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In an earlier paper, the first two authors defined orientations on
hypergraphs. Using this definition we provide an explicit bijection
between acyclic orientations in hypergraphs and faces of hyper-
graphic polytopes. This allows us to obtain a geometric interpre-
tation of the coefficients of the antipode map in a Hopf algebra of
hypergraphs. This interpretation differs from similar ones for a dif-
ferent Hopf structure on hypergraphs provided recently by Aguiar
and Ardila. Furthermore, making use of the tools and definitions
developed here regarding orientations of hypergraphs we provide a
characterization of hypergraphs giving rise to simple hypergraphic
polytopes in terms of acyclic orientations of the hypergraph. In
particular, we recover this fact for the nestohedra and the hyper-
permutahedra, and prove it for generalized Pitman-Stanley poly-
topes as defined here.
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tations of hypergraphs, Hopf algebra, antipode, simple polytopes, nesto-
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1. Introduction

Given a collection of combinatorial objects, one often wants to study how
these objects can be broken into simpler pieces and how they can be reassem-
bled. Joni and Rota observed that Hopf algebras provide a natural frame-
work to do this [JR79]. Here the coalgebra structure records the splitting,
and the algebra structure records the assembly. The advantage of adding
such structure to a given combinatorial family is that the coalgebra map al-
lows to decompose into smaller pieces an object of the family. These pieces
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can be put back together somehow via the algebra structure. For instance,
if one aims to color vertices of a graph in a way that neighbouring vertices
have different colors, one may think of breaking the graph into pieces in such
a way that each resulting piece is a subgraph with no edges, then color each
piece and put them all back together to obtain a coloring of the original
graph.

The algebraic and coalgebraic structure in a Hopf algebra allow to de-
fine another important piece of a Hopf algebra, namely, its antipode. Given
any graded connected Hopf algebra, the antipode is given by Takeuchi’s for-
mula [Tak71]. However, this formula can be rather complicated and it often
contains many cancellations. In view of this a common problem surrounding
such a Hopf algebra is: what is a cancellation free formula for its antipode?
We will refer to this problem as the antipode problem. Part of the interest
in finding a solution to the antipode problem is that its formula encodes
information about the underlying combinatorial object.

A solution for the antipode problem in the Hopf algebra of graphs1 was
first found by Humpert and Martin [HM12]. Using sign reversing involu-
tions Benedetti and Sagan, as well as Bergeron and Ceballos, were able to
give solutions for the same problem for various Hopf algebras including the
graph Hopf algebra [BS17, BC17]. In this case, the antipode formula encodes
acyclic orientations of graphs.

The technique of sign reversing involutions has been used to solve the
antipode problem for the Hopf algebra of simplicial complexes [BHM16].
The first two authors have further generalized this way of obtaining optimal
formulas for antipode maps and provided a formula for the antipode in the
Hopf algebra of hypergraphs in [BB]. It is also shown how the understanding
of a Hopf algebra structure on hypergraphs allows one to understand the
structure of a larger class of Hopf algebras.

The antipode formula in the Hopf algebra of hypergraphs obtained in
[BB] is much simpler than Takeuchi’s formula, but it is not cancellation
free. Thus it does not solve the antipode problem. However, one of the main
results in this paper addresses this issue in a geometric fashion. This paper
is organized as follows.

In Section 2 we will give a geometric interpretation of the coefficients of
the antipode of a hypergraph in terms of a polytope called the hypergraphic
polytope. This geometric interpretation will explain the cancellation in the

1The Hopf algebra of graphs (simplical complexes, hypergraphs) should really
be a Hopf algebra of graphs (simplical complexes, hypergraphs) since there are
multiple Hopf algebra structures which can be defined. In this paper we will be
explicit about the Hopf algebra construction that we will use.
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antipode formula by showing that the coefficients in the antipode map are

Euler characteristics.

Using our notion of orientations on hypergraphs defined in Section 2, we

then turn our attention to the hypergraphic polytope itself and derive some

geometric results in Section 3. More specifically we characterize hypergraphic

polytopes that are simple by means of acyclic orientations. This particular

result is illustrated with some specific families of hypergraphic polytopes:

the nestohedra and the hyperpermutahedra. Moreover, we define and study

the family of generalized Pitman-Stanley polytopes which, as their name

indicates, contain as a particular case the Pitman-Stanley polytope.

2. Geometric antipode for hypergraphs

As described in the introduction, a recurrent and often difficult problem in

Hopf algebras is to find a cancellation free formula for the antipode of a

Hopf algebra. The first two authors showed in [BB], that the Hopf algebra

of hypergraphs encode the antipode problem for a large family of Hopf alge-

bras and they give a description of the antipode for hypergraphs in term of

acyclic orientations on them. This new formula, interesting on its own, still

contains many cancellations. Here we show that the hypergraphic polytope

PG associated to a hypergraph G encodes the coefficients in the antipode

S(G). This differs from the case of graphical zonotopes in [AA] which con-

siders a different Hopf structure on hypergraphs.

2.1. Hypergraphs and orientations

Let 2V denote the collection of subsets of a finite set V . Let

HG[V ] =
{
G ⊆ 2V | U ∈ G implies |U | ≥ 2

}
An element G ∈ HG[V ] is a hypergraph on V . We pause to remark that

with some conventions, elements of HG[V ] are simple hypergraphs since

repeated subsets of V are not allowed. However, we will omit the adjective

simple as all hypergraphs we consider will be of this type.

Example 2.1. Consider V = {a, b, c, d, e, f} and let

G =
{
{b, c}, {a, b, e}, {a, d, e, f}, {b, c, e}, {f, c}

}
∈ HG[V ].
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We graphically represent G as follows:

G =

a b c

d
e

f

Remark 2.2. With our notation, it is important to specify the vertex set
V on which the hypergraph G is constructed. For example G = ∅ is not the
same hypergraph when constructed on V = ∅ or V = {1, 2, 3}:

∅ •2
•1•3

•2
•1•4

•5
•3

∅ ∈ HG[∅] ∅ ∈ HG[{1, 2, 3}] ∅ ∈ HG[{1, 2, 3, 4, 5}]

In [BB], we introduced a notion of orientation for hypergraphs that is
related to our antipode formula. We recall here the basic definitions.

Definition 2.3 (Orientation). Given a hypergraph G an orientation (a, b)
of a hyperedge U ∈ G is an ordered set partition (a, b) of U . We can think
of the orientation (a, b) as current or flow on U from a single vertex a to
the vertices in b in which case we say that a is the head of the orientation
a → b of U . It what follows we will want to think of the vertices in a as
being contracted to a single point while the vertices in b remain as distinct
points. If |U | = n, then there are a total of 2n − 2 possible orientations. An
orientation of G is an orientation of all its hyperedges. Given an orientation
O on G, we say that (a, b) ∈ O if (a, b) is the orientation of a hyperedge U
in G.

Example 2.4. With G =
{
{b, c}, {a, b, e}, {a, d, e, f}, {b, c, e}, {f, c}

}
, we

can orient the edge U = {a, b, e} in 23 − 2 = 6 different ways; three with a
head of size 1: ({a}, {b, e}), ({b}, {a, e}), ({e}, {a, b}), and three with a head
of size 2: ({b, e}, {a}), ({a, e}, {b}), ({a, b}, {e}). We represent this graphi-
cally as follows:

a b

e

,

a b

e

,

a b

e

,

a

be
,

b

ae
,

e

ab

.

To orient G, we have to make a choice of orientation for each hyperedge.
For example we can choose

O =
{
({b}, {c}), ({a}, {b, e}), ({a, e}, {d, f}), ({b, c}, {e}), ({f}, {c})

}
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and we represent this as

G/O = ae

bc

d

f

Notice here, as we have previously stated, for an orientation (a, b) of a
hyperedge we picture the vertices in a as contracted to a single vertex. A
directed edge is then placed between this single vertex and each vertex in b.

In general, given a hypergraph G on the vertex set V and an orientation
O of G, we construct an oriented (not necessarily simple) graph G/O as
follows. We let V/O be the set partition of V defined by the transitive
closure of the relation a ∼ a′ if a, a′ ∈ a for some head a of O. For each
oriented hyperedge (a, b) of O, we have |b| oriented edges ([a], [b]) in G/O
where [a], [b] ∈ V/O are equivalence classes and b ∈ b.

Definition 2.5 (Acyclic orientation). An orientation O of G is acyclic if
the oriented graph G/O has no cycles.

Example 2.6. Let G =
{
{1, 2, 4}, {2, 3, 4}

}
be a hypergraph on V =

{1, 2, 3, 4}. As we can see the orientations O =
{
({4}, {1, 2}), ({2, 4}, {3})

}
and O′ =

{
({4}, {1, 2}), ({2, 3}, {4})

}
are not acyclic,

but O′′ =
{
({4}, {1, 2}), ({4}, {2, 3})

}
is acyclic:

2 1

3 4

24
1

3

23 1

4

2 1

3 4

G G/O G/O′ G/O′′

Out of the possible 36 orientations of G only 20 are acyclic:

{({4},{1,2}),({4},{2,3})}; {({4},{1,2}),({3},{2,4})}; {({4},{1,2}),({3,4},{2})}; {({2},{1,4}),({3},{2,4})};

{({2},{1,4}),({2},{3,4})}; {({2},{1,4}),({2,3},{4})}; {({1},{2,4}),({4},{2,3})}; {({1},{2,4}),({3},{2,4})};

{({1},{2,4}),({2},{3,4})}; {({1},{2,4}),({2,3},{4})}; {({1},{2,4}),({2,4},{3})}; {({1},{2,4}),({3,4},{2})};

{({1,2},{4}),({3},{2,4})}; {({1,2},{4}),({2},{3,4})}; {({1,2},{4}),({2,3},{4})}; {({1,4},{2}),({4},{2,3})};

{({1,4},{2}),({3},{2,4})}; {({1,4},{2}),({3,4},{2})}; {({2,4},{1}),({3},{2,4})}; {({2,4},{1}),({2,4},{3})}.

2.2. Hopf algebra of hypergraphs

The acyclic orientations of hypergraphs play an important role in the com-
putation of their antipode in the Hopf algebra of hypergraphs. This Hopf



520 Carolina Benedetti et al.

structure is the image under the Fock functor K of the Hopf monoid of hy-
pergraphs described in [BB]. We recall here what this structure is explicitely.

Given two hypergraphs G,G′ ∈ HG[V], we say the G and G′ are isomor-
phic if there exists a permutation σ : V → V such thatG′ =

{
σ(U) | U ∈ G

}
.

In this case we write G ∼ G′. Let H be the graded vector space

H =
⊕
n≥0

Hn =
⊕
n≥0

QHG[n]
/
∼,

where [n] = {1, 2, . . . , n}. That is, for each n ≥ 0, we consider Hn =
QHG[n]

/
∼ the linear span of equivalence classes of hypergraphs on [n].

This space has a structure of graded Hopf algebra given by the following
operations.

Multiplication: Let ↑mn : [n] → {1 +m, . . . , n+m} be the map that sends
i ∈ [n] to i+m. This induces a map from HG[n] to HG[{1+m, . . . , n+m}]
where

G↑m
n =

{
{i+m : i ∈ U} | U ∈ G

}
.

For all m,n ≥ 0, we have well defined associative linear operations
μm,n : Hm ⊗Hn → Hm+n given by

μm,n(G1 ⊗G2) = G1 ∪G
↑m
n

2 ,

for G1 ∈ HG[m] and G2 ∈ HG[n]. This operation extends to equivalence
classes of hypergraphs, and it is commutative since

(
G1 ∪G

↑m
n

2

)
∼

(
G2 ∪G

↑n
m

1

)
.

Thus, μ =
∑

m,n μm,n : H ⊗H → H defines a graded, associative, commu-
tative multiplication on H. The unit u for this operation is given by the
unique hypergraph ∅ ∈ HG[0].

Comultiplication: Given K ⊆ [n] let k = |K| and let St : K → [k] be
the unique order preserving map between K and [k]. Given a hypergraph
G ∈ HG[n] we let

G
∣∣
K

= {U ∈ G | U ⊆ K} ∈ HG[K].

We can then use the map St to get a hypergraph St(G
∣∣
K
) ∈ HG[k]. For

all m,n ≥ 0, we now have a well defined coassociative linear operations
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Δm,n : Hm+n → Hm ⊗Hn given by

Δm,n(G) =
∑

K∪L=[m+n]

|K|=m, |L|=n

St(G
∣∣
K
)⊗ St(G

∣∣
L
),

for G ∈ HG[m+n]. This operation is clearly cocommutative. We have that

Δ =
∑

m,nΔm,n : H → H ⊗H defines a graded, coassociative, cocommuta-

tive comultiplication on H. The counity for this operation is given by the

map ε : H → Q defined by

ε(G) =

{
1 if G = ∅ ∈ HG[0],

0 otherwise.

The structure (H,μ, u,Δ, ε) gives a structure of graded, connected, com-

mutative and cocommutative bialgebra on H. We recall that for such bialge-

bra there is a unique antipode S : H → H. That gives a structure of graded,

connected, commutative and cocommutative Hopf algebra on H.

2.3. Antipode and acyclic orientations

A set composition A = (A1, A2, . . . , Ak) of I is a sequence of nonempty and

pairwise disjoint subsets such that I = A1 ∪ A2 ∪ · · · ∪ Ak. We denote this

by A |= I and the length k of A is denoted by �(A). One the the subsets Ai

is called a part. Similarly, an integer composition α = (a1, a2, . . . , ak) of n is

a sequence of positive integer such that n = a1 + a2 + · · · + ak. We denote

this by α |= n and k = �(α) Given a set composition A |= I we get an

integer composition using cardinalities: α(A) = (|A1|, |A2|, . . . , |Ak|) |= |I|
and �(A) = �(α(A)).

A set partition A = {A1, A2, . . . , Ak} of I is an unordered collection of

nonempty and pairwise disjoint subsets such that I = A1 ∪ A2 ∪ · · · ∪ Ak.

We denote this by A � I and also call each of the subsets Ai a part of the

partition A.

For any graded connected bialgebra H the existence of the antipode

map S : H → H is guaranteed and it can be computed using Takeuchi’s

formula [Tak71] as follows. For any finite x ∈ Hn

(1) S(x) =
∑
α|=n

(−1)�(α)μαΔα(x)



522 Carolina Benedetti et al.

Here, for �(α) = 1, we have μα = Δα = Id the identity map on Hn, and for
α = (a1, . . . , ak) with k > 1,

μα = μa1,n−a1
(Id⊗ μa2,...,ak

) and Δα = (Id⊗Δa2,...,ak
)Δa1,n−a1

.

In the case of hypergraphs, for G ∈ HG[n], the antipode formula gives

S(G) =
∑
A|=[n]

(−1)�(A)μα(A)

(
St(G

∣∣
A1
)⊗ · · · ⊗ St(G

∣∣
Ak

)
)
.

But up to a permutation of [n], we have that

μα(A)

(
St(G

∣∣
A1
)⊗ · · · ⊗ St(G

∣∣
Ak

)
)

∼ G
∣∣
A1

∪G
∣∣
A2

∪ · · · ∪G
∣∣
Ak

.

We denote the right hand side by G
∣∣
A
= G

∣∣
A1

∪G
∣∣
A2

∪ · · · ∪G
∣∣
Ak

and the
antipode formula in this case is

(2) S(G) =
∑
A|=[n]

(−1)�(A)G
∣∣
A

which contains lots of cancellations. In [BB] we give a new formula that
involves acyclic orientations of hypergraphs. To state it we need some nota-
tion.

Definition 2.7 (Flats). For a hypergraph G ∈ HG[V ], given a set com-
position A |= V we say that G

∣∣
A
is a flat of G. The set of all flats of G is

denoted by

Flats(G) = {G
∣∣
A

: A |= V }.

Given G ∈ HG[V ] and a flat F ∈ Flats(G), let A = (A1, A2, . . . , Ak)
be a finest set composition such that F = G

∣∣
A
. Observe that any per-

mutation of the parts of A gives the same flat F and the set partition
V/F = {A1, A2, . . . , Ak} is unique and well defined. We denote by G/F the
hypergraph we obtain from G by contracting all the hyperedges in F . For
example,

a b c

d
e

f

A

B

a b c

d
e

f

a

d
ebcf

A
B

G F G/F
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Given an orientation O of G/F , denote by V/O the set partition of V
obtained from the set partition (V/F )/O, where the parts of V/F are put
together according to (V/F )/O. For a hypergraph G ∈ HG[V ], let O(G)
denote the set of all its acyclic orientations. We now extend [BB, Lemma
3.13] to all set compositions. For A = (A1, A2, . . . , Ak) |= [n], and every
1 ≤ i ≤ k, let Ai,k = Ai∪Ai+1∪· · ·∪Ak and let G/Oi,k = (G/O)

∣∣
Ai,k

where

O is an orientation of G.

Remark 2.8. The symbol / is overloaded. Its meaning will be clear from the
context, but we warn the reader that the meaning of the symbol / depends
on what type of objects are involved.

Lemma 2.9. Fix G ∈ HG[n]. There is a surjection Ω and injection Ψ

{A | A |= [n]}
⋃

F∈Flats(G)

O(G/F ) ,
Ω

Ψ

where the maps Ω and Ψ depend on G and are obtained as follows:

(a) For A = (A1, A2, . . . , Ak) |= [n] we let F = G
∣∣
A
. For each hyperedge

U ∈ G/F let i = min{j : Aj ∩ U �= ∅} then (U ∩ Ai, U − Ai) de-
fines an acyclic orientation for each U and it gives Ω(A) ∈ O(G/F ).
Furthermore [n]/Ω(A) is a refinement of {A1, A2, . . . , Ak}.

(b) For O ∈ O(G/F ), let Ψ(O) = (A1, A2, . . . , Ak) |= [n] be such that
and Ai is the unique source of the restriction G/Oi,k where min(Ai)
is maximal among the sources of G/Oi,k. Here a source is any vertex
with no incoming edges.

Also, we have that Ω ◦ Ψ = Id and for (A1, A2, . . . , Ak) = Ψ(O) it follows
that [n]/O = {A1, A2, . . . , Ak}.

Proof. Set V = {1, 2, . . . , n}. For (a), let A = (A1, A2, . . . , Ak) |= V and
F = G

∣∣
A
. For any U ∈ G/F , we always have Ai ∩ U �= U . Hence

(U ∩Ai, U \Ai) for i = min{j : Aj ∩ U �= ∅} defines a proper orientation O
of G/F . By construction, each head a for (a, b) ∈ O is completely included
within a part Ai for a unique part 1 ≤ i ≤ k. This implies that V/O refines
{A1, . . . , Ak} and it allows us to define a function f : V/O → {1, 2, . . . , k}
where f([v]) = i if and only if [v] ⊆ Ai. By construction of O, for any
([a], [b]) ∈ (G/F )/O the function f is such that f([a]) < f([b]). Hence
(G/F )/O has no cycles and Ω(A) = O is a well defined acyclic orienta-
tion of G/F .
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For (b), let O be an acyclic orientation on G/F . Let us show that the set

composition Ψ(O) = (A1, . . . , Ak) is well defined in (b). That is, we will show

how to construct the only possible set composition (A1, . . . , Ak) satisfying

the conditions of (b). Recall the vertices of (G/F )/O are equivalences class,

and hence subsets of V . Let us consider the partial order on subsets of V

by A < B whenever min(A) < min(B) for A,B ⊆ V . This is a partial

order on the subsets of V , but is a total order on the vertices of (G/F )/O
since the vertices of (G/F )/O consists of a collection of disjoint subsets

of V . Set G1 = (G/F )/O. Given that O is an acyclic orientation then the

directed graph G1 must have a source. Moreover, if we remove any collection

of vertices from G1, the remaining graph still has a source. If (A1, . . . , Ak)

is any set composition satisfying (b), then Ai must be the largest source of

Gi. Thus the set composition (A1, . . . , Ak) exists and is well defined. It is

clear from this realization that {A1, . . . , Ak} = V/O.

We now need to show that Ω ◦Ψ = Id. For any (a, b) ∈ O we must have

a ⊆ Ai for some unique 1 ≤ i ≤ k. We claim that

Aj ∩ b �= ∅ =⇒ j > i

If not, then there would be j < i such that Aj∩b �= ∅. This means that there

is an edge from Ai to Aj in G/Oj,k, which contradicts the fact that Aj is a

source of G/Oj,k, hence j must be such that j > i. Therefore Ω(Ψ(O)) =

O.

Theorem 2.10 ([BB], Theorem 3.16). For G ∈ HG[n],

S(G) =
∑

F∈Flats(G)

a(G/F )F , where a(G/F ) =
∑

O∈O(G/F )

(−1)|Ψ(O)| .

Sketch of proof. A full proof is given in [BB]. We sketch here a slightly dif-

ferent proof. For G ∈ HG[n] and F ∈ Flats(G), let

CF
G = {A |= [n] : G

∣∣
A
= F}.

Starting from (2) we have

S(G) =
∑
A|=[n]

(−1)�(A)G
∣∣
A
=

∑
F∈Flats(G)

( ∑
O∈O(G/F )

( ∑
A∈CF

G
Ω(A)=O

(−1)�(A)
))

F
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The sign reversing involution in [BB, Theorem 3.16] gives

∑
A∈CF

G
Ω(A)=O

(−1)�(A) = (−1)|Ψ(O)|

and this gives us the desired result.

2.4. Hypergraphic polytope

One of our main goals is to give a geometric meaning to Theorem 2.10. One

of the beautiful results in [AA, Corollary 13.7] shows that the antipode of a

simple graph can be recovered from the faces of its graphical zonotope. They

also give a geometric interpretation [AA, Corollary 21.3] for the antipode

in A of simplicial complexes (see [BHM16]), which is an interpretation that

was noted independently by the first author. The geometric object behind

Theorem 2.10 is the hypergraphic polytope. We let {e1, . . . , en} denote the

standard basis of Rn.

Definition 2.11. Given a hypergraph G ∈ HG[n], the hypergraphic poly-

tope PG associated to G is the polytope in Rn defined by the Minkowski

sum

PG =
∑
U∈G

ΔU ,

where ΔU is the simplex given by the convex hull of the points {ei | i ∈ U}.

So, a hypergraphic polytope is a Minkowski sum of standard simpli-

cies. We note that we are aware of such Minkowski sums being previously

studied by in [AM09, Agn13, Agn17]. We will consider a particular example

of a hypergraphic polytope defined by Agnarsson [Agn17] call the hyper-

permutahedra in Section 3.2.

Example 2.12. Consider the hypergraph G =
1

3
2 . We have

e1

e2 e3
e2 e3

Δ123 Δ23 PG = Δ123 +Δ23
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Example 2.13. For the hypergraph G′ =
1

4
2

3 , we have

e1

e2 e3
e3

e4

Δ123 Δ34 PG′ = Δ123 +Δ34

which is a 3-dimensional polytope.

We want to get a good description of the normal fan N (PG) of the
hypergraphic polytope PG. We refer the reader to [Zie95, Chapter 7] for more
details and notation about normal fans. First let us describe the normal fan
of a simplex. Given a linear functional x : Rn → R we will identify x with
the vector (x1, . . . , xn) where xi := x(ei). In this way, if a =

∑n
i=1 aiei ∈ Rn,

we have that x(a) = (a1, . . . , an) · (x1, . . . , xn). Now, notice that the faces of
the simplex ΔU are in bijection with the nonempty subsets K ⊆ U . Thus,
each cone in N (ΔU ) is also indexed by such K. Moreover,

Lemma 2.14. Let U ⊆ [n] with |U | = r ≥ 2. For ∅ �= K ⊆ U , the cone
CK,U in N (ΔU ) corresponding to the face ΔK of ΔU is given by

CK,U := {x ∈ (Rn)∗ | xi = xj for i, j ∈ K; xi ≥ xj for i ∈ K and j ∈U\K}.

Proof. The vertices in the face ΔK are {ea : a ∈ K}. Thus the linear func-
tionals x attaining their maximum at this face are precisely those described
by CK,U .

Remark 2.15. The nontrivial faces ΔK of ΔU are in bijection with the
orientations of the hyperedge U . For instance, taking U1 = {a, b} and U2 =
{a, b, c} gives us the following labeling of the corresponding faces

ea eb
ab

b
a

b
a

ea eb

ec

c

ab

bc aac

b

c

b
a

c

b
ac

b
a

abc

U1 = {a, b}, U2 = {a, b, c}.
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This allows to think of inequalities describing cones in terms of orientations.

For example bc ad corresponds to xb = xc ≥ xa = xd. The interior of ΔU

corresponds to the contraction of the hyperedge U .

We are now ready to state and prove the main theorem of this section.

2.5. Main theorem

Let G ∈ HG[n] and PG its hypergraphic polytope. We now show that the

faces of PG are naturally labeled by the acyclic orientations of the contrac-

tions G/F for each flat F of G. For that purpose we introduce some more

notation. Let O ∈ O(G/F ) and define the cone CO by

CO :=
{
x ∈ (Rn)∗

∣∣∣ xa = xb if a, b are identified in [n]/O
xa ≥ xb if ([a], [b]) is an arrow of (G/F )/O

}
.

Remark 2.16. It follows immediately from the definition of CO that

dimCO = |[n]/O|. This equality is straightforward, but we will find it to

be a useful fact.

Remark 2.17. The cones CO are present in the cone-preposet dictionary

of Postnikov, Reiner, and Williams [PRW08]. The relationship of our results

with the cone-preposet dictionary is elaborated on in Section 3. Also in the

computer science community the term weak ordering is used to referred to

such orientations.

Theorem 2.18. Given G ∈ HG[n], the normal fan N (PG) of PG in (Rn)∗ is

defined by the cones CO where O runs over the set AO =
⋃

F∈Flats(G)

O(G/F ).

In particular, the faces of PG are in one to one correspondence with the

elements O ∈ AO.

Proof. First we show that for a given F ∈ Flats(G) and O ∈ O(G/F ),

the cone CO is a cone in N (PG). Since PG =
∑

U∈GΔU , Proposition 7.12

of [Zie95] tells us that N (PG) =
∧

U∈GN (ΔU ). Here
∧

denotes the common

refinement of fans.

Let A = (A1, . . . , Ak) = Ψ(O) be given by Lemma 2.9. For any U ∈ G

define K(U) to be K(U) = U ∩ Ai where i is the minimal index with the

property that U ∩ Ai �= ∅. When K(U) �= U it is the head of an edge of O,
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when K(U) = U the hyperedge U is contracted in G/F . We have that

CO =
⋂
U∈G

CK(U),U

is a cone of N (PG).

For the converse, let C =
⋂

U∈GCK(U),U be a cone in N (PG). Now K(U)

is some arbitrary nonempty subset of U rather than the particular subset

from the first part of this proof. In this manner, we can think of such C as

a family {(U,K(U)) : U ∈ G}. This description of C is not unique. We

will construct via the following algorithm an orientation O ∈ AO such that

C = CO.

(1) (input) A family {(U,K(U)) : U ∈ G} such that C =
⋂

U∈GCK(U),U .

(2) (construct flat F ) In the above description contract every hyperedge

U such that K(U) = U . This defines a flat F of G which contains all

hyperedges U such that K(U) = U .

(3) For every subset A ⊆ [n], let A denote the image of A in [n]/F . If

there is U for which K(U) �= U and K(U) = U then set K(U) = U

and go back to (2).

(4) (define orientation of G/F ) At this step, for each U such that |U | > 1,

we have that K(U) �= U . These K(U) define an orientation O of G/F .

(5) (resolve cycles) If (G/F )/O has a cycle Ai1 → Ai2 → · · · → Ais = Ai1

where Aij = {aj,1, aj,2, . . . , aj,mj
}, then we have the following relations

in C

xa1,1
= xa1,2

= · · · = xa1,m1
≥ xa2,1

= · · · = xa2,m2
≥ · · · ≥ xas,1

= xa1,1
.

This implies that all the coordinates indexed by B = Ai1∪Ai2∪· · ·∪Ais

are equal in C. Set K(U) = K(U)∪ (B ∩U) whenever K(U)∩B �= ∅.
Go back to step (2).

(6) (output O) The orientation O of G/F which is acyclic and C = CO.

To finish the proof we notice that the algorithm stops and that at all

steps C =
⋂

U∈GCK(U),U . This follows since in the algorithm the family

{(U,K(U)) : U ∈ G} is modified only in steps (3) and (5). Each mod-

ification only increases the sets K(U) for some U . Since G is finite, the

algorithm must stop. When it stops, the orientation O has no cycles, thanks

to (5) where any edge that is part of a cycle is contracted to a single point.
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On the other hand in the starting point, the sets K(U) give us that

i, j ∈ K(U) for some U =⇒ xi = xj in C.

The equivalence relation [n]/F in step (3) is such that if i ∼ j in [n]/F ,
then xi = xj in C. Hence, in step (3), if K(U) = U , for all i, j ∈ U we have
xi = xj in C. This implies that if we redefine K(U) = U we do not change
the cone C. Similarly, in step (5), we have shown that for any i, j ∈ B we
have xi = xj in C. Hence ifK(U)∩B �= ∅, redefiningK(U) = K(U)∪(B∩U)
does not change C. We have shown that the algorithm preserves the cone C
and produces the desired orientation.

Example 2.19. Consider the hypergraph G in Example 2.12 and PG =
Δ123+Δ23. The normal fan of PG has 9 cones. It is the common refinement
of the normal fans of Δ123 and Δ23.

•

C

Take the cone C = {X | x2 = x3 > x1} of N (PG). It can be ob-
tained as an intersection given by {(U,K(U)) : U ∈ G} in different ways.
We can consider inputting the family

{
({1, 2, 3}, {2, 3}), ({2, 3}, {2, 3})

}
de-

scribing C into the algorithm from the proof. In step (2) the algorithm will
construct the flat consisting of the hyperedge {2, 3} and then will output

the acyclic orientation
1

23 . Instead, if we start the algorithm the family{
({1, 2, 3}, {3}), ({2, 3}, {2})

}
describing the same C, we will construct the

empty flat in step (2) and step (5) gives us

1

3
2

⋂
3

2 =
1

3
2

which is not acyclic. This orientation has the cycle 2 → 3 → 2 and we detect
that x2 = x3 in C. We then set B = {2, 3} and redefine the family. After
going through one more iteration the algorithm will again give us the acyclic

orientation
1

23 .

We are now ready to connect this back with the antipode formula. If we
look again at Theorem 2.10 we notice that the antipode formula is a sum
over orientations.
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Corollary 2.20. For a hypergraph G ∈ HG[n], the coefficient of a flat

F ∈ Flats(G) in S(G) is a(G/F ). We have that (−1)na(G/F ) is the Euler

characteristic of the union of the faces of PG indexed by the acyclic orien-

tations of G/F .

Proof. This is a direct application of Theorem 2.18. For a fixed flat F ∈
HG[n], Theorem 2.10 tells us that

a(G/F ) =
∑

O∈O(G/F )

(−1)|Ψ(O)| .

This is up to a sign the Euler characteristic of the union of the faces of PG

indexed by acyclic orientations of G/F .

Remark 2.21. For G ∈ HG[n] and F = ∅, we have G/F = G. Then the

coefficient of F in S(G) is (−1)na(G) which is the Euler characteristic of a

polytopal complex. This follows from the fact that if A � [n] is such that

Ω(A) ∈ O(G), then for any refinement B ≤ A, we have Ω(B) ∈ O(G). For

any F ∈ Flats(G), the coefficient of F in S(G) is the coefficient of ∅ in

S(G/F ). So, this coefficient of the antipode can be thought of in terms of

the Euler characteristic of a polytopal complex where the polytopal complex

may live in a smaller dimensional ambient space. Now, the full antipode of

the hypergraph G ∈ HG[n] can be thought of as a refinement of the Euler

characteristic of PG. The Euler characteristic of PG is simply

χ(PG) =
∑
f⊆PG

(−1)dim f = 1

where the sum is over all faces of PG. The antipode formula is

S(G) = (−1)n
∑
f⊆PG

(−1)dim fGf

where the sum again runs over all faces of PG and Gf denotes the flat of G

corresponding to the face f .

Example 2.22. For G =
1

3
2 as in Example 2.12, the flats of G are

G, {{2, 3}}, ∅. The coefficient of each flat F in S(G) is given by the Euler

characteristic of the faces of PG = Δ123+Δ23 indexed by acyclic orientations
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of G/F :

123

1

23

1

23

•

• •

•

1

3
2 1

3
2

1

3
2

1

3
2

13 212

3

S(G) = −1 ·
[

1

3
2

]
+ 2 ·

[
1

3
2

]
− 2 ·

[
1

3
2

]

Example 2.23. For the hypergraph G′ =
1

4
2

3 in Example 2.13,

the flats are G′, {{3, 4}}, {{1, 2, 3}} and ∅. Thus we have that S(G) is given
by

•

•
•

•
•

•

−1 ·
[

1
4

2
3

]
+0 ·

[
1

4
2

3

]
+2 ·

[
1

4
2

3

]
+0 ·

[
1

4
2

3

]

One nice application of Corollary 2.20 is to continue [BB, Example 4.5].
Let us recall the definitions we need.

Definition 2.24. Given a hypergraph G, we say that a0
U1−→a1

U2−→· · · U�−→a�
is a path of G if ai−1 �= ai and {ai−1, ai} ⊂ Ui ∈ G for each 1 ≤ i ≤ �. We
say that a path is proper if all the hyperedges Ui are distinct. A proper cycle
in G is a proper path such that a0 = a�. A hypergraph is a hyperforest if it
does not contain proper cycles.

We remark that if G is a hyperforest, then the flats of G precisely all
possible subsetes of hyperedges F ⊆ G. The hyperedges {U1, U2, . . . , Um} of
any hyperforest G can be ordered so that

|(U1 ∪ U2 ∪ · · · ∪ Ui) ∩ Ui+1| ≤ 1

for each i [Tay17, Lemma 7]. In this case, we obtain

PG =
∏
U∈G

ΔU .
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In fact since the acyclic orientations of G/F correspond to the boundary of∏
U∈G/F ΔU , we get the following proposition.

Proposition 2.25. [BB, Prop 4.6] Let G be a hyperforest, F a flat of G

and k = |G/F |. Also let � be the number of connected components of G/F .

Then

a(G/F ) =

{
(−1)�(−2)k if ∀U ∈ G/F we have |U | is even,

0 otherwise.

3. Simple polytopes

In this section we will consider certain families of polytopes: nestohedra, gen-

eralized Pitman-Stanley polytopes, and hyper-permutahedra. We will use

the correspondence between acyclic orientations and faces of hypergraphic

polytopes from Theorem 2.18 to show that these polytopes are simple. Al-

though some of these results are known our context provides a new per-

spective to study them. In particular, we demonstrate that one is able to

obtain information about Minkowski sums of simplices by only considering

orientations of the underlying hypergraph.

Recall that for a hypergraph G the set of its acyclic orientations is de-

noted O(G). For each k ∈ {0, 1, . . . , n− 1} define the set

Ok(G) := {O ∈ O(G) : |V (G/O)| = |V (G)| − k}.

Observe that if G has n vertices then

O(G) =

n−1⊔
k=0

Ok(G).

The 1-skeleton of a polytope P is the graph consisting of the 0-dimensional

and 1-dimensional faces of P . We denote the 1-skeleton of P by P (1). If P is

a d-dimensional polytope, then P is called simple if and only if P (1) is a d-

regular graph. That is, if and only if every vertex of P (1) is incident to exactly

d edges. By Theorem 2.18 the vertex set of P
(1)
G is in 1-1 correspondence

with O0(G) and the edge set is in 1-1 correspondence with

O1(G) �
⊔
e∈G
|e|=2

O0(G/e).



Hypergraphic polytopes: combinatorial properties and antipode 533

We now discuss the relationship between our results and work of Post-
nikov, Reiner, and Williams on generalized permutahedron. The normal
fan of any generalized permutahedron is known to be refined by the braid
arrangement fan [PRW08, Proposition 3.2]. In the language of Postnikov-
Reiner-Williams each cone in the normal fan of a generalized permutahedron
is encoded by a preposet (i.e. a reflexive and transitive binary relation) while
the normal fan is encoded by a complete fan of preposets [PRW08, Section
3]. In this context, our Theorem 2.18 says that when a generalized permuta-
hedron is a hypergraphic polytope, the complete fan of preposets encoding
its normal fan can be understood in terms of acyclic orientations. Postnikov-
Reiner-Williams [PRW08, Corollary 3.6] determine which complete fans of
preposets correspond to complete fans of simplicial cones (and hence to
simple polytopes). They observe that cones of codimension 1 contained in a
given cone of a normal fan are in bijection with the covering relations of the
preposet corresponding to the cone [PRW08, Proposition 3.5]. We state an
equivalent result, translated to our language, for hypergraphic polytopes.

IfD is a directed acyclic graph we can think of it as a poset on its vertices
and covering relations given by its edges. We will denote the Hasse diagram
of this poset Hasse(D) (i.e. the transitive reduction of D). Let G be a hy-
pergraph, F ∈ Flats(G), and O ∈ O(G/F ). We will identify the faces of PG

and acyclic orientations via Theorem 2.18. The faces of PG containing O as a
face of codimension 1 are then in bijection with edges of Hasse((G/F )/O).
Furthermore, if we contract a given edge e of Hasse((G/F )/O) there is a
(necessarily unique) pair (F ′,O′) such that F ′ ∈ Flats(G), O′ is an acyclic
orientation of G/F ′, and (G/F ′)/O′ is equal to (G/F )/O contracted by e.
The pair (F ′,O′) can be obtained using Lemma 2.9. We record this result
now as a lemma for later use.

Lemma 3.1. For F ∈ Flats(G) and O ∈ O(G/F ), the faces of PG con-
taining the face indexed by O as a face of codimension 1 are in bijection
with edges of Hasse((G/F )/O), and each orientation O′ ∈ AO correspond-
ing to such a face can be obtained by contracting (G/F )/O by an edge of
Hasse((G/F )/O).

Theorem 3.2. Let G be a hypergraph. The polytope PG is a simple polytope
if and only if for every O ∈ O0(G) the Hasse diagram Hasse(G/O) is a
forest.

Proof. If G has n vertices, then the dimension of PG is n − c where c is
the number of connected components of G. Observe that G/O will have c
connected components for any acyclic orientationO, and henceHasse(G/O)
will also have c connected components. Now PG is a simple polytope if
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and only if each vertex of PG is incident to exactly n − c edges of PG. By
Lemma 3.1 we know that the edges of the polytope PG incident to the vertex
corresponding to O ∈ O0(G) are in bijective correspondence to the edges
of Hasse(G/O). The theorem follows since Hasse(G/O) has n− c edges if
and only if it is a forest.

When G is a simple graph the graphic zonotope PG is simple if and only
if the biconnected components of G are cliques [PRW08, Proposition 5.2].
This is equivalent to G being the line graph of a forest [PRW08, Remark
5.3]. Theorem 3.2 gives a characterization of when a hypergraphic polytope
is simple, but it is not always easy to verify the conditions of the theorem.
Nonetheless we now illustrate Theorem 3.2 with the forthcoming examples.

We now define building sets and nestohedra following [Pos09]. A building
set B on [n] is a collection of nonempty subsets of [n] satsifying the following
two conditions

(i) if I, J ∈ B and I ∩ J �= ∅, then I ∪ J ∈ B,
(ii) and {i} ∈ B for all i ∈ [n].

Given a building set B define the nestohedron PB as the Minkowski sum

PB =
∑
I∈B

ΔI .

For such B we will consider the hypergraph GB with vertex set [n] and
hyperedge set consisting of I ∈ B such that |I| ≥ 2. The hypergraphic
polytope PGB and the nestohedron PB only differ by translation.

Proposition 3.3. Any nestohedron is a simple polytope.

Proof. Let B be any building set and let G = GB. We will show for any
O ∈ O0(G) that Hasse(G/O) is a forest. The corollary will then follow
from Theorem 3.2. In order for Hasse(G/O) to be a forest, we must not
be able to find a cycle in the underlying undirected graph. In fact, we will
show if we have a directed path from b to d and a directed path from c to d
in G/O, then we must also have a directed path from b to c or from c to b
in G/O. This shows that in Hasse(G/O) any vertex has in-degree at most
1. It follows that the underlying undirected graph of Hasse(G/O) cannot
contain a cycle since any acyclic orientation of a cycle graph must contain
at least one vertex of in-degree 2.

Assume that the sequences b = u0, u1, u2 . . . , up = d and
c = v0, v1, v2, . . . , vq = d give directed paths in Hasse(G/O). This means
we have sequences of hyperedges I1, I2, . . . , Ip and J1, J2, . . . , Jq such that
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• ui−1, ui ∈ Ii where ui−1 is the source in O
• vi−1, vi ∈ Ji where vi−1 is the source in O.

Since B was a building set and O is an acyclic orientation it follows that
there exists a hyperedge I containing b and d where b is the source in O,
and there also exists a hyperedge J containing c and d where c is the source
O. However, again using the fact that B is a building set we must have the
hyperedge I ∪J containing b, c, and d. For the orientation O to be acyclic it
follows either b or c must be the source of I ∪ J . Thus we must have either
(b, c) or (c, b) in G/O and the proof is complete.

Remark 3.4. Nestohedra are known to be simple from work of Post-
nikov [Pos09, Theorem 7.4] and Feichtner-Sturmfels [FS05, Theorem 3.14].

3.1. Pitman-Stanley polytopes

For any n and A ⊆ [n] with n ∈ A we define the (n − 1)-dimensional
generalized Pitman-Stanley polytope as the Minkowski sum

PSn,A =
∑
a∈A

Δ{1,2,...,a}.

Notice that PSn,[n] coincides with the Pitman-Stanley polytope from [SP02].
We also observe that PSn,A is a translate of a nestohedron.

The Pitman-Stanley polytope PSn,[n] is closely related with parking
functions. A parking function of length n is a sequence of nonnegative in-
tegers a = (a1, a2, . . . , an) such that bi ≤ i − 1 where b1 ≤ b2 ≤ · · · ≤ bn is
the increasing rearrangement of a. For any set of nonnegative integers B we
define Parkn,B to be the collection of parking functions of length n which are
sequences of elements taken from B. Given a finite set of positive integers
A with n = maxA, define Ā := {n− a : a ∈ A}.
Proposition 3.5. Consider A = {a1 < a2 < · · · < ak} with 1 �∈ A and
n = maxA. The polytope PSn,A is a simple polytope with f -vector entries

fj =
∑

(α1,α2,...,αk)
0≤αi≤ai−ai−1

α1+α2+···+αk=j

k∏
i=1

(
ai − ai−1 + 1

αi + 1

)

where a0 = 1. Moreover, the normalized volume of PSn,A is given by

Vol(PSn,A) = |Parkn−1,Ā|.
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Proof. Let A = {a1 < a2 < · · · < ak} and G = {[a1], [a2], · · · , [ak]}. Notice

that PSn,A = PG is a hypergraphic polytope. The polytope PSn,A is simple

by Proposition 3.3 since G is the hypergraph of a building set. The flats of G

are of the form Fi = G
∣∣
([ai],{ai+1},...,{n}) for 0 ≤ i ≤ k. The j-faces of PSn,A

correspond to acyclic orientations O of G/F where F is a flat and G/F has

n− j vertices.

If O is an acyclic orientation of G/Fi∗ for some 0 ≤ i∗ ≤ k, then for

i > i∗ we set [ai] = {ai∗ , ai∗+1, . . . , ai} to represent the hyperedge [ai] after

contraction. We obtain a sequence of sets (S1, S2, . . . , Sk) where Si ⊆ ([ai] \
[ai−1])� {∗} for each 1 ≤ i ≤ k. We start by letting Si = ([ai] \ [ai−1])∪ {∗}
for 1 ≤ i ≤ i∗. For i∗ < i ≤ k, we get the set Si by the following rule:

• If the sources of [ai] in O are disjoint from the sources of [ai−1] in O,

then let Si be the sources of [ai] in O.

• Otherwise the sources of [ai] in O are not disjoint from the sources

[ai−1] in O, and in this case we let Si be ∗ along with the sources of

[ai] in O which are in [ai] \ [ai−1].

Given a sequence of sets (S1, S2, . . . , Sk) where Si ⊆ ([ai] \ [ai−1])∪ {∗},
we construct an orientation O as follows. We let i∗ be chosen so that Si∗+1 �=
([ai∗+1] \ [ai∗ ]) ∪ {∗} but Si = ([ai] \ [ai−1]) ∪ {∗} for all i < i∗. In this case

we construct an orientation of G/Fi∗ . If Si ⊆ [ai] \ [ai−1], then we let the

sources of [ai] be the the elements of Si. Otherwise if ∗ ∈ Si, then we let the

sources of [ai] be the sources of [ai−1] along with the elements of Si \ {∗}.
The two processes are inverse to each other. We have used the fact that

if e ⊂ f are hyperedges, then in any acyclic orientation the sources of f

must either contain all sources of e or must be disjoint. It is clear that there

are

∑
(α1,α2,...,αk)
0≤αi≤ai−ai−1

α1+α2+···+αk=j

k∏
i=1

(
ai − ai−1 + 1

αi + 1

)

such sequences of sets. The result on the f -vector follows.

It remains to compute the volume of PG. Since G is a connected hyper-

graph on n vertices, it follows from [Pos09, Corollary 9.4] that the normalized

volume of the hypergraphic polytope PG is equal to the number of sequences

(e1, e2, . . . , en−1) of hyperedges of G such that |ei1 ∪ ei2 ∪ · · · ∪ eik | ≥ k + 1

for any distinct ii, i2, · · · , ik. We will exhibit a bijection between the set of
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such sequences and Parkn−1,Ā. We claim that the map

(e1, e2, . . . , en−1) �→ (n− |e1|, n− |e2|, . . . , n− |en−1|)

gives this desired bijection between the sequences of hyperedges contributing
to the volume of PG and Parkn−1,Ā. The inverse map is

(a1, a2, · · · , an−1) �→ (e1, e2, . . . , en−1)

where ei is the unique hyperedge in G with |ei| = n − ai. For a sequence
of hyperedges (e1, e2, . . . , en−1) it is clear each n − |ei| ∈ Ā if each ei ∈ G.
Let f1 ⊆ f2 ⊆ · · · ⊆ fn−1 be the increasing rearrangement of the sequence
of hyperedges (e1, e2, . . . , en−1). In order for this sequence to contribute to
the volume we must have |fi| ≥ i+ 1. Since |fn−i| ≥ n− i+ 1 if and only if
n− |fn−i| ≤ i− 1 the result follows.

Remark 3.6. The cardinality of Parkn,Ā also coincides with the volume
of the flow polytope corresponding to the Pitman-Stanley graph PSn+1 as
defined in [BDH+] with flow vector (a1, . . . , an) where ai = 1 if ai − 1 ∈ Ā
and 0 otherwise.

Now let us apply Proposition 3.5 when n = mk+1 and A = {k+1, 2k+
1, . . . , n}. In this case the f -vector entries of PSn,A are given by

fj =
∑

(α1,α2,...,αm)
0≤αi≤k

α1+α2+···+αm=j

m∏
i=1

(
k + 1

αi + 1

)
.

By letting bi = |{� : a� = i}| we obtain

(3) fj =
∑

b0,b1,··· ,bk≥0
b0+b1+···+bk=m
b1+2b2+···+kbk=j

(
m

b0, b1, . . . , bk

) k∏
i=0

(
k + 1

i+ 1

)bi

.

From either of these expressions we can observe that the number of vertices
of such a polytope is f0 = (k + 1)m. Also, the number of facets of this
mk-dimensional polytope is fmk−1 = m(k + 1).

Example 3.7 (k=1). If k = 1 we have A = {2, 3, . . . , n} and thus the
polytope PSn,A conincides with the Pitman-Stanley polytope. Proposition
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3.5 tells us that the f -vector entries of PSn,A are given by

fj =
∑

b0,b1≥0
b0+b1=n−1

b1=j

(
n− 1

b0, b1

)(
2

1

)b0(2

2

)b1

= 2n−1−j

(
n− 1

j

)
.

which agrees with the f -vector of an (n − 1)-dimensional hypercube. The

Pitman-Stanley polytope PSn,[n] is known to be combinatorially equivalent

to an (n− 1)-dimensional hypercube [SP02, Theorem 19].

Example 3.8 (k=2). The case when k = 2 and n = 2m + 1 with A =

{3, 5, . . . , n} gives us that the f -vector entries are

fj =
∑

b0,b1,b2≥0
b0+b1+b2=m
b1+2b2=j

(
m

b0, b1, b2

)(
3

1

)b0(3

2

)b1(3

3

)b2

When j = 2j′ is even we obtain

fj =

j′∑
r=0

(
m

m− j′ − r, 2r, j′ − r

)
3m−j′+r

= 3m−j′
j′∑

r=0

(
m

m− j′ − r, 2r, j′ − r

)
3r.

If j = 2j′ + 1 is odd we obtain

fj =

j′∑
r=0

(
m

m− j′ − r − 1, 2r + 1, j′ − r

)
3m−j′+r

= 3m−j′
j′∑

r=0

(
m

m− j′ − r − 1, 2r + 1, j′ − r

)
3r.

We see that 3 divides fj for 0 ≤ j ≤ 2m. This generalizes to sets A =

{(p− 1) + 1, 2(p− 1) + 1, . . . n} where n = m(p− 1) + 1 and p is prime.

Proposition 3.9. Let n = m(p− 1) + 1 for some prime p and let

A = {(p− 1) + 1, 2(p− 1) + 1, . . . n}.
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Then the polytope PSn,A is m(p − 1)-dimensional and its f -vector entries
satisfy

fj ≡ 0 (mod p)

for 0 ≤ j < m(p− 1).

Proof. From Equation (3) we see that

fj =
∑

b0,b1,··· ,bp−1≥0
b0+b1+···+bp−1=m

b1+2b2+···+(p−1)bp−1=j

(
m

b0, b1, . . . bp−1

) p−1∏
i=0

(
p

i+ 1

)bi

.

Since 0 ≤ j < m(p − 1) each term in the sum must have bi �= 0 for some
0 ≤ i < p− 1, and hence this term will be divisble by p since it will have a
factor of

(
p

i+1

)
which is divisible by p.

3.2. Hyper-permutahedra

In [Agn17] Agnarsson studies a class of generalized permutahedra which are
hypergraphic polytopes. Polytopes in this class are called hyper-permuta-
hedra and defined by Πn−1(k − 1) := PG for G =

([n]
k

)
. We always assume

k ≥ 2. Hyper-permutahedra are known to be simple polytopes [Agn17,
Proposition 2.4]. We now give another proof that Πn−1(k − 1) is simple
using acyclic orientations in hypergraphs.

Proposition 3.10. The hyper-permutahedron Πn−1(k−1) is a simple poly-
tope.

Proof. Let G =
([n]
k

)
and consider O ∈ O0(G). We claim that there is a

unique set composition A = ({a1}, {a2}, . . . , {an−k+1}, B) |= [n] such that
Ω(A) = O and the Hasse(G/O) is a tree with edges

{(aj , aj+1) : 1 ≤ j < n− k + 1} ∪ {(an−k+1, b) : b ∈ B}.

We proceed by induction on n − k. As a base case, first assume n = k. In
this situation G = {[n]} is a single hyperedge and for any O ∈ O0 we have
O =

{
({a}, [n] \ {a})

}
for a unique a ∈ [n]. The Hasse(G/O) has edges{

(a, b) : b ∈ [n] \ {a}
}
.

Hence the set composition A = ({a}, [n]\{a}) determines Hasse(G/O) and
Ω(A) = O.
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Assume now that n − k > 0 and take O ∈ O0(G). Recall that by def-
inition O ∈ O0(G) is such that V (G/O) = [n]. We have that G/O is an
acyclic directed graph, and thus G/O has a source a ∈ [n]. Suppose a′ �= a

is another source of G/O. Let e ∈
([n]
k

)
= G be such that a, a′ ∈ e. The

orientation of e in O must be such that both a and a′ are the head of e, a
contradiction. We must then have a unique source and we let a1 = a. Note
that for any b ∈ [n] \ {a}, there is a hyperedge containing both a and b.
Thus (a, b) is an edge in G/O. Next consider G′ = G \ {a1} which is isomor-

phic to
([n−1]

k

)
. The orientation O ∈ O0(G) corresponds to an orientation

O′ ∈ O0(G
′) by forgetting any hyperedges containing a1. By induction hy-

pothesis Hasse(G′/O′) is obtained from A′ = ({a2}, . . . , {an−k+1}, B) such
that Ω(A′) = O′. Since a1 is smaller than all element of Hasse(G′/O′) with
unique minimal element a2, it follows that Hasse(G/O) is obtained from
A = ({a1}, {a2}, . . . , {an−k+1}, B) |= [n] as required and by construction
Ω(A) = O. We have Hasse(G/O) is a tree and so Πn−1(k − 1) is a simple
polytope by Theorem 3.2. Since the sequence of sources (a1, a2, . . . , an−k+1)
are unique at each stage, we have that the set composition A is unique.

In the proof above, we saw that O ∈ O0(G) determines a unique set com-
position A = ({a1}, . . . , {an−k+1}, B) |= [n]. The converse is also true: given
any A = ({a1}, . . . , {an−k+1}, B) |= [n], the orientation Ω(A) ∈ O0(G).
It then follows that |O0(G)| = (n − k + 1)!

(
n

k−1

)
= n!

(k−1)! and therefore

Πn−1(k − 1) has n!
(k−1)! vertices. We now illustrate this with an example.

Example 3.11. Let G =
(
[5]
3

)
. We consider the orientation O ∈ O0(G)

consisting of:

({2}, {1, 3}) ({2}, {1, 4}) ({2}, {1, 5}) ({4}, {1, 3}) ({1}, {3, 5})
({4}, {1, 5}) ({2}, {3, 4}) ({2}, {3, 5}) ({2}, {4, 5}) ({4}, {3, 5})

This orientation corresponds to the set composition A = ({2}, {4}, {1},
{3, 5}). The Hasse diagram Hasse(G/O) is shown in Figure 1.

An ordered pseudo-partition (OPP) [Agn17, Definition 4.9] of [n] is a
sequence of sets (A0, A1, . . . , Ap, B) where:

• [n] = A0 �A1 � · · · �Ap �B.
• A0, A1, . . . , Ap �= ∅.

Here B is allowed to be empty.

Remark 3.12. Our ordering of the parts slightly differs from [Agn17, Def-
inition 4.9]. We place B as the last part rather than the first part. This
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2

4

1

3 5

Figure 1: The Hasse diagram Hasse(G/O) from Example 3.11.

placement of B fits more natural with notions we have developed around
acyclic orientations.

Let OPPn,k,j denote the collection of ordered pseudo-partitions
(A0, . . . , Ap, B) of [n] with:

• 0 ≤ |B| ≤ k − 1.

• k ≤ |B|+ |Ap| ≤ n.

• n− j = |B|+ p+ 1.

Proposition 3.13 ([Agn17, Theorem 4.10]). The hyper-permutahedron
Πn−1(k − 1) has f -vector entries

fj = |OPPn,k,j |.

Proof. Let G =
([n]
k

)
and take O ∈ O0(G). From Proposition 3.10 and its

proof we know that Hasse(G/O) is obtained from a unique set composi-
tion A = ({a1}, . . . , {an−k+1}, B). This gives us (A0, . . . , Ap, B) ∈ OPPn,k,0

where Ai = {ai+1}. Conversely, given (A0, . . . , Ap, B) ∈ OPPn,k,0, we must
have that

|B| = n− p− 1 ≤ k − 1 =⇒ n− k ≤ p.

The only possibility is if |B| = k − 1, p = n− k and |Ai| = 1 and this gives
us a unique O ∈ O0(G). Hence f0 = |OPPn,k,0|.

For the 1-faces, we know that they are obtained by contracting a single
edge of Hasse(G/O) for all O ∈ O0(G). For any O ∈ O0(G), we have its
set composition A = ({a1}, . . . , {an−k+1}, B). There are two types of edges
in Hasse(G/O). If we contract an edge (ai, ai+1) then we obtain a unique
OPP

A′ = ({a1}, . . . , {ai, ai+1}, . . . {an−k+1}, B) ∈ OPPn,k,1.
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If we contract an edge (an−k+1, b) then we obtain

A′ = ({a1}, . . . , {an−k+1, b}, B \ {b}) ∈ OPPn,k,1.

Conversely, given A′ ∈ OPPn,k,1 there are exactly two possible Hasse di-
agrams that can contract to it giving us a 1-face. Hence f1 = |OPPn,k,1|.
We can continue this iteration to show that fj = |OPPn,k,j | for j > 1. The
process also clarifies why we want the possibility of B to be empty in the
definition of OPPs.

Indeed one sees that the data any OPP (A0, A1, . . . , Ap, B) is equivalent
to a poset on {Ai : 0 ≤ i ≤ p} �B (i.e. a preposet on [n]) where

(i) Ai > Ai′ for each i < i′,
(ii) Ai > b for each i and b ∈ B,
(iii) and the b and b′ are incomparable for any distinct b, b′ ∈ B.

Moreover, if (A0, A1, . . . , Ap, B) ∈ OPPn,k,j after contracting any edge in
the Hasse diagram of the equivalent preposet just described we will obtain
a preposet equivalent to an element of OPPn,k,j+1. We can see that any
element of OPPn,k,j can be obtain by j contractions of a poset equivalent
to an element of OPPn,k,0. For a given (A0, A1, . . . , Ap, B) ∈ OPPn,k,j first
choose any linear order Ai for 1 ≤ i ≤ p. Next declare that a ∈ Ai is greater
that a′ ∈ A′

i for any i < i′. Lastly add that relations that a ∈ Ai for any i is
greater than each b ∈ B. There are many ways on doing this depending on
the number of flags of faces in the hyper-permutahedron. We can also see
that any j contractions in the Hasse diagram of the poset corresponding to
an element of OPPn,k,0 will result is a preposet equivalent to the data of an
element of OPPn,k,j
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