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Patterns in words of ordered set partitions

Dun Qiu and Jeffrey Remmel

An ordered set partition of {1, 2, . . . , n} is a partition with an or-
dering on the parts. Let OPn,k be the set of ordered set partitions
of [n] with k blocks. Godbole, Goyt, Herdan and Pudwell defined
OPn,k(σ) to be the set of ordered set partitions in OPn,k avoiding
a permutation pattern σ and obtained the formula for |OPn,k(σ)|
when the pattern σ is of length 2. Later, Chen, Dai and Zhou
found a formula algebraically for |OPn,k(σ)| when the pattern σ
is of length 3.

In this paper, we define a new pattern avoidance for the set
OPn,k, called WOPn,k(σ), which includes the questions proposed
by Godbole, Goyt, Herdan and Pudwell. We obtain formulas for
|WOPn,k(σ)| combinatorially for any σ of length 3. We also define
3 kinds of descent statistics on ordered set partitions and study
the distribution of the descent statistics on WOPn,k(σ) for σ of
length 3.
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1. Introduction

In [4], Godbole, Goyt, Herdan and Pudwell initiated the study of patterns
in ordered set partitions. In particular, they studied the number of or-
dered set partitions which avoid certain types of permutations of length
2 and 3. A partition π of [n] = {1, . . . , n} is a family of nonempty, pair-
wise disjoint subsets B1, B2, . . . , Bk of [n] called parts (blocks) such that⋃k

i=1Bi = [n]. We let �(π) denote the number of parts in π and |π| = n
denote the size of π. We let min(Bi) and max(Bi) denote the minimal and
maximal elements of Bi and we use the convention that we order the parts
so that min(B1) < · · · < min(Bk). To simplify notation, we shall write π
as B1/ · · · /Bk. Thus we would write π = 134/268/57 for the set partition
π of [8] with parts B1 = {1, 3, 4}, B2 = {2, 6, 8} and B3 = {5, 7}. Pat-
tern avoidance problems in set partitions was studied by Sagan [17]; Jeĺınek
and Mansour [8]; Jeĺınek, Mansour and Shattuck [9]. See Mansour [14] for a
comprehensive introduction to set partitions.

An ordered set partition with underlying set partition π is just a per-
mutation of the parts of π, i.e. δ = Bσ1

/ · · · /Bσk
for some permutation σ

in the symmetric group Sk. For example, δ = 57/134/268 is an ordered
set partition of the set [8] with underlying set partition π = 134/268/57.
Given an ordered set partition δ = Bσ1

/ · · · /Bσk
, we let the word of δ, w(δ),

be the word obtained from δ by removing all the slashes. For example, if
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δ = 57/134/268, then w(δ) = 57134268. We let OPn denote the set of or-

dered set partitions of [n] and OPn,k denote the set of ordered set partitions

of [n] with k parts.

If b1, . . . , bk are positive integers, then we let

1. OP [b1,...,bk] denote the set of ordered set partitions B1/ · · · /Bk of [b1+

· · ·+ bk] such that |Bi| = bi for i = 1, . . . , bk,

2. OPn,{b1,...,bk} denote the set of ordered set partitions π ∈ OPn such

that the size of any part in π is an element of {b1, . . . , bk}, and
3. OP〈bβ1

1 ,...,b
βk
k 〉 denote the set of ordered set partitions π of [

∑k
i=1 βibi]

which has βi parts of size bi for i = 1, . . . , k.

Note that ⋃
n≥0

OPn,{b1,...,bk} =
⋃

β1≥0,...,βk≥0

OP〈bβ1
1 ,...,b

βk
k 〉.

Clearly, |OP [b1,...,bk]| =
(

n
b1,...,bk

)
if b1 + · · ·+ bk = n.

Given a sequence of distinct positive integers w = w1 · · ·wn, we let

red(w) denote the permutation in Sn obtained from w by replacing the ith

smallest letter in w by i. For example, red(4592) = 2341. Following [4], we

say that a permutation σ = σ1 · · ·σj occurs in an ordered set partition

δ = B1/ · · · /Bk if and only if there exists 1 ≤ i1 < · · · < ij ≤ k and

bim ∈ Bim such that red(bi1 · · · bij ) = σ, and δ avoids σ if σ does not occur in

δ. For example, if δ = 57/134/268, then 213 occurs in δ since red(518) = 213,

but δ avoids 123 because every element in the first part {5, 7} of δ is bigger

than every element in the second part {1, 3, 4} of δ. If α is a permutation in

Sj , then we let OPn(α) denote the set of ordered set partitions of [n] that

avoid α. We can then define OPn,k(α), OP [b1,...,bk](α), OPn,{b1,...,bk}(α) and
OP〈bβ1

1 ,...,b
βk
k 〉(α) in a similar manner. We let

opn(α) := |OPn(α)|,
opn,k(α) := |OPn,k(α)|,

op[b1,...,bk](α) := |OP [b1,...,bk](α)|, and

op〈bβ1
1 ,...,b

βk
k 〉(α) := |OP〈bβ1

1 ,...,b
βk
k 〉(α)|.

Godbole, Goyt, Herdan and Pudwell [4] proved a number of interesting

results about these quantities. For example, they showed that

opn,k(σ) = opn,k(123)
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for all permutations σ of length 3. They also proved that

opn,3(123) = opn,3(132) =

(
n2

8
+

3n

8
− 2

)
2n + 3

and

opn,n−1(123) =
3(n− 1)2

(
2n−2
n−1

)
n(n+ 1)

.

Later, Chen, Dai and Zhou [2] proved that

(1.1) 1 +
∑
n≥1

tn
n∑

k=1

opn,k(123)x
k

=
−x+ 2xt− 2t+ 2t2x+ 2t2 + x

√
1− 4xt− 4t+ 4t2x+ 4t2

2t(x+ 1)2(t− 1)
.

The goal of this paper is to study an alternative notion of pattern avoid-
ance in ordered set partitions. Given an ordered set partition δ = B1/ · · · /Bk

of [n], let w(δ) = w1 · · ·wn denote the word of δ. Then we say that a per-
mutation α = α1 · · ·αj ∈ Sj occurs in the word of δ if there exists
1 ≤ i1 < · · · < ij ≤ n such that red(wi1 · · ·wij ) = α. Thus α occurs in
the word of δ if α classically occurs in w(δ). We say that an ordered set
partition δ word-avoids α if α does not occur in the word of δ. For ex-
ample, if δ = 57/134/268, we saw that δ avoids 123 in the sense of [4],
but clearly 123 occurs in the word of δ since red(134) = 123. Then we let
WOPn(α) denote the set of ordered set partitions which word-avoid α. Sim-
ilarly, we can define WOPn,k(α), WOP [b1,...,bk](α), WOPn,{b1,...,bk}(α) and
WOP〈bβ1

1 ,...,b
βk
k 〉(α). Then we let

wopn(α) := |WOPn(α)|,
wopn,k(α) := |WOPn,k(α)|,

wop[b1,...,bk](α) := |WOP [b1,...,bk](α)|, and

wop〈bα1
1 ,...,b

αk
k 〉(α) := |WOP〈bα1

1 ,...,b
αk
k 〉(α)|.

We also study the corresponding generating functions

WOPα(t) := 1 +
∑
n≥1

wopn(α) t
n,

WOPα(x, t) := 1 +
∑
n≥1

tn
n∑

k=1

wopn,k(α) x
k, and
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WOPα,{b1,...,bk}(x, t, q1, . . . qk) :=∑
β1≥0

· · ·
∑
βk≥0

wop〈bβ1
1 ,...,b

βk
k 〉(α) t

∑k
i=1 biβix

∑k
i=1 βi qβ1

1 · · · qβk

k .

Note that wopn,k(321) = opn,k(321). That is, if 321 occurs in the word of

an ordered set partition δ, then the occurrences of 3, 2 and 1 must have been

in different parts of the partition δ so that 321 would occur in δ in the sense

of Godbole, Goyt, Herdan and Pudwell [4]. However, for other σ ∈ S3, it is

not the case that wopn,k(σ) = opn,k(σ). In fact, it follows from the results of

the this paper that we have 3 Wilf-equivalence where wopn(σ) for σ ∈ S3,

namely wopn(123), wopn(132) = wopn(231) = wopn(312) = wopn(213) and

wopn(321).

We shall also study refinements of these generating functions by descents.

Recall that for a permutation σ = σ1 · · ·σn ∈ Sn, the descent set of σ is

defined as Des(σ) = {i : σi > σi+1}, and the number of descents of σ is

des(σ) = |Des(σ)|. In fact, there are four natural notions of descents in an

ordered set partition π = B1/ · · · /Bk ∈ OPn. That is, we let des(π) be the

number of descents in the word of π, w(π) = w1 · · ·wn. Thus des(π) := |{i :
wi > wi+1}|. Given two consecutive parts Bi and Bi+1, we write Bi >p Bi+1

if every element of Bi is greater than every element of Bi+1 and we write

Bi >min Bi+1 if the minimal element of Bi is greater than the minimal

element of Bi+1. We shall call elements i such that Bi >p Bi+1 part-descents

and elements i such that Bi >min Bi+1 min-descents. We also let i such that

max(Bi) > max(Bi+1) be a max-descent. Then we define

des(π) := |{i : w(π)i > w(π)i+1}| = |{i : max(Bi) > min(Bi+1)}|,
pdes(π) := |{i : Bi >p Bi+1}| = |{i : min(Bi) > max(Bi+1)}|,

mindes(π) := |{i : Bi >min Bi+1}| = |{i : min(Bi) > min(Bi+1)}| and

maxdes(π) := |{i : max(Bi) > max(Bi+1)}|.

The statistics des, pdes and mindes are not equi-distributed on OPn (as

can be seen when n = 3). We shall show in Section 2 that the statistics

maxdes and mindes are equi-distributed on OPn. A number of other Euler-

Mahonian statistics of ordered set partitions were studied in [6, 7, 10, 16, 18].

Wilson [19] also studied Mahonian statistics of ordered multiset partitions.

For each type of generating function above, we consider the refined gen-

erating function where we keep track of the number of descents of each type.
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In particular, we shall study the following generating functions,

WOP
des
α (x, y, t) := 1 +

∑
n≥1

tn
∑

π∈WOPn(α)

x�(π)ydes(π),

WOP
pdes
α (x, y, t) := 1 +

∑
n≥1

tn
∑

π∈WOPn(α)

x�(π)ypdes(π), and

WOP
mindes
α (x, y, t) := 1 +

∑
n≥1

tn
∑

π∈WOPn(α)

x�(π)ymindes(π).

Similarly, we shall study

WOP
des
α,{b1,...,bk}(x, y, t, q1, . . . , qn)

:=
∑

β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ1
1

,...,b
βk
k

〉
(α)

t|π|x�(π)ydes(π)qβ1

1 · · · qβk

k ,

WOP
pdes
α,{b1,...,bk}(x, y, t, q1, . . . , qn)

:=
∑

β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ1
1

,...,b
βk
k

〉
(α)

t|π|x�(π)ypdes(π)qβ1

1 · · · qβk

k ,

WOP
mindes
α,{b1,...,bk}(x, y, t, q1, . . . , qn)

:=
∑

β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ1
1

,...,b
βk
k

〉
(α)

t|π|x�(π)ymindes(π)qβ1

1 · · · qβk

k .

The main focus of this paper is studying the generating functions de-

scribed above where α is in S2 or S3. One advantage of our notion of

word-avoidance in ordered set partitions is that we can employ standard

techniques from the theory of generating functions such as the Lagrange

Inversion Theorem to give us nice answers. For example, we will show that

WOP132(x, t) =
t+ 1−

√
(t+ 1)2 − 4t(x+ 1)

2t(1 + x)
,

wopn,k(132) =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
,
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and

wop〈bβ1
1 ,...,b

βk
k 〉(132) =

1

n

(
k

β1, . . . , βk

)(
n+ k

n− 1

)
,

where n =
∑k

i=1 biβi and k =
∑k

i=1 βi.
Similarly, we will show that

WOP
des
132(x, y, t) =

(1 + 2yt+ xyt− t− xt)

2t(y + xy)

−
√

((1 + 2yt+ xyt− t− xt))2 − 4t(1− t+ ty)(x+ yx)

2t(y + xy)

and

∑
π∈WOPn,k(132)

ydes(π) =
1

k

(
n− 1

k − 1

) k−1∑
j−0

(
k

j

)(
n− 1

k − 1− j

)
yk−1−j .

The outline of this paper is as follows. In Section 2, we will compute gen-
erating functions for ordered set partitions word-avoiding patterns of length
2 and prove some symmetries in the generating functions WOP

des
α (x, y, t),

WOP
pdes
α (x, y, t) and WOP

mindes
α (x, y, t) for α ∈ Sj and j ≥ 3. In Sec-

tion 3, we will show how to compute generating functions WOP
des
α (x, y, t)

for all α ∈ S3. In Sections 4 and 5, we will study generating functions
WOP

pdes
α (x, y, t) and WOP

mindes
α (x, y, t) for α in S3. In Section 6, we will

summarize open problems about our research.

2. Preliminaries

The structures of elements in WOPn(12) and WOPn(21) are quite easy
to describe. For example, if π ∈ WOPn(12), then the word of π must be
n(n− 1) · · · 21 and hence π = n/n− 1/ · · · /1. Similarly, if π ∈ WOPn(21),
then the word of π must be 12 · · · (n− 1)n and hence π must be of the form
B1/B2/ · · · /Bk where for each i = 1, . . . , k − 1, all the elements of Bi are
smaller than all the elements of Bi+1. It follows that wopn,k(21) =

(
n−1
k−1

)
because to specify an ordered set partition π ∈ WOPn,k(21) with k parts,
we only need to specify where we place the k− 1 slashes in the n− 1 spaces
between the letters 1, . . . , n.

Thus,

WOP
des
12 (x, y, t) = 1 +

∑
n≥1

yn−1xntn = 1 +
xt

1− xyt
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and WOP
des
12 (x, y, t) = WOP

pdes
12 (x, y, t) = WOP

mindes
12 (x, y, t). Similarly,

WOP
des
21 (x, y, t) = 1 +

∑
n≥1

tn
n∑

k=1

(
n− 1

k − 1

)
xk

= 1 + xt
∑
n≥1

tn−1
n∑

k=1

(
n− 1

k − 1

)
xk−1

= 1 + xt
∑
n≥1

tn−1(1 + x)n−1

= 1 +
xt

1− t(1 + x)
,

and WOP
des
21 (x, y, t) = WOP

pdes
21 (x, y, t) = WOP

mindes
21 (x, y, t).

Next consider the generating functionsWOP
des
α (x, y, t),WOP

pdes
α (x, y, t),

and WOP
mindes
α (x, y, t) when α ∈ Sj for j ≥ 3. There are some obvious

symmetries in our situation. Recall that for a permutation σ = σ1 · · ·σn, the
reverse of σ is defined by σr = σn · · ·σ1 and the complement of σ is defined
by σc = (n+1−σ1) · · · (n+1−σn). It is easy to see that des(σ) = des((σr)c).

We can define reverse and complement on ordered set partitions as well.

That is, suppose that π = B1/ · · · /Bk is an ordered set partition of [n].

Then if Bi = {ai1 < ai2 < · · · < aij}, we let the complement of Bi be

Bc
i = {(n+1−aij) < · · · < (n+1−ai2) < (n+1−ai1)}. Then we let the reverse

of π be πr = Bk/ · · · /B1 and the complement of π be πc = Bc
1/ · · · /Bc

k. Thus

(πr)c = Bc
k/ · · · /Bc

1.

It is easy to see that if w(π) = w1 · · ·wn, then the word of (πr)c is (n+1−
wn) · · · (n+1−w1) = (w(π)r)c. Similarly it is easy to see that if Bi >p Bi+1,

then Bc
i+1 >p B

c
i ; and if min(Bi) > min(Bi+1), then max(Bc

i+1) > max(Bc
i ).

Thus the operation of reverse-complement shows that maxdes and mindes

are equi-distributed on OPn, and∑
π∈WOPn,k(α)

x�(π)ydes(π) =
∑

π∈WOPn,k((αr)c)

x�(π)ydes(π),

∑
π∈WOPn,k(α)

x�(π)ypdes(π) =
∑

π∈WOPn,k((αr)c)

x�(π)ypdes(π),

∑
π∈WOPn,k(α)

x�(π)ymaxdes(π) =
∑

π∈WOPn,k((αr)c)

x�(π)ymindes(π).

This allows us to skip the computation ofmaxdes distribution onWOPn(α).
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It follows that for all 1 ≤ b1 < · · · < bs,

WOP
∗
132(x, y, t) = WOP

∗
213(x, y, t),

WOP
∗
231(x, y, t) = WOP

∗
312(x, y, t),

WOP
∗
132,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP

∗
213,{b1,...,bs}(x, y, t, q1, . . . , qs),

and

WOP
∗
231,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP

∗
312,{b1,...,bs}(x, y, t, q1, . . . , qs),

where ∗ is either des or pdes.
Reverse-complement does not always preserve mindes. For example,∑

π∈WOP3(132)

x�(π)ymindes(π) �=
∑

π∈WOP3(213)

x�(π)ymindes(π).

In general, reverse and complement by themselves do not preserve these
generating functions. For example, since |WOPn(123)| �= |WOPn(321)| for
any n ≥ 3, it follows that

WOP
∗
123(x, y, t) �= WOP

∗
321(x, y, t),

where ∗ is des, pdes or mindes.
Our next theorem will show that

WOP
des
312(x, y, t) = WOP

des
213(x, y, t)

and

WOP
mindes
312 (x, y, t) = WOP

mindes
213 (x, y, t).

Thus, there are only three different generating functions of the form
WOP

des
α (x, y, t) for α ∈ S3. Similarly, our next theorem will show that for

all 1 ≤ b1 < · · · < bs,

WOP
des
213,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP

des
312,{b1,...,bs}(x, y, t, q1, . . . , qs)

and

WOP
mindes
213,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP

mindes
312,{b1,...,bs}(x, y, t, q1, . . . , qs).

Theorem 2.1. There is a bijection φn : WOPn(312) → WOPn(213)
such that for all π = B1/ · · · /Bk ∈ WOPn(312), φn(π) = C1/ · · · /Ck ∈
WOPn(213) where |Bi| = |Ci| for i = 1, . . . , k. The number 1 is in posi-
tion k in w(π) if and only if 1 is in position k in w(φn(π)), and des(π) =
des(φn(π)), Des(w(π)) = Des(w(φn(π))), mindes(π) = mindes(φn(π)).



442 Dun Qiu and Jeffrey Remmel

Proof. We shall define φn : WOPn(312) → WOPn(213) by induction on n.

For 1 ≤ n ≤ 2, we let φn be the identity map. Now assume that we have

defined φk : WOPk(312) → WOPk(213) for k ≤ n − 1. We classify the

ordered set partitions π in WOPn(312) by the position of 1 in w(π).

First suppose that 1 occurs in position 1 in w(π). If 1 is in a part by

itself, then π is of the form 1/B2/ · · · /Bk for some k ≥ 2. In this case, we

can subtract 1 from each element in B2/ · · · /Bk to obtain an ordered set

partition π∗ = B∗
2/ · · · /B∗

k in WOPn−1(312). Then let φn−1(B
∗
2/ · · · /B∗

k) =

C∗
2/ · · · /C∗

k and let C2/ · · · /Ck be result of adding 1 to each element of

C∗
2/ · · · /C∗

k . It is easy to see that if we let φn(1/B2/ · · · /Bk) = 1/C2/ · · · /Ck,

then 1/C2/ · · · /Ck ∈ WOPn(213), |Bi| = |Ci| for i = 2, . . . , k, des(1/B2/

· · · /Bk) = des(1/C2/ · · · /Ck), Des(w(1/B2/ · · · /Bk)) = Des(w(1/C2/ · · · /
Ck)), and mindes(1/B2/ · · · /Bk) = mindes(1/C2/ · · · /Ck). If 1 is not in

a part by itself, then π is of the form B1/ · · · /Bk where 1 ∈ B1 and

|B1| ≥ 2. In this case, we can remove 1 from B1 and subtract 1 from

each of the remaining element to obtain an ordered set partition π∗ =

B∗
1/ · · · /B∗

k in WOPn−1(312). Then let φn−1(B
∗
1/ · · · /B∗

k) = C∗
1/ · · · /C∗

k

and let C1/ · · · /Ck be result of adding 1 to each element of C∗
1/ · · · /C∗

k

and then adding 1 to the first part. Again it is easy to see that if we let

φn(B1/ · · · /Bk) = C1/ · · · /Ck, then C1/ · · · /Ck ∈ WOPn(213), |Bi| = |Ci|
for i = 1, . . . , k, des(B1/ · · · /Bk) = des(C1/ · · · /Ck), Des(w(B1/ · · · /Bk)) =

Des(w(C1/ · · · /Ck)), and mindes(B1/ · · · /Bk) = mindes(C1/ · · · /Ck).

Next suppose that 1 occurs in position r in w(π) where r ≥ 2. Then

π must be of the form B1/ · · · /Bj/Bj+1/ · · · /Bk where j ≥ 1 and 1 is

the first element of part Bj+1. Since w(π) is 312-avoiding, it must be the

case all the elements of B1, . . . , Bj are less than all the elements of Bj+1 −
{1}, Bj+2, . . . , Bk. It follows that B1/ · · · /Bj is a set partition of {2, . . . , r}
such that w(B1/ · · · /Bj) reduces to a 312-avoiding permutation and Bj+1−
{1}/ · · · /Bk is a set partition of {r + 1, . . . , n} such that the reduction of

w(Bj+1/ · · · /Bk) is 312-avoiding. Moreover, r − 1 is a descent in w(π) and

Bj >min Bj+1. In this case, we let B∗
j+1/ · · · /B∗

k be the result of subtract-

ing r − 1 from each element of Bj+1, . . . , Bk except the element 1 so that

B∗
j+1/ · · · /B∗

k is an ordered set partition in WOPn−r+1(312) whose word

starts with 1. We let B∗
1/ · · · /B∗

j be the result of subtracting 1 from each ele-

ment of B1/ · · · /Bj so that B∗
1/ · · · /B∗

j is an element of WOPr−1(312). Now

let φr−1(B
∗
1/ · · · /B∗

j ) = C1/ · · · /Cj and φn−r+1(B
∗
j+1/ · · · /B∗

k) = D1/ · · · /
Dk−j . We can then add n− r+ 1 to each element of C1/ · · · /Cj to produce

an ordered set partition C∗
1/ · · · /C∗

j of {n − r + 2, . . . , n} whose word re-

duces to a 213-avoiding permutation such that des(red(w(C∗
1/ · · · /C∗

j ))) =
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des(w(B1/ · · · /Bj)), Des(red(w(C∗
1/ · · · /C∗

j ))) = Des(w(B1/ · · · /Bj)), and
mindes(C∗

1/ · · · /C∗
j ) = mindes(B1/ · · · /Bj). Then we let

φn(π) = C∗
1/ · · · /C∗

j /D1/ · · · /Dk−j .

It is easy to see by induction that des(w(π)) = des(w(φn(π))), Des(w(π)) =
Des(w(φn(π))) and mindes(π) = mindes(φn(π)). Moreover, by construction
1 is in position r in both w(π) and w(φn(π)). The only thing we have to check
is that w(φn(π)) is 213-avoiding, but this follows from the fact that all the
elements in C∗

1/ · · · /C∗
j are bigger than all the elements in D1/ · · · /Dk−j ,

and the permutations red(w(C∗
1/ · · · /C∗

j )) and w(D1/ · · · /Dk−j) are both
213-avoiding.

Figure 1: Bijection φn : WOPn(312) → WOPn(213).

Figure 2 shows that φ5(3/24/15) = 5/34/12. Observe that the number
of descents, word descent set, and the number of min-descents are preserved,
while the number of part-descents is not preserved.

Figure 2: π = 3/24/15 ∈ WOP5,3(312) and φ5(π) = 5/34/12 ∈
WOP5,3(213).

We end this section with two observations. Suppose that π = B1/ · · · /
Bk ∈ WOPn,k(132). First, we notice that if the last element max(Bi) of Bi
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is greater than the first element min(Bi+1) of Bi+1 so that there is a descent
in w(π) at position

∑i
j=1 |Bj |, then it must be the case that min(Bi) >

min(Bi+1). That is, if min(Bi) < min(Bi+1), then min(Bi) �= max(Bi) and
hence (min(Bi),max(Bi),min(Bi+1)) would reduce to 132. It follows that
for all π ∈ WOPn(132), des(π) = mindes(π), and hence,

(2.1) WOP
des
132(x, y, t) = WOP

mindes
132 (x, y, t).

Second, for any π = B1/ · · · /Bk ∈ WOPn,k(132), i is a max-descent if
and only if i is a part-descent. Otherwise if min(Bi) < max(Bi+1), then the
triple (min(Bi),max(Bi),max(Bi+1)) matches the pattern 132. Let

WOP
maxdes
132 (x, y, t) := 1 +

∑
n≥1

tn
∑

π∈WOPn(132)

x�(π)ymaxdes(π),

then we have WOP
pdes
132 (x, y, t) = WOP

maxdes
132 (x, y, t). Note that the set

WOPn(213) is in bijection with WOPn(132) by the action of reverse-com-
plement, and themaxdes statistic onWOPn(132) corresponds to themindes
statistic on WOPn(213). By Theorem 2.1, we have

(2.2) WOP
pdes
132 (x, y, t) = WOP

pdes
213 (x, y, t) = WOP

maxdes
132 (x, y, t)

= WOP
mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t).

3. Computing WOP
des
α (x, y, t) for α ∈ S3

In this section, we shall derive generating functions WOP
des
α (x, y, t) for all

α ∈ S3.

3.1. The functions WOP
des
132(x, y, t) = WOP

des
213(x, y, t) =

WOP
des
231(x, y, t) = WOP

des
312(x, y, t)

In Section 2, we have showed the equality of the four generating functions.
We shall compute WOP

des
132(x, y, t). In this case, we shall classify the ordered

set partitions π in WOPn(132) by the size of the last part. That is, suppose
that π = B1/ · · · /Bk where Bk = {a1 < · · · < ar}. Then we let Ar+1 denote
the set of elements in B1/ · · · /Bk−1 that are greater that ar, A1 denote the
set of elements in B1/ · · · /Bk−1 that are less that a1, and Ai denote the set
of elements j in B1/ · · · /Bk−1 such that ai > j > ai−1 for i = 2, . . . , r. Since
w(π) is 132-avoiding, for any i ≥ 2, every element y in Ai must appear to the
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left of every element x in Ai−1 since otherwise xyai would be an occurrence
of 132 in w(π). It follows that the word of π has the structure pictured in
Figure 3. Note that it is possible that any given Ai is empty. However, this
structure ensures that no part of π can contain elements from two different
Ai’s so that if Ai is non-empty, then Ai is a union of consecutive parts of
π, say Ai = Ba/ · · · /Bb for some a < b. Moreover, if i ≥ 2 and Ai �= ∅,
then the last element of Bb is a descent in w(π). That is, either A1, . . . , Ai−1

are empty and there is a descent from the last element of Bb to a1 which
is the first element of Bk or one of A1, . . . , Ai−1 is non-empty. Let p be the
largest integer r such that 1 ≤ r ≤ i− 1 and Ar is non-empty, then there is
a descent from the last element of Bb to the first element of the first part of
Ap.

Figure 3: The structure of π ∈ WOPn(132).

Let B(x, y, t) = WOP
des
132(x, y, t). This structure implies that B(x, y, t)

satisfies the following recursion:

(3.1) B(x, y, t) = 1 +
∑
r≥1

xtr(1 + y(B(x, y, t)− 1))rB(x, y, t).

In (3.1) the factor xtr accounts for those ordered set partitions π whose last
part is of size r. We get a factor 1+y(B(x, y, t)−1) for Ai for i = 2, . . . , r+1
where the 1 accounts for the possibility that Ai is empty and the term
y(B(x, y, t)−1) accounts for the fact that there is descent starting at the last
element of Ai if Ai is non-empty. Finally the last factor B(x, y, t) corresponds
to the contribution over all possible A1.
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It follows that

(3.2) B(x, y, t) = 1 +
xtB(x, y, t)(1 + y(B(x, y, t)− 1))

1− t(1 + y(B(x, y, t)− 1))
.

Multiplying both sides of (3.2) by 1 − t(1 + y(B(x, y, t) − 1)) leads to the
quadratic equation

0 = (1− t+ ty)−B(x, y, t)(1 + 2yt+ xyt− t− tx) + t(xy + y)B(x, y, t)2,

and solving for B(x, y, t) gives that

B(x, y, t) =
(1 + 2yt+ xyt− t− tx)

2t(xy + y)

−
√

(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(xy + y)
.

If we let f(x, y, t) = B(x, y, t)− 1, then (3.2) gives that

f(x, y, t) = x
t(f(x, y, t) + 1)(1 + y(f(x, y, t))

1− t(1 + yf(x, y, t))
.

The Lagrange Inversion Theorem implies that the coefficient of xk in f(x, y, t)
is given by

f(x, y, t)|xk =
1

k
δ(x)k

∣∣∣
xk−1

,

where δ(x) = t(x+1)(1+yx)
1−t(1+yx) . Using Newton’s binomial theorem, we have

f(x, y, t)|xktn =
1

k

tk(1 + x)k(1 + yx)k

(1− t(1 + yx))k

∣∣∣∣
xk−1tn

=
1

k
(1 + x)k(1 + yx)k

·

⎛
⎝∑

s≥0

(
k + s− 1

k − 1

)
ts(1 + xy)s

⎞
⎠

∣∣∣∣∣
xk−1tn−k

=
1

k
(1 + x)k(1 + yx)n

(
k + n− k − 1

k − 1

)∣∣∣∣
xk−1

=
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j .



Patterns in words of ordered set partitions 447

Thus we have the following theorem.

Theorem 3.1. The generating function

WOP
des
132(x, y, t) =

(1 + 2yt+ xyt− t− tx)

2t(y + yx)

−
√

(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(y + yx)
,

and

∑
π∈WOPn,k(132)

ydes(π) =
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j .

Setting y = 1 in Theorem 3.1 and observing that
∑k−1

j=0

(
k
j

)(
n

k−1−j

)
=(

n+k
k−1

)
, we have the following corollary.

Corollary 3.2. The generating function

WOP132(x, t) =
(1 + t)−

√
(1 + t)2 − 4t(1 + x)

2t(1 + x)
,

and

wopn,k(132) =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
.

It follows from Theorem 3.1 that wopn(132) is the number of rooted

planar trees with n+ 1 leaves that have no vertices of outdegree 1 because

their generating functions both satisfy the recurrence

F (t) = 1 +
∑
r≥1

trF (t)r+1.

A bijection follows naturally from the generating function: let π = B1/ · · · /
Bk ∈ WOPn(132) where Bk = {a1 < · · · < ar}, and A1, . . . , Ar+1 be the

sub-ordered-partitions of π defined by the previous construction. Then the

last part Bk is mapped into a root with outdegree r + 1, and each Ai is a

subgraph connected to the root. Figure 4 shows an example of the bijection.

Based on the recursion, the number of non-leaves is equal to the number
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of blocks of the ordered set partition, and the out-degree of the root is one

more than the size of the last block.

4 5 2 1 3 ⇐⇒

13

2v1 45

v4v3v2 v5 v6

Figure 4: Bijection between WOPn(132) and rooted planar trees with no
vertices of outdegree 1.

Given any sequence of positive numbers 1 ≤ b1 < b2 < · · · < bs, we let

A = A(x, y, t, q1, . . . , qs) = WOP
des
132,{b1,...,bs}(x, y, t, q1, . . . , qs).

It follows from the block structure pictured in Figure 3 that

A = 1 +

s∑
i=1

xqit
bi(1 + y(A− 1))biA.

If we set F = F (x, y, t, q1, . . . , qs) = A(x, y, t, q1, . . . , qs)− 1, then

F = x(F + 1)

s∑
i=1

qit
bi(1 + yF )bi .

It follows from Lagrange Inversion that

F |xk =
1

k
δk(x)

∣∣∣
xk−1

,

where δ(x) = (x+ 1)
∑s

i=1 qit
bi(1 + yx)bi . Thus

(3.3) F |xktn

=
1

k
(x+1)k

∑
αi≥0

α1+···+αs=k

(
k

α1, . . . , αs

)
t
∑k

i=1 αibi(1+yx)(
∑k

i=1 αibi)
s∏

i=1

qαi

i

∣∣∣∣
xk−1tn
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=
1

k
(x+ 1)k(1 + yx)n

∑
α1+···+αs=k

α1b1+···αkbk=n

(
k

α1, . . . , αs

) s∏
i=1

qαi

i

∣∣∣∣
xk−1

=
1

k

⎛
⎝k−1∑

j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j

⎞
⎠ ∑

α1+···+αs=k

α1b1+···αkbk=n

(
k

α1, . . . , αs

) s∏
i=1

qαi

i .

If
∑

αibi = n, then taking the coefficient of qα1

1 · · · qαs
s on both sides of

equation (3.3) yields the following theorem.

Theorem 3.3. Suppose that 0 < b1 < · · · < bs,
∑s

i=1 αi = k, and∑s
i=1 αibi = n. Then

∑
π∈WOP〈bα1

1
,...,b

αs
s 〉(132)

ydes(π) =
1

k

(
k

α1, . . . , αs

)⎛⎝k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j

⎞
⎠.

Setting y = 1 in Theorem 3.3 and observing that
∑k−1

j=0

(
k
j

)(
n

k−1−j

)
=(

n+k
k−1

)
yield the following corollary.

Corollary 3.4. Suppose that 0 < b1 < · · · < bs,
∑s

i=1 αi = k, and∑s
i=1 αibi = n. Then

wop〈bα1
1 ,...,b

αk
s 〉(132) =

1

k

(
n+ k

k − 1

)(
k

α1, . . . , αs

)
.

3.2. The function WOP
des
123,{1,2}(x, y, t, q1, q2)

Next we turn our attention to ordered set partitions π such that w(π) avoids

123. In this case, all parts of π are of size 1 or 2 since any part Bi of size

greater than 2 immediately yields a consecutive increasing sequence of size

3 in w(π).

Thus we will compute the generating function

WOP
des
123,{1,2}(x, y, t, q1, q2) :=

∑
k,�≥0

∑
π∈WOP〈1k,2�〉

ydes(π)tk+2�xk+�qk1q
�
2.
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To compute WOP
des
123,{1,2}(x, y, t, q1, q2), we must first review a bijection

Ψ of Deutsch and Elizalde [3] between 123-avoiding permutations and Dyck
paths.

Given an n×n chessboard, we set the origin (0, 0) at the lower left corner,
and label the coordinates of the columns from left to right with 0, 1, . . . , n
and the coordinates of the rows from bottom to top with 0, 1 . . . , n. A Dyck
path is a path made up of unit down-steps D and unit right-steps R which
starts at (0, n), which is at the top left-hand corner, and ends at (n, 0), which
is at the bottom right-hand corner, and stays weakly below the diagonal
y = n− x. We let Dn denote the set of Dyck paths on the n× n board.

Given a Dyck path P , we let

Return(P ) := {1 ≤ i ≤ n− 1 : P goes through the point (i, n− i)}

denote the set of return positions and let return(P ) = min(Return(P )) be
the smallest (first) return position. For example, for the Dyck path

P = DDRDDRRRDDRDRDRRDR

shown on the right in Figure 5, Return(P ) = {4, 8} and return(P ) = 4.

Given any permutation σ = σ1 · · ·σn ∈ Sn(123), we write it on our
n× n chessboard by placing σi in the ith column and σth

i row, reading from
bottom to top. Then, we shade the cells to the north-east of the cell that
contains σi. Ψ(σ) is the path that goes along the south-west boundary of
the shaded cells. For example, this process is pictured in Figure 5 for the
permutation σ = 869743251 ∈ S9(123) which is mapped into the Dyck path
DDRDDRRRDDRDRDRRDR.

8

6

9

7

4

3

2

5

1

=⇒

Figure 5: Ψ(σ) = DDRDDRRRDDRDRDRRDR for σ = 869743251.
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Given any Dyck path P , we construct the permutation Ψ−1(P ) as fol-

lows. First we place a × in every outer corner of P . Then we consider the

rows and columns which do not have a ×. Processing the columns from top

to bottom and the rows from left to right, we place a × in the ith empty row

and ith empty column. Finally we replace the ×s with numbers {1, . . . , n}
from bottom to top. This process is pictured in Figure 6. The details that

Ψ is bijection between Sn(123) and Dn can be found in [3].

=⇒

8

6

9

7

4

3

2

5

1

Figure 6: Ψ−1(P ) = 869743251 for P = DDRDDRRRDDRDRDRRDR.

We shall classify the ordered set partitions π ∈ WOPn(123) by the

first return (from left to right) of the path P = Ψ(w(π)). Suppose that the

first return of the path P is at the point (n − k, k), then the path P is

divided by the first return into 2 paths, path DAR and path B, as shown

in Figure 7 (a). The numbers in the outer corners above the point (n− k, k)

must come from {k + 1, . . . n}. Because we place the ×s in the columns

which are not occupied by the ×s in the outer corners of P , in a decreasing

manner, reading from left to right, it follows that by the time we have reached

column n− k, we must have used all of the numbers in {k+ 1, . . . , n}. This
means that there is no ×s in the shaded area in 7 (a) so that all the ×s in

the last k columns must lie in the lower k rows. In particular, this implies

that in w(π), all the elements in {k + 1, . . . , n} proceed all the elements in

{1, . . . , k}. The elements in {k+1, . . . , n} are determined by the path DAR

and the elements in {1, . . . , k} are determined by the path B, and there is

a descent at the n− kth position in w(π) if k > 0. Hence we can break any

ordered set partition π = B1/ · · · /Bj such that Ψ(w(π)) = P into two parts,

B1/ · · · /Bi that contains all the elements in {k+1, . . . , n} and Bi+1/ · · · /Bj

that contains all the elements in {1, . . . , k}.
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Let A(x, y, t, q1, q2) = WOP
des
123,{1,2}(x, y, t, q1, q2). It is easy to see that

the contribution to A(x, y, t, q1, q2) by summing over the weights of all
possible choices of Bi+1/ · · · /Bj as k varies over all choices of k > 0 is
y(A(x, y, t, q1, q2)− 1) and is equal to 1 if k = 0.

(n− k, k)
A

B

0 n

n

(a)

lift(Ψ−1(A))

Ψ−1(B)

(b)

Figure 7: Breaking the Dyck path P at the first return.

To analyze the contribution from parts B1/ · · · /Bi, we need to work on
the path DAR, which can be seen as lifting the path A one unit in the
south-west direction. We let lift(P ) be the path DPR. For σ ∈ Sn(123) and
P = Ψ(σ), we write lift(σ) for the permutation Ψ−1(lift(P )) = Ψ−1(DPR) ∈
Sn+1 corresponding to path lift(P ).

We say that a pair of consecutive DR steps is a peak (outer corner) of a
Dyck path, and in the corresponding 123-avoiding permutation, the numbers
in the rows that contain peaks are called peaks of a permutation. A number
is called a non-peak if it is not a peak. It is easy to see that the peaks of a
permutation σ ∈ Sn(123) and lift(σ) are the same. Since we label the rows
and columns that do not contain peaks from left to right with the non-peak
numbers in decreasing order under the map Ψ−1, in lift(σ), n + 1 is in the
column of the first non-peak and each remaining non-peak shifts to the next
column that does not contain a peak. Figure 8 illustrates the lift action of
σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) ∈ S9(123).

Following the construction, σ and lift(σ) have the same descent set in
the first n − 1 positions, and there is a descent in the nth position if and
only if σn is a non-peak. Since the word w(π) of an ordered set partition
π ∈ WOPn(123) is determined by the Dyck path DARB, we can study
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smaller Dyck paths A and B instead of π when computing the generating
function.

8

6

9

7

4

3

2

5

1

=⇒
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7

5

Figure 8: σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) and lift(σ) = (8, 6, 10, 9, 4, 3, 2, 7, 1, 5).

Let π = B1/ · · · /Bj ∈ WOPn(123) such that the first return is n − k
and the numbers {k+1, . . . , n} are contained in parts B1/ · · · /Bi. We have
the following four cases when computing the function A(x, y, t, q1, q2).

Case 1. The first return of P is at the point (1, n− 1).

In this case, P starts of DR and n is the first outer corner of path P .
This means that w(π) starts with n, i = 1, and B1 = {n}. It is easy
to see that in this case the contribution to A(x, y, t, q1, q2) is xtq1(1 +
y(A(x, y, t, q1, q2) − 1)). That is, if n = 1, then we get a contribution of
xtq1 and otherwise, n will cause a descent in w(π) which gives a contribu-
tion of xtq1y(A(x, y, t, q1, q2)− 1).

Case 2. The first return of P is at the point (2, n− 2).

In this case, P starts of DDRR, n − 1 is the first outer corner of P , n
is in the square (2, n) and w(π) starts out with (n − 1)n. Then it is either
the case that i = 2, B1 = {n−1}, and B2 = {n} or i = 1 and B1 = {n−1, n}.
It is easy to see that in the first case, the contribution to A(x, y, t, q1, q2) is
x2t2q21(1 + y(A(x, y, t, q1, q2) − 1)). That is, if n = 2, then we get a contri-
bution of x2t2q21 and otherwise, n will cause a descent in w(π) which gives
a contribution of x2t2q21y(A(x, y, t, q1, q2)− 1). Similarly, in the second case
the contribution to A(x, y, t, q1, q2) is xt

2q2(1+y(A(x, y, t, q1, q2)−1)). Thus
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the total contribution to A(x, y, t, q1, q2) from Case 2 is

(x2t2q21 + xt2q2)(1 + y(A(x, y, t, q1, q2)− 1)).

Case 3. The first return of P is at the point (n − k, k) where k < n − 2,
and the last three steps before the first return are DRR.

In this case, we have the situation pictured in Figure 9. Thus w(π) =
w1 · · ·wn where wn−k−1 = k + 1 and wn−k = p where p > k + 1. It fol-
lows that either Bi = {k + 1, p} or Bi−1 = {k + 1} and Bi = {p}. We claim
that the contribution to A(x, y, t, q1, q2) in the first case where Bi = {k+1, p}
is

y(A(x, y, t, q1, q2)− 1)xt2q2(1 + y(A(x, y, t, q1, q2)− 1)).

(n− k, k)

0 n

n

k + 1

Figure 9: The situation in Case 3.

That is, the first factor y comes from the fact that there is a descent
caused by the last element of Bi−1 and the first element of Bi which is k+1.
The next factor (A(x, y, t, q1, q2)− 1) comes from summing over all possible
choices of B1/ · · · /Bi−1. The factor xt2q2 comes from Bi. If Bi+1/ · · · /Bj is
empty then we get a factor of 1, and if Bi+1/ · · · /Bj is not empty, then we
get a factor of y coming from the descents between the last element of Bi

and the first element of Bi+1 and a factor of (A(x, y, t, q1, q2) − 1) coming
summing the weights over all possible choices of Bi+1/ · · · /Bj .
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Similar reasoning shows that the contribution to A(x, y, t, q1, q2) in the
second case where Bi−1 = {k + 1} and Bi = {p} is

y(A(x, y, t, q1, q2)− 1)x2t2q21(1 + y(A(x, y, t, q1, q2)− 1)).

Thus the total contribution to A(x, y, t, q1, q2) in Case 3 is

y(A(x, y, t, q1, q2)− 1)(xt2q2 + x2t2q21)(1 + y(A(x, y, t, q1, q2)− 1)).

Case 4. The first return of P is at the point (n − k, k) where k < n − 2,
and the last three steps before the first return are RRR.

In this case, we have the situation pictured in Figure 10. Thus w(π) =
w1 · · ·wn where wr = k + 1 and wr+1 · · ·wn−k is a decreasing sequence of
length at least 2. In this situation, Bi must be a singleton part {wn−k}. We
claim that the contribution to A(x, y, t, q1, q2) from the ordered set partitions
in Case 4 is

xytq1(A(x, y, t, q1, q2)− 1− xtq1 − xytq1(A(x, y, t, q1, q2)− 1))

· (1 + y(A(x, y, t, q1, q2)− 1)).

(n− k, k)

0 n

n

k + 1

Figure 10: The situation in Case 4.

That is, the first factor xytq1 is the weight of part Bi, where y comes
from the fact that there is a descent caused by the last element of Bi−1 and
the first element of Bi. The next factor comes summing over all possible
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choices of B1/ · · · /Bi−1. It is not difficult to see that this corresponds to the
sum of the weights over all non-empty ordered set partitions π where 1 is
not the last element of the word of π. Let

An(x, y, q1, q2) :=
∑

π∈WOPn(123)

x�(π)ydes(π)q
one(π)
1 q

two(π)
2 ,

where one(π) is the number of parts of size 1 and two(π) is the number
of parts of size 2 in π. Then An(x, y, q1, q2) − xytq1An−1(x, y, q1, q2) is the
weight over all ordered set partitions π of size n such that 1 is not the last
element of w(π). Thus the sum of the weights over all non-empty ordered
set partitions π where 1 is not the last element of w(π) equals

∑
n≥2

tn(An(x, y, q1, q2)− xytq1An−1(x, y, q1, q2)) =

(A(x, y, t, q1, q2)− 1− xtq1)− xytq1(A(x, y, t, q1, q2)− 1).

Finally we get a factor of 1 if Bi+1/ · · · /Bj is empty and a factor of
y(A(x, y, t, q1, q2)−1) over all possible choices ofBi+1/ · · · /Bj ifBi+1/ · · · /Bj

is non-empty.
Summing the contributions from Cases 1–4, we have

(3.4) A(x, y, t, q1, q2) = 1 + (y − 1)2(q1xt+ q2xt
2 − q21x

2t2(y − 1))

− 2A(x, y, t, q1, q2)(y(y − 1)(q1xt+ q2xt
2 − q21x

2t2(y − 1))

+A(x, y, t, q1, q2)
2y2(q1xt+ q2xt

2 − q21x
2t2(y − 1)).

Because (3.4) involves both linear and quadratic terms in x, we can
not apply the Lagrange Inversion Theorem to get an explicit formula for
WOP

des
123,{1,2}(x, y, t, q1, q2)|xk . Nevertheless, (3.4) gives us a quadratic equa-

tion which we can solve for A(x, y, t, q1, q2) to prove the following theorem.

Theorem 3.5. The generating function

WOP
des
123,{1,2}(x, y, t, q1, q2) =

P (x, y, t, q1, q2)−
√

Q(x, y, t, q1, q2)

R(x, y, t, q1, q2)
,

where

P (x, y, t, q1, q2) = 1 + 2y(y − 1)q1xt+ 2y(y − 1)q2xt
2 − 2y(y − 1)2q21x

2t2,

Q(x, y, t, q1, q2) = 1− 4yq1xt− 4yq2xt
2 + 4(y(y − 1)q21x

2t2, and

R(x, y, t, q1, q2) = 2y2q1xt+ 2y2q2xt
2 − 2y2(y − 1)q21x

2t2.
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Setting y = 1 in WOP
des
123,{1,2}(x, y, t, q1, q2) gives us the following corol-

lary.

Corollary 3.6. We have

(3.5) WOP123,{1,2}(x, t, q1, q2) =
1−

√
1− 4tx(q1 + xq2)

2tx(q1 + xq2)
,

and

wop〈1α1 ,2α2〉(123) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)(
α1 + α2

α1

)
,(3.6)

wopn,k(123) = wop〈12k−n,2n−k〉(123) =
1

k + 1

(
2k

k

)(
k

n− k

)
.(3.7)

Proof. Let A123(x, t, q1, q2) = WOP
des
123,{1,2}(x, 1, t, q1, q2) = WOP123,{1,2}(x,

t, q1, q2), then the recursion becomes

A123(x, t, q1, q2) = 1 + tq1xA
2
123(x, t, q1, q2) + tq2x

2A2
123(x, t, q1, q2).

Equation (3.5) is obtained by solving the quadratic equation. Since

wopn,k(123) = wop〈12k−n,2n−k〉(123) = A123(x, t, q1, q2)|tnxkq2k−n
1 qn−k

2
,

we can get equation (3.6) and equation (3.7) by applying Lagrange Inver-

sion.

Thus, we have enumerated the number of ordered set partitions in

WOPn(123) with certain numbers of blocks of size 1 and size 2. Now we

give a formula for the number of ordered set partitions in WOPn(123) with

a certain block size composition. In [4], Godbole, et al. showed that

op[b1,...,bi,bi+1,...,bk](321) = op[b1,...,bi+1,bi...,bk](321)

by constructing a bijective map between OP [b1,...,bi,bi+1,...,bk](321) and

OP [b1,...,bi+1,bi...,bk](321).

For our new definition of pattern avoidance, we prove a similar re-

sult that the order of block sizes in block size composition does not affect

wop[b1,...,bk](123), and we have the following theorem.
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Theorem 3.7. We have

wop[b1,...,bi,bi+1,...,bk](123) = wop[b1,...,bi+1,bi,...,bk](123)

and

wop[b1,...,bi,bi+1,...,bk](321) = wop[b1,...,bi+1,bi,...,bk](321).

Proof. The second equation is included in the bijection constructed by God-

bole, et al. that

wop[b1,...,bi,bi+1,...,bk](321) = op[b1,...,bi,bi+1,...,bk](321)

= op[b1,...,bi+1,bi,...,bk](321)

= wop[b1,...,bi+1,bi,...,bk](321).

For the first equation, we prove by a bijection.

For a block size composition B = [b1, . . . , bi, bi+1, . . . , bk], since we are

considering the 123-avoiding ordered set partitions, all the blocks are of size

1 or 2. We have the following 2 cases.

(1) If bi = bi+1 = 1 or 2, then wop[b1,...,bi,bi+1,...,bk](123) and

wop[b1,...,bi+1,bi,...,bk](123) are exactly the same enumeration.

(2) If bi �= bi+1, then without loss of generality, we suppose bi = 1 and bi+1 =

2. We show that there is a bijective map between WOP [b1,...,1,2,...,bk](123)

and WOP [b1,...,2,1,...,bk](123). We suppose the 3 integers filled in blocks

bi and bi+1 are a1 < a2 < a3. Since there is no 123 pattern-occurrence,

there are only 2 possible fillings for both [. . . , 1, 2, . . .] and [. . . , 2, 1, . . .]

cases. They are a2/a1a3 and a3/a1a2 for [. . . , 1, 2, . . .], a2a3/a1 and

a1a3/a2 for [. . . , 2, 1, . . .]. We construct a map, as showed in Figure 11,

sending a3/a1a2 to a1a3/a2 and a2/a1a3 to a2a3/a1.

a2 a1 a3

a3 a1 a2 ⇐⇒

⇐⇒ a1a2 a3

a2a1 a3

[. . . , 1, 2, . . .] [. . . , 2, 1, . . .]

Figure 11: Bijection between WOP [b1,...,1,2,...,bk](123) and
WOP [b1,...,2,1,...,bk](123).
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It is not difficult to check that the map is bijective and preserves the 123-
avoiding condition. Thus wop[b1,...,bi,bi+1,...,bk](123) = wop[b1,...,bi+1,bi...,bk](123).

The formula for wop[b1,...,bk](123) follows the bijection.

Corollary 3.8. For any composition [b1, . . . , bk] such that bi ∈ {1, 2}, we
have

wop[b1,...,bk](123) = Ck,

here Ck = 1
k+1

(
2k
k

)
is the kth Catalan number.

Proof. Let α1 be the number of 1’s and α2 be the number of 2’s in [b1, . . . , bk].
By Corollary 3.6, we have

wop〈1α1 ,2α2 〉(123) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)(
α1 + α2

α1

)
.

Since the order of block sizes does not affect wop[b1,...,bk](123) and there are(
α1+α2

α1

)
ways to permute the block sizes, we have

wop[b1,...,bk](123) =
1

α1+α2+1

(
2α1+2α2

α1+α2

)(
α1+α2

α1

)
(
α1+α2

α1

) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)

=
1

k + 1

(
2k

k

)
= Ck.

Setting y = q1 = q2 = 1 in WOP
des
123,{1,2}(x, y, t, q1, q2) gives us the fol-

lowing corollary.

Corollary 3.9. We have

WOP123(x, t) =
1−

√
1− 4tx− 4t2x

2(xt+ xt2)
.

We pause to make some observations about some special cases of ele-
ments of WOPn(123). First consider the case of ordered set partitions in
WOPn(123) where every part has size 1. In this case, we are just consid-
ering the generating function of ydes(σ) over all 123-avoiding permutations.
We can obtain this generating function from WOP

des
123,{1,2}(x, y, t, q1, q2) by

setting x equal to 1/x, t equal to tx, and then setting x = 0. We carried out
these steps in Mathematica and obtained the following corollary which was
first proved by Barnabei, Bonetti and Silimbani [1].
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Corollary 3.10. We have

1 +
∑
n≥1

tn
∑

σ∈Sn(123)

ydes(σ)

=
−1− 2ty(y − 1) + 2t2y(y − 1)2 +

√
1− 4ty − 4t2y(y − 1)

2ty2(−1 + t(y − 1))
.

We can do a similar computation starting with the generating function
WOP

des
132(x, y, t) to obtain the following corollary.

Corollary 3.11. For any α ∈ {132, 231, 312, 213},

1 +
∑
n≥1

tn
∑

σ∈Sn(α)

ydes(σ) =
1 + t(y − 1)−

√
1 + t2(y − 1)2 − 2t(y + 1)

2yt
.

In this case, the coefficients are the coefficients of the triangle of the

Narayana numbers T (n, k) = 1
k

(
n

k−1

)(
n−1
k−1

)
which is entry A001263 in the

OEIS [15].

3.3. The function WOP
des
321(x, y, t)

The final generating function that we shall consider in this section is
WOP

des
321(x, y, t). Since a permutation σ is 321-avoiding if and only if its re-

verse σr is 123-avoiding, we shall again appeal to the bijection Ψ of Deutsch
and Elizalde between 123-avoiding permutations and Dyck paths and clas-

sify the ordered set partitions δ which word-avoid 321 by Ψ(w(δ)). The main
difference in this case is that we obtain the permutation w(δ) by reading the
elements in the diagram from right to left, rather from left to right, and
we classify the ordered set partitions by the last return of Ψ(w(δ)). In this

situation, we have two cases for any δ ∈ WOPn(321).

Case 1. The last return of Ψ(w(δ)) is at position (n − 1, 1) in which case
w(δ) starts with 1.

In this case, 1 can not be part of an occurrence of 321 in the word of
the ordered set partition. Thus either 1 is in a part by itself in which case
we get a contribution of xtWOP

des
321(x, y, t) to WOP

des
321(x, y, t), or 1 is part

of the first part of the ordered set partition arising from the part of the
ordered set partition above and to the left of 1 which gives a contribution
of t(WOP

des
321(x, y, t)− 1) to WOP

des
321(x, y, t). Thus the total contribution to
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WOP
des
321(x, y, t) of the ordered set partitions that word-avoid 321 and start

with 1 is

xtWOP
des
321(x, y, t) + t(WOP

des
321(x, y, t)− 1).

Case 2. Either Ψ(w(δ)) has no return or the last return is at position
(n− k, k) where k > 1.

Let us first consider the cases of ordered set partitions δ ∈ WOPn(321)
such that Ψ(w(δ)) hits the diagonal only at (0, n) and (n, 0) and n ≥ 2. For
such ordered set partitions, we have two subcases.

Subcase 2.1 The second element of w(δ) equals 1.

1

w1
=⇒

1

Figure 12: Ordered set partitions in Subcase 2.1.

In this case, suppose that w(δ) = w1 · · ·wn where w2 = 1. Then we have
the situation pictured in Figure 12. Since w1 > w2 = 1, it must be the case
that w1 is in a part by itself so that it contributes a factor of xyt to the
weight of δ. If we remove the row and column containing w1 and keep the
same outer corner squares, and possibly relabel the ×s in the columns with
no outer corner squares by having the ×s in those columns decreasingly,
reading from left to right, we will obtain an arbitrary ordered set partition
π ∈ WOPn−1(321) such that w(π) starts with 1. Hence the ordered set
partitions in this subcase contribute to WOP

des
321(x, y, t) a factor of

xyt(xtWOP
des
321(x, y, t) + t(WOP

des
321(x, y, t)− 1)).

Subcase 2.2 The second element of w(δ) does not equal 1.

In this case, suppose that w(δ) = w1 · · ·wn where wi = 1 for i > 2. Then
we have the situation pictured in Figure 13. In this case, since w1 < w2 <
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1

w1
=⇒

1

Figure 13: Ordered set partitions in Subcase 2.2.

· · · < wi−1 > wi = 1, it must be the case that wi starts a new part in δ. If we
remove the row and column containing w1 and keep the same outer corner
squares, and possibly relabel the ×s in the columns with no outer corner
squares by having the ×s in those columns decreasingly, reading from left to
right, we will obtain an arbitrary ordered set partition π ∈ WOPn−1(321)
such that w(π) does not start with 1. The sum of the weights of the ordered
set partitions π such that w(π) does not start with 1 is

WOP
des
321(x, y, t)− 1− xtWOP

des
321(x, y, t)− t(WOP

des
321(x, y, t)− 1).

Then w1 is either in a part by itself in which case it contributes a factor of
xt or is in the same part with w2 in which case it contributes a factor of t.
Hence the ordered set partitions in this subcase contribute a factor of

(xt+ t)(WOP
des
321(x, y, t)− 1− xtWOP

des
321(x, y, t)− t(WOP

des
321(x, y, t)− 1))

to WOP
des
321(x, y, t).

Let

NR(x, y, t) :=
∑
n≥2

tn
∑

π∈WOPn(321),
Return(Ψ(w(δ)))=∅

x�(π)ydes(π)

be the contribution of ordered set partitions in Subcases 2.1 and 2.2 to
WOP

des
321(x, y, t), then

NR(x, y, t) = xyt(xtWOP
des
321(x, y, t) + t(WOP

des
321(x, y, t)− 1))+

(xt+ t)(WOP
des
321(x, y, t)− 1−xtWOP

des
321(x, y, t)− t(WOP

des
321(x, y, t)− 1)).

Now consider in the general case in Case 2 when the last return is at
(n − k, k) where 1 < k ≤ n − 1. This situation is pictured in Figure 14.
Because we fill the columns which do not have outer corner squares in a
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(n− k, k)

Figure 14: Ordered set partitions in Case 2 when the last return is at (n−
k, k).

decreasing manner, reading from left to right, it is easy to see that there
is no × in the squares of the shaded area in Figure 14. This means that
the ×s corresponding to 1, . . . , k must be all in the bottom k × k squares.
What we do not know is how the final increasing sequence of the elements
1, . . . , k in w(δ) union of the initial increasing sequence of the remaining
elements break up into parts in δ. For example, in Figure 14, k = 4 and the
last increasing sequence of the elements 1, . . . , 4 in w(δ) is the single digit
2 and the initial increasing sequence of the remaining elements is 6, 7, 9, 10.
Then we have two cases. The first case is when there is no overlap between
the parts containing 1, . . . , k and the remaining parts. In this case, we get a
contribution of NR(x, y, t)(WOP

des
321(x, y, t)− 1) to WOP

des
321(x, y, t). If there

is an overlap, then we need to remove the x corresponding to the last part
in the generating function NR(x, y, t) so that we would get a contribution
of 1

xNR(x, y, t)(WOP
des
321(x, y, t)− 1).

It follows that the total contribution to WOP
des
321(x, y, t) from the ordered

set partitions δ ∈ WOPn(321) in Case 2 is

NR(x, y, t) + (1 +
1

x
)NR(x, y, t)(WOP

des
321(x, y, t)− 1).

Hence we have

WOP
des
321(x, y, t) = 1 + xtWOP

des
321(x, y, t) + t(WOP

des
321(x, y, t)− 1) +

NR(x, y, t) + (1 +
1

x
)NR(x, y, t)(WOP

des
321(x, y, t)− 1).

This is a quadratic equation in WOP
des
321(x, y, t) which we can solve to obtain

the following theorem.
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Theorem 3.12. The generating function

(3.8) WOP
des
321(x, y, t) =

x+ 2t(x+ 1) + 2t2(x+ 1)(xy − x− 1)

2t(x+ 1)2(t(x(y − 1)− 1) + 1)

− x
√

1− 4t(x+ 1)(t(x(y − 1)− 1) + 1)

2t(x+ 1)2(t(x(y − 1)− 1) + 1)
.

Setting y = 1 in (3.8), we obtain the following corollary which recovers
the result of Chen, Dai and Zhou [2].

Corollary 3.13. The generating function

WOP321(x, t) =
x+ 2t(1 + x)− 2t2(1 + x)− x

√
1− 4(1− t)t(1 + x)

2(1− t)t(1 + x)2
.

The recursion that we used to computeWOP
des
321(x, y, t) does not allow us

to control the size of the parts of the ordered set partitions π ∈ WOPn(321)
so that we have not been able to compute generating functions of the form
WOP

des
321,{b1,...,bk}(x, y, t, q1, . . . , qk) in general.

4. Generating functions for min-descents

Based on the analysis in Section 2, we need to study the following 5 kinds
of generating functions,

WOP
mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t),

WOP
mindes
132 (x, y, t), WOP

mindes
231 (x, y, t),

WOP
mindes
123 (x, y, t), WOP

mindes
321 (x, y, t).

We are able to explicitly determine the functions WOP
mindes
132 (x, y, t),

WOP
mindes
231 (x, y, t) and WOP

mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t), and write

the functions WOP
mindes
123 (x, y, t) and WOP

mindes
321 (x, y, t) as roots of polyno-

mial equations.

4.1. The function WOP
mindes
132 (x, y, t)

As we observed in Section 2,

WOP
des
132(x, y, t) = WOP

mindes
132 (x, y, t),

thus we have the following theorem.
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Theorem 4.1. The generating function

WOP
mindes
132 (x, y, t) = WOP

des
132(x, y, t) =

1 + 2yt+ xyt− t− tx

2t(y + yx)

−
√

(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(y + yx)
,

and

∑
π∈WOPn,k(132)

ymindes(π) =
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j .

4.2. The function WOP
mindes
231 (x, y, t)

Next consider WOP
mindes
231 (x, y, t). Let

Cn(x, y) :=
∑

π∈WOPn(231)

x�(π)ymindes(π).

We can classify ordered set partitions π = B1/ · · · /Bk ∈ WOPn(231) by
the position i of n in the word of π. Assume n ≥ 2.

Case 1. i = 1.
In this case w(π) starts with n which means that n must be in a part by
itself so that B1 = {n}. Then B1 contributes a factor of xy since it au-
tomatically causes a min-descent with B2. Thus the ordered set partitions
π ∈ WOPn(231) in Case 1 contribute xyCn−1(x, y) to Cn(x, y).

Case 2. i = n.
In this case w(π) ends with n. If n is in a part by itself, then Bk = {n} and
there is no min-descent between Bk−1 and Bk. Hence we get a contribution
of xCn−1(x, y) in this case. If n ∈ Bk where |Bk| ≥ 2, then we can sim-
ply remove n from Bk and obtain an ordered set partition in WOPn(231)
with the same number of parts and the same number of min-descents, and
we will get a contribution of Cn−1(x, y). Thus the ordered set partitions
π ∈ WOPn(231) in Case 2 contribute (1 + x)Cn−1(x, y) to Cn(x, y).

Case 3. 2 ≤ i ≤ n− 1.
In this case, n must be the last element in some part Bj . Because w(π) is
231-avoiding, it must be the case that all the elements in B1/ · · · /Bj − {n}
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are less than all the elements in Bj+1/ · · · /Bk. If Bj = {n}, then Bj con-
tributes a factor of xy since Bj will cause a min-descent with Bj+1. Our
choices over all possibilities of B1/ · · · /Bj−1 contribute a factor of Ci−1(x, y)
and our choices over all possibilities of Bj+1/ · · · /Bk contribute a factor of
Cn−i(x, y). Thus we get a contribution of xyCi−1(x, y)Cn−i(x, y) in this case.
If |Bj | ≥ 2, then we can eliminate n from Bj . Our choices over all possibilities
of B1/ · · · /Bj−{n} contribute a factor of Ci−1(x, y) and our choices over all
possibilities of Bj+1/ · · · /Bk contribute a factor of Cn−i(x, y). Hence we get
a contribution of Ci−1(x, y)Cn−i(x, y) in this situation. Thus the ordered set
partitions π ∈ WOPn(231) in Case 3 contribute (1+xy)Ci−1(x, y)Cn−i(x, y)
to Cn(x, y).

It follows that for n ≥ 2,

Cn(x, y) = (1 + x+ xy)Cn−1(x, y) +

n−1∑
i=2

(1 + xy)Ci−1(x, y)Cn−i(x, y).

Hence,

WOP
mindes
231 (x, y, t) = 1 + xt+

∑
n≥2

Cn(x, y)t
n

= 1 + xt+ (1 + x+ xy)t
∑
n≥2

Cn−1(x, y)t
n−1

+(1 + xy)t
∑
n≥2

n−1∑
k=2

Ck−1(x, y)Cn−k(x, y)

= 1 + xt+ (1 + x+ xy)t(WOP
mindes
231 (x, y, t)− 1)

+(1 + xy)t(WOP
mindes
231 (x, y, t)− 1)2.

This gives us a quadratic equation in which we can solve to prove the
following theorem.

Theorem 4.2. The generating function

WOP
mindes
231 (x, y, t) =

1 + t− tx+ txy −
√

(1 + t− tx+ txy)2 − 4(t+ txy)

2(t+ txy)
.

4.3. The functions WOP
mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t)

As we observed in Section 2,

WOP
mindes
213 (x, y, t) = WOP

maxdes
132 (x, y, t).
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Then we can work on the set WOPn(132) and track the maxdes statistic to
compute the function WOP

maxdes
132 (x, y, t) instead of WOP

mindes
213 (x, y, t).

We shall again classify the ordered set partitions π ∈ WOPn(132) by
the size of the last part and we will use the structure in Figure 3. Now
suppose that C(x, y, t) = WOP

maxdes
132 (x, y, t). In this case, we get a factor

of xtr from the last part {a1, . . . , ar}. Next we shall analyze when the last
part from any Ai will cause a max-descent in π. Let s be the smallest index
i such that Ai is non-empty. If s = r + 1, then there is a max-descent
from the last part of Ar+1 to {a1, . . . , ar} so that we would get a factor
of y(C(x, y, t) − 1). If s ≤ r, then the last part of As does not create a
max-descent with {a1, . . . , ar} so it contributes a factor of (C(x, y, t) − 1).
However, each non-empty Aj with j > s creates a max-descent between the
last part of Aj and the first part of the next non-empty Ai, so each such Aj

contributes a factor of 1+ y(C(x, y, t)− 1). Thus C = C(x, y, t) satisfies the
following recursive relation:

C(x, y, t) = 1(4.1)

+
∑
r≥1

xtr

(
(1 + y(C − 1) +

r∑
s=1

(C − 1)(1 + y(C − 1))r+1−s

)

= 1 + x(1 + y(C − 1))
∑
r≥1

tr

(
1 + (C − 1)

r∑
s=1

(1 + y(C − 1))r−s

)

= 1 + x(1 + y(C − 1))
∑
r≥1

tr
(
1 + (C − 1)

(1 + y(C − 1))r − 1

(1 + y(C − 1))− 1

)

= 1 + x(1 + y(C − 1))
∑
r≥1

tr
(
1 +

(1 + y(C − 1))r − 1

y

)

= 1 + x
(1 + y(C − 1))

y

∑
r≥1

tr (y − 1 + (1 + y(C − 1))r)

= 1 + x
(1 + y(C − 1))

y

(
t(y − 1)

1− t
+

t(1 + y(C − 1))

1− t(1 + y(C − 1))

)

= 1 +
tx

y
(1 + y(C − 1))

(
(y − 1)

1− t
+

(1 + y(C − 1))

1− t(1 + y(C − 1))

)
.

Clearing the fractions gives a quadratic equation in C which we can solve
to show that

C(x, y, t) =
P (x, y, t)−

√
Q(x, y, t)

R(x, y, t)
,
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where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2t2y + txy + 2t2xy − 2t2xy2

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy +

4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2).

If we let f(x, y, t) = C(x, y, t)− 1, then (4.1) gives that

f(x, y, t) =
tx

y
(1 + yf)

(
y − 1

1− t
+

1 + yf

1− t(1 + yf)

)
.

The Lagrange Inversion Theorem implies that the coefficient of xk in f(x, y, t)

is given by

f(x, y, t)|xk =
1

k
δ(x)k

∣∣∣
xk−1

,

where

δ(x) =
t

y
(1 + yx)

(
y − 1

1− t
+

1 + yx

1− t(1 + yx)

)
.

Thus,

f(x, y, t)|xktn

=
1

k

tk

yk
(1 + yx)k

k∑
a=0

(
k

a

)
(y − 1)k−a

(1− t)k−a

(1 + xy)a

(1− t(1 + xy))a

∣∣∣∣
xk−1tn

=
1

k

1

yk

k∑
a=0

(
k

a

)
(y − 1)k−a

(1− t)k−a

(1 + xy)k+a

(1− t(1 + xy))a

∣∣∣∣
xk−1tn−k

.

By Newton’s Binomial Theorem, we have

1

(1− t)k−a
=

∑
u≥0

(
k − a+ u− 1

u

)
tu and

1

(1− t(1 + xy))a
=

∑
v≥0

(
a+ v − 1

v

)
tv(1 + xy)v.



Patterns in words of ordered set partitions 469

It follows that

f(x, y, t)|xktn

=
1

k

1

yk

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)

·(y − 1)k−a(1 + xy)k+a+v|xk−1

=
1

k

1

yk

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)

·
(
k + a+ v

k − 1

)
(y − 1)k−ayk−1

=
1

ky

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)

·
(
k + a+ v

k − 1

)
(y − 1)k−a.

Thus we have the following theorem.

Theorem 4.3. The generating functions

WOP
mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t) = WOP

maxdes
132 (x, y, t)

=
P (x, y, t)−

√
(Q(x, y, t)

R(x, y, t)
,

where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2t2y + txy + 2t2xy − 2t2xy2,

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy +

4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2),

and the generating function

∑
π∈WOPn,k(213)

ymindes(π) =
1

ky

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)

·
(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y − 1)k−a.
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We can compute the limit as y approaches 0 of WOP
mindes
213 (x, y, t) to ob-

tain the generating function of ordered set partitions in WOPn(213) which
have no min-descents. In this case, we obtain the following corollary.

Corollary 4.4. The generating function

1 +
∑
n≥1

tn
∑

π∈WOPn(213),mindes(π)=0

x�(π) =
1 + t(−2 + t− tx)

1 + t2 − t(2 + x)
.

Setting x = 1, the coefficient list {an}n≥0 in the Taylor series expansion
is

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . .

which is a bisection of the Fibonacci numbers appears as sequence A001519
in the OEIS [15] which has a large number of combinatorial interpretations.
In fact, we can prove this combinatorially by showing the recurrence: an =
3an−1 − an−2 for all n ≥ 3. Note that an is the number of ordered set
partitions that word-avoid 213 and have no min-descents. The number 1
must be in the first position in the word of each such ordered set partition.
There are an−1 such ordered set partitions when 1 is in a block of size 1.
When the number 1 is in a block of size larger than 1, we suppose that 2 is
in the kth position in the word. It is easy to show that we have an−k+1 such
ordered set partitions. Thus,

an = an−1 +

n∑
k=2

an−k+1 = an−1 +

n−1∑
k=1

ak = 2an−1 +

n−2∑
k=1

ak

= 2an−1 + (an−1 − an−2),

which proves the recurrence relation.
Given any sequence of positive numbers 1 ≤ b1 < b2 < · · · < bs, we let

A = A(x, y, t, q1, . . . , qs) = WOP
mindes
213,{b1,...,bs}(x, y, t, q1, . . . , qs).

It follows from the structure pictured in Figure 3 and our analysis above
that

A = 1 +

s∑
i=1

xqit
bi(1 + y(A− 1) +

bi∑
a=1

(A− 1)(1 + y(A− 1))bi+1−a)

= 1 +

s∑
i=1

xqit
bi(1 + y(A− 1))

(
1 +

(1 + y(A− 1))bi − 1

y

)
.
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If we set F = F (x, y, t, q1, . . . , qs) = A(x, y, t, q1, . . . , qs) − 1, then we

have

F = x

s∑
i=1

qit
bi(1 + yF )

(
1 +

(1 + yF )bi − 1

y

)
.

It follows from the Lagrange Inversion Theorem that

F |xk =
1

k
δk(x)|xk−1

where δ(x) =
∑s

i=1 qit
bi(1 + yx)

(
1 + (1+yx)bi−1

y

)
.

One can use this expression to show that if α1, . . . , αs are non-negative

integers such that
∑s

i=1 αi = k and
∑s

i=1 αibi = n, then

F |xktnq
α1
1 ···qαs

s
=

1

k

(
k

α1, . . . , αs

)
(1 + xy)k

yk

s∏
i=1

(
(1 + xy)bi − 1

)αi

∣∣∣∣
xk−1

.

Hence it is possible to get a closed expression for F |xktnq
α1
1 ···qαs

s
, and we shall

omit the messy details.

4.4. The function WOP
mindes
123,{1,2}(x, y, t, q1, q2)

Next let us consider the computation of the generating function

A(x, y, t, q1, q2) = WOP
mindes
123,{1,2}(x, y, t, q1, q2).

We will again consider the case analysis of π=B1/· · ·/Bj ∈WOPn,{1,2}(123)
by looking at the first return of the path P = Ψ(w(π)) and we will keep

the same notation. That is, we shall assume the first return is at (n −
k, k), B1/ · · · /Bi are the parts containing the numbers {k + 1, . . . , n} and

Bi+1/ · · · /Bj are the parts containing the number {1, . . . , k}.

Case 1. The first return of P is at the point (1, n− 1).

In this case, we showed that B1 = {n}. If n = 1, then we get a contribution

of xtq1. Otherwise, n will cause a min-descent between B1 and B2 which

gives a contribution of xtq1y(A(x, y, t, q1, q2)− 1). Thus, the contribution in

this case is

xtq1(1 + y(A(x, y, t, q1, q2)− 1)).
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Case 2. The first return of P is at the point (2, n− 2).

In this case, we showed that either B1 = {n − 1} and B2 = {n} or B1 =
{n − 1, n}. It is easy to see that in the first case, the contribution to
A(x, y, t, q1, q2) is x

2t2q21(1 + y(A(x, y, t, q1, q2)− 1)). That is, if n = 2, then
we get a contribution of x2t2q21. Otherwise, B2 will cause a min-descent be-
tween B2 and B3 which gives a contribution of x2t2q21y(A(x, y, t, q1, q2)−1).
Similarly, in the second case the contribution to A(x, y, t, q1, q2) is xt

2q2(1+
y(A(x, y, t, q1, q2) − 1)) as there is a min-descent between B1 and B2 if B2

exists. Thus the total contribution to A(x, y, t, q1, q2) from Case 2 is

(x2t2q21 + xt2q2)(1 + y(A(x, y, t, q1, q2)− 1)).

Case 3. The first return of P is at the point (n − k, k) where k < n − 2,
and k + 1 is in column n− k − 1.
In this case, we have the situation pictured in Figure 9. Thus w(π) =
w1 · · ·wn where wn−k−1 = k + 1 and wn−k = p where k + 1 < p. It fol-
lows that either Bi = {k + 1, p} or Bi−1 = {k + 1} and Bi = {p}. We claim
that the contribution to A(x, y, t, q1, q2) in the first case where Bi = {k+1, p}
is

y(A(x, y, t, q1, q2)− 1)xt2q2(1 + y(A(x, y, t, q1, q2)− 1)).

That is, the first factor y comes from the fact that there is a min-descent
between Bi−1 and Bi since min(Bi) = k + 1 which is the smallest element
in B1/ · · · /Bi. The next factor (A(x, y, t, q1, q2) − 1) comes from summing
the weights of the reductions of B1/ · · · /Bi−1 over all possible choices of
B1/ · · · /Bi−1. The factor xt

2q2 comes from Bi. If Bi+1/ · · · /Bj is empty then
we get a factor of 1, and if Bi+1/ · · · /Bj is not empty, then we get a factor
of y, coming from the fact that the minimal element of Bi, k + 1, is greater
than the minimal element of Bi+1 which is some element in {1, . . . , k}, and
a factor of (A(x, y, t, q1, q2) − 1) comes from summing the weights over all
possible choices of Bi+1/ · · · /Bj .

A similar reasoning will show that the contribution to A(x, y, t, q1, q2) in
the second case where Bi−1 = {k + 1} and Bi = {p} is

y(A(x, y, t, q1, q2)− 1)x2t2q21(1 + y(A(x, y, t, q1, q2)− 1)).

Thus the total contribution to A(x, y, t, q1, q2) in Case 3 is

y(A(x, y, t, q1, q2)− 1)(xt2q2 + x2t2q21)(1 + y(A(x, y, t, q1, q2)− 1)).
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At this point, our analysis differs from that ofWOP
des
123,{1,2}(x, y, t, q1, q2).

Case 4. The first return of P is at the point (n − k, k) where k < n − 2,
k + 1 is in column r = n− k − 2, and Bi−1 has size 2.
Referring to Figure 10, in the word w(π) = w1 · · ·wn, we have wn−k−2 =
k + 1, wn−k−1 = p1, and wn−k = p2, where k + 1 < p2 < p1. It follows that
Bi = {p2}, Bi−1 = {k + 1, p1}, and there is no min-descent between Bi−1

and Bi. Referring to the Dyck path structure in Figure 15 that if the path
ends with 3 right steps RRR and it does not have a return, then there are
two sub-Dyck-path components denoted B in the picture – the part track-
ing back from last step before the last down step to the step that it first
reaches the first diagonal, and the part from the next step back to the start
point. The corresponding parts of the two sub-Dyck-paths in the ordered set
partition side are B1, . . . , Bi−2 that can be seen as 2 ordered set partitions
that word-avoid 123, whose contribution is (1+y(A(x, y, t, q1, q2)−1))2. The
contribution of parts Bi−1 and Bi is x

2t3q1q2 and the contribution of blocks
Bi+1/ · · · /Bj is (1 + y(A(x, y, t, q1, q2)− 1)) for the same reason as Case 3.
Thus the contribution of this case is

(1 + y(A(x, y, t, q1, q2)− 1))2x2t3q1q2(1 + y(A(x, y, t, q1, q2)− 1)).

B

B

Figure 15: The situation in Case 4.

Case 5. The first return of P is at the point (n− k, k) where k < n− 2 and
the size of Bi−1 is not 2 (π does not satisfy Case 4).
This case is similar to Case 4 of WOP

des
123,{1,2}(x, y, t, q1, q2) in Section 3.2.

In this case, Bi must be a singleton, and we claim that the contribution of
this case is

y(A(x, y, t, q1, q2)− 1− xtq1(1 + y(A(x, y, t, q1, q2)− 1))

− xt2q2(1 + y(A(x, y, t, q1, q2)− 1))2) · xtq1(1 + y(A(x, y, t, q1, q2)− 1)).
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That is, the first factor y comes from the fact that there is a min-descent
caused by parts Bi−1 and Bi. The next factor comes summing the weights
of all possible choices of B1/ · · · /Bi−1. The contribution of part Bi is txq1
and the last factor (1 + y(A(x, y, t, q1, q2)− 1)) is the contribution of blocks
Bi+1/ · · · /Bj .

Adding up the contributions leads to the following theorem.

Theorem 4.5. The function WOP
mindes
123,{1,2}(x, y, t, q1, q2) is the root of the

following degree 3 polynomial equation about A:

A = 1+txq1(1+y(A−1))+(t2xq2+t2x2q21)(1+y(A−1))2+t3x2q1q2(1+y(A

−1))3+txyq1(1+y(A−1))(A−1−txq1(1+y(A−1))−t2xq2(1+y(A−1))2).

One can use Mathematica to compute the generating function:

WOP
mindes
123,{1,2}(x, y, t, q1, q2) = 1+txq1+t2

(
q2x+ q21x

2 + q21x
2y
)
+t3

(
q1q2x

2

+3q1q2x
2y + 4q31x

3y + q31x
3y2

)
+ t4

(
2q22x

2y + 9q21q2x
3y + 2q41x

4y

+6q21q2x
3y2 + 11q41x

4y2 + q41x
4y3

)
+ t5

(
5q1q

2
2x

3y + 5q31q2x
4y + 10q1q

2
2x

3y2

+41q31q2x
4y2 + 15q51x

5y2 + 10q31q2x
4y3 + 26q51x

5y3 + q51x
5y4

)
+ · · · .

4.5. The function WOP
mindes
321 (x, y, t)

We write C(x, y, t) = WOP
mindes
321 (x, y, t). To study the function C(x, y, t),

we use the fact that the reverse of the word of any π ∈ WOPn(321) is
123-avoiding. In other words, if we let WOPn(123) be the set of ordered
set partitions whose numbers are organized in decreasing order inside each
part and the word is 123-avoiding, then each π ∈ WOPn(321) corresponds
to a π̄ ∈ WOPn(123). The mindes of π is then equal to the rise of the
minimal elements of consecutive blocks (or minrise) of π̄. We shall work on
WOPn(123) and the statistic minrise to compute the function C(x, y, t).

We also need to define another generating function

C�(x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x�(π)y|{i:i<�(π)−1,Bi<minBi+1}|

that tracks the number of minrise’s that are not caused by the last two
parts over all ordered set partitions in WOPn(123).

We will always use the shorthand C and C� for C(x, y, t) and C�(x, y, t).
We start by studying the function C(x, y, t). Note that the action lift

defined in Section 3 preserves the minrise of any ordered set partitions in
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WOPn(123), which makes it possible to find a recursion for WOPn(123)
using the Dyck path bijection. For any π = B1/ · · · /Bm ∈ WOPn(123), we
let w(π) = w1 · · ·wn ∈ Sn(123). Let the first return of the corresponding
Dyck path be at the n − kth column and let Bi be the part containing the
number wn−k.

Then there are 5 cases.
Case 1. Bi has size 1 and wn−k−1 = k + 1.
In this case, there is a minrise between parts Bi−1 and Bi. The numbers
before k + 1 reduce to an ordered set partition in WOPn−k−2(123). Either
Bi−1 only has the number k+1 or contains other numbers, and in the later
case the minrise caused by last two parts in the previous numbers is not
counted. Thus the contribution of the numbers before wn−k to C(x, y, t)
is tx(C + C�−1

x ). Since the numbers after wn−k can form any ordered set
partition in WOPk(123) and the minrise is not affected, the contribution
to the function C(x, y, t) of this case is

t2x2y

(
C +

C� − 1

x

)
C.

Case 2. Bi has size larger than 1 and wn−k−1 = k + 1.
In this case, Bi contains no number in {w1, . . . , wn−k−1} and there is no
minrise between parts Bi−1 and Bi. The contribution of the numbers before
wn−k is tx(C + C�−1

x ), and the contribution of the numbers from wn−k is

tx
(
C−1
x

)
. The contribution to C(x, y, t) of this case is

t2x2
(
C +

C� − 1

x

)(
C − 1

x

)
.

Case 3. Bi has size 1 and wn−k−1 �= k + 1.
In this case, there is no minrise between parts Bi−1 and Bi. The contribu-
tion of the numbers before wn−k is

(
C − tx

(
C + C�−1

x

))
. Since the numbers

after wn−k form an ordered set partition in WOPk(123) and the first part
can either contain the number wn−k or not, without changing the minrise,
the contribution of the numbers from wn−k is tx

(
C + C−1

x

)
, and the contri-

bution to the function C(x, y, t) of this case is

tx

(
C +

C − 1

x

)(
C − tx

(
C +

C� − 1

x

))
.

Case 4. wn−k−1 ∈ Bi and wn−k+1 /∈ Bi.
In this case, there is no minrise between parts Bi−1 and Bi. We have wn−k �=
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k + 1 and wn−k−1 �= k + 1 in order to satisfy that wn−k−1 ∈ Bi. wn−k+1 /∈
Bi implies that the first part of the ordered set partition after wn−k does

not contain the number wn−k. Thus the numbers up to wn−k contribute

t
(
C − 1− tx

(
C + C�−1

x

))
and the numbers after wn−k contribute C to the

function C(x, y, t). Thus the total contribution of this case is

tC

(
C − 1− tx

(
C +

C� − 1

x

))
.

Case 5. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.

In this case, there is still no minrise between parts Bi−1 and Bi. We have

wn−k �= k + 1 and wn−k−1 �= k + 1 in order to satisfy that wn−k−1 ∈
Bi. wn−k+1 ∈ Bi implies that the first part of the ordered set partition

after wn−k contains the number wn−k. As part Bi connects the numbers

before wn−k and the numbers after wn−k, the minrise caused by the last two

parts before wn−k is not counted. Thus the numbers up to wn−k contribute

t
(
C� − 1− tx

(
C + C�−1

x

))
and the numbers after wn−k contribute C−1

x to

the function C(x, y, t). The total contribution of this case is

t

(
C − 1

x

)(
C� − 1− tx

(
C +

C� − 1

x

))
.

Summing the contribution of all the five cases, we have

(4.2)

C(x, y, t) = 1 + (y − 1)t2x2C

(
C +

C� − 1

x

)
+ txC

(
C +

C − 1

x

)
+ tC

·
(
C − 1− tx

(
C +

C� − 1

x

))
+t

(
C − 1

x

)(
C� − 1− tx

(
C +

C� − 1

x

))
.

We can do similar analysis for C�(x, y, t). We have the following 7 cases,

of which the first 5 cases are similar to that of C(x, y, t).

Case 1. Bi has size 1, wn−k−1 = k + 1 and k > 0.

The argument is same as Case 1 of C(x, y, t) except that the contribution

of the numbers after wn−k is C� − 1 instead of C, since k > 0 implies that

Bi+1 is not empty, and we do not count the minrise between the last two

parts of π. Thus the contribution to C�(x, y, t) of this case is

t2x2y

(
C +

C� − 1

x

)
(C� − 1).
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Case 2. Bi has size larger than 1 and wn−k−1 = k + 1.
Similar to Case 2 of C(x, y, t), the contribution is t2x2

(
C + C�−1

x

) (
C�−1
x

)
.

The only difference is that the contribution of numbers after wn−k is C�−1
x

instead of C−1
x as we do not count the minrise between the last two parts.

Case 3. Bi has size 1, wn−k−1 �= k + 1 and k > 0.
Similar to Case 3 of C(x, y, t), the contribution is
tx

(
C� − 1 + C�−1

x

) (
C − tx

(
C + C�−1

x

))
. The difference is that the contri-

bution of numbers after wn−k is
(
C� − 1 + C�−1

x

)
as we do not count the

minrise between the last two parts and the collection of numbers after wn−k

is not empty.
Case 4. wn−k−1 ∈ Bi, wn−k+1 /∈ Bi and k > 0.
Similar to Case 4 of C(x, y, t), the contribution is
t(C� − 1)

(
C − 1− tx

(
C + C�−1

x

))
. The contribution of numbers after wn−k

is (C� − 1) since k > 0 implies that the collection of numbers after wn−k is
not empty.
Case 5. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
Similar to Case 5 of C(x, y, t), the contribution is
t
(
C�−1
x

) (
C� − 1− tx

(
C + C�−1

x

))
. The the contribution of numbers after

wn−k is C�−1
x as we do not count the minrise between the last two parts.

Case 6. k = 0 and wn−k−1 /∈ Bi.
In this case, Bi = {wn−k}. Since we do not count the descents of the last two
parts, we do not care whether wn−k is bigger or smaller than the minimum
of the previous part. The contribution of this case is txC.
Case 7. k = 0 and wn−k−1 ∈ Bi.
In this case, Bi can be seen as including wn−k in the last part before wn−k.
The last minrise before wn−k is not counted, and wn−k, wn−k−1 �= k + 1.
The contribution of this case is t

(
C� − 1− tx

(
C + C�−1

x

))
.

Summing the contribution of all the 7 cases, we have

(4.3)

C�(x, y, t) = 1+(y−1)t2x2(C�−1)

(
C +

C� − 1

x

)
+txC

(
C� − 1 +

C� − 1

x

)

+ txC + t

(
C� − 1− tx

(
C +

C� − 1

x

))
+ tx

(
C� − 1 +

C� − 1

x

)

·
(
C − tx

(
C +

C� − 1

x

))
+ t(C� − 1)

(
C − 1− tx

(
C +

C� − 1

x

))
.

Using equations (4.2) and (4.3) about C(x, y, t) and C�(x, y, t), we can
compute the Groebner basis of the functions to find an equation that C(x,
y, t) satisfies, and we have the following theorem.
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Theorem 4.6. The function WOP
mindes
321 (x, y, t) is the root of the following

degree 4 polynomial equation about C:

1+t(−1+2x+2x2−x2y)+t2−t3+C(−2+t(−3−5x−3x2+x2y)+t2(3−4x−6x2

+3x2y)+t3(2+3x+3x2−2x2y))+C2(1+t(9+6x+x2)+t2(−3+5x+8x2+2x3)

+ t3(−10− 6x− 3x2 − 4x3 − 2x4 + x2y + 3x3y + 3x4y − x4y2) + t4(3− x2))

+C3(t(−5−3x)+t2(−7−8x−3x2−x3−3x2y−x3y)+t3(18+17x+6x2+2x3

+x4− 6x2y− 4x3y−x4y)+ t4(−6− 6x− 3x2+x3+x4+5x2y+x3y−x4y))

+C4t2(2−t+x−tx−tx2+tx2y)(3−3t+2x−3tx−tx2+2tx2y+tx3y) = 0.

One can use Mathematica to compute the generating function:

WOP
mindes
321 (x, y, t) = 1 + tx+ t2

(
x2y + x2 + x

)
+ t3

(
4x3y + x3 + 2x2y

+5x2 + 2x
)
+ t4

(
2x4y2 + 11x4y + x4 + 17x3y + 17x3 + 4x2y

+22x2 + 6x
)
+ t5

(
15x5y2 + 26x5y + x5 + 10x4y2 + 90x4y

+49x4 + 65x3y + 123x3 + 10x2y + 88x2 + 18x
)
+ · · · .

5. Generating functions for part-descents

In this section, we shall study the generating functionWOP
pdes
α (x, y, t) where

α ∈ S3. Based on the analysis in Section 2, we need to study the following
4 kinds of generating functions,

WOP
pdes
132 (x, y, t) = WOP

pdes
213 (x, y, t),

WOP
pdes
231 (x, y, t) = WOP

pdes
312 (x, y, t),

WOP
pdes
123 (x, y, t), WOP

pdes
321 (x, y, t).

We are able to explicitly determine the functions WOP
pdes
132 (x, y, t) =

WOP
pdes
213 (x, y, t), and write the functionsWOP

pdes
231 (x, y, t) = WOP

pdes
312 (x, y, t)

and WOP
pdes
321 (x, y, t) as roots of polynomial equations. We fail to obtain a

recursive formula for WOP
pdes
123 (x, y, t) since it is hard to get the pdes statistic

under the the lift action of a 123-avoiding permutation.

5.1. The functions WOP
pdes
132 (x, y, t) = WOP

pdes
213 (x, y, t)

As we observed in Section 2,

WOP
pdes
132 (x, y, t) = WOP

mindes
213 (x, y, t).

Thus we have the following theorem.
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Theorem 5.1. The generating functions

WOP
pdes
132 (x, y, t) = WOP

pdes
213 (x, y, t) = WOP

maxdes
132 (x, y, t)

= WOP
mindes
213 (x, y, t) = WOP

mindes
312 (x, y, t)

=
P (x, y, t)−

√
Q(x, y, t)

R(x, y, t)
,

where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2t2y + txy + 2t2xy − 2t2xy2,

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy

+4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2),

and

∑
π∈WOPn,k(132)

ypdes(π) =
1

k

1

y

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)
(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y − 1)k−a.

5.2. The functions WOP
pdes
231 (x, y, t) = WOP

pdes
312 (x, y, t)

We compute the functionWOP
pdes
312 (x, y, t) and writeD(x, y, t) = WOP

pdes
312 (x,

y, t). As this is different from the 132-avoiding case, we will consider a new
structure for the set WOPn(312).

Given any ordered set partition π = B1/ · · · /Bk ∈ WOPn(312). If the
size n = 0, then it contributes 1 to the function D(x, y, t). Otherwise, π
has at least one part and we suppose the last part is Bk = {a1, a2, . . . , ar}
with r ≥ 1 numbers. Note that there is no number a > a2 in the previous
blocks B1, . . . , Bk−1, otherwise the subsequence (a, a1, a2) of w(π) is a 312-
occurrence. Thus, the subsequence a2, . . . , ar must be a consecutive integer
sequence.

Now, we divide the numbers in the previous blocks B1, . . . , Bk−1 into
2 sets: let A1 = {1, . . . , a1 − 1} be the numbers smaller than a1 and A2 =
{a1+1, . . . , a2−1} be the numbers bigger than a1. The numbers in the set A1

must appear before the numbers in A2 as otherwise there is a 312-occurrence
in the word. Thus, an ordered set partition π = B1/ · · · /Bk ∈ WOPn(312)
has the structure pictured in Figure 16.
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Figure 16: Structure of an ordered set partition in WOPn(312).

We let Ai(π) be the restriction of π to the set Ai. Then each Ai(π) is
also an ordered set partition in WOPn(312). However, if both Ai’s are not
empty, then it is possible that the last block of A1 and the first block of A2

are contained in the same block in π. In that case, the pdes caused by the
last two blocks of A1 (if any) and the pdes caused by the first two blocks in
A2 (if any) will not contribute to pdes(π). We let D�(x, y, t), Df (x, y, t) and
D�f (x, y, t) be the generating functions tracking the number of pdes without
tracking the pdes caused by the last two parts, the first two parts, and both
last and first two parts that

D�(x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x�(π)y|{i:i<�(π)−1,Bi>pBi+1}|,

Df (x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x�(π)y|{i:i>1,Bi>pBi+1}|,

D�f (x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x�(π)y|{i:1<i<�(π)−1,Bi>pBi+1}|,

then we can compute the recursive equations of functions D(x, y, t), D�(x, y,
t), Df (x, y, t) and D�f (x, y, t) respectively.

We first consider the function D(x, y, t).
Case 1. The last part Bk has size bigger than 1.
Then there is always no pdes involving the part Bk as the last part contains
the number a2 which is greater than any numbers in B1, . . . , Bk−1. The
last part has contribution tx2 + tx3 + · · · = tx2

1−t , and the contribution of

B1, . . . , Bk−1 is D2(x, y, t) when the last block of A1 and the first block of
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A2 are in different blocks in π, and (D�(x,y,t)−1)(Df (x,y,t)−1)
x when the last

block of A1 and the first block of A2 are in the same block in π. Thus, the

contribution of this case to the function D(x, y, t) is

tx2

1− t

(
D2(x, y, t) +

(D�(x, y, t)− 1)(Df (x, y, t)− 1)

x

)
.

Case 2. Bk has size 1, A2 only contains 1 block which is in the same block

as the last block of A1 in π.

In this case, the set A1 cannot be empty and there is still no pdes caused

by the last two parts of π. The contribution is

tx

(
(D�(x, y, t)− 1)

t

1− t

)
.

Case 3. Bk has size 1, A2 is empty.

In this case, there is no pdes caused by the last two parts of π and the

contribution is

txD(x, y, t).

Case 4. Bk has size 1, and π does not satisfy Case 2 or 3.

In this case, there is a pdes caused by the last two parts of π. Since it is

possible that the last block of A1 and the first block of A2 are in the same

block in π, the contribution of this case is

txy

(
D(x, y, t)(D(x, y, t)− 1) +

(D�(x, y, t)− 1)(Df (x, y, t)− tx
1−t − 1)

x

)
.

Summing the contribution of all the 4 cases, and we write D,D�, Df , D�f

on the right hand side to abbreviate D(x, y, t), D�(x, y, t), Df (x, y, t), D�f (x,

y, t), then we have

(5.1) D(x, y, t) = 1 +
tx

1− t

(
D2 +

(D� − 1)(Df − 1)

x

)

+ (y − 1)tx

(
D(D − 1) +

(D� − 1)(Df − tx
1−t − 1)

x

)
.

For the function D�(x, y, t), we do not need to consider the contribution

to part-descent involving part Bk, thus the analysis is like Case 1 ofD(x, y, t)
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and we have

(5.2) D�(x, y, t) = 1 +
tx

1− t

(
D2 +

(D� − 1)(Df − 1)

x

)
.

For the function Df (x, y, t), we have similar cases to D(x, y, t), but one
more case when last part is of size 1.
Case 1. Bk has size larger than 1.
In this case, there is always no pdes involving part Bk. The last part has con-
tribution tx2

1−t . The contribution of B1, . . . , Bk−1 is (Df (x, y, t)− 1)D(x, y, t)
when A1 is not empty and the last block of A1 and the first block of A2

are in different blocks in π, Df (x, y, t) when A1 is empty, and
(D�f (x,y,t)−1)(Df (x,y,t)−1)

x when the last block of A1 and the first block of
A2 are in the same block in π. Thus, the contribution of this case to the
function D(x, y, t) is

tx2

1− t
((Df (x, y, t)− 1)D(x, y, t) +Df (x, y, t)

+
(D�f (x, y, t)− 1)(Df (x, y, t)− 1)

x

)
.

Case 2. Bk has size 1, A2 only contains 1 block and it is in the same block
as the last block of A1.
In this case, the set A1 cannot be empty and there is still no pdes caused
by the last two parts of π. The contribution is

tx

(
(D�f (x, y, t)− 1)

t

1− t

)
.

Case 3. Bk has size 1, A2 is empty.
In this case, there is no pdes caused by the last two parts of π and the
contribution is

txDf (x, y, t).

Case 4. Bk has size 1, A1 is empty, and A2 only has one block.
In this case, the pdes caused by the only two parts of π is not counted as
we do not count the first pdes, and the contribution is

tx
tx

1− t
.

Case 5. Bk has size 1, and the numbers in sets A1, A2 does not satisfy Case
2, 3 or 4.
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In this case, there is a pdes caused by the last two parts of π. Since it is
possible that the last block of A1 and the first block of A2 are in the same
block, the contribution of this case is

txy

(
(Df (x, y, t)− 1)(D(x, y, t)− 1) + (Df (x, y, t)− 1− tx

1− t
)

+
(D�f (x, y, t)− 1)(Df (x, y, t)− tx

1−t − 1)

x

)
.

Summing the contribution of all the 5 cases, we have

(5.3) Df (x, y, t) = 1 +
tx

1− t

(
(Df − 1)D +Df +

(D�f − 1)(Df − 1)

x

)

+ (y − 1)tx

(
(Df − 1)D − tx

1− t
+

(D�f − 1)(Df − tx
1−t − 1)

x

)
.

For the function D�f (x, y, t), we do not need to consider the contribution
to part-descent involving part Bk, thus the contribution is like Case 1 of
Df (x, y, t) and we have

(5.4) D�f (x, y, t) = 1 +
tx

1− t

(
(Df − 1)D +Df +

(D�f − 1)(Df − 1)

x

)
.

Using equations (5.1), (5.2), (5.3) and (5.4) about D(x, y, t), D�(x, y, t),
Df (x, y, t) and D�f (x, y, t), we can compute the Groebner basis of the func-
tions to find an equation that D(x, y, t) satisfies, and we have the following
theorem.

Theorem 5.2. We have

D(x, y, t) = 1 +
tx

1− t

(
D2 +

(D� − 1)(Df − 1)

x

)

+ (y − 1)tx

(
D(D − 1) +

(D� − 1)(Df − tx
1−t − 1)

x

)
,

D�(x, y, t) = 1 +
tx

1− t

(
D2 +

(D� − 1)(Df − 1)

x

)
,
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Df (x, y, t) = 1 +
tx

1− t

(
(Df − 1)D +Df +

(D�f − 1)(Df − 1)

x

)

+ (y − 1)tx

(
(Df − 1)D − tx

1− t
+

(D�f − 1)(Df − tx
1−t − 1)

x

)
,

D�f (x, y, t) = 1 +
tx

1− t

(
(Df − 1)D +Df +

(D�f − 1)(Df − 1)

x

)
,

and the function WOP
pdes
312 (x, y, t) is the root of the following degree 3 poly-

nomial equation about D:

1−t+D(−1+t)(1+t(1+2x(−1+y)))+D2(1−t)t
(
1 + tx2(−1 + y)2 + x(−1

+t(−1 + y) + 2y)) +D3t2x(−1 + y)(−1 + t(1 + x(−1 + y))− xy) = 0.

We can use Mathematica to compute the generating function:

WOP
pdes
312 (x, y, t) = 1+ tx+ t2

(
x2y + x2 + x

)
+ t3

(
x3y2 + 3x3y + x3 + x2y

+4x2 + x
)
+ t4

(
x4y3 + 6x4y2 + 6x4y + x4 + x3y2 + 11x3y + 9x3 + x2y

+8x2 + x
)
+ t5

(
x5y4 + 10x5y3 + 20x5y2 + 10x5y + x5 + x4y3 + 21x4y2

+46x4y + 16x4 + x3y2 + 23x3y + 32x3 + x2y + 13x2 + x
)
+ · · · .

5.3. The function WOP
pdes
321 (x, y, t)

We write D(x, y, t) = WOP
pdes
321 (x, y, t). As we defined in Section 4.5,

WOPn(123) is the set of ordered set partitions whose numbers are orga-
nized in decreasing order inside each part and the word is 123-avoiding.
Each π ∈ WOPn(321) corresponds to a π̄ ∈ WOPn(123), and the pdes of
π is equal to the part-rise (or prise) of π̄. We want to work on WOPn(123)
and the statistic prise to compute the function D(x, y, t).

We also need to define D�(x, y, t), Df (x, y, t) and D�f (x, y, t) as the gen-
erating functions tracking the number of prise without tracking the prise
caused by the last two parts, the first two parts, and both last and first two
parts of ordered set partitions in WOPn(123) that

D�(x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x�(π)y|{i:i<�(π)−1,Bi<pBi+1}|,
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Df (x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x�(π)y|{i:i>1,Bi<pBi+1}|,

D�f (x, y, t) := 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x�(π)y|{i:1<i<�(π)−1,Bi<pBi+1}|.

We will always use D, D�, Df and D�f to abbreviate D(x, y, t), D�(x,
y, t), Df (x, y, t) and D�f (x, y, t). As we are generally looking at the same
cases as Section 4.5, we shall briefly describe the classification of cases and
give the contribution of each case.

For any π = B1/ · · · /Bj ∈ WOPn(123), we let w(π) = w1 · · ·wn ∈
Sn(123). Let the first return of the corresponding Dyck path be at the n−kth

column and let Bi be the block containing the number wn−k.
For the function D(x, y, t), there are 4 cases.

Case 1. Both Bi−1 and Bi are of size 1.
The contribution to D(x, y, t) is t2x2yD2.
Case 2. wn−k−1 /∈ Bi and π does not satisfy Case 1.

The contribution to D(x, y, t) is txD
(
D + Df−1

x

)
− t2x2D2.

Case 3. wn−k−1 ∈ Bi and wn−k+1 /∈ Bi.
The contribution to D(x, y, t) is

(
D − 1− xt

(
D + D�−1

x

))
· tD.

Case 4. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
The contribution to D(x, y, t) is

(
D� − 1− xt

(
D + D�−1

x

))
· tDf−1

x .
Summing the contribution of all the 4 cases, we have

(5.5) D(x, y, t) = 1 + t2x2(y − 1)D2 + txD

(
D +

Df − 1

x

)

+ tD

(
D − 1− xt

(
D +

D� − 1

x

))

+ t

(
Df − 1

x

)(
D� − 1− xt

(
D +

D� − 1

x

))
.

For the function D�(x, y, t), there are 6 cases.
Case 1. Both Bi−1 and Bi are of size 1, and k > 0.
The contribution to D�(x, y, t) is t

2x2yD(D� − 1).
Case 2. wn−k−1 /∈ Bi, k > 0, and π does not satisfy Case 1.

The contribution to D�(x, y, t) is txD
(
D� − 1 + D�f−1

x

)
− t2x2D(D� − 1).

Case 3. wn−k−1 ∈ Bi, k > 0, and wn−k+1 /∈ Bi.
The contribution to D�(x, y, t) is

(
D − 1− xt

(
D + D�−1

x

))
· t(D� − 1).

Case 4. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
The contribution to D�(x, y, t) is

(
D� − 1− xt

(
D + D�−1

x

))
· tD�f−1

x .
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Case 5. k = 0 and wn−k−1 /∈ Bi.
The contribution to D�(x, y, t) is txD.
Case 6. k = 0 and wn−k−1 ∈ Bi.
The contribution to D�(x, y, t) is t

(
D� − 1− tx

(
D + D�−1

x

))
.

Summing the contribution of all the 6 cases, we have

(5.6) D�(x, y, t) = 1 + txD + t2x2(y − 1)D(D� − 1)

+ txD

(
D� − 1 +

D�f − 1

x

)
+ t(D� − 1)

(
D − 1− xt

(
D +

D� − 1

x

))

+ t

(
D�f − 1

x

)(
D� − 1− xt

(
D +

D� − 1

x

))

+ t

(
D� − 1− tx

(
D +

D� − 1

x

))
.

The functions Df (x, y, t) and D�f (x, y, t) have exactly the same 4 cases
and 6 cases as D(x, y, t) and D�(x, y, t). The main difference on the right
hand side expansion is that someD andD� becomeDf andD�f . We omit the
classification of cases and organize the terms of the expressions of Df (x, y, t)
and D�f (x, y, t) in the same way as D(x, y, t) and D�(x, y, t), and we have

(5.7) Df (x, y, t) = 1 + t2x2(y − 1)(Df − 1)D + txDf

(
D +

Df − 1

x

)

+ tD

(
Df − 1− xt

(
Df +

D�f − 1

x

))

+ t

(
Df − 1

x

)(
D�f − 1− xt

(
Df +

D�f − 1

x

))
,

and

(5.8) D�f (x, y, t) = 1 + txDf + t2x2(y − 1)(Df − 1)(D� − 1)

+ txDf

(
D� − 1 +

D�f − 1

x

)
+ t(D� − 1)

(
Df − 1− xt

(
Df +

D�f − 1

x

))

+ t

(
D�f − 1

x

)(
D�f − 1− xt

(
Df +

D�f − 1

x

))

+ t

(
D�f − 1− tx

(
Df +

D�f − 1

x

))
.

Using equations (5.5), (5.6), (5.7) and (5.8), one can compute the Groeb-
ner basis of the functions to find an equation that D(x, y, t) satisfies, and
we have the following theorem.
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Theorem 5.3. The function WOP
pdes
321 (x, y, t) is the root of the following

degree 6 polynomial equation about D:

(
(−1 +D)x+ t

(
−1−D2(1 + x)2 + 2D

(
1 + x+ x2(−1 + y)

))
−2x2(−1 + y)

)
+D3t5x5(−1 + y)3 +D2t4x3(−1 + y)2(−2 + 2D(1 + x)

+ x(1 + x− xy)) + t2 (1 + x+D(−2 + x(2(−2 + y) + x(4 + x(−1 + y))(−1

+y)))− x
(
x2(−1 + y)2 + y

)
−D2(1 + x)(−1 + x(−2 + 3x(−1 + y) + y))

)
+Dt3x(−1 + y)

(
1 +D2(1 + x)2 + 2x(−1 + x(−1 + y)) +D

(
−2 + x2(4

+3x− 2y − 3xy))))
(
1 +D

(
−2 +D

(
1 + t

(
1 + x− t

(
1 + x+ x2

)
+D(−1 + t)

(
1 + x+ tx2(−1 + y)

)
+ tx2y

))))
= 0.

We can use Mathematica to compute the following generating function:

WOP
pdes
321 (x, y, t) = 1+ tx+ t2

(
x2y + x2 + x

)
+ t3

(
4x3y + x3 + x2y + 5x2

+x) + t4
(
2x4y2 + 11x4y + x4 + 11x3y + 16x3 + x2y + 13x2 + x

)
+ t5

(
15x5y2 + 26x5y + x5 + 5x4y2 + 65x4y + 42x4

+23x3y + 76x3 + x2y + 29x2 + x
)
+ · · · .

6. Open problems

In this paper, we mainly use the classical recursion of 132-avoiding permu-

tations and the Dyck path bijection of 123-avoiding permutations to prove

results on the generating functions of ordered set partitions that word-avoid

some patterns of length 3 tracking several statistics. Our definition of word-

avoidance of an ordered set partition differs from the pattern avoidance

defined by Godbole, Goyt, Herdan and Pudwell [4]. Notwithstanding, our

definition of 321-word-avoiding ordered set partition coincides α-avoiding

ordered set partition in the sense of [4] for any pattern α ∈ S3.

Due to this coincidence, we spent much of this paper dealing with the

set WOPn(321) of ordered set partitions word-avoiding 321. In Section 3,

we solved all the generating functions tracking the statistic descent about

WOPn(α) for any pattern α of length 3, and obtained many beautiful

symmetries and formulas with multinomial coefficients. However, the enu-

meration for wop[b1,...,bk](321) = op[b1,...,bk](321) and wop〈bα1
1 ,...,b

αk
k 〉(321) =

op〈bα1
1 ,...,b

αk
k 〉(321) are still open. As a first question, an explicit formula for

wop〈bα1
1 ,...,b

αk
k 〉(321) is desired.
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In Section 4 and Section 5, we got nice results for all the generating func-
tions tracking the statistics mindes and pdes, except that we did not have
any result about WOP

pdes
123 (x, y, t). In particular, we had polynomial equa-

tions about the generating functionsWOP
mindes
321 (x, y, t) andWOP

pdes
321 (x, y, t)

stated in Section 4.5 and Section 5.3, which would still make sense when us-
ing pattern avoidance definition in the sense of [4]. The polynomial equations
have all the information of the generating functions, and one can come up
with efficient recursions easily with the equations. The open problem in this
part is the function WOP

pdes
123 (x, y, t). We have not been able to get recur-

sions about WOP
pdes
123 (x, y, t) since the pdes statistic changes abnormally at

the action lift.
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[9] V. Jeĺınek, T. Mansour and M. Shattuck, On multiple pattern avoiding

set partitions, Advances in Applied Mathematics, 50, no.2 (2013), 292–

326. MR3003349

[10] A. Kasraoui and J. Zeng, Euler-Mahonian statistics on ordered set par-

titions (II), Journal of Combinatorial Theory, Series A, 116, no.3

(2009), 539–563. MR2500157

[11] M. Klazar, On abab-free and abba-free set partitions, European Journal

of Combinatorics, 17, no.1 (1996), 53–68. MR1370819

[12] M. Klazar, Counting pattern-free set partitions I: A generalization of

Stirling numbers of the second kind, European Journal of Combina-

torics, 21, no.3 (2000), 367–378. MR1750890

[13] M. Klazar, Counting pattern-free set partitions II: Noncrossing and

other hyper-graphs, Electronic Journal of Combinatorics, 7, no.1

(2000), # R34. MR1769065

[14] T. Mansour, Combinatorics of Set Partitions, Chapman & Hall/CRC,

an imprint of Taylor & Francis LLC (2012).

[15] The On-Line Encyclopedia of Integer Sequences, OEIS Foundation Inc.,

https://oeis.org (2011).

[16] J. Remmel and A. Wilson, An extension of MacMahon’s equidistribu-

tion theorem to ordered set partitions, Journal of Combinatorial The-

ory, Series A, 134 (2015), 242–277. MR3345306

[17] B. Sagan, Pattern avoidance in set partitions, Ars Combinatoria, 94

(2010), 79–96. MR2599721
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