) :=
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ),

for n ≥ 1, and let Dn(q, t) := 1 for n = 0. Since Dn(q, t) = An(q, t, 0), it
follows from (2.3) that

(6.1)
∑
n≥0

Dn(q, t)
zn

[n]q!
=

1− t

expq(tz)− t expq(z)
.

Recall from the alternative proof of Corollary 4.6 that Dn(q, t) is palin-
dromic and q-unimodal. (This result was first noted by the authors in [31]
and the q = 1 case was proved earlier by Brenti [5].) There is an analogous
symmetric function result conjectured by Stanley [36] and proved by Brenti
[5]. The analogous symmetric function result says that the symmetric func-
tion polynomial Q0

n(x, t) is palindromic, Schur-positive and Schur-unimodal,
where Q0

n(x, t) is defined by
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(6.2)
∑
n≥0

Q0
n(x, t)z

n :=
1− t

H(tz)− tH(z)
.

An algebro-geometric interpretation of this result was given subsequently by
Stanley (see [37, page 825]), who determined the representation of the sym-
metric group on the graded local face module associated with the barycentric
subdivision of the simplex.

A formula of Gessel shows that Q0
n(x, t) is, in fact, Schur-γ positive (see

[31, Equation (7.9)]). Let

γ0n,k(x) :=
∑

D∈H0
n,k

sD(x),

where H0
n,k is the set of skew hooks of size n for which k columns have size

2 and the remaining n − 2k columns, including the first and last column,
have size 1. Gessel’s formula is equivalent to

(6.3) Q0
n(x, t) =

�n−2

2
�∑

k=0

γ0n,k(x) t
k(1 + t)n−2−2k,

for all n ≥ 1.
It is mentioned in [31, Remark 5.5] that Gessel’s formula can be used to

establish q-γ-positivity of Dn(q, t). However, an explicit description of the γ-
coefficients is not given there. By applying stable principal specialization to
(6.3), one obtains the following description of the γ-coefficients. This result
is proved in [23, Equation (1.3) and Theorem 3.3] without the use of Gessel’s
formula. It appears also in [22].

Theorem 6.1. For 0 ≤ k ≤ n, let Γ0
n,k be the set of permutations σ ∈

Sn with no double descents, no intial descent, no final descent, and with
des(σ) = k. Let

γ0n,k(q) :=
∑

σ∈Γ0
n,k

qinv(σ) (=
∑

σ∈Γ0
n,k

qmaj(σ−1)).

Then

(6.4) Dn(q, t) =

�n

2
�∑

k=0

γ0n,k(q) t
k(1 + t)n−2k.

Consequently, Dn(q, t) is q-γ-positive.
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As discussed in Stanley [37], the Poincaré polynomial of the graded lo-
cal face module associated with a certain type of subdivision of a simplicial
complex is equal to the local h-polynomial associated with the subdivision,
which in the case of the barycentric subdivision of the (n−1)-simplex is equal
to Dn(1, t). In [1] Athanasiadis considers γ-positivity of local h-polynomials
and formulates a generalization of Gal’s conjecture for local h-polynomials,
which would provide a geometric interpretation of γ-positivity of Dn(1, t);
see also [2, 3]. One could also consider an equivariant version of Gal’s phe-
nomenon in the local setting.

We remark that in [23] the authors and Linusson consider multiset ver-
sions of the Eulerian polynomial An(t) and the derangement polynomial
Dn(1, t) and show that they are γ-positive. A generalization of (1.3) is given
in [23, Equation (5.4)] and a generalization of the q = 1 case of (6.4) is given
in [23, Equation (5.3)].
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tant directes que récriproques, Mémoires de l’Académie des Sciences
de Berlin 27 (1768), 83–106. Also in Commentationes analyticae ad
theoriam serierum infinitarum pertinentes, II, Opera Omnia, Ser. I,
Vol. 15, pp. 70–90, Teubner, Leipzig, 1927.

[13] G. Ewald, Combinatorial convexity and algebraic geometry, Gradu-
ate Texts in Mathematics, Vol. 168, Springer-Verlag, New York, 1996.
MR1418400

[14] D. Foata and M.-P. Schützenberger, Théorie géométrique des polynomes
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