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The Catalan numbers constitute one of the most important se-
quences in combinatorics. Catalan objects have been generalized
in various directions, including the classical Fuss-Catalan objects
and the rational Catalan generalization of Armstrong-Rhoades-
Williams. We propose a wider generalization of these families in-
dexed by a composition s which is motivated by the combinatorics
of planar rooted trees; when s = (2, ..., 2) and s = (k+1, ..., k+1)
we recover the classical Catalan and Fuss-Catalan combinatorics,
respectively. Furthermore, to each pair (a, b) of relatively prime
numbers, we can associate a signature that recovers the combina-
torics of rational Catalan objects. We present explicit bijections
between the resulting s-Catalan objects, and a fundamental recur-
rence that generalizes the fundamental recurrence of the classical
Catalan numbers. Our framework allows us to define signature gen-
eralizations of parking functions which coincide with the general-
ized parking functions studied by Pitman-Stanley and Yan, as well
as generalizations of permutations which coincide with the notion
of Stirling multipermutations introduced by Gessel-Stanley. Some
of our constructions differ from the ones of Armstrong-Rhoades-
Williams, however as a byproduct of our extension, we obtain the
additional notions of rational permutations and rational trees.
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1. Introduction

A permutation σ of the set [n] := {1, 2, . . . , n} is a bijection σ : [n] → [n].

A permutation can be represented in the one-line notation σ1σ2 · · ·σn, where
σi := σ(i). We denote the set of permutations of [n] by Sn. This set has the

structure of a group under composition of permutations and it is commonly

known as the symmetric group. It is an introductory exercise in enumerative

combinatorics to show that the cardinality of Sn is given by the factorial

numbers n! := 1 ·2 · · · (n−1) ·n. There are other families of objects that are

in bijection with permutations. For example, there is a bijection between

Sn and the set IT n of binary trees drawn in the plane with a distinguished

vertex or root and with labeled internal nodes that increase whenever we

walk away from the root. The trees in IT n are also known as increasing

planar rooted binary trees (see [45, Chapter 1] for the bijection and Figure

1 for an example of the bijection when n = 3). We will be denoting by Sn a

generic family of objects in bijection with Sn, that is, |Sn| = n!.

We say that a permutation σ is 312-avoiding if there are no indices

i < j < k such that σj < σk < σi. We denote by Sn(312) the set of 312-

avoiding permutations in Sn. It is known that the set Sn(312) is in bijection

with the set DPn of lattice paths in N× N from (0, 0) to (n, n) taking only

north steps (0, 1) and east steps (1, 0), and such that at any given point

the number of north steps taken is greater than or equal to the number of

east steps taken (see Figure 1 for an example of the bijection when n = 3).

These lattice paths are also known as Dyck paths. Any family of objects in

bijection with DPn is known as a Catalan family, named after the Belgian

mathematician Eugène Charles Catalan who studied them.

Catalan objects are among the most intriguing objects in combinatorics

since they appear in connection with numerous fields of mathematics in

many different forms. The Catalan objects are counted by the Catalan num-

bers, which constitute one of the most important sequences in combinatorics:

C0,

1,

C1,

1,

C2,

2,

C3,

5,

C4,

14,

C5,

42,

C6,

132,

C7,

429,

C8,

1430,

C9,

4862,

C10,

16796,

C11,

58786,

. . .

. . .

The n-th term of this sequence is commonly denoted by Cn. It is given by the

simple formula Cn = 1
n+1

(
2n
n

)
= 1

2n+1

(
2n+1
n

)
= (2n)!

(n+1)!n! , and is completely
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Figure 1: Maps between classical combinatorial objects in type A.

determined by the fundamental recurrence

Cn+1 =

n∑
k=0

CkCn−k, C0 = 1.

The Catalan numbers are known to count a wide variety of objects [46].

Among the most remarkable ones are:

1. planar rooted binary trees with n internal nodes;

2. Dyck paths in an n× n grid;

3. 312-avoiding permutations of [n];

4. noncrossing partitions of [n];

5. noncrossing matchings of [2n];

6. triangulations of an (n+ 2)-gon;

7. parenthesizations of n+ 1 consecutive letters.

Starting from objects in DPn we can create a different family D̂Pn.

These objects are obtained after decorating the north steps of a Dyck path

with a permutation of [n] in such a way that the consecutive sequences of

north steps (also known as runs) have increasing values from bottom to top

(see Figure 1). The objects obtained in this way are known as decorated

Dyck paths and happen to be in bijection with another famous family of

combinatorial objects known as parking functions. The set PFn of parking

functions of n consists of sequences of n nonnegative integers (p1, p2, . . . , pn)

with the property that after being rearranged in weakly increasing order

pj1 ≤ pj2 ≤ · · · ≤ pjn they satisfy pji < i for all i ∈ [n]. Figure 1 shows an
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example of the bijection between decorated Dyck paths and parking func-
tions for n = 3. Parking functions were studied by Konheim and Weiss [25]
using a different equivalent description. There are other popular families of
objects in bijection with PFn. For example, the set of (nonplanar nonrooted)
trees on the vertex set {0} ∪ [n] is in bijection with PFn (see [23, 26, 37]).
Let us denote any generic family of objects in bijection with PFn by Pn. It
is also known that |Pn| = (n+ 1)n−1, see for example [44].

The families counted by the sequences

n!,
1

n+ 1

(
2n

n

)
, (n+ 1)n−1

for n ≥ 0 have puzzled mathematicians for centuries and we could describe
their relation using the following idea.

Idea 1. A family Cn is obtained as a sub-family of Sn satisfying a suitable
restriction. A family Pn can be obtained by extending a family Cn after deco-
rating its objects with the elements of [n], also subject to a suitable restriction
on the decoration.

Idea 1 is the underlying idea in the story of the classical combinato-
rial objects mentioned above. As mentioned in [3], there are two general
directions in which we can generalize this story. The first considers that all
the families of objects discussed, Sn, Cn and Pn, are related directly to the
combinatorics of the symmetric group that happens to be the Weyl group of
Coxeter type A. Hence, we can wonder if there are corresponding objects for
other Coxeter types. Work in this direction has been done by some authors
like Reiner [41], Athanasiadis [4], Fomin and Reading [18], Armstrong [1],
Williams [48] and others, and it is currently an active area of research.

The second direction to generalize these families of objects is to consider
Catalan objects as a phenomenon that depends on two relatively prime num-
bers a, b such that a family Ca,b parametrized by these numbers has cardinal-

ity 1
a+b

(
a+b
b

)
, also known as the rational Catalan number. The non-relatively

prime case leads to the study of rectangular Catalan combinatorics, which
is motivated by related work on rectangular diagonal harmonics and Mac-
donald polynomials [5, 6, 8, 9]. When a = n and b = n + 1 we recover
the classical Catalan numbers, and when a = n and b = kn + 1 we obtain
another classical generalization known as the Fuss-Catalan numbers. Even
though ingredients of the rational Catalan story have appeared previously
in the literature (see for example [11]), Armstrong, Rhodes and Williams
started a more systematic study of the rational Catalan objects Ca,b in [3].
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In this generalization of the classical story there are rational versions Pa,b of
the parking objects in Pn (see for example [2]), but it is not clear what is the
generalization for the permutation objects in Sn to a rational version Sa,b.

1.1. s-Catalan objects

The main purpose of this paper is to start a systematic study of a wider gen-
eralization of the Catalan objects indexed by a composition of the form s =
(s(1), s(2), . . . , s(a)), which we call a signature. The members of these gen-
eralized families will be referred to as s-Catalan objects. When s = (2, . . . , 2)
and s = (k+1, . . . , k+1) we recover the classical Catalan and Fuss-Catalan
objects respectively. The rational (and rectangular) Catalan objects are ob-
tained by the signature whose i-th entry is the number of boxes in the i-th
row of an b× a grid that are crossed by the main diagonal of the grid.

The central idea for our generalization of Catalan objects relies on the
combinatorics of planar rooted trees. For a given signature s we associate a
family Ts of planar rooted trees that we call s-trees. Based on their struc-
tural properties, one can obtain generalizations of other classical Catalan
objects such as Dyck paths, 312-avoiding permutations, noncrossing par-
titions, complete noncrossing matchings, triangulations of a polygon, and
parenthesizations. The resulting s-Catalan objects can be described very
naturally in terms of any composition s, which encodes certain combinato-
rial information. For instance, planar rooted binary trees can be generalized
to arbitrary planar rooted trees, where the signature encodes the number of
children of each internal node of the tree when reading in a certain order
(preorder). Another example is that of Dyck paths, which can be generalized
to lattice paths that lie weakly above a certain ribbon shape determined by
s. The precise definitions and motivations for the generalized s-Catalan fam-
ilies will be presented in the coming sections. Some examples of s-Catalan
objects are illustrated in Figure 3.

It is worth mentioning that some s-Catalan objects have been explicitly
studied in the literature before. For instance, Préville-Ratelle and Vien-
not [40] introduced a poset structure, the ν-Tamari lattice, on the set of lat-
tice paths lying weakly above a given path ν. In that context, s-Dyck paths
are the elements of the ν-Tamari lattice for ν = NEs(1)−1 . . . NEs(a)−1. The
s-Dyck paths are also the vertices of ν-associahedra [14], and play an im-
portant role in certain Hopf algebras and some applications to multivariate
diagonal harmonics [10].

As we shall see in Sections 2 and 3, the s-Catalan families have the same
intrinsic combinatorial structure. They are all counted by the same deter-
minantal formula (Section 4), and are determined by the same fundamental
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Figure 2: Bijections between s-Catalan objects.

recurrence of s-Catalan structures:

Cs =
∑
(s)

Cs1Cs2 · · ·Css(1) ,

where the sum is over all sequences (s1, s2, . . . , ss(1)) of compositions such
that s = (s(1)) ⊕ s1 ⊕ s2 ⊕ · · · ⊕ ss(1) and where C∅ = 1 (see Section 3).
The s-Catalan numbers also give a refined enumeration of Catalan objects
indexing with compositions (such as block sizes of a noncrossing partition).
Enumeration by type (or integer partitions) has already been studied by
Kreweras [26] and others (see for example [43]).

One of our main results is to show that the generalized s-Catalan families
are bijectively equivalent (see Figure 2).

Theorem 1.1. The following familes are in bijective correspondence:

1. s-trees;
2. s-Dyck paths;
3. 312-avoiding Stirling (s− 1)-permutations;
4. noncrossing (s− 1)-partitions;
5. complete noncrossing s-matchings;
6. s-angulations of an (|s| − �(s) + 2)-gon;
7. s-parenthesizations;
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Figure 3: Examples of s-Catalan objects for s = (3, 4, 4, 2, 5).

In items (3) and (4) it is assumed that s(i) ≥ 2 for all i.

The bijections between s-trees (1) and items (2)-(5) are presented in
Section 2. The idea behind these bijections is always essentially the same:
we assign some labels to the tree and then read them in preorder. Figure 4
presents a quick descriptive illustration of all the bijections. We include
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Figure 4: Examples of the bijections with s-trees.

detailed proofs explaining facts about these bijections for the sake of com-
pleteness, but some readers may like to skip some of these proofs and let
themselves be convinced from the descriptions given in Figure 4. The bijec-
tions between s-trees (1) and items (6)-(7) are explained using the funda-
mental recurrence in Section 3. Bijections with s-Dyck paths are explained
in the Appendix A. See Figure 25 for a descriptive illustration.
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Our bijections generalize classical bijections between planar rooted bi-
nary trees and other Catalan objects, by naturally extending them in the
context of planar rooted trees.1 There are also many known bijections be-
tween planar rooted trees (also counted by the Catalan numbers) and other
Catalan objects. Our bijections are not the restriction of those to the set of
trees of a given signature in general. The only case where this holds is for
our bijection between s-trees and complete noncrossing s-matchings, which
coincides with a restriction of Dershowitz-Zaks’s bijection between planar
rooted trees and noncrossing partitions in [16].

The enumerative properties of s-Catalan objects, the s-Catalan and s-
Narayana numbers are discussed in Section 4. We also propose generaliza-
tions of permutations and parking functions objects in this general setup
in Section 5. The generalized permutations are encoded by the family of
increasingly labeled planar rooted trees. These labeled trees are in bijection
with a generalization of the Stirling permutations studied by Gessel and
Stanley back in the seventies [21] (see also [36, 35, 34, 22, 24, 28, 33, 17, 42]).
The generalized parking functions are obtained as appropriate decorations
of s-Catalan objects as it is done in the classical case of rational parking
functions [2]. These also coincide with the generalized parking functions
originally studied by Pitman and Stanley [47] and Yan [50, 49]. Finally, we
present the relation to the rational constructions of Armstrong, Rhoades
and Williams in Section 6.

2. The s-Catalan zoo and bijections

Before introducing some s-Catalan families, let us recall some basic prelim-
inaries about compositions and weak compositions. We denote by P the set
of positive integers and by N the set of nonnegative integers. A weak com-
position is a finite sequence μ = (μ(1), μ(2), . . . , μ(�)) of numbers μ(i) ∈ N.
For a weak composition μ we define its sum |μ| :=

∑
i μ(i) and its length

�(μ) := �. For example, for μ = (2, 0, 3, 4, 0, 1) we have that �(μ) = 6 and
|μ| = 10. If |μ| = n for some n ∈ N, we say that μ is a weak composition of n.
We denote by WComp the set of weak compositions and WCompn the set of
weak compositions of n. A composition is a weak composition μ such that
μ(i) �= 0 for all i ∈ [�], in other words, a composition is a finite sequence of
entries in P. We denote by Comp the set of compositions and Compn the set

1We are not aware of a bijection in the literature between planar rooted trees
and noncrossing partitions in the form presented here, but our description coincides
with the composition of two classical bijections from planar rooted binary trees to
Dyck paths to noncrossing partitions.
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of compositions of n. An (integer) partition λ of n (denoted λ 	 n) is a com-
position of n whose entries are nonincreasing, i.e., λ = (λ(1) ≥ λ(2) ≥ · · · ).
We denote by Par the set of partitions and Parn the set of partitions of n.

We can define several partial orders on the set of (weak) compositions.
We introduce the two orderings that we will be using in this article. For
μ, ν ∈ WComp we say that μ is a refinement of ν if ν can be obtained from
μ by adding adjacent parts. For example, (3, 2, 1, 1, 5, 2, 2) is a refinement
of (6, 1, 7, 2) since (6, 1, 7, 2) = (3 + 2 + 1, 1, 5 + 2, 2). Refinement defines a
partial order in WComp (also in Comp) and we say that μ ≤ ν if μ is a
refinement of ν.

For μ, ν ∈ WComp we say that μ ≤dom ν in dominance order if μ(1) +
μ(2)+· · ·+μ(i) ≤ ν(1)+ν(2)+· · ·+ν(i) for all i. For example, (1, 1, 4, 2) ≤dom

(1, 2, 3, 3) since 1 ≤ 1, 1+1 ≤ 1+2, 1+1+4 ≤ 1+2+3 and 1+1+4+2 ≤
1 + 2 + 3 + 3. For μ, ν ∈ WCompn for some n, such that μ ≤dom ν, the
dominance difference ν \dom μ of ν and μ is the weak composition of length
�(ν)− 1 defined (ν \dom μ)(i) := (ν(1) + · · ·+ ν(i))− (μ(1) + · · ·+ μ(i)) for
i = 1, . . . , �(ν)− 1.

We also consider a natural operation in WComp. For μ, ν ∈ WComp we
let μ⊕ ν be the weak composition formed by the concatenation of μ and ν.
For example, (3, 2, 1)⊕ (1, 5, 2, 2) = (3, 2, 1, 1, 5, 2, 2). Sometimes we will use
the notation μ+i or μ−i to denote the weak composition obtained from μ by
adding or substracting i to the last part of μ respectively.

2.1. Planar rooted trees

A tree is a graph that has no loops or cycles. We say that a tree is rooted if
one of its nodes is specially marked and called the root. For two nodes x and
y on a rooted tree T , x is said to be the parent of y (and y the child of x) if
x is the node that follows y in the unique path from y to the root. We call y
a descendant of x if x belongs to the unique path from y to the root. A node
is called a leaf if it has no children, otherwise is said to be internal. The
degree deg(x) of a node x in a rooted tree T is defined to be the cardinality
of the set of children of x. A rooted tree T is said to be planar if for every
internal node x of T the set of children of x is totally ordered. For n ≥ 1 we
denote by Tn the set of all planar rooted trees with n internal nodes and by
T the set of all planar rooted trees. There is a unique tree • that has only
one node that is at the same time its leaf and its root, we call this tree the
identity tree.

For trees T1, T2, . . . , Tk ∈ T with roots r1, r2, . . . , rk respectively, we
denote by [T1, T2, . . . , Tk] the tree in T constructed by adding a new root r
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and attaching the trees T1, T2, . . . , Tk to r in a way that the ith children of r
is ri for i ∈ [k] (see Figure 5). We are going to fix an order in which to read
the nodes of a tree T = [T1, T2, ..., Tk] ∈ T . Let r be the root of T , we say
that T is read or traversed in preorder if we visit first the root r and then
we visit in preorder each of the trees Ti in a way that Ti is traversed before
Tj if i < j for i, j ∈ [k].

Figure 5: Example of [T1, T2, . . . , Tk].

Let v1, v2, . . . , va be the internal nodes of T listed in preorder, we define
the signature of T to be the composition

signat(T ) := (deg(v1), deg(v2), . . . , deg(va)).

The signature of the identity tree is defined as the empty composition, i.e.,
signat(•) := ∅.
Definition 2.1 (s-trees). For any s ∈ Comp, an s-tree is a planar rooted
tree with signature s. We denote by

Ts = {T ∈ T | signat(T ) = s}

the set of s-trees.

Figure 3 illustrates an s-tree T with signature s = (3, 4, 4, 2, 5).

2.2. Dyck paths

We consider lattice paths in N × N starting at (0, 0) and taking only east
steps E (in the direction (1, 0)) and north steps N (in the direction (0, 1)).
For positive relatively prime integers a and b, a rational Dyck path or an
(a, b)-Dyck path is a lattice path with endpoint (b, a) wich stays above the
diagonal y = a

bx. See Figure 6 for an example of a rational Dyck path with
(a, b) = (5, 8).

Armstrong, Rhoades and Williams in [3] started the systematic com-
binatorial study of rational Catalan combinatorics. However, paths in a
rectangular grid (non-relatively prime case) have appeared in the literature
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Figure 6: Example of a rational Dyck path with (a, b) = (5, 8).

before [11], and leads to the study of the more general rectangular Catalan
combinatorics in connection with rectangular diagonal harmonics [5, 6, 8, 9].
The family of rational Dyck paths contains as special cases the classical Dyck
paths that occur for n ≥ 1 when a = n and b = n + 1 and more generally
the Fuss-Catalan generalization of Dyck paths that occur when a = n and
b = kn+ 1 for a fixed k ∈ P.

Note that in the b × a grid the diagonal y = a
bx crosses certains cells.

Those cells define a ribbon shape that cannot be crossed by any rational
Dyck path in order to stay above the diagonal (see the gray shape in Fig-
ure 6). Let s ∈ Comp be defined such that s(i) is the number of cells in row i
crossed by the diagonal for each i ∈ [a], we call s the degree sequence associ-
ated to the pair (a, b). For any rational pair (a, b) with residue r = b− � b

a�a
it is not difficult to check that the degree sequence is given by

s(i) =

⌈
b

a

⌉
+ χ(0 < ir (mod a) < r),(2.1)

where �x� and 
x� are the floor and ceiling functions respectively, and χ is
the function

χ(S) =

{
1 : S is true
0 : otherwise.

For example, for (5, 8) the degree sequence is (2, 3, 2, 3, 2) since 
85� = 2,
r = 8− �85�5 = 3 and 3(1, 2, 3, 4, 5) = (3, 1, 4, 2, 0) (mod 5) (see Figure 6).

Every lattice path can be encoded with a string of the letters N and E
representing the north steps and east steps respectively, where the reading
order of the path starts at the origin (0, 0). For example, the path D of
Figure 6 can be represented as D = NNEENNEEENEEE. If the lat-
tice path is a rational Dyck path then it must have exactly a north steps
and it must start with a north step and finish with an east step, so it is of
the form D = NEi1NEi2 · · ·NEiaE where Ei indicates a string of i occur-
rences of the letter E and then it can be uniquely associated to the weak



738 Cesar Ceballos and Rafael S. González D’León

composition μ(D) := (i1, i2, . . . , ia). So (a, b)-Dyck paths are in bijection to
weak compositions of b− 1 of length a. For the example in Figure 6 we have
that μ(D) = (0, 2, 0, 3, 2) (note that the last E is not counted). The identity
path D∅ = E is the lattice path with exactly one east step and without any
north steps. By convention, this is considered to be the unique (0, 1)-Dyck
path. We also have that μ(D∅) = ∅ (the empty weak composition). It is not
hard to see that in dominance order there is a maximal (a, b)-Dyck path D
that is defined by the boundary of the forbidden ribbon shape. This path
has μ(D) = s−1 := (s(1)−1, s(2)−1, . . . , s(a)−1). An equivalent definition
of a rational Dyck path is a path D such that μ(D) ≤dom μ(D) = s− 1.

Note that the information recorded by the rational pair (a, b) can also be
completely recovered from the degree sequence s of the associated rational
ribbon shape. Indeed, a = �(s) and b = |s| − �(s) + 1. Hence we can use the
set of rational degree sequences to index the rational families.

Definition 2.2 (s-Dyck paths). For any signature s ∈ Comp, we define an
s-Dyck path D to be a lattice path starting at (0, 0) and ending at (|s| −
�(s) + 1, �(s)) such that

μ(D) ≤dom s− 1.

We denote by DPs the set of s-Dyck paths, and refer to an s-Dyck path
as a Dyck path when s is clear from the context.

An example of a (3, 4, 4, 2, 5)-Dyck path D with μ(D) = (0, 2, 6, 0, 5) is
illustrated in Figure 3. We will say that a signature s is rational when s is
obtained as in Equation 2.1 from a pair (a, b) of relatively prime numbers.

We define the area vector of an s-Dyck path D to be the weak com-
position Area(D) := (0) ⊕ (s − 1) \dom μ(D). Its entries are the number
of boxes, counted by rows, between D and the ribbon shape determined
by s. The area of D is area(D) := |Area(D)|. In the example of Figure 3,
Area(D) = (0, 2, 3, 0, 1) and area(D) = 6.

2.2.1. Bijection between s-trees and s-Dyck paths Let T be an s-
tree. Label the internal nodes of T with N ’s and the leaves with E’s. The
lattice path ξ(T ) associated to T is obtained by reading the sequence of
N ’s and E’s on the nodes of T in preorder. Note that the function ξ maps
the identity tree • to the identity path E. An example of this bijection is
illustrated in Figure 7.

We define the area labeling of a tree as the labeling of the nodes such
that the root is labeled 0 and the ith child of an internal node x, from right
to left, is labeled with the number obtained after adding i − 1 to the label
of x. This is illustrated for our example in Figure 8. It turns out that the
area vector of D = ξ(T ) can be read directly from T .
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Figure 7: Example of the bijection between s-trees and s-Dyck paths.

Figure 8: The area labeling of a tree T . The area vector of D = ξ(T ) is the
sequence of labels of the internal nodes listed preorder.

Lemma 2.3. The entries of the area vector of the Dyck path D = ξ(T ) are
the labels in the area labeling of T of the internal nodes listed in preorder.

Proof. The root of the tree corresponds to the first north step of the path,
which contributes a zero entry in the area vector. Let x and y be two internal
nodes of T such that y is the ith child from right to left of x. Let a(x) and
a(y) be the entries of the area vector of D of the corresponding north steps
in D. We need to show that a(y) = a(x)+i−1. Let u1, . . . , uj be the internal
nodes strictly between x and y in T in preorder, and denote u0 = x. Then,

a(y) = a(x) +

j∑
k=0

(deg(uk)− 1)− E(x, y),

where the sum of the degrees minus one is the increase of area determined
by the ribbon shape and E(x, y) denotes the number of east steps (or leaves)
between x and y. Since E(x, y) =

∑j
k=0 deg(uk)− j − i, then a(y) = a(x)−

(j + 1) + j + i = a(x) + i− 1 as desired.

Lemma 2.4. The path ξ(T ) is an s-Dyck path.
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Proof. By definition, all the entries of the area labeling of the tree T are

nonnegative. Lemma 2.3 then implies that the area vector of ξ(T ) has non-

negative entries and therefore that it is an s-Dyck path.

We will see below that the map ξ is actually a bijection between s-trees

and s-Dyck paths. The inverse of this map is described below. Let D be an

s-Dyck path and μ = μ(D). Define the tree ζ(D) associated to D recursively

as follows.

1. First, start with a root r = v1 with s(1) children.

2. Attach an internal node v2 with s(2) children at the (μ(1) + 1)th leaf,

ordered from left to right.

3. In general, at the ith step of the process we have a tree τi with internal

nodes v1, . . . , vi in preorder. The (i+1)th tree τi+1 is obtained from τi
by replacing the (μ(i)+1)th leaf that appears after vi ∈ τi in preorder

by an internal node vi+1 with s(i+ 1) children.

4. The process finishes after attaching the a internal nodes v1, . . . , va,

where a = �(s).

Figure 9: The recursive construction of the tree ζ(D) for the Dyck path with
signature s(D) = (3, 4, 4, 2, 5) and composition μ(D) = (0, 2, 6, 0, 5).

Lemma 2.5. Let D be an s-Dyck path. The map ζ is well-defined and ζ(D)

is an s-tree.

Proof. In order to show that the map ζ is well-defined, we need to show that

for i < a there are at least μ(i)+1 leaves in the tree τi that appear after the

internal node vi ∈ τi in preorder. This guarantees that a new node vi+1 can

be added at the right place and that the tree τi+1 in the recursive definition

can be constructed. For i = 1 this is clear since v1 has s(1) ≥ μ(1) + 1

children. In general, since D is a path that lies above the ribbon shape

defined by s, for i < a we have

(2.2) μ(1) + · · ·+ μ(i) ≤ (s(1)− 1) + · · ·+ (s(i)− 1).
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The total number of leaves in τi is equal to
∑i

k=1(s(k)− 1) + 1, from which∑i−1
k=1 μ(k) are before vi in preorder. Combining these two equations with

the inequality (2.2) we obtain that the number of leaves in τi after vi in
preorder is

i∑
k=1

(s(k)− 1) + 1−
i−1∑
k=1

μ(k) ≥ μ(i) + 1.

This shows that the map is well-defined. The signature of the tree ζ(D) is
by construction equal to s = (s(1), . . . , s(a)).

Theorem 2.6. The map ξ : Ts → DPs is a bijection between s-trees and
s-Dyck paths. The inverse of ξ is ζ.

Proof. We will show that D = ξ(T ) if and only if T = ζ(D). This implies
that both maps are bijections and that they are inverses to each other.

Let D = ξ(T ) and μ = μ(D). Denote by v1, . . . , va the internal nodes of
T in preorder. By the definition of ξ, there are exactly μ(i) leaves between
vi and vi+1 traveling T in preorder. This condition completely characterizes
T and is satisfied by ζ(D). Therefore, T = ζ(D).

On the other hand, if T = ζ(D) then T is the unique tree with internal
nodes v1, . . . , va in preorder such that there are exactly μ(i) leaves between
vi and vi+1, for i < a. Therefore, D = ξ(T ).

2.3. 312-avoiding Stirling permutations

Let s = (s(1), s(2), . . . , s(a)) be a composition. An s-permutation is any mul-
tiset permutation (multipermutation) of the multiset {1s(1), 2s(2), . . . , as(a)},
where there are s(i) copies of each i. Let us denote the set of s-permutations
by Ss. We then have that

|Ss| =
(
|s|
s

)
:=

|s|!
s(1)!s(2)! · · · s(a)! .

For multipermutations τ and σ, we say that σ contains the pattern τ if
there is a subword of σ where the elements have the same relative order as the
elements in τ . For example, the multipermutation σ = 1132235544 contains
the pattern τ = 212 because the elements in the subword 323 of σ are in the
same relative order than the elements in τ . A multipermutation can contain
many patterns and multiple or no occurrences of a particular pattern. For
example, σ = 1132235544 contains no occurrence of the pattern 321. We say
that σ avoids τ or is τ -avoiding if it does not contain any occurrence of the
pattern τ .
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A particular set of examples of pattern avoiding multipermutations come
from the 212-avoiding s-permutations introduced by Gessel and Stanley in
[21] when they studied a generalization of Euler’s formula for Eulerian poly-
nomials. They considered the descent enumerator of 212-avoiding multiper-
mutations of {1, 1, 2, 2, · · · , n, n}, i.e., multipermutations in which all the
numbers between the two occurrences of any fixed number m are larger
than m. To this family belongs, for example, the permutation 12234431 but
not the permutation 11322344 since 2 is less than 3 and 2 is between the
two occurrences of 3. They called these multipermutations Stirling Permu-
tations and they have been studied by many other authors, see for example
[28, 24, 36, 35, 34, 22, 17, 42].

The set of s-permutations have also already appeared in the work on
Hopf algebras of Novelli and Thibon [33]. They study generalizations of the
Malvenuto-Reutenauer Hopf algebra of permutations [32] to multipermuta-
tions of {1m, 2m, . . . , nm}, and of the Loday-Ronco Hopf algebra of planar
rooted binary trees [31] to (m+1)-ary trees. The authors introduce a notion
of metasylvester congruence on permutations that allows them to obtain
Hopf algebras based on decreasing trees. The element representatives of the
congruence classes are 121-avoiding s-permutations for s = (m,m, . . . ,m),
see [33, Proposition 3.10]. These 121-avoiding s-permutations and their as-
sociated lattices, called metasylvester lattices, are studied by Pons in [39].
The metasylvester lattices are related to the combinatorics of the m-Tamari
lattices introduced by Bergeron [7].

Definition 2.7 (312-avoiding Stirling s-permutations). A Stirling s- per-
mutation is a multipermutation of {1s(1), 2s(2), . . . , as(a)} that avoids the
pattern 212. A 312-avoiding Stirling s-permutation is a multipermutation of
the same multiset that avoids both patterns 212 and 312. We denote by SPs

the set of Stirling s-permutations, and by SPs(312) the set of 312-avoiding
Stirling s-permutations.

For instance, 1223321 and 2332211 are 312-avoiding Stirling (2, 3, 2)-
permutations, while 3312221 is a Stirling (2, 3, 2)-permutation that is not
312-avoiding. See Figure 10 for the example of SP(2,3,2) and SP(2,3,2)(312).

Remark 2.8. Replacing the numbers from 1 to a for the numbers from a to 1
respectively and reversing the permutation transforms bijectively (212, 312)-
avoiding s-permutations into (121, 231)-avoiding←−s -permutations, where the
composition ←−s = (s(a), . . . , s(1)) is obtained by reading s in reverse order.
This family of (121, 231)-avoiding←−s -permutations is a generalization of 231-
avoiding permutations, which is also an s-Catalan family.
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Figure 10: All Stirling s-permutations for s = (2, 3, 2) (drawn as the elements
of a lattice similarly as in [39]). The 312-avoiding are the non-underlined
ones. There are 15 of them, which are in bijection with the 15 (3, 4, 3)-trees.

Figure 11: Example of the map Σ : IT s → SPs−1.

2.3.1. Bijection between s-increasing trees and Stirling (s − 1)-
permutations An increasing tree is a planar rooted tree whose internal
nodes have been decorated with the elements of [a] (where a is the number of
internal nodes) such that any path of internal nodes away from the root has
strictly increasing labels. An s-increasing tree is an increasing tree such that
the internal node with label i has exactly s(i) children. We denote by IT s

the set of s-increasing trees. Figure 11 shows two examples of (3, 4, 4, 2, 5)-
increasing trees.
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Figure 12: A cavern.

Gessel provided a simple bijection between the sets IT s and SPs−1

that we describe below (Gessel’s result is unpublished, but can be found for
example in [24]). Before explaining this bijection, we need to introduce the
notion of a cavern in a planar rooted tree.

Let T ∈ T and x an internal node of T . A cavern of T at x is defined to
be a pair of consecutive children of x. We really want to think of a cavern
as the “space” between any two consecutive children of x (see Figure 12).
If the ordered set of children of x is {c1, c2, . . . , ck} then the set of caverns
determined by x is

caverns(x) = {{c1, c2}, {c2, c3}, . . . , {ck−1, ck}}.

We also define caverns(T ) := ∪a
i=1 caverns(va). Any internal node v of

deg(v) = k defines exactly k − 1 caverns and hence there are in total
| caverns(T )| =

∑a
i=1 deg(vi) − a caverns in a tree T ∈ T with a internal

nodes.
The set of caverns has a very natural ordering. We can associate each

cavern C = {ci, ci+1} of x to the largest children ci+1 of x in C. In that way
we can think of the caverns as the set of nonminimal children of internal
nodes in T (being c1 the minimal child of x). The order in the set caverns(T )
is the one induced by preorder in the set of nonminimal children in T . (see
Figure 15). We refer to this order as the preorder order of the caverns of T .

For T ∈ IT s we label all the caverns with the label of its corresponding
internal node. Reading the caverns in preorder gives rise to an (s − 1)-
permutation Σ(T ). Since T is an increasing tree, the caverns with label i
are read before or after all the caverns with label j for i < j. Hence, the
resulting (s− 1)-permutation is 212-avoiding, so a Stirling permutation.

The process described above maps an increasing tree T ∈ IT s to a
Stirling (s−1)-permutation Σ(T ). In fact, every Stirling (s−1)-permutation
can be attained uniquely by exactly one such tree. We construct the inverse
map as follows: let σ be a Stirling (s−1)-permutation. Put a root labeled 1
with s(1) children labelled with the s(1) permutations that are separated by
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the ones in σ (some of which might be empty). Repeat the process with each
of the non-empty permutations appearing in the process with the smallest
value in the permutation instead of the one. The resulting tree Λ(σ) at the
end of the process is the desired increasing tree, see Figure 13 for an example.

Figure 13: Example of the map Λ : SPs−1 → IT s.

Proposition 2.9 (Gessel c.f. [24]). The map Σ : IT s → SPs−1 is a bijection
between increasing trees and Stirling (s−1)-permutations. The inverse of Σ
is Λ.

2.3.2. Bijection between s-trees and 312-avoiding Stirling (s− 1)-
permutations Note that if we decorate the internal nodes of an s-tree T
with the values of [a] in preorder we obtain an increasing tree T̃ ∈ IT s,
hence there is an injection Ts ↪→ IT s. It turns out that the image of the
composition Ts ↪→ IT s → SPs−1 is precisely the set SPs−1(312). We denote
the map determined by this composition by Σ̃. We also denote by Λ̃(T )
the s-tree obtained by removing the labels from the increasing tree Λ(T ).
The Stirling permutation 2233321155554 that appear in Figure 13 is 312-
avoiding, giving an example of the discussed bijection.

Theorem 2.10. The map Σ̃ : Ts → SPs−1(312) is a bijection between s-
trees and 312-avoiding Stirling (s−1)-permutations. The inverse of Σ̃ is Λ̃.

Proof. It remains to show:

1. For any s-tree T , its image Σ̃(T ) ∈ SPs−1(312).
2. For any σ ∈ SPs−1(312), the tree Λ̃(σ) is an s-tree.

Proof of (1). Label the internal nodes of an s-tree T in preorder, and the
caverns with the label of its corresponding internal node. By Proposition 2.9
we know that reading the caverns in preorder gives rise to a Stirling (s−1)-
permutation Σ(T ). Moreover, we will see next that it is also 312-avoiding.
We proceed by contradiction; assume the permutation has a subsequence
k . . . i . . . j with i < j < k. The internal node k (labeled in preorder) nec-
essarily has to be a descendant of the node i that is not coming from its
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rightmost child. Similarly, the node k is a descendant of the node j that is
not coming from its rightmost child. Drawing the unique path from node
k to the root visits both nodes i and j. Since i < j, then j has to be a
descendant of i. From these observations, it is straightforward to see from
the tree that no cavern i appears in preorder between two caverns k and j.
Thus the pattern 312 is impossible.

Proof of (2). Let σ ∈ SPs−1(312). By Proposition 2.9, we know that
the tree Λ(σ) is increasing. We need to show that the labeling of its internal
nodes is given by preorder. We proceed by contradiction; assume that the
labeling in Λ(σ) violates preorder. Consider the minimal pair v1, v2 in lexi-
cographic preorder such that v1 < v2 in preorder but the label of v1 is larger
than the label of v2. Let v0 be the smallest common ancestor of v1 and v2.
Since the tree is increasing, v2 can not be a descendant of v1. Therefore v0 �=
v1, v2, furthermore it has smaller label than v1 and v2 by lexicographic min-
imality of the pair v1, v2. If r0, r1, r2 are the labels of v0, v1, v2 respectively,
then the permutation σ corresponding to the tree contains a subsequence
r1, r0, r2 which satisfies r0 < r2 < r1, and so it is not 312-avoiding.

2.4. Noncrossing partitions

A partition π = {π1, π2, ..., πk} of [n] is a collection of disjoint subsets πi ⊆
[n] such that [n] = ∪iπi. We call each πi a block of π and denote by |π| the
number of blocks in π. We are also defining a standard order in which to
read the blocks of a partition π. We read the parts in increasing order of its
minimal elements, that is, min(πi) < min(πj) if and only if i < j. We call
this order the minimal order of the blocks of π.

We say that a partition π of [n] is noncrossing if there are no x < y <
z < w ∈ [n] such that x, z ∈ πi and y, w ∈ πj with i �= j. See Figure 14 for an
example of noncrossing and crossing partitions of 8; note that in Figure 14
(B) the subsets {3, 5} and {4, 6} belong to different blocks. We denote by
NCn the set of noncrossing partitions of [n]. In addition, let πi and πj be
two blocks of π, we say that π(j) is nested inside πi if there is a bipartition
πi = B1 ∪ B2 with both B1 and B2 nonempty such that x ≤ y ≤ z for all
x ∈ B1, y ∈ πj and z ∈ B2.

Definition 2.11 (Noncrossing s-partitions). Let π = {π1, π2, ..., πk} be a
partition of [n] where the blocks are ordered according its minimal order. We
can associate to π the composition μ(π) := (|π1|, |π2|, ..., |πk|). For s ∈ Comp,
we say that π is an s-partition if s ≤ μ(π), that is, if s is a refinement of μ(π).
We denote the set of noncrossing s-partitions by NCs.
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Figure 14: Example of noncrossing and crossing partitions of 8.

For example, NC(1n) is the set of noncrossing partitions and NC(kn)

is the set of k-divisible noncrossing partitions of [nk], that is, the set of
noncrossing partitions of [nk] whose blocksizes are all divisible by k. The
noncrossing partition in Figure 3 is a (2, 3, 3, 1, 4)-partition, (1, 1, 2, 1, 3, 5)-
partition, (113)-partition and so on; but, for example, is not a (3, 3, 3, 4)-
partition since (5, 3, 5) is not refined by (3, 3, 3, 4).

2.4.1. Bijection between s-trees and noncrossing (s−1)-partitions
Let s ∈ Comp be such that si ≥ 2 for all i and recall that s − 1 := (s(1) −
1, s(2) − 1, . . . , s(�(s)) − 1). We also define ∅ − 1 := ∅. We will define a
bijection φ : Ts → NCs−1 by labeling the caverns of the tree in preorder and
grouping the labels according to a certain rule.

Recall that given two nodes x and y of T , y is called a descendant of x
if x belongs to the unique path from y to the root. A node y is called a
left descendant of x if y is the minimal child of x or the minimal child of a
left descendant of x. We denote by left(x) the set of left descendant internal
nodes of T union with {x}.

Let C1, C2, . . . , C|s−1| be the preorder of the caverns of T ∈ Ts. We
define the function φ as follows: Let v1, . . . , va be the internal nodes of T in
preorder, and let vi1 , . . . , vik be the internal nodes that are not a minimal
child of another internal node. In particular, vi1 = v1 is the root of the tree.
Denote by

πj :=
⋃

v∈left(vij
)

caverns(v),

where we are identifying a cavern Ci with its index i. The partition associated
to T is defined

φ(T ) := {π1, . . . , πk}.
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Figure 15: Example of the bijection between s-trees and noncrossing (s−1)-
partitions. The caverns of the tree are ordered in preorder.

An example of this map is illustrated in Figure 15.
For simplicity, we denote by {B1, . . . , Bk} the partition of [a] determined

by the indices i1, . . . , ik in the following way:

(2.3) Bj =

{
[ij , ij+1) for 1 ≤ j < a
[ik, a] for j = k.

Lemma 2.12. For 1 ≤ j ≤ k, the internal nodes of left(vij ) are the nodes
{v�}�∈Bj

.

Proof. Let 1 ≤ j < k. The set left(vij ) is obtained from vij by consecutively
adding in preorder left minimal children whenever possible. The process
stops when following preorder we find the first internal node that is not a
minimal child. Since this internal node is vij+1

then the internal nodes of
left(vij ) are exactly the nodes {v�}�∈[ij ,ij+1). If j = k, the process does not
stop until covering all remaining internal nodes of T , and so, the internal
nodes of left(vik) are the nodes {v�}�∈[ik,a].
Lemma 2.13. The partition φ(T ) is a noncrossing (s− 1)-partition.

Proof. To see that φ(T ) is noncrossing consider 1 ≤ r < s ≤ k. Since
vir comes before vis in preorder we have two possibilities, either vis is a
descendant of vir or they are unrelated. And note that in these two cases
preorder implies that πs is either nested in πr or that all the caverns in πr
come in preorder before the ones in πs.
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To see that φ(T ) is an (s − 1)-partition note that an internal node v�
of T has exactly s(�) − 1 caverns. Lemma 2.12 then implies that |πj | =∑

�∈Bj
(s(�)− 1) for 1 ≤ j ≤ k. Since the sets Bj form a partition of [a] with

increasing adjacent consecutive parts, then s−1 is a refinement of μ(π).

Given a noncrossing (s− 1)-partition π = {π1 < π2 < · · · < πk} we will
construct a tree T = ψ(π) such that φ(T ) = π. Since π is an (s−1)-partition
we have that (|π1|, |π2|, . . . |πk|) is refined by (s− 1) meaning that s can be
written as s = s̃1 ⊕ s̃2 ⊕ · · · s̃k with |πj | = |s̃j − 1|.

We say that a tree is a left descendant tree if every internal node is
either the root or the minimal (leftmost) child of another internal node. For
1 ≤ j ≤ k, let τj be the (unique) left descendant tree with signature s̃j ,
and label the caverns of τj in preorder with the elements of πj (note this is
possible since the number of caverns of τj is exactly equal to |πj |).
Lemma 2.14. Let {τ1, . . . , τk} be a set of left descendant trees such that
the caverns of tree τj have been labeled in preorder with the set πj where
π = {π1 < π2 < · · · < πk} is a noncrossing (s − 1)-partition of [n]. Then
there is a unique way to glue together the trees τj such that they form a
planar rooted tree T satisfying:

1. No pair of trees τi and τj together form a larger left descendant subtree
in T .

2. The caverns of T are labeled in preorder.
3. signat(T ) = s.

Proof. By condition (1), we cannot glue two left descendant trees, say τi
and τj with i < j, by attaching the root of τi to the left-most leaf of τj since
they will form a larger left descendant tree. Now condition (2) and the fact
of the partition π is noncrossing implies that for i < j either τj is nested in
τi or all labels of τj are larger than all the labels of τi. So given tree T1 = τ1
(whose minπ1 = 1) there is a unique way of gluing τ2 to obtain T2, its root
needs to be glued in preorder to the leaf of τ1 immediately after the cavern
labeled minπ2−1 (if minπ2−1 were not a cavern of τ1 then π would not be
a partition of [n]) we repeat this process inductively by gluing τj to Tj−1 to
obtain Tj , its root glued in preorder to the leaf of Tj−1 immediately after the
cavern labeled minπj − 1. This construction preserves the preorder labeling
and always glues τj to a leaf of Tj−1 that is not the leftmost leaf of another
tree τi. Now note that signat(τ1) = s̃1 and since T1 = τ1 is a left descendant
tree then when attaching τ2 to form T2 all the internal nodes of T1 come in
preorder before the internal nodes of τ2 hence signat(T2) = s̃1⊕s̃2. In general
when attaching τj to Tj−1 to obtain Tj , all the internal nodes of τj come
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Figure 16: The recursive construction of the tree T = ψ(π) for the noncross-
ing (s − 1)- partition π = {{1, 2, 6, 7, 8}, {3, 4, 5}, {9, 10, 11, 12, 13}} with
s = (3, 4, 4, 2, 5).

last in preorder and hence signat(Tj) = signat(Tj−1) ⊕ s̃j , this inductively
implies condition (3).

Given the conditions of Lemma 2.14 where the labels of the caverns in
tree τj are the elements of πj , we define T := ψ(π) where T is the unique
tree that the lemma predicts.

Theorem 2.15. Let s ∈ Comp be such that si ≥ 2 for all i. The map
φ : Ts → NCs−1 is a bijection between s-trees and noncrossing (s − 1)-
partitions. The inverse of φ is ψ.

Proof. If π = φ(T ) then by the definition of φ every block πj ∈ π gets
its labels from the caverns of a maximal left descendant subtree τj in T .
If τj has signat(τj) = s̃j then s = s̃1 ⊕ s̃2 ⊕ · · · s̃k since all of these left
descendant subtrees are consecutive in preorder by Lemma 2.12. But with
these conditions together s̃j and πj recover τj uniquely and Lemma 2.14 says
that there is a unique way to glue the τj together so ψ(π) = T . Similarly,
if T = ψ(π) then by construction a maximal left descendant subtree of T
have its caverns labeled by a block of π and by Lemma 2.14 the labels of
the caverns of T are in preorder. Since each block of φ(T ) is determined by
the set of labels in the caverns of a maximal left descendant subtree when
the caverns of T have been labeled in preorder then φ(T ) = π.

2.5. Noncrossing matchings

A complete matching in the complete graph K2n (the graph (V,E) with
vertex set V = [2n] and with edge set E = {S ⊆ [2n] | |S| = 2}) is a
partition of the set [2n] in blocks of cardinality 2. We say that the matching
is noncrossing if this partition is noncrossing. It is known that the set of
complete noncrossing matchings in K2n is a Catalan family (see for example
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[46]). For any n ≥ 1 the complete hypergraph Kn on n vertices is the pair

(V,E) where V = [n] is the set of vertices and E = {S ⊆ [2n] | S �= ∅}
the set of edges (Note that in this definition we consider vertices as edges of

cardinality one).

Definition 2.16 (Complete noncrossing s-matchings). For s ∈ Comp, a

complete noncrossing s-matching in K|s| is a noncrossing partition M of

the set [|s|] such that M satisfies |Mi| = s(i) when we order the blocks of

M = {M1 < M2 < · · · < Ma} in the minimal order (such that minMi <

minMj whenever i < j). We denote by CMs the set of complete noncrossing

s-matchings.

Figure 3 illustrates an example of a complete noncrossing (3, 4, 4, 2, 5)-

matching.

Remark 2.17. Note that for s ∈ Comp both, (s − 1)-partitions and com-

plete s-matchings are partitions of different sets ([|s| − �(s) + 1] and [|s|]
respectively). We use the name of complete s-matchings to denote the later

type of partitions because they provide with a suitable generalization of

the concept of complete matching in K2n. Also note that a given partition

can be a ν-paritition for different values of ν however a complete matching

M in K|s| can only be a complete s-matching for the particular signature

s = (|M1|, |M2|, . . . , |Ma|).

2.5.1. Bijection between s-trees and noncrossing s-matchings For

T ∈ Ts let v0, v1, v2, . . . , v|s| be the listing of the nodes of T in preorder (where

v0 is the root of T ) and let vi1 , vi2 , . . . , via be the sublist of internal nodes in

preorder. For each internal node x let child(x) be the set of children of x.

The matching ϕ(T ) := {M1,M2, · · · ,Ma} is defined as the partition with

blocks Mk = {j | vj ∈ child(vik)}. See Figure 17 for an example of the map

ϕ.

Lemma 2.18. Let vik be the k-th internal node of T in preorder then

minMk = ik + 1.

Consequently, M1,M2, . . . ,Ma is the minimal order listing of ϕ(T ).

Proof. An internal node and its leftmost child are consecutive in preorder,

then minM(k) = min{j | vj ∈ child(vik)} = ik + 1.

Lemma 2.19. The partition ϕ(T ) is a complete noncrossing s-matching.



752 Cesar Ceballos and Rafael S. González D’León

Figure 17: Example of the bijection between s-trees and noncrossing s-
matchings. The nodes of the tree are ordered in preorder.

Proof. ϕ(T ) is noncrossing: Two different blocks of ϕ(T ) come from two
different internal nodes vik and vil , say with vik < vil in preorder. If vik
and vil are unrelated all the nodes in child(vik) occur before the nodes in
child(vil) in preorder. If vik is an ancestor of vil then all the nodes in child(vil)
are also descendant of exactly one child of vik , hence they occur in between
two preorder consecutive elements of child(vik) and Ml is nested in Mk.

ϕ(T ) is a complete s-matching: By Lemma 2.18 M1,M2 . . . ,Ma is
the minimal order listing of ϕ(T ) and |Mk| = deg(vik) = s(k) then

(|M1|, |M2| . . . , |Ma|) = (s(1), . . . , s(a)) = s.

The inverse map γ : CMs → Ts is defined as follows. Consider a complete
noncrossing s-matching M = {M1,M2, . . . ,Ma} ∈ CMs whose blocks are
ordered according to the minimal order and recall that by definition |Mi| =
s(i). Define the tree γ(M) as follows (see Figure 18 for an example):

1. First, start with the root r = v0 with |M1| children with increasing
left-to-right labels {vj | j ∈ M1} and call the resulting tree τ1.

2. Attach an internal node to τ1 in vminM2−1 with s(2) children with
increasing left-to-right labels {vj | j ∈ M2} and call the resulting
tree τ2.

3. In general, at the jth step of the process we have a tree τj−1 with
j − 1 internal nodes vi1 , . . . , vij ordered in preorder. The jth tree τj
is obtained from τj−1 by attaching an internal node in vminMj−1 with
s(j) children with increasing left-to-right labels {vj | j ∈ Mj}.

4. The process finishes after attaching the a internal nodes vi1 , . . . , via .
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Figure 18: The recursive construction of the tree γ(M) for the complete
noncrossing (3, 4, 4, 2, 5)-matching M = {{1, 10, 11}, {2, 3, 4, 9}, {5, 6, 7, 8},
{12, 18}, {13, 14, 15, 16, 17}}.

We will use the following simple lemma.

Lemma 2.20. If {M1,M2, . . .Mk} is a noncrossing partition whose blocks
are ordered according to the minimal order, then Mk and

⋃k−1
i=1 Mi are also

noncrossing.

Lemma 2.21. γ(M) is an s-tree with all its nodes labeled in preorder.

Proof. To see that the map is well-defined note that in the step j the node
vminMj−1 has already been attached to the tree τj−1 otherwise there is a
block Mk with minMj − 1 ∈ Mk and k > j implying minMk < minMi

contradicting the minimal ordering of M .
In the step j we are attaching leaves with the labels in Mj . Since M

is noncrossing by Lemma 2.20 Mj and
⋃j−1

i=1 Mi are noncrossing implying
that the labels of Mj are either nested or are all greater than the labels in⋃j−1

i=1 Mi. This implies that when we attach the vertices {vi | i ∈ Mj} as
children of vminMj−1 in τj , the labels of the nodes in τj are still consistent
with preorder.
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Theorem 2.22. The map ϕ : Ts → CMs is a bijection between s-trees and
complete noncrossing s-matchings. The inverse of ϕ is γ.

Proof. After labeling the nodes of T in preorder. Lemma 2.18 and the con-
structive definition of γ imply that the labels of the internal nodes in T
and γ(ϕ(T )) are the same. Also, the constructive definition of both ϕ and
γ imply that for each internal node vik the labeled set of children in T and
γ(ϕ(T )) are equal. These two conditions determine T completely, therefore
T = γ(ϕ(T )).

Similarly, in the construction of the tree γ(M) the labels of a block Mk

are the children of an internal node. Since every block of ϕ(T ) is the set of
labels of the children of an internal node then we have that ϕ(γ(M)) = M .

3. The fundamental recurrence

Consider a signature s = (s(1), s(2), . . . , s(k)). Trees have an inherent re-
cursive nature, in the case of s-trees the recursion is very natural: Any
s-tree T can be constructed as T = [T1, T2, ..., Ts(1)] for s(1) suitable trees
T1, T2, . . . , Ts(1) satisfying

signat(T ) = (s(1))⊕ signat(T1)⊕ · · · ⊕ signat(Ts(1)).

From this we can obtain a recursion for the number Cs of s-Catalan struc-
tures:

Cs =
∑
(s)

Cs1Cs2 · · ·Css(1) ,(3.1)

where the sum is over all sequences [s1, s2, . . . , ss(1)] of compositions such
that s = (s(1))⊕ s1 ⊕ s2 ⊕ · · · ⊕ ss(1) and where C∅ = 1.

Recursion (3.1) is at the heart of s-Catalan combinatorics and it is a
generalization of the classical recursion for the number Cn of Catalan ob-
jects. By letting Cn := C(2n) and C0 = 1 in (3.1) we obtain the classical
recursion:

Cn+1 =

n∑
k=0

CkCn−k.(3.2)

3.1. Catalan decompositions

For a family As of s-Catalan objects recursion (3.1) can be realized by
obtaining a rule of decomposition of an s-object A = [A1, A2, . . . , As(1)]
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into s(1) objects A1 ∈ As1 , A ∈ As2 , . . . , As(1) ∈ Ass(1) such that s =
(s(1))⊕ s1 ⊕ · · · ⊕ ss(1). We call such a rule a Catalan decomposition.

Whenever we have a pair of families of objects An and Bn with A∅ =
{A∅} and B∅ = {B∅} both with known Catalan decomposition rules. Then
a family of bijections ξs : As → Bs are easily defined recursively by:

(ξ1) ξ∅(A∅) = B∅.
(ξ2) Otherwise, if A = [A1, A2, · · · , Ak] with Ai ∈ Asi then

ξs(A) := [ξs1(A1), ξs2(A2), . . . , ξsk(Ak)].

Such a family of bijections sometimes can be described in a nicer and
direct way without using recursion. We illustrate in Section 3.3 and Sec-
tion 3.4 the use of the recursion (3.1) with the examples of angulations of a
convex polygon and parenthesizations of a word.

On the other hand, if there is a family of bijections ξs : As → Bs

where the Catalan decomposition rule for the objects in As is known, then
we might be able to transport this rule to the objects in Bs using the
maps ξs. This idea can be used to describe Catalan decompositions for
other families of s-Catalan objects, like s-Dyck paths, 312-avoiding Stirling
(s − 1)-permutations, noncrossing s-partitions, and complete noncrossing
s-matchings.

3.2. Catalan decomposition for Dyck paths

The Catalan decomposition of an s-Dyck path D is relatively simple. We
remove the first north step, which corresponds to the root of the correspond-
ing tree and we label the lattice points of the resulting path D̄ (except the
last one) by their horizontal distance to the Ribbon shape determined by s.
That is, a lattice point p is labeled by the maximal number of east steps that
can be added to p without crossing the Ribbon shape.2 For the example in
Figure 19 we get the sequence

2, 5, 4, 3, 2, 5, 4, 3, 2,1,0, 1, 5, 4, 3, 2, 1, 0.

We cut the path D̄ at the first appearances of s(1) − 1, s(1) − 2, . . . , 1, 0
(marked in red in the sequence and highlighted in Figure 19). The resulting
sequence (D1, D2, · · · , Ds(1)) of Dyck paths (some of them possibly equal to

2We are adding an extra “imaginary” box on top of the top-right box of the
Ribbon shape to make this definition work for points on top of the grid.
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Figure 19: Example of the Catalan decomposition of an s-Dyck path.

the identity Dyck path E) form the Catalan decomposition of D, where the
signature of Di is defined as the sub-sequence of s determined by the rows
of the north steps in Di. Their composition is defined as

[D1, D2, . . . , Dk] := ND1D2 · · ·Dk.

The validity of this decomposition follows from the correspondence between
s-trees and s-Dyck paths, and the area labeling in Section 2.2.1.

3.3. Angulations of a polygon

For n ∈ N we denote by P (n + 2) a convex polygon with n + 2 vertices.
A diagonal of P (n+2) is a straight line joining any two nonadjacent vertices
of the polygon. An angulation of P (n + 2) is a partition of the interior of
P (n+ 2) into smaller convex polygons using a set of noncrossing diagonals.
See Figure 3 for an example of an angulation of P (15) into 5 parts.

Label all the vertices of P (n + 2) clockwise let e be the edge between
the vertices 1 and 2 and let A be an angulation of P (n + 2). It is enough
to remove e to reveal the Catalan decomposition of A into angulations of
smaller polygons. An edge is considered as the polygon P (2) with a unique
triangulation. Then the set AP of angulations of polygons has the Catalan
recursive structure. It is then a simple task to define the signature of an an-
gulation A. Indeed, if removing e gives angulations A1, A2, . . . , Ak traveling
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Figure 20: Example of the bijection between s-trees and s-angulations.

counter-clockwise then

signat(A) := (k)⊕ signat(A1)⊕ signat(A2)⊕ · · · ⊕ signat(Ak),

where the signature of a single edge is signat( ) = ∅. We denote by APs

the set of s-angulations of P (|s| − �(s) + 2), that is the set of angulations A
with signat(A) = s.

Using this recursive construction we can easily find a bijection between
the s-trees and s-angulations of P (|s|−�(s)+2) using the strategy described
above. We leave the proof to the interested reader, but illustrate in Figure
20 an example of this bijection when s = (3, 4, 4, 2, 5) and the tree T is the
one in our example of Figure 3.

3.4. Parenthesizations

Starting with a word w with b letters consider the word w′ of length 2a+ b
obtained by inserting a left parenthesis and a right parenthesis. For example,
let a = 3 and b = 5, so for the word w = ∗ ∗ ∗ ∗ ∗ we can insert left and
right parenthesis in any way, say w′

1 =) ∗ ((∗) ∗ (∗∗) or w′
2 = (∗((∗∗)∗)∗).

A (proper) parenthesization of a word w with b letters is the insertion of
the same number a of left and right parenthesis with the conditions that
for any i ∈ [2a + b] the prefix w(1)w(2) · · ·w(i) contains at least as many
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left parenthesis as right parenthesis and that there cannot be an i such that
w(i)w(i+ 1) = ().

The word w′
1 above is not a good parenthesization since the prefix of

length 1 already has more left parenthesis than right parenthesis. However,
the reader can easily check that the word w′

2 is an example of a good paren-
thesization. Another example of a good parenthesization is the word

w = (∗ ∗ (∗ ∗ ∗ ∗)∗) ∗ ((∗ ∗ ∗ ∗ ∗)∗).(3.3)

A segment u of a word w = w(1)w(2) · · ·w(k) is a subword of w of the
form u = w(i+1)w(i+2) · · ·w(i+ �), i.e., all the letters of u are adjacent in
w. A block in a properly parenthesized word w is a properly parenthesized
segment u that is inclusion maximal with respect to the property that any
proper prefix in u of the form u(1)u(2) · · ·u(r) with r < � contains strictly
more left parenthesis than right parenthesis. For the example (3.3) there are
three blocks, namely (∗ ∗ (∗ ∗ ∗ ∗)∗), ∗ and ((∗ ∗ ∗ ∗ ∗)∗).

It is easy to see out of the definition above that every properly paren-
thesized word factors into blocks in the form w = B1B2 · · ·Bk (see exam-
ple (3.3)) and that there is a unique parenthesization of the word ∗ with
b = 1 and a = 0. So parenthesizations satisfy the recursion (3.1) and are
then Catalan objects. Define signat(∗) = ∅ and for the parenthesized word
w = B1B2 · · ·Bk define its signature signat(w) recursively as

signat(w) = (k)⊕ signat(B1)⊕ · · · ⊕ signat(Bk).

For w of example (3.3) we have that signat(w) = (3, 4, 4, 2, 5). For s ∈
Comp, an s-parenthesization is a properly parenthesized word w such that
signat(w) = s. We denote PT s the set of s-Parenthesizations of a word of
length |s| − �(s) + 1.

As in the case of s-angulations, s-trees can be recursively mapped bijec-
tively to s-parenthesizations using their recursive constructions. Again, we
leave the proof to the interested reader and illustrate the bijection in Figure
21 when s = (3, 4, 4, 2, 5) and the tree T is the one in our running example
of Figure 3. Note from the figure that at the end of the process we always
omit the outermost parenthesis since it is redundant.

4. Enumeration

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λ�) be a partition. We say that a partition
λ′ = (λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

�) fits λ if λ′
i ≤ λi for all i.
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Figure 21: Example of the bijection between s-trees and s-parenthesizations.

Theorem 4.1 (Kreweras [27]). The number P (λ) of partitions fitting a
partition λ is counted by the determinant formula

P (λ) = det

(
λj + 1

j − i+ 1

)
.

In particular for staircase partitions, the numbers P (λ) recover the clas-
sical Catalan numbers.

4.1. s-Catalan numbers

Note that every composition s = (s1, . . . , sa) defines a partition λs = (λs
1 ≥

· · · ≥ λs
a−1) such that λs

j =
∑a−j

i=1 (si − 1), that is basically the shape of
the upper shape that is left when in a (|s| − 1) × a grid we remove the
central ribbon determined by s. In the example of Figure 3 we have that
λ(3,4,4,2,5) = (9, 8, 5, 2). It is not hard to see that in the same manner as
the ribbon shape determined by s describes a partition λs, every s-Dyck
path describes a partition λ′ ≤ λs. Theorem 4.1 gives then a determinantal
formula for the number of s-Dyck paths.

Corollary 4.2 (Kreweras). The s-Catalan number is counted by the deter-
minant formula

|Cs| = det

(∑a−j
i=1 (si − 1) + 1

j − i+ 1

)
.

4.2. s-Narayana numbers

The Catalan number Cn = 1
n+1

(
2n
n

)
can be refined by the Narayana numbers

N(n, k). These numbers are indexed by an extra parameter 1 ≤ k ≤ n, can
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be explicitly computed by the simple formula

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
,

and satisfy

Cn = N(n, 1) +N(n, 2) + · · ·+N(n, n).

The Narayana numbers count Catalan objects that satisfy certain property
which depends on the family that they belong to. For instance, N(n, k) is
the number of (see [38, Chapter 2] for further information):

1. planar rooted binary trees with n internal nodes and k most left leaves;
2. Dyck paths in an n× n grid with k peaks;
3. 312-avoiding permutations of [n] with k − 1 ascents;
4. noncrossing partitions of [n] with k blocks;
5. noncrossing matchings of [2n] containing k matched pairs of the form

(i, i+ 1).

All these combinatorial interpretations can be naturally extended to the
generalized s-Catalan families. The s-Narayana number is defined as the
number of elements in the following families. We remark that they corre-
spond to each other under the bijections presented in Section 2 and Ap-
pendix A.

1. s-trees with k most left leaves;
2. s-Dyck paths with k peaks;
3. 312-avoiding Stirling (s− 1)-permutations with k − 1 ascents;
4. noncrossing (s− 1)-partitions with k blocks;
5. Complete noncrossing s-matchings with k parts satisfying minMi+1 ∈

Mi.

As far as we know there are no simple formulas to count these combina-
torial objects in this general setting. However, refinements of the s-Narayana
numbers have already been studied in the literature, for instance in the case
of Fuss-Narayana numbers and rational Narayana numbers [3, 29, 30].

5. Signature generalizations of permutations and parking
functions

5.1. s-generalized permutations

As mentioned in the introduction, permutations of [n] are in bijection with
increasingly labeled planar rooted binary trees with n internal nodes. A nat-
ural generalization of permutations in terms of signatures is the collection
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of permutations corresponding to (s + 1)-increasing trees. As explained
in Section 2.3.1, such permutations are in correspondence with Stirling s-
permutations, which were already considered and studied by Gessel and
Stanley [21]. As described above, these are multipermutations of the multi-
set {1s(1), 2s(s(2)), . . . , as(a)} that avoid the pattern 212; see [28, 24, 36, 35,
34, 22, 17, 42] for further studies on such permutations.

The cardinality of the set SPs of Stirling s-permutations generalizes
the factorial numbers. To be more precise, from a Stirling permutation in
SP(s(1),s(2),...,s(k−1)) we can obtain a permutation in SPs⊕(s(k)) by inserting
the s(k) consecutive occurrence of the label kk · · · k in any of the s(1)+s(2)+
· · ·+ s(k − 1) + 1 possible positions. Inductively and starting in SP(s(1)) =
{11 · · · 1} this implies that

|SPs| = 1·(s(1)+1)·(s(1)+s(2)+1)·· · ··(s(1)+s(2)+· · ·+s(a−1)+1) =: |s|!s,

and we read |s|!s as |s| s-factorial. Note that if s = (1n) then |s|!s = n!
and if s = (2n) then |s|!s = 1 · 3 · · · (2n − 1) = (2n − 1)!!, the factorial and
double-factorial numbers.

In forthcoming work [15], the first author and Pons study a generaliza-
tion of the weak order on permutations for the set of Stirling s-permutations.
They call this generalized order the s-weak order and show that it has the
structure of a lattice. They also investigate geometric realizations of the s-
weak order in terms of polytopal subdivisions of the classical permutahedron.

5.2. s-generalized parking functions

A parking function of n is a sequence of nonnegative integers (p1, p2, . . . , pn)
with the property that after being rearranged in weakly increasing order
pj1 ≤ pj2 ≤ · · · ≤ pjn they satisfy pji < i for all i ∈ [n]. We denote by
PFn the set of parking functions of n. Parking functions were studied by
Konheim and Weiss [25] were they used the following equivalent description
to define them:

Let C1, . . . , Cn be a collection of cars to be parked in order, car Ci before
car Ci+1, in a one-way street in a consecutive sequence of parking spots
marked P0, . . . , Pn−1. The driver of car Ci has a preferred spot pi where he
would like to park. In step i the driver of car Ci drives up to the spot pi,
parking there if the spot is available, or otherwise continuing until the next
available spot. If the spot pi and all the following parking spots are occupied
then Ci is unable to park. A parking function is a sequence (p1, p2, . . . , pn)
of parking preferences where all the cars are able to park.

It is not difficult to verify that the two definitions of parking function
stated above are equivalent. There is another way to construct parking func-
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Figure 22: Example of a decorated Dyck path and its corresponding parking
function.

tions. We can obtain parking functions by decorating Dyck paths with the
elements of [n].

A decorated Dyck path is a Dyck path in which the north steps have
been decorated from left to right with a permutation of [n] in such a way

that consecutive north steps have increasing labels (see Figure 22). Let D̂Pn

denote the set of decorated Dyck paths of [n]. In Figure 1 the reader can see

the example of D̂P3.
It turns out that the sets PFn and D̂Pn are in bijection and that dec-

orated Dyck paths are a convenient way to encode parking functions. The
bijection we will describe is common in the literature, see for example [19].

The function P : D̂Pn → PFn that provides a parking function P (D) start-
ing with a decorated Dyck path D is defined as follows: the value of pi is the
number of east steps that are in D to the left of the north step decorated
with the letter i. The function P is bijective and its inverse is also easy to
describe. In the example of Figure 22 we have, for example, that p1 = 0
because there are no east steps before the north step labeled 1 and p4 = 5
since there are 5 east step before the north step labeled 4.

Perhaps the easiest way to generalize the concept of parking function is
using the concept of a decorated Dyck path. For a composition s let D̂Ps

be the set of s-Dyck paths whose north steps have been decorated with a
permutation of [a] in such a way that consecutive north steps have increasing

labels. The discussion above illustrates that the set D̂Ps is also in bijection
with a more general set of parking functions. For a weak composition μ a
μ-parking function is a sequence of nonnegative integers (p1, p2, · · · , pa) such
that after being rearranged in weakly increasing order pj1 ≤ pj2 ≤ · · · ≤ pja
they satisfy pj1 = 0 and

pji ≤
i−1∑
i=1

μ(i) for all i > 1.
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Figure 23: Example of the decorated s-tree corresponding to the parking
function of Figure 22.

We denote by PFμ the set of μ-parking functions. By the same reasoning as

above we have that there is a bijection D̂Ps → PFs−1. μ-parking functions
have already appear in the literature with the name of generalized parking
functions, vector parking functions or μ-parking functions. They were origi-
nally studied by Pitman and Stanley [47] and Yan [50, 49] in a slightly more
general form. This more general form can be obtained within this framework
if we allow 0 values in our signatures and what we call a μ-parking function is
what appears as a (1)⊕μ-vector parking function in the literature. The case
s− 1 = (1n) recovers the classical concept of parking functions counted by
(n+1)n−1 and in general if s is a rational signature for (a, b) relatively prime
then Armstrong, Loehr and Warrington [2] showed that |PFa,b| = ba−1, this
includes the case a = n and b = kn + 1 or s − 1 = (kn) of Fuss-Catalan
parking functions. The rational signatures are the cases where a nice prod-
uct formula is known and to find formulas for general signatures seems to
be a difficult task. In [20] Gaydarov and Hopkins generalize the work in [37]
to provide a bijection between vector parking functions and a set of trees
that they call rooted plane trees.

We finish this section with the remark that even though in the litera-
ture it is most common to represent parking functions as decorated Dyck
paths, we argue that is natural and probably more convenient from the re-
cursive point of view to use the perspective of s-trees to represent a parking
function. A decorated s-tree is an s-tree such that all the internal nodes
are decorated with distinct elements of [a] in such a way that an inter-
nal node that is the left-most child of its parent has a larger label. Let
T̂s be the set of decorated s-trees, then is clear from Theorem 2.6 that
we have a bijection T̂s ∼= D̂Ps

∼= PFs−1. In Figure 23 we illustrate an
example of a decorated s-tree corresponding to the (17)-parking function
(0, 4, 0, 5, 4, 0, 3). Note that the associated parking function can be obtained
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by labeling the leaves left-to-right from 0 to |s − 1| + 1, then pi is equal
to the label of the leaf that is the leftmost descendant of the internal node
decorated i.

6. Relation to the rational constructions of Armstrong,
Rhoades and Williams

The constructions in this article generalize the rational Dyck paths of Arm-
strong, Rhodes and Williams [3] to more general signatures s. A natural
question that arises is whether our constructions for noncrossing s-partitions,
complete noncrossing s-matchings and s-angulations of a (|s|− �(s)+2)-gon
specialize to their rational constructions for the same type of objects in [3]
when s is a rational signature. The answer to this question happens to be on
the negative side. Even though in some examples the two constructions co-
incide they are in general different. In this section, we discuss the difference
between the constructions and, in particular, we illustrate the situation in
the case of rational noncrossing partitions.

Let (a, b) be a pair of relatively prime positive numbers and s the cor-
responding rational signature defined as in Equation 2.1. In [3], the authors
define a family of inhomogeneous (a, b)-noncrossing partitions (that we will

denote here by Ñ C(a,b)), a family of homogeneous (a, b)-noncrossing parti-

tions (denoted here by C̃M(a,b)) and a family of rational dissections of a

polygon (denoted here by ÃP(a,b)). The constructions of Ñ C(a,b), C̃M(a,b)

and ÃP(a,b) rely on a “laser” construction. A laser through the point (x0, y0)
is the half-ray in the grid b× a with starting point (x0, y0) and slope a

b , i.e.,
a half-ray given by the equation y = y0 +

a
b (x − x0) with x ≥ x0. See the

Figure 24 for examples of lasers that go through the points (0, 0), (2, 2),
(6, 3) and (10, 4) with slope 5

13 .

We now describe the construction of Ñ C(a,b). For a given (a, b)-Dyck
path D we label the right ends of the east steps of D from left to right with
the labels 1, 2, . . . , (b− 1). For every consecutive sequence of north steps in
D fire a laser through the lower point where the sequence starts. The lasers
give a topological decomposition of the reqion between D and the diagonal
y = a

bx and then we can define a partition π(D) by letting i and j to be
in the same block if they belong to the same connected component. In [3,
Proposition 6.1] it is shown that π(D) is a noncrossing partition of [b−1] and
that π is an injective map, which allow them to define rational noncrossing
partitions. In Figure 24 we illustrate an example of this construction start-
ing with the (5, 13)-Dyck path (or (3, 4, 3, 4, 3)-Dyck path in our language)
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Figure 24: Difference between Ñ C(a,b) and NCs for a rational s.

D = N2E2NE4NE4NE3. The noncrossing partition obtained from the con-
struction in [3] is π(D) = {{1, 2, 5, 6, 9, 10}, {3, 4}, {7, 8}, {11, 12}} while the
noncrossing partition obtained from D using our constructions, by first iden-
tifying the (3, 4, 3, 4, 3)-tree ζ(D) and then applying φ, is the noncrossing
(3, 4, 3, 4, 3)-partition φ(ζ(D)) = {{1, 2, 5, 6, 10}, {3, 4}, {7, 8, 9}, {11, 12}}.
This shows that the two constructions arrive to different objects. Note that
not only the noncrossing partitions associated to D are different but also
the sets Ñ C(5,13) and NC(2,3,2,3,2) of rational noncrossing partitions are dif-
ferent. The partition π(D) = {{1, 2, 5, 6, 9, 20}, {3, 4}, {7, 8}, {11, 12}} has
parts of sizes μ(π(D)) = (6, 2, 2, 2), so in particular, it is not refined by
s − 1 = (2, 3, 2, 3, 2) and hence π(D) /∈ NC(2,3,2,3,2). A similar situation oc-

curs with the families C̃M(a,b) and ÃP(a,b) since they are also defined by
the laser construction and our constructions have definitions that reflect the
underlying tree structure of the objects instead.

In [3] Armstrong, Rhodes and Williams pose as an open problem to

give characterizations of the families Ñ C(a,b), C̃M(a,b) and ÃP(a,b) that are
somewhat more natural and do not rely on a laser construction (One such
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characterization of Ñ C(a,b) was given in [13]). One advantage of our con-
structions is precisely that they are independent of the laser construction
and that they happen to reflect the natural tree structure of s-Catalan fam-
ilies. One advantage in the laser constructions, however, is that they happen
to have certain rotational symmetry. Indeed, it was proven in [3, Proposi-

tion 5.2] that C̃M(a,b) is closed under rotation, and the same property was

proven for Ñ C(a,b) in [13] for pairs a < b and in [12] for all coprime pairs
(a, b). It is not difficult to check that the families CMs and NCs−1 are in
general not closed under rotation unless s = (ka) for some value of k, since
the rotation operation also have the effect of permuting the entries of the
signature s. Hence, if we want to have rotational symmetry, we need to go to
a larger family of objects that includes all the possible permutations of the
signature. Finally, a clear advantage of our constructions is that we produce,
as a byproduct, a family of (a, b)-trees that is central in the new rational
picture and that it was not defined before in the literature. We claim that
this central object could play an important role when studying families of
rational Catalan objects for its inherent recursive nature. For example, the
(a, b)-trees also allow us to obtain the notion of Stirling (a, b)-permutations
that were not considered before inside this picture.

Appendix A. Bijections with s-Dyck paths

In this appendix, we describe further bijections between s-Catalan objects
and s-Dyck paths. As in the case of s-trees, these bijections turn out to be
elegant and simple (see Figure 25). They are obtained by assigning some
labels to an s-Dyck path and then reading or grouping the labels accord-
ing to a certain rule. The bijections presented here are in accordance with
those presented in Section 2. More precisely, if D is the s-Dyck path cor-
responding to an s-tree T (according to Section 2.2.1), then an s-Catalan
object associated to D in this appendix is the same s-Catalan object asso-
ciated to T according to the corresponding bijection in Section 2. All the
details about these bijections are simple and left to be filled by the interested
reader.

A.1. 312-Avoiding Stirling (s − 1)-permutations

Let σ be an (s− 1)-permutation. We represent the permutation in a (|s| −
�(s) + 1) × �(s) rectangle by placing a dot in the square at position (i, j)
if σ(i) = j. Note that all the columns of the rectangle except the last
one are occupied. The top part of Figure 25 illustrates an example for
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Figure 25: Examples of the bijections with s-Dyck paths.

the (2, 3, 3, 1, 4)-permutation σ = 2233321155554. Given such representa-

tion of σ, we shade all the boxes in the rectangle that are weakly below

and weakly to the right of some dotted box. It is not hard to see that

the shaded boxes bound an s-Dyck path D(σ). Note that many permuta-

tions may give rise the same Dyck path. However, if we restrict to 312-

avoiding Stirling (s− 1)-permutations there is exactly one permutation for

each Dyck path. This permutation is constructed as follows: place s(j) − 1

dots, from left to right, in the highest unoccupied row j that is below the

path D, such that no previously occupied columns are taken. The permu-

tation σ(D) is defined as the permutation with the resulting rectangular

representation.
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A.2. Noncrossing (s − 1)-partitions

Given an s-Dyck path D we place s(j)−1 dots in row j for each j as above,

and number the columns of the grid (except the last one) from 1 to |s|−�(s).

We make a horizontal strip to the right of each maximal consecutive chain

of north steps in D. The columns of the dots in each strip form the blocks

of the noncrossing (s− 1)-partition π(D) associated to D. The middle part

of Figure 25 illustrates an example. Note that the number of blocks of the

partition is equal, by definition, to the number of peaks of the Dyck path.

The inverse map can be easily described as follows: let π = {π1, . . . , πk} be

a noncrossing (s − 1)-partition whose blocks are ordered according to the

order of their minimal elements. Partition the sequence s−1 in k consecutive

blocks such that the sum of the values in block i is equal to the size |πi|. In
the middle of Figure 25, s− 1 = (2,3,3,1,4) and

π = {{1, 2, 6, 7, 8}, {3, 4, 5}, {9, 10, 11, 12, 13}}.

The sizes of the blocks of π are (5, 3, 5), and so we partition s − 1 as

|2, 3|3|1, 4|. For 1 ≤ i ≤ k, define xi = minπi − 1 and yi equal to the posi-

tion of the last number in block i of the partitioned s − 1. In our running

example,

(x1, x2, x3) = (1− 1, 3− 1, 9− 1) = (0, 2, 8),

(y1, y2, y3) = (2, 3, 5).

The s-Dyck path corresponding to π is the path with peaks at coordinates

(xi, yi) for i ∈ [k].

A.3. Complete noncrossing s-matchings

Given an s-Dyck path D, we place s(j)−1 dots in row j for each j as above,

and number the steps of D (except the last one) from 1 to |s|. For each

1 ≤ i ≤ �(s), define Mi to be the set containing the label of the north step

of D in row i, together with the labels of the east steps in the columns of

the dots in that row. The complete noncrossing s-matching associated to

D is defined by M(D) := {M1, . . . ,M�(s)}. The bottom part of Figure 25

illustrates an example. The inverse is determined by the positions of the

north steps in the path, which are the minimal elements of the blocks in M .
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