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Ehrhart polynomials of lattice polytopes
with normalized volumes 5

Akiyoshi Tsuchiya

A complete classification of the δ-vectors of lattice polytopes whose
normalized volumes are at most 4 is known. In the present paper,
we will classify all the δ-vectors of lattice polytopes with normal-
ized volumes 5.
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Introduction

One final, unreachable goal of the study on lattice polytopes is to classify

lattice polytopes up to unimodular equivalence. In lower dimension, lattice

polytopes with a small volume are classified ([1]) and lattice polytopes with

a small number of lattice points are classified ([3, 4]). On the other hand,

for arbitrary dimension, all lattice polytopes whose normalized volumes are

at most 4 are completely classified ([11]). In order to do this task, a com-

plete classification of the δ-vectors of lattice polytopes whose normalized

volumes are at most 4 is used. This implies that finding a combinatorial

characterization of the δ-vectors of lattice polytopes is useful for classifying

lattice polytopes. In the present paper, as a next step, we will classify all

the δ-vectors of lattice polytopes whose normalized volumes are 5.

0.1. Background on δ-vectors

First, recall from [7, Part II] what δ-vectors are. We say that a convex poly-

tope is a lattice polytope if its vertices are all elements in Z
d. Let P ,Q ⊂ R

d

be lattice polytopes of dimension d. We say that P and Q are unimodularly

equivalent if there exists an unimodular transformation that maps on one

polytope to the other, that is, an affine map f : Rd → R
d with f(Zd) = Z

d
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and f(P) = Q. In this case, we write P ∼= Q. Given a positive integer n, we
define

LP(n) = |nP ∩ Z
d|,

where nP = {nx : x ∈ P} and |X| is the cardinality of a finite set X.
The study on LP(n) originated in Ehrhart [5] who proved that LP(n) is
a polynomial in n of degree d with the constant term 1. Furthermore, the
leading coefficient, that is, the coefficient of nd of LP(n) coincides with the
usual volume of P . We say that LP(n) is the Ehrhart polynomial of P .
Clearly, if P ∼= Q, then one has LP(n) = LQ(n).

We define δ(P , t) by the formula

δ(P , t) = (1− t)d+1

[
1 +

∞∑
n=1

LP(n)t
n

]
.

Then it follows that δ(P , t) is a polynomial in t of degree at most d. Set
δ(P , t) = δ0 + δ1t + · · · + δdt

d. We say that δ(P , t) is the δ-polynomial and
the sequence (δ0, . . . , δd) is the δ-vector of P . The following properties of
δ(P , t) are known:

• δ0 = 1, δ1 = |P ∩ Z
d| − (d+ 1) and δd = |(P \ ∂P) ∩ Z

d|, where ∂P is
the boundary of P . Hence one has δ1 ≥ δd;

• δi ≥ 0 for each i;
• When δd �= 0, one has δi ≥ δ1 for 1 ≤ i ≤ d− 1;
• δ(P , 1) =

∑d
i=0 δi coincides with the normalized volume of P .

There are two well-known inequalities on δ-vectors. Let s be the degree
of the δ-polynomial, i.e., s = max{i : δi �= 0}. In [14], Stanley proved that

(0.1) δ0 + δ1 + · · ·+ δi ≤ δs + δs−1 + · · ·+ δs−i, 0 ≤ i ≤ 
s/2�,

while in [8], Hibi proved that

(0.2) δd−1 + δd−2 + · · ·+ δd−i ≤ δ2 + δ3 + · · ·+ δi+1, 1 ≤ i ≤ 
(d− 1)/2�.

Recently, there are more general results of inequalities on δ-vectors by Sta-
pledon in [15, 16].

0.2. Characterization of δ-vectors with small volumes

One of the most fundamental problems of enumerative combinatorics is to
find a combinatorial characterization of all vectors that can be realized as
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the δ-vector of some lattice polytope. For example, restrictions like δ0 = 1,

δi ≥ 0, and the inequalities (0.1) and (0.2) are necessary conditions for a

vector to be the δ-vector of some lattice polytope. On the other hand, in

[10], the possible δ-vectors with δ0 + · · · + δd ≤ 3 are completely classified

by the inequalities (0.1) and (0.2).

Theorem 0.1 ([10, Theorm 0.1]). Let d ≥ 3. Given a sequence (δ0, . . . , δd)

of nonnegative integers, where δ0 = 1 and δ1 ≥ δd, which satisfies
∑d

i=0 δi ≤
3, there exists a lattice polytope P ⊂ R

d of dimension d whose δ-vector

coincides with (δ0, . . . , δd) if and only if (δ0, . . . , δd) satisfies all inequalities

(0.1) and (0.2).

However, Theorem 0.1 is not true for δ0+ · · ·+ δd = 4 (see [10, Example

1.2]). On the other hand, in [9, Theorem 5.1], a complete classification of

the possible δ-vectors with δ0 + · · ·+ δd = 4 is given.

Theorem 0.2 ([9, Theorem 5.1]). Let 1 + ti1 + ti2 + ti3 be a polynomial

with 1 ≤ i1 ≤ i2 ≤ i3 ≤ d. Then there exists a lattice polytope P ⊂ R
d

of dimension d whose δ-polynomial equals 1 + ti1 + ti2 + ti3 if and only if

(i1, i2, i3) satisfies

i3 ≤ i1 + i2, i1 + i3 ≤ d+ 1 and i2 ≤ 
(d+ 1)/2�,

and the additional conditions

2i2 ≤ i1 + i3 or i2 + i3 ≤ d+ 1.

Moreover, all these polytopes can be chosen to be simplices.

We remark that there exists a sequence (δ0, . . . , δd) of nonnegative inte-

gers such that (δ0, . . . , δd) is not the δ-vector of any lattice simplex but it is

the δ-vector of some lattice non-simplex ([9, Remark 5.3]).

0.3. Main result: characterization of δ-vectors with
∑d

i=0 δi = 5

In [12], Higashitani classified all the possible δ-vectors of lattice simplices

whose normalized volumes are 5.

Theorem 0.3 ([12, Theorem 1.2]). Let 1+ti1 +ti2 +ti3 +ti4 be a polynomial

with some positive integers i1 ≤ · · · ≤ i4 ≤ d. Then there exists a lattice

simplex of dimension d whose δ-polynomial equals 1 + ti1 + ti2 + ti3 + ti4 if

and only if the following conditions are satisfied:
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• i1 + i4 = i2 + i3 ≤ d+ 1;
• ik + i� ≥ ik+� for 1 ≤ k ≤ � ≤ 4 with k + � ≤ 4.

In the present paper, we will classify all the possible δ-vectors of lattice
polytopes whose normalized volumes are 5. In fact, we will show the following
theorem.

Theorem 0.4. Let 1+ ti1 + ti2 + ti3 + ti4 be a polynomial with some positive
integers i1 ≤ · · · ≤ i4 ≤ d. Then there exists a lattice polytope of dimension
d whose δ-polynomial equals 1+ ti1 + ti2 + ti3 + ti4 if and only if (i1, i2, i3, i4)
satisfies the condition of Theorem 0.3 or one of the following conditions:

(1) (i1, i2, i3, i4) = (1, 1, 1, 2) and d ≥ 2;
(2) (i1, i2, i3, i4) = (1, 2, 2, 2) and d ≥ 3;
(3) (i1, i2, i3, i4) = (1, 2, 3, 3) and d ≥ 5.

In particular, we cannot obtain the δ-polynomials of (1), (2) and (3) by
lattice simplices.

0.4. Structure of this paper

The present paper is organized as follows: First, in Section 1, we will discuss
some properties of lattice polytopes whose normalized volumes are prime
integers. In particular, we will show that every full-dimensional lattice poly-
tope which is not an empty simplex and whose normalized volume equals
a prime integer is always a spanning polytope (Theorem 1.1). This is a key
result in the present paper. Finally, in Section 2, by using this result we will
prove Theorem 0.4.

1. Lattice polytopes with prime volumes

In this section, we will discuss some properties of lattice polytopes whose
normalized volumes are prime integers.

Let P ⊂ Z
d be a lattice polytope of dimension d and 〈P ∩Z

d〉Z the affine
sublattice generated by P∩Z

d. We call the index of P the index of 〈P∩Z
d〉Z

as a sublattice of Zd. We say that P is spanning if its index equals 1. This is
equivalent to that any lattice point in Z

d+1 is a linear integer combination
of the lattice points in P ×{1}. A lattice simplex is called empty if it has no
lattice point expect for its vertices. Now, we prove the following theorem.

Theorem 1.1. Let p be a prime integer and P ⊂ R
d be a lattice polytope

of dimension d whose normalized volume equals p. Suppose that P is not an
empty simplex. Then P is spanning.
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Proof. Since P is not an empty simplex, there exists a lattice triangulation

{Δ1, . . . ,Δk} of P with some positive integer k ≥ 2. Since the index of P

must divide the normalized volume of every Δi, and since the sum of those

normalized volumes is the prime integer p, the index must be one. Hence P
is spanning.

Next, we consider an application of this result to classifying lattice poly-

topes whose normalized volumes are prime integers. Thanks to Theorem 1.1,

every full-dimensional lattice polytope whose normalized volumes equals a

prime integer is either an empty simplex or a spanning polytope. See e.g., [6]

for how to classify empty simplices. Now, we focus on spanning polytopes.

For a lattice polytope P ⊂ R
d, the lattice pyramid over P is defined by

conv(P×{0} , (0, . . . , 0, 1)) ⊂ R
d+1. We denote this by Pyr(P). Let us recall

the following result.

Lemma 1.2 ([13, Corollary 2.4]). There are only finitely many spanning

lattice polytopes of given normalized volume (and arbitrary dimension) up

to unimodular equivalence and lattice pyramid constructions.

By combining Theorem 2.2 and Lemma 1.2, we can obtain the following

corollary.

Corollary 1.3. Let p be a prime integer and P a lattice polytope of dimen-

sion d whose normalized volume equals p. Suppose that P is not an empty

simplex. Then there are only finitely many possibilities for P up to unimod-

ular equivalence and lattice pyramid constructions.

2. Proof of Theorem 0.4

In this section we will prove Theorem 0.4. First, recall the following lemmas.

Lemma 2.1 ([2]). Let P ⊂ R
d be a lattice polytope of dimension d. Then

one has

δ(Pyr(P), t) = δ(P , t).

Lemma 2.2 ([13, Theorem 1.3]). Let P ⊂ R
d be a lattice polytope of di-

mension d whose δ-polynomial equals δ0 + δ1t+ · · ·+ δst
s, where δs �= 0. If

P is spanning, then one has δi ≥ 1 for any 0 ≤ i ≤ s.

By combining Theorem 1.1 and Lemma 2.2, we can obtain the following

corollary.
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Corollary 2.3. Let p be a prime integer and P ⊂ R
d a lattice polytope

of dimension d whose normalized volume equals p and whose δ-polynomial
equals δ0 + δ1t + · · · + δst

s, where δs �= 0. Suppose that P is not an empty
simplex. Then one has δi ≥ 1 for any 0 ≤ i ≤ s.

Next, we give indispensable examples for our proof of Theorem 0.4.

Example 2.4. (a) Let P1 ⊂ R
2 be the lattice polytope which is the convex

hull of the following lattice points:

0, e1, e2, 2e1 + 3e2 ∈ R
2.

Then one has δ(P1, t) = 1 + 3t+ t2.
(b) Let P2 ⊂ R

3 be the lattice polytope which is the convex hull of the
following lattice points:

0, e1, e2, e3, e1 + e2 + 3e3 ∈ R
3.

Then one has δ(P2, t) = 1 + t+ 3t2.
(c) Let P3 ⊂ R

5 be the lattice polytope which is the convex hull of the
following lattice points:

0, e1, e2, e3, e4, e5,−e1 + e2 + e3 + e4 + 2e5 ∈ R
5.

Then one has δ(P3, t) = 1 + t+ t2 + 2t3.

Finally, we prove Theorem 0.4.

Proof of Theorem 0.4. First, we can prove the “If” part of Theorem 0.4 from
Theorem 0.3, Lemma 2.1 and Example 2.4. Hence we should prove the “Only
if” part of Theorem 0.4. Let P ⊂ R

d be a lattice non-simplex of dimension
d whose normalized volume equals 5 and δ(P , t) = δ0 + δ1t+ · · ·+ δdt

d the
δ-polynomial of P . By Corollary 2.3 and the inequalities (0.1) and (0.2), and
the fact δ1 ≥ δd, one of the followings is satisfied:

(1) δ(P , t) = 1 + 4t and d ≥ 1;
(2) δ(P , t) = 1 + 3t+ t2 and d ≥ 2;
(3) δ(P , t) = 1 + 2t+ 2t2 and d ≥ 2;
(4) δ(P , t) = 1 + t+ 3t2 and d ≥ 3;
(5) δ(P , t) = 1 + t+ 2t2 + t3 and d ≥ 3;
(6) δ(P , t) = 1 + t+ t2 + 2t3 and d ≥ 5;
(7) δ(P , t) = 1 + t+ t2 + t3 + t4 and d ≥ 4.

Then we know that the conditions (1), (3), (5) and (7) satisfy the condition
of Theorem 0.3. This completes the proof.
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