
Journal of Combinatorics

Volume 10, Number 2, 255–282, 2019

Fractional triangle decompositions of dense
3-partite graphs

Flora C. Bowditch and Peter J. Dukes
∗

We compute a minimum degree threshold sufficient for 3-partite
graphs to admit a fractional triangle decomposition. Together with
recent work of Barber, Kühn, Lo, Osthus and Taylor, this leads to
bounds for exact decompositions and in particular the completion
problem for sparse partial latin squares. Some extensions are con-
sidered as well.

1. Introduction

1.1. Decompositions

A graph G has an F -decomposition if its edges E(G) can be partitioned
into graphs, each isomorphic to F . Graph decompositions connect with a
rich class of problems in combinatorics. For example, decomposition of a
complete graph into cliques is equivalent to a special case of (pairwise bal-
anced) block designs. Related topics include graph labellings, hypergraph
matchings, and finite geometries.

For G to admit an F -decomposition, it is necessary that |E(G)| be divisi-
ble by |E(F )|. Moreover, the degree of every vertex in G must be divisible by
gcd{deg(x) : x ∈ V (F )}. A graph G satisfying these two conditions is said
to be F -divisible. A conjecture of Nash-Williams [18] asks if all K3-divisible
graphs G of order n with δ(G) ≥ 3

4n admit a K3-decomposition. Although
this is presently still open, it was recently shown to be true for all very large
graphs G if 3

4 is replaced by something a bit larger.

Theorem 1.1 (from [2] and [8]). Let ε > 0. Every K3-divisible graph G on
n ≥ n0(ε) vertices with δ(G) ≥ ( 9

10 + ε)n has a K3-decomposition.

A key ingredient in the proof of Theorem 1.1 is a result of Barber,
Kühn, Lo and Osthus in [2] which connects the minimum degree thresh-
old for F -decompositions to the minimum degree threshold for approximate
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F -decompositions. The technique uses absorbers to iteratively improve ap-
proximate decompositions. Since good approximate decompositions are im-
plied by ‘fractional’ decompositions, [14], the latter has attracted increased
interest. Formally, we say that G has a fractional F -decomposition if there
is a list of ordered pairs (Fi, wi), where Fi is a copy of F in G, wi is a
nonnegative real weight, and such that, for each edge e ∈ E(G),

∑
i:e∈E(Fi)

wi = 1.

Note that F -divisibility is no longer needed, but there remain ‘convex geo-
metric barriers’ for the fractional relaxation. On a related point, there exist
counterexamples to weakening the minimum degree assumption in Nash-
Williams’ conjecture. For instance, the lexicographic product C4 ·K6m+3 is
K3-divisible with minimum degree near 3n/4, but it violates a geometric
barrier for K3-decomposition: namely, there exists a vertex partition with
too many crossing edges. For similar reasons, a minimum degree hypothesis
is generally assumed for fractional decompositions in general. In particular,
the fractional version of Theorem 1.1 is the main result of [8].

Early work on minimum degree thresholds for fractional decompositions
was done by Yuster, [20, 21]. Even in the case of hypergraphs, significant
progress has been made in lowering the thresholds, first by the second au-
thor in [10] and then by Barber, Kühn, Lo, Montgomery and Osthus in [1].
We refer the reader to these papers for precise thresholds, which are now
qualitatively not too far from best possible.

1.2. Decompositions in the partite setting

The authors and those of [1] wondered whether there could be a ‘multipar-
tite’ analog of the preceding theory. This sort of variant has prior precedent;
for example, Keevash and Mycroft in [16] establish a multipartite version
of the Hajnal-Szemerédi theorem. Moreover, the decomposition of complete
r-partite graphs into cliques Kr implies results on the classical problem of
mutually orthogonal latin squares just as clique decompositions of complete
graphs relate to block designs.

With this in mind, Barber et al. recently produced an r-partite version
of their approximate-to-exact result for Kr-decompositions. We give some
remarks before the statement. Suppose G is r-partite and we seek a Kr-
decomposition of G. It is necessary that every vertex of G has the same
number of neighbors in each of the other r − 1 partite sets. We call such
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a graph (equipped with vertex partition) locally balanced ; the term Kr-
divisible is used instead in [3]. In any case, it is clear that this condition is
actually necessary for the fractional relaxation as well. Let τF (n, r) denote
the infimum over all τ such that every locally balanced r-partite graph G on
rn vertices with δ(G) ≥ τ(r−1)n admits a fractional Kr-decomposition. Put
τF (r) := lim supn→∞ τF (n, r). The approximate-to-exact result is as follows.

Theorem 1.2 ([3], Corollary 1.6). Let r be an integer at least 3, ε > 0
and let n > n0(ε). Suppose G is a balanced and locally balanced r-partite
graph on rn vertices with δ(G) ≥ (τF (r) + ε)(r − 1)n. Then G admits a
Kr-decomposition.

Except for some general remarks later, our primary focus here is on
calculating an upper bound on τF (3), thereby obtaining a threshold for
triangles in the 3-partite setting.

Theorem 1.3. We have τF (3) < 0.96. So, for sufficiently large n, every lo-
cally balanced 3-partite graph G on 3n vertices satisfying δ(G)/2n ≥ 0.96
admits a fractional K3-decomposition.

The idea of the proof is quite natural, and closely follows [9, 10]. We
would like to choose nonnegative weights for triangles in G so that the sum
of weights at each edge is a constant. This is a system of linear equations
with coefficients in {0, 1}. For the complete 3-partite graph Kn,n,n, the co-
efficient matrix is rich with symmetry. In particular, every edge is included
in n triangles, and so our system has a (positive) constant solution. Now,
since G is close to Kn,n,n and a solution for the latter is well inside the
positive orthant, there remains a positive solution for G. Some care must
be taken in the quantitative analysis, since perturbations of ill-conditioned
linear systems can lead to wild changes in solutions. Fortunately, the coeffi-
cient matrix for Kn,n,n is ‘nice’, and in fact has some interesting connections
with the classical matrices of algebraic coding theory.

Suppose G is a graph that admits a K3-decomposition. Such a de-
composition can be lifted to the 3-partite graph G × K3 by replacing tri-
angle {x, y, z} in G with six triangles {(x, i), (y, j), (z, k)} in G × K3 for
{i, j, k} = {1, 2, 3}. The converse holds fractionally. That is, any fractional
K3-decomposition of G×K3 projects to a fractional K3-decomposition of G
by averaging over the six pre-images of {x, y, z}. It follows that determin-
ing an upper bound on the 3-partite degree threshold τF (3) is at least as
difficult as obtaining the same threshold bound for the ordinary dense case.
There is no obvious way of using Theorem 1.1 to conclude anything about
the 3-partite threshold τF (3).
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1.3. Latin squares

A latin square of order n is an n×n array with entries from a set of n symbols

(often taken to be [n] := {1, 2, . . . , n}) having the property that each symbol

appears exactly once in every row and every column. Naturally, a partial latin

square of order n is an n× n array whose cells are either empty or filled in

such a way that each symbol appears at most once in every row and every

column. A partial latin square can be identified with a set of ordered triples

in a natural way: if symbol k appears in row i and column j, we include

the ordered triple (i, j, k). A completion of a partial latin square P is a latin

square L which contains P in the sense of ordered triples; that is, we have

the filled cells of P agreeing with corresponding cells in L.

A latin square of order n is equivalent both to a one-factorization of

Kn,n and also a K3-decomposition of Kn,n,n. The latter corresponds with

the representation by ordered triples, where the three partite sets are rows,

columns, and symbols. Similarly, a partial latin square P corresponds to

an edge-disjoint union of triangles in Kn,n,n, and the completion problem

amounts to a K3-decomposition of the (3-partite) complement.

Following Bartlett, we call a partial latin square (of order n) c-dense

if every row, column, and symbol appears at most cn times. For the com-

pletion problem, such latin squares induce locally balanced 3-partite graphs

with minimum degree at least 2(1− c)n. Daykin and Häggkvist conjectured

in [6] that all 1/4-dense partial latin squares can be completed. The first se-

rious progress toward this conjecture was by Chetwynd and Häggkvist, who

showed in [5] that, for sufficiently large even integers n, c = 10−5 suffices to

guarantee a completion. Gustavsson [13] obtained the threshold c = 10−7 for

all n. These proofs were technical and required long chains of substitutions.

Recently, Bartlett [4] increased the threshold to c = 10−4 for large n using

the notion of ‘improper trades’. In fact, this method showed that completion

is possible for densities near 1/12, but under a strong additional assumption

on the total number of filled cells.

Improving the threshold on c is one consequence of Theorem 1.2 and our

main result, Theorem 1.3.

Corollary 1.4 (see also [3]). Let 0 < c ≤ 0.04. Let P be a partial latin

square of order n ≥ n0(c) such that every row, column, and symbol is used

at most cn times. Then P can be completed to a latin square.

To prove Corollary 1.4, it suffices to find aK3-decomposition of the graph

GP on 3n vertices, one for each row, column, and symbol, where an edge



Fractional triangle decompositions of dense 3-partite graphs 259

is drawn between two vertices if and only if they are not incident in P . By
construction, GP is locally balanced, and δ(GP ) ≥ 2(1−c)n. By Theorem 1.2
with our τF (3) < 0.96, it follows that GP admits a K3-decomposition.

1.4. Organization of the paper

In the next section, we set up a linear system that models triangle decom-
positions of graphs in the dense 3-partite setting. In Section 3, our approx-
imation technique is made precise, allowing us to turn our attention to the
system for Kn,n,n. Then, in Section 4, the coefficient matrix for Kn,n,n is
shown to lie in a certain low-dimensional algebra. This permits the calcu-
lations necessary to complete the proof of Theorem 1.3, which occurs in
Section 5. We sketch the technique for larger cliques and hypergraphs in
Section 6, and conclude with a discussion of possible future directions in
Section 7.

2. The linear system

Let G be a graph. We work primarily in the vector space Ω(G) := RE(G),

whose coordinates are indexed by edges of G (in any order). Let T (G) be the
set of all triangles in G and let WG be the {0, 1} ‘inclusion’ matrix of E(G)
versus T (G). That is, WG has rows indexed by E(G), columns indexed by
T (G), and where

WG(e, t) =

{
1 if e ⊆ t,

0 otherwise.

A fractional K3-decomposition of G is equivalent to a solution z ≥ 0, by
which we mean that z is entrywise nonnegative, to the system

(1) WGz = 1,

where 1 is the vector of all ones in Ω(G).

In general, some edges of G might belong to no triangles, and so (1)
might have no solution. Even if there is a solution, there are usually more
triangles than edges and such a solution is not unique.

Following [11], the set {t ∈ T (G) : t ⊇ e} is called the fan in G at e. If
the fans at each edge in G are very rich, it is reasonable to ask whether we
can decompose G into fans; this corresponds to assuming that our solution z
is a linear combination of the rows of WG, since the rows of WG tell us which
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triangles contain a given edge. The linear system for fan decomposition is

then

(2) MGx = 1,

where MG = WGW
�
G is a square matrix. Combinatorially, MG has rows and

columns indexed by E(G), and the (e, f)-entry of MG records the number

of triangles in G containing e ∪ f . Observe that a solution x ≥ 0 to (2)

implies a solution z ≥ 0 to (1) and therefore implies a fractional triangle

decomposition of G.

If MG is non-singular, then of course the system (2) has a unique solu-

tion. In general, though, MG may have nontrivial kernel; we describe this

kernel for the dense 3-partite case later. First, we offer some examples of

MG to illustrate the method.

Example 2.1. If G = Kn, then MG = (n − 2)I + A1, where A1 de-

notes the adjacency matrix for the line graph of Kn. The eigenvalues of A1

are well known to be 2n − 4, with multiplicity 1, v − 4, with multiplicity

2n − 4, and −2, with multiplicity
(
n−2
2

)
; see [12], for example. In fact, the

eigenspaces of A1 admit a nice description. Since A1 is symmetric, this de-

scription affords an explicit orthogonal decomposition of Ω(Kn). It follows

that M−1
G exists and can be computed explicitly for all n. In any case, the

unique solution to (2) is x = 1
3n−61, the eigenvector for the largest eigen-

value.

Our new investigation starts with the case G = Kn,n,n. Since we work

with this graph frequently in what follows, we suppress subscripts on W and

M for this graph. That is, W is the inclusion matrix of E(Kn,n,n) versus

T (Kn,n,n) and

MG(e, f) =

⎧⎪⎪⎨
⎪⎪⎩
n if e = f,

1 if e ∪ f consists of three points in different partite classes,

0 otherwise.

Similar to the case of Kn, we have M agreeing with the line graph of Kn,n,n

off the diagonal.

Example 2.2. With n = 2 and rows/columns organized by partite sets,

we have
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 1 1 0 0 1 1 0 0
0 2 0 0 1 1 0 0 0 0 1 1
0 0 2 0 0 0 1 1 1 1 0 0
0 0 0 2 0 0 1 1 0 0 1 1

1 1 0 0 2 0 0 0 1 0 1 0
1 1 0 0 0 2 0 0 0 1 0 1
0 0 1 1 0 0 2 0 1 0 1 0
0 0 1 1 0 0 0 2 0 1 0 1

1 0 1 0 1 0 1 0 2 0 0 0
1 0 1 0 0 1 0 1 0 2 0 0
0 1 0 1 1 0 1 0 0 0 2 0
0 1 0 1 0 1 0 1 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is not hard to compute the rank of W (and of M).

Proposition 2.3. We have rank(W ) = rank(M) = n3 − (n− 1)3.

Proof. It is well known that, for matrices A over R or C, rank(A) =

rank(AA�). This gives the first equality.

Let αβγ be any triangle in Kn,n,n. We claim that the set I of n3−(n−1)3

triangles which intersect αβγ in at least one point is linearly independent.

Consider the edge β′γ′ ∈ E(Kn,n,n) for β
′, γ′ in the same parts but distinct

from β, γ. It belongs only to the triangle αβ′γ′ ∈ I. Likewise, an edge of the

form β′γ belongs to a unique triangle among those intersecting αβγ in at

least two points. From this argument we obtain rank(W ) ≥ n3 − (n− 1)3.

For the reverse inequality, if αβγ is used to denote the formal linear

combination αβ + αγ + βγ ∈ Ω(Kn,n,n), there is the identity

α′β′γ′ = αβγ − α′βγ − αβ′γ − αβγ′ + α′β′γ + α′βγ′ + αβ′γ′.

This shows that every triangle in T (Kn,n,n) is a linear combination of those

in I.

Let us now discuss the kernel of W� (and M). By Proposition 2.3, we

have

dimker(W�) = dimker(M) = 3n2 − (n3 − (n− 1)3) = 3n− 1.

Let β ∈ V (Kn,n,n). As in the proof above, we adopt the convention that

α, β, γ (and their variants) stand for vertices in the three different partite
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sets labelled in some consistent cyclic order. With this understanding, define
the vector vβ ∈ Ω(Kn,n,n) by

vβ(e) =

⎧⎪⎨
⎪⎩
−1 if e = αβ for some α,

1 if e = βγ for some γ,

0 otherwise.

It is clear that vβ vanishes on T (Kn,n,n); therefore vβ ∈ ker(W�) for each β.
Any set of 3n−1 of these vectors is linearly independent (their sum vanishes)
and forms a basis for ker(W�) = ker(M).

We now sketch a ‘kernel elimination strategy’ that is useful for our prob-
lem. Let K be the matrix which applies orthogonal projection onto ker(M).
Then, for any nonzero real number η, the linear system (M +ηK)x = 1 has
the unique constant solution x = 1

3n1. This can be viewed alternatively as
the addition of 3n− 1 artificial columns vβ to W . The resulting matrix has
full row rank 3n2.

Suppose now thatG is a spanning subgraph ofKn,n,n. Let 1G ∈ Ω(Kn,n,n)
be the characteristic vector of edges in G; that is,

1G(e) =

{
1 if e ∈ E(G),

0 otherwise.

Also, for a square matrix A indexed by Ω(Kn,n,n), let A[G] denote its re-
striction to the principal submatrix indexed by Ω(G). The kernel elimination
strategy for MG is similar in spirit as that for M . Here, though, we add a
multiple of K[G] and must justify that this works. First, the following is
easily verified.

Proposition 2.4. Let G be a locally balanced spanning subgraph of Kn,n,n.
Then K[G]1 = 0.

Proof. Since G is locally balanced, it is orthogonal to every vector in ker(M).
Therefore, K1G = 0. The claim follows by restricting to G.

Next, we have an important orthogonality relation.

Proposition 2.5. With K and MG defined as above, K[G]MG = O.

Proof. Let L denote the inclusion map from Ω(G) to Ω(Kn,n,n). As a matrix,
assuming rows are organized, we have

L =

[
I

O

]
.
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Right multiplication by L restricts to columns indexed by E(G). In partic-
ular, K[G] = L�KL. Also, if we sort the rows and columns of W so that
E(G) and T (G) come first, then we have

W =

[
WG ∗
O ∗

]
.

Using these observations, we compute

K[G]MG = L�KLWGW
�
G = L�KW

[
I|T (G)|
O

]
W�

G = O.

Remark. Propositions 2.3, 2.4 and 2.5 are straightforward to extend to the
setting of r-cliques in r-partite graphs and even to hypergraphs. We omit
the details.

The preceding facts feed into the following result, which roughly states
that solutions to a symmetric linear system are unchanged if the coefficient
matrix undergoes an orthogonal shift.

Lemma 2.6. Let A and B be Hermitian N × N matrices with AB = O
and A+B nonsingular. Suppose also that Bb = 0. Then A(A+B)−1b = b.

Proof. The matrices A and B generate a commutative algebra of Hermitian
matrices; hence, they admit a common basis {e1, . . . , eN} of orthonormal
eigenvectors. For i = 1, . . . , N , put Ei = eie

∗
i , a rank one projection. We

have
∑N

i=1Ei = I and EiEj = O for i 	= j.

Suppose A = a1E1 + · · · + arEr and A + B = a1E1 + · · · + aNEN for
nonzero coefficients ai. Since Bb = 0, we have Ejb = 0 for r < j ≤ N .
With this, we compute

A(A+B)−1b = (a1E1 + · · ·+ arEr)(a
−1
1 E1 + · · ·+ a−1

N EN )b

= (E1 + · · ·+ Er)b = b.

We apply Lemma 2.6 by putting A = MG, B = ηK[G] (note that
both are symmetric with real entries), and b = 1. We show later that
MG+ηK[G] is nonsingular for η 	= 0 under our minimum degree assumption
for G. It follows by Propositions 2.4 and 2.5 that the (unique) solution of
(MG + ηK[G])x = 1 also provides a solution of MGx = 1. The next section
develops some tools to ensure such a solution x is nonnegative, thereby
giving a fractional decomposition of G into fans.
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3. Norms

Here we review some basic facts concerning vector and matrix norms. The
end goal is a sufficient condition for certain linear systems to have a nonneg-
ative solution. Further details and discussion can be found in [15, Chapter
5].

A matrix norm is a function || · || from (complex-valued) matrices of a
given shape to the nonnegative reals satisfying: (1) ||A|| = 0 if and only if
A = O, (2) ||αA|| = |α| ||A|| for scalars α, and (3) the triangle inequality
||A+B|| ≤ ||A||+ ||B||.

For x ∈ CN , and p ≥ 1, recall the vector p-norm

(3) ||x||p =

(
N∑
i=1

|xi|p
)1/p

.

With p = ∞, we take the special (and limiting) definition ||x||∞ = max{|xi| :
i = 1, . . . , N} instead of (3). By Minkowski’s inequality, these are matrix
norms on N × 1 columns for each p.

More generally, the matrix norm on CN×N induced by the p-norm is
given by

||A||p := max
x�=0

||Ax||p
||x||p

.

It is straightforward to check that the matrix p-norm (in fact any induced
norm) is submultiplicative.

Proposition 3.1. Let A,B ∈ CN×N . Then ||AB||p ≤ ||A||p||B||p.
Here, we are interested in the special case ||A||∞ = maxi

∑
j |A(i, j)|,

the maximum absolute row sum of A. It is worth mentioning, though, that
the Euclidean norm on vectors induces ||A||2, the largest singular value of
AA∗. In the case that A is real symmetric (or Hermitian), this is simply the
spectral radius ρ(A). Proposition 3.1 readily implies that ρ(A) is a lower
bound on any induced norm.

Proposition 3.2 (See [15]). Let A ∈ CN×N be invertible, and consider
the system of equations Ax = b. Suppose A + δA is a perturbation with
||A−1δA||p < 1. Then A+ δA is nonsingular and the unique solution x+ δx
to the equation (A+ δA)(x+ δx) = b has relative error

(4)
||δx||p
||x||p

≤ ||A−1δA||p
1− ||A−1δA||p

.
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This can be proved by expanding δx = (A + δA)−1b − A−1b as a ge-

ometric series, and applying the triangle inequality. See [15, §5.8] for more

details of the proof.

Working from this, we note that the existence of nonnegative solutions

to certain square linear systems can be verified using the ∞-norm. Here is

the instance we shall use.

Corollary 3.3. Suppose a nonnegative constant vector x solves the square

system Ax = b in Proposition 3.2. Then the solution y to (A + δA)y = b

is entrywise nonnegative if ||A−1δA||∞ ≤ 1
2 .

Proof. Without loss of generality, suppose x = 1, the all ones vector. By

Proposition 3.2 and our norm assumption,

||δx||∞ ≤ ||A−1δA||∞
1− ||A−1δA||∞

≤ 1.

It follows that the entries of y = x+ δx are between 0 and 2.

Remark. In view of Proposition 3.1, the conclusion also holds under the

assumption ||A−1||∞||δA||∞ ≤ 1
2 .

In some sense, this is the main engine for our argument. Recall that

in Section 2 we had set up a matrix AG = MG + ηK[G] so that G has

a fractional decomposition into fans if and only if AGx = 1 has a solution

x ≥ 0. Using Corollary 3.3, our proof amounts to upper-bounding two matrix

norms: a perturbation (from our mindegree assumption), and A−1, which

can be obtained explicitly.

4. A Bose-Mesner algebra

The main purpose of this section is to compute the inverse of A = M + ηK,

where recall that M ∈ CN×N is a symmetric matrix counting triangles in

Ω(Kn,n,n), K is the orthogonal projection onto ker(M), and η 	= 0 is a

real parameter. This is aided by showing that A lives in a low-dimensional

algebra, which we can compute explicitly. We begin with some background.

A symmetric k-class association scheme on a set X consists of k + 1

nonempty symmetric binary relations R0, . . . , Rk which partition X × X,

such that

• R0 is the identity relation, and
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• for any x, y ∈ X with (x, y) ∈ Rh, the number of z ∈ X such that

(x, z) ∈ Ri and (z, y) ∈ Rj is the structure constant ahij depending only

on h, i, j. In particular, each Ri is a regular graph of degree νi := a0ii
(with R0 consisting of isolated loops).

Let |X| = N . For i = 0, . . . , k, define the N × N adjacency matrix Ai,

indexed by entries of X, to have (x, y)-entry equal to 1 if (x, y) ∈ Ri, and 0

otherwise. We say that x and y are ith associates when (x, y) ∈ Ri. Since

the relations partition X×X, we have A0 +A1 + · · ·+Ak = J , the all-ones

matrix.

By definition of the structure constants,

(5) AiAj =

k∑
h=0

ahijAh.

In this way, the adjacency matrices span a commutative algebra of symmetric

matrices called the Bose-Mesner algebra of X. We write A = 〈A0, A1, . . . , Ak〉.

Example 4.1. The Johnson scheme J(k, v) has as elements
([v]
k

)
. Subsets

K,L ∈
([v]
k

)
are declared to be ith associates if and only if |K ∩ L| = k − i.

Example 4.2. The Hamming scheme H(k, n) has as elements [n]k. Two

such words are declared to be ith associates if and only if their Hamming

distance equals i.

More generally, the Hamming lattice has ground set Hk,n = ([n]∪{∗})k,
elements of which we call subwords. The partial order � is defined by ‘inclu-

sion’; that is, x � y if and only if, for all i, we have xi ∈ {yi, ∗}. Then Hk,n

is a regular meet semilattice, [7]. The rank of a subword x is |{i : xi 	= ∗}|,
and the set of subwords of rank r is the rth level of the Hamming lattice.

We investigate the Hamming scheme itself in more generality in Sec-

tion 6. Here, though, we consider the case of triangle decompositions as a

concrete starting point. The vertices, edges, and triangles in Kn,n,n corre-

spond with the elements of rank 1, 2, 3, respectively, in H3,n. Our matrix

W is simply the incidence matrix of the second level versus the third level.

Accordingly, M = WW� counts the elements above a given two elements

in the second level.

Proposition 4.3. The second level of H3,n is a symmetric 4-class associ-

ation scheme.
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Table 1: Structure constants for the second level of H3,n

a0
ij 1 2 3 4

1 2n− 2 0 0 0
2 (n− 1)2 0 0
3 2n 0
4 n(2n− 2)

a1
ij 1 2 3 4

1 n− 2 n− 1 0 0
2 (n− 1)(n− 2) 0 0
3 n n
4 n(2n− 3)

a2
ij 1 2 3 4

1 2 2n− 4 0 0
2 (n− 2)2 0 0
3 0 2n
4 n(2n− 4)

a3
ij 1 2 3 4

1 0 0 n− 1 n− 1
2 0 0 (n− 1)2

3 1 n− 1
4 (n− 1)2

a4
ij 1 2 3 4

1 0 0 1 2n− 3
2 0 n− 1 (n− 1)(n− 2)
3 1 n− 1
4 (n− 1)2

Proof. A subword of rank 2, say αβ∗, can interact with other subwords
in five essentially distinct ways: αβ∗, αβ′∗, α′β′∗, ∗βγ, or ∗β′γ. Here, we
mean for each variable to be unequal to its dashed counterpart. With these
defining relations R0, . . . , R4, it is straightforward to compute the structure
constants by counting. See Table 1 for a full list of the nontrivial structure
constants (recall ahij = ahji and ahi0 = 1 or 0 according as i = h).

Let A′
0, A

′
1, . . . , A

′
4 be the adjacency matrices for relations R0, R1, . . . , R4

as described in the proof. As an example calculation in Table 1, we have
A′

1A
′
3 = (n − 1)A′

3 + A′
4: there are exactly n − 1 elements α′β∗ which are

simultaneously first associates with αβ∗ and third associates with ∗βγ, and
there is exactly one element, namely αβ′∗, which is first associates with αβ∗
and simultaneously third associates with ∗β′γ.

It is worth highlighting the special case of the degrees νi for this scheme.

Proposition 4.4. For the second level of H3,n, degrees are ν0 = 1, ν1 =
2(n− 1), ν2 = (n− 1)2, ν3 = 2n, ν4 = 2n(n− 1).

Observe that M = WW� = nI + A′
3. In other words, in Kn,n,n, any

edge is contained in exactly n triangles, while any two edges which are third
associates (of the form αβ∗ and ∗βγ) are contained in exactly one triangle
(that being αβγ).

In general, a Bose-Mesner algebra A is commutative; see (5) and the def-
inition of the coefficients. It follows that A has a common set of eigenspaces,
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and hence a basis of orthogonal idempotents. In the case of the second level
of H3,n, the eigenspaces of our M have a natural description. Since a more
thorough and general spectral analysis using the Hamming scheme appears
later, we merely sketch the concrete case for triangle decompositions.

Proposition 4.5. The nonzero eigenvalues of M are θ0 = 3n, θ1 = 2n,
and θ2 = n. Corresponding eigenvectors are given by

• 1 (unique up to multiples) for θ0,
•
∑

α(αβ ∗ −αβ′∗) +
∑

γ(∗βγ − ∗β′γ) (in total 3(n − 1) independent
vectors) for θ1, and

• αβ ∗−αβ′∗−α′β∗+α′β′∗ (in total 3(n− 1)2 independent vectors) for
θ2.

Proof sketch. It is clear that M1 = 3n1 since αβ∗ extends in n ways on its
own, and defines for each γ exactly one common extension with α∗γ and
∗βγ.

Next, let uβ,β′ denote the second given vector. Since there are exactly n
completions of each subword in the second level, we have Muβ,β′(αβ∗) = 2n
and Muβ,β′(αβ′∗) = −2n. Similar identities hold for ∗βγ and ∗β′γ, and
otherwise Muβ,β′ vanishes. So Muβ,β′ = 2nuβ,β′ as desired.

From the third vector, we compute

M(αβ ∗ −αβ′ ∗ −α′β ∗+α′β′∗) = n(αβ ∗ −αβ′ ∗ −α′β ∗+α′β′∗)

due to cancellation on all but the four given edges. For instance, on ∗βγ, we
pick up +1 from αβ∗ and −1 from α′β∗.

Finally, the dimensions are as stated because of Proposition 2.3 and some
obvious relations on the above vectors.

Having these eigenspaces, computing the corresponding idempotents is
straightforward. The key thing to note is that these idempotents live in A,
so they are linear combinations of the A′

i.

Proposition 4.6. With I = A′
0, A

′
1, . . . , A

′
4 as described above, orthogonal

projections onto the eigenspaces of M for eigenvalues θ0, θ1, θ2 are, respec-
tively

E0 =
1

3n2
A′

0 +
1

3n2
A′

1 +
1

3n2
A′

2 +
1

3n2
A′

3 +
1

3n2
A′

4,

E1 =
n− 1

n2
A′

0 +
n− 2

2n2
A′

1 −
1

n2
A′

2 +
n− 1

2n2
A′

3 −
1

2n2
A′

4, and
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E2 =
(n− 1)2

n2
A′

0 −
n− 1

n2
A′

1 +
1

n2
A′

2.

Orthogonal projection onto the kernel of M is given by K = I−E0−E1−E2.

It is possible, though tedious, to verify Proposition 4.6 by a direct com-
putation Eiej = δijej , where e0, e1, e2 are the eigenvectors from Proposi-
tion 4.5. But we omit details, since a more concise and general approach
using certain orthogonal polynomials is given in Section 6.

5. Proof of the main result

We wish to solve (2), whose coefficient matrix MG is close to M = nI+A′
3 =

θ0E0 + θ1E1 + θ2E2. With K denoting projection onto the kernel of M , we
know that M + ηK is nonsingular for all η 	= 0. We begin by estimating its
inverse for a special choice of η.

Lemma 5.1. With η∗ = 2n and A = M + η∗K,

||A−1||∞ ≤ 23

9n
+O(n−2).

Proof. Since the Ei and K are orthogonal idempotents for Ω(Kn,n,n),

A−1 = θ−1
0 E0 + θ−1

1 E1 + θ−1
2 E2 + η−1K

= η−1I +

2∑
j=0

(θ−1
j − η−1)Ej .(6)

Substitute η = η∗ = 2n and expressions for θj and Ej from Propositions 4.5
and 4.6 into (6). Collect coefficients of the A′

i to get

(7) A−1 ≈ 1

n
A′

0 −
1

2n2
A′

1 −
4

9n3
A′

2 + 0A′
3 −

1

18n3
A′

4,

where by ‘≈’ we mean that terms of lower degree in n have been suppressed
on each coefficient. Apply the triangle inequality to (7), making use of Propo-
sition 4.4, to get

||A−1||∞ ≤ 1

n
ν0 +

1

2n2
ν1 +

4

9n3
ν2 + 0ν3 +

1

18n3
ν4 + lower terms

=
1

n
+

2n

2n2
+

4n2

9n3
+

2n2

18n3
+O(n−2) =

23

9n
+O(n−2).
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By choice of η∗, we know that A = M +η∗K is real, symmetric, and has

all its eigenvalues at least n. In particular, A is positive definite. We next

set up an application of Corollary 3.3 to this A.

Suppose G is a locally balanced 3-partite graph on 3n vertices with

δ(G) ≥ 2(1 − c)n. Let AG := MG + η∗K[G] as in Section 2 and define the
perturbation

(8) A+ δA =
OAG

as in A

,

where rows and columns are organized as edges of G followed by edges of its
3-partite complement. In particular, we take the ‘bottom’ rows of A + δA

in this ordering to agree with those of A. With this set-up, a solution of

(A+ δA)x = 1 ‘restricts’ to a solution of the smaller system AGx = 1.

The (e, f)-entry of A[G] − AG = M [G] − MG records the number of

triangles in T (Kn,n,n) which are missing in T (G) and contain e∪f . Given any

edge e of G, at most 2cn edges of Kn,n,n touching e are missing in G. Every

triangle missing from T (G) is counted in this way three times. It follows
that we have the bound ||δA||∞ ≤ 6cn. So, already one has the estimate

||A−1δA||∞ ≤ 46c
3 using submultiplicativity and Lemma 5.1. However, we

can obtain a slightly better bound with some more work.

Lemma 5.2. With δA and c as defined above, ||A−1δA||∞ ≤ 40c
3 +O(n−1).

Proof. Begin by writing δA = −(B0 + B3), where B0 is a diagonal matrix

containing the main diagonal of δA. Since entries of δA arise from counting

missing triangles in G, our matrices are integral and in fact satisfy the
entrywise inequalities O ≤ B0 ≤ 2ncI and O ≤ B3 ≤ A′

3. Furthermore,

a given edge of G has two endpoints from which to join a third associate,

and up to 2cn vertices in the other partite set define a missing triangle with

it. So B3 has at most 4cn ones per row and column.

The key observation is that an entry of the product A′
iB3 is simply

a partial count of the structure constants used for the product A′
iA

′
3. We

estimate the norm of the product supported on each A′
h and identify some

‘cancellation’. In particular, we focus on the term h = 3.

Let ◦ denote entrywise product of matrices of the same shape. Working

from (7), we compute
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(9) (A−1δA) ◦A′
3 =

1

n
B3 −

1

2n2
(A′

1B3) ◦A′
3 −

1

18n3
(A′

4B3) ◦A′
3.

Note that since structure constant a323 vanishes, there is no contribution
from the term A′

2B3.
We bound the row sum of each (A′

iB3) ◦A′
3 as follows. Given an edge e

of Kn,n,n, we count the number of ordered pairs (f, g) of edges such that

• e and f are ith associates

• e and g are 3rd associates; and

• f and g are 3rd associates defining a triangle in Kn,n,n but not in G.

Consider i = 1. Given e, there are at most 2(n − 1) choices for f and, for
each one, at most 2cn choices for g. So ||A′

1B3 ◦A′
3||∞ < 4cn2. Now consider

i = 4. Given e, there are at most 2(n − 1) choices for one vertex of f and
subsequently at most cn choices for the second vertex (which also uniquely
determines g). Thus ||A′

4B3◦A′
3||∞ < 2cn2. Considering again (9) and noting

the opposite signs of terms, we have

(10) ||(A−1δA) ◦A′
3||∞ ≤ max

{
1
n4cn,

1
2n2 4cn

2 + 1
18n3 2cn

2
}
≤ 4c.

(This is a savings from 6c + O(n−1) that would arise from the triangle
inequality.) We did not identify any opposite signs in the expansion of re-
maining terms. So there is no loss in estimating the remaining eight terms
of A−1δA using the triangle inequality and submultiplicativity; this leads
to

||A−1δA||∞ ≤
4∑

j=0

||(A−1δA) ◦A′
j ||∞

= 2c+ 2c+
10c

9
+ 4c+

38c

9
+O(n−1) =

40c

3
+O(n−1).

Let c < 3/80 and let n be large. Invoke Corollary 3.3 with A and δA as
described. The conclusion is that A + δA (and hence AG, by construction)
is invertible. Moreover, the solution vector A−1

G 1 is entrywise nonnegative.
By the set-up in Section 2, this vector defines the weights of a fractional
fan-decomposition of G.

Taking c approaching 3/80, we have the decomposition degree threshold
τF (3) ≤ 77/80 = 0.9625.

A small improvement is possible following a method of Garaschuk [11,
Chapter 4]. First, we inspect the proof of Lemma 5.2 and note that the sum
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of positive entries in any row of A−1δA is at most 28c/3+O(n−1). (Removing

the A′
0B0 term saves 2c and the negative part of (10) saves another 2c +

O(n−1).) Using an extra term of the series expansion for Proposition 3.2,

we have the entrywise inequality

x+ δx = (I +A−1δA)−1A−11 ≥ 1

3n

(
1− (A−1δA)1−

∞∑
i=2

||A−1δA||∞1

)
.

That is, the solution vector is nonnegative for large n provided

28c

3
+

(40c/3)2

1− 40c/3
< 1,

or c < (
√
409− 17)/80 � 0.04. So in fact τF (3) < 0.96.

6. Larger cliques and hypergraphs

In this section, we sketch how our method extends to larger cliques and

hypergraphs in the multipartite setting. Specifically, let G be a k-partite

t-uniform hypergraph with n vertices in each partite set. To be clear, edges

consist of at most one vertex in each partite set. Further, suppose G is locally

balanced in the following sense: any t− 1 vertices in distinct partite sets are

together in an edge with equally many vertices in each of the other partite

sets. Finally, we assume these neighborhoods are close to full: δt−1(G) ≥
(1−c)(k− t+1)n. We investigate thresholds on c sufficient for the fractional

Kt
k-decomposition of such hypergraphs G.

The question for exact decompositions is challenging even for c = 0.

Let K[t, k, n] denote the complete balanced k-partite t-graph on kn ver-

tices. A Kt
k-decomposition of K[t, k, n] is equivalent to an orthogonal array

OA[t, k, n], also known as a ‘transversal design’.

Before continuing, we offer some clarifying remarks on notation. In Sec-

tion 1 and in references [2, 3], the parameter r is used for clique size. More-

over, in [1], k is used for hypergraph rank. Note the different notation here,

which we chose for consistency with the underlynig coding theory and de-

sign theory. Next, in Sections 4 and 5 we primarily used the the second

level of the Hamming lattice. Here, the treatment is more general and we

express everything in terms of the top level; that is, we work exclusively in

the Hamming scheme H(k, n).
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6.1. Spectral computations in H(k, n)

Let A0, A1, . . . , Ak and E0, E1, . . . , Ek be the adjacency matrices and or-

thogonal idempotents of H(k, n). They are related via

(11) Ai =

k∑
j=0

κi(j)Ej and Ej =
1

nk

k∑
i=0

κj(i)Ai,

where

κi(x) =
∑
l

(−1)l(n− 1)i−l

(
k − x

i− l

)(
x

l

)

is the Krawtchouk polynomial of degree i. See [19, Chapter 30], for instance.

Let W denote the inclusion matrix of the tth level of H(k, n) versus the

top level. Then, as before, M = WW� stores in its (e, f)-entry the number

of k-cliques containing both e and f in K[t, k, n].

Proposition 6.1. The nonzero eigenvalues of M are θj =
(
k−j
k−t

)
nk−t, with

multiplicity
(
k
j

)
(n− 1)j, j = 0, 1, . . . , t.

Proof. Instead of M = WW�, it suffices to compute the nonzero eigenvalues

of

W�W =

k∑
i=0

(
k − i

t

)
Ai =

k∑
j=0

Ej

k−t∑
i=0

(
k − i

t

)
κi(j).

Recall that the Ej are orthogonal idempotents. It follows that eigenval-

ues are given by the inner sum, call it θj , with corresponding multiplicities

rank(Ej) =
(
k
j

)
(n− 1)j . It remains to simplify θj .

The value κi(j) is the coefficient of X i in (1+ (n− 1)X)k−i(1−X)j . So,

our sum equals the coefficient of Xk−t in

(12)

(1+ (n− 1)X)k−j(1−X)j
∑(

t+ i

t

)
X i = (1+ (n− 1)X)k−j(1−X)j−t−1.

For j > t, (12) is a polynomial of degree k − t− 1, and so the coefficient of

Xk−t vanishes. For 0 ≤ j ≤ t, we compute
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θj =

k−t∑
l=0

(−1)l(n− 1)k−t−l

(
k − j

k − t− l

)(
j − t− 1

l

)

=

k−t∑
l=0

(n− 1)k−t−l

(
k − j

t− j + l

)(
t− j + l

l

)

=

(
k − j

k − t

) k−t∑
l=0

(n− 1)l
(
k − t

l

)
=

(
k − j

k − t

)
nk−t.

Next, consider E′
j := θ−1

j WEjW
�. Since ME′

j = θ−1
j W (W�WEj)W

�

= WEjW
� = θjE

′
j and

(E′
j)

2 = θ−2
j WEjW

�WEjW
� = θ−1

j WE2
jW

� = E′
j ,

it follows that E′
j is projection onto the eigenspace of M corresponding to

eigenvalue θj .

We now compute, using (11),

(M + ηK)−1 =

t∑
j=0

1

θj
E′

j +
1

η

⎛
⎝I −

t∑
j=0

E′
j

⎞
⎠

=
1

η
I +

t∑
j=0

1

θj

(
1

θj
− 1

η

)
WEjW

�

=
1

η
I +

1

nk

k∑
i=0

t∑
j=0

1

θj

(
1

θj
− 1

η

)
κj(i)WAiW

�.(13)

To go further, one must study the matrices WAiW
�, i = 0, 1, . . . , k. It

is easy to see that, for edges e and f , the (e, f)-entry of WAiW
� equals

the number of ordered pairs (a, b) ∈ [n]k × [n]k such that a extends e, b

extends f , and where a and b are at Hamming distance i in H(k, n).

Proposition 6.2. The row sums of WAiW
� equal

(
k

t

)(
k

i

)
nk−t(n− 1)i.

Proof. There are nk−t extensions of e to a k-tuple a. For each such extension,

there are
(
k
i

)
(n − 1)i choices for a tuple b at Hamming distance i. Finally,

there are
(
k
t

)
restrictions of b to an edge f .
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Figure 1: Relation labels for edges in the second level of Hk,n.

6.2. Estimates for t = 2

Here, we consider the graph case with general clique size and sketch a norm
bound. We begin with a more detailed version of the counting argument in
Proposition 6.2. The second level of Hk,n has six relations (and correspond-
ing adjacency matrices): identical edges (A′

0 = I), adjacent unequal edges
in the same pair of partite classes (A′

1), disjoint edges in the same pair of
partite classes (A′

2), adjacent edges touching exactly three partite classes
(A′

3), disjoint edges touching exactly three partite classes (A′
4), and disjoint

edges touching four partite classes (A′
5). Refer to Figure 1.

In what follows, define

Fs(h, i) := nh(n− 1)i
2s∑
l=0

(
h

i− l

)(
2s

l

)
=

(
h+ 2s

i

)
nh+i +O(nh+i−1).

Proposition 6.3.

WAiW
� = F0(k − 2, i)A′

0 + F0(k − 2, i− 1)A′
1 + F0(k − 2, i− 2)A′

2

+ F1(k − 3, i)A′
3 + F1(k − 3, i− 1)A′

4 + F2(k − 4, i)A′
5.

Proof. Consider the (e, f)-entry of WAiW
�, where e and f are jth asso-

ciates, j = 0, 1, 2. In this case, e ∪ f touches only two partite classes, so
there are nk−2 choices for an extension a of e to a k-tuple. Next, choose
which i − j of the k − 2 newly added vertices to change in an extension b
of f to a k-tuple at Hamming distance i from a. Finally, choose any of the
other n − 1 vertices in each corresponding partite set. The total count is
nk−2(n− 1)i−j

(
k−2
i−j

)
= F0(k − 2, i− j).

Now consider the case in which e and f are 3rd associates, say e = {u, v}
and f = {v, w}, where u, v, w are in distinct partite classes. The counting
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is similar as above, but divides into cases according to which of u, v, w are

common to both extensions a of e and b of f . If a and b agree on all three

points, there is a choice of i other partite sets for disagreements, leading

to a count of nk−3(n− 1)i
(
k−3
i

)
. If they agree on v and exactly one of u,w,

there are only i−1 other disagreements and the binomial coefficient changes

accordingly. If they agree only on v, there are i−2 other disagreements. The

total count is F1(k−3, i), and a very similar argument obtains F1(k−3, i−1)

for 4th associates.

Finally, suppose e and f are 5th associates, meaning e ∪ f touches four

distinct partite classes. If a and b disagree on exactly l of these four partite

classes, there are nk−4(n − 1)i
(
k−4
i−l

)
. Summing over the possible cases for

disagreements, we obtain F2(k − 4, i).

Now, we work from (13) and begin by analyzing degrees of the polyno-

mial terms in n. The dominant terms occur for i+ j ≥ k, of which there are

only six pairs (i, j). Moreover, similar to Section 5, we put A = M + η∗K,

where η∗ = θ1. This causes the terms for j = 1 to vanish, leaving only four

remaining terms in the cases

(i, j) ∈ {(k, 0), (k, 2), (k − 1, 2), (k − 2, 2)}.

Substitute κ0(k) = 1, κ2(k) =
(
k
2

)
, κ2(k− 1) = (1− k)n+O(1), κ2(k− 2) =

n2+O(n), θ0 =
(
k
2

)
nk−2, θ1 = (k− 1)nk−2, θ2 = nk−2, and collect dominant

terms of the coefficients of the A′
h. After some calculations and the triangle

inequality, we have

||A−1||∞ � n2−kν0 +
k−2
k−1n

1−kν1 +
(
k−2
k−1 − dk

)
n−kν2 + dkn

−kν4 + dkn
−kν5

plus terms of lower order, where dk := k−2

2(k2)
2 , and νi is the row sum of A′

i.

Finally, substitute ν0 = 1, ν1 = 2(n − 1), ν2 = (n − 1)2, ν3 = 2(k − 2)n,

ν4 = 2(k − 2)n(n− 1), and ν5 =
(
k−2
2

)
n2 to obtain

(14) ||A−1||∞ ≤
(
4− k3 + k − 4

2
(
k
2

)2
)
n2−k +O(n1−k).

In the case k = 3, note that the formula for ν5 vanishes. So the same formula

recovers the leading coefficient 23/9 from Section 5. Leading coefficients for

more small values of k are given in Table 2.



Fractional triangle decompositions of dense 3-partite graphs 277

Table 2: Leading coefficients of ||A−1||∞ for small k

k 3 4 5 6

leading coeff
23

9

28

9

337

100

791

225

As in the case of triangles, the matrix AG we wish to consider is close
to the restriction A[G] of A. Assume δ(G) ≥ (1− c)(k − 1)n and set up the
perturbation A+ δA as in (8). By counting missing cliques as in Section 5,

(15) ||δA||∞ ≤ ||M [G]−MG||∞ < c

(
k

2

)2

nk−2 +O(nk−3).

After (the submultiplicativity variant of) Corollary 3.3, we obtain a frac-
tional fan decomposition threshold τF (k) � 1− 1/2k4. For large k, a better
bound has been obtained by Montgomery in [17]. However, our method
leads to reasonably good thresholds for small k. In the case k = 4, for in-
stance, every edge belongs to at most 4cn2 missing cliques in G. This leads
to an error norm of 24cn2. Together with the entry from Table 2, we get
τF (4) ≤ 1 − 1/(2 · 24 · 28/9) = 445/448. When used in conjunction with
Theorem 1.2, this gives a result on completion of partially filled orthogonal
latin squares. We omit the extra small improvements that were obtained for
triangles in Section 5.

6.3. Estimates for general t

In the case t = 2, we estimated the norm of (M + ηK)−1 by expanding
each WAiW

� in the second level of Hk,n. Such an expansion becomes more
involved for t > 2. However, it is possible to get a crude bound working from
(13) using only Proposition 6.2 and the triangle inequality. We have

(16)

||(M + ηK)−1||∞ ≤ 1

η
+

1

nt

(
k

t

) k∑
i=0

(
k

i

)
(n− 1)i

∣∣∣∣∣
t∑

j=0

1

θj

(
1

θj
− 1

η

)
κj(i)

∣∣∣∣∣.
Optimizing the inner sum over η is tricky, but it simplifies for large η as

lim
η→∞

||(M + ηK)−1||∞ ≤ 1

nt

(
k

t

) k∑
i=0

(
k

i

)
(n− 1)i

∣∣∣∣∣
t∑

j=0

κj(i)

θ2j

∣∣∣∣∣
≤ 1

nt

(
k

t

) t∑
j=0

k∑
i=0

(
k

i

)
(n− 1)iθ−2

j |κj(i)|.
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Observe that κj(i) is a polynomial of degree min{j, k − i} in n. It follows
that the dominant terms on the right occur when i = k − j. Substituting
κj(k − j) = nj +O(nj−1) and for θj using Proposition 6.1,

lim
η→∞

||(M + ηK)−1||∞ ≤ 1

nt

(
k

t

) t∑
j=0

(
k

k−j

)
(n− 1)k−j [nj +O(nj−1)](

k−j
k−t

)2
n2k−2t

≤ nt−k

(
k

t

) t∑
j=0

(
k

j

)(
k − j

k − t

)−2

+O(nt−k−1)

≤ 2t
(
k

t

)2

nt−k +O(nt−k−1).(17)

Note that (17) equals the line above when the exponent in the sum is changed
from −2 to 1 (after some binomial identities are applied). For given specific
k and t, it is not difficult to compute a better constant. In any case, there
exists C(t) so that, for some η∗,

(18) ||(M + η∗K)−1||∞ < C(t)

(
k

t

)2 1

nk−t
+O

(
1

nk−t+1

)
.

Under the assumption δt−1(G) ≥ (1 − c)(k − t + 1)n, it is not difficult to
imitate [9, Proposition 3.3] and obtain

(19) ||M [G]−MG||∞ < c

(
k

t

)2

nk−t +O(nk−t+1).

From (18), (19) and Corollary 3.3, one obtains a threshold on the allowed
missing degree proportion c which is of the order k−4t. In many cases, it
may be possible to do better, especially if a bound before (17) is computed.
Even still, this threshold is likely to be significantly improved through other
methods. For this reason, we omit a detailed treatment in the general setting.
Besides, the stakes are lower since there is presently no analog of Theorem 1.2
for hypergraphs.

7. Discussion

In spite of the interesting algebra connected with our matrix for Kn,n,n, the
approximation via linear perturbation probably incurs considerable loss. On
the other hand, it is noteworthy that this method still delivers a reasonable
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threshold guaranteeing a decomposition. And, in practice, simply solving our
linear system (2) stands a good chance at giving a fractional decomposition,
even if the guarantee is not met.

By contrast, the methods in [1, 8, 17] use local adjustments to an ini-
tial constant weighting of cliques. For example, the paper [1] of Barber,
Kühn, Lo, Montgomery and Osthus, which studies fractional decomposition
of dense graphs and hypergraphs, uses the fact that an edge e can be ex-
pressed as a linear combination of the r-cliques inside of an (r + 2)-clique
containing e. Averaging over many such (r + 2)-cliques, the authors obtain
an ‘edge gadget’ which adjusts the weight of e via a minor change to the
weighting of cliques. In the r-partite setting, it is not immediately clear
how to construct gadgets. However, Montgomery overcomes this challenge
in the recent paper [17]. There, τF (r) ≤ 1 − 10−6r−3 is obtained for the
general r-partite setting. This improves on our exponent by one, but the
small constant illustrates the extra difficulty with local adjustments in this
setting.

One interesting feature common to most work on fractional decomposi-
tion is that results are stated in terms of minimum (vertex or co-) degree.
However, perhaps a more natural hypothesis is the (slightly weaker) con-
dition that every edge belong to many cliques. In general, it would be of
interest to explore decompositions under different hypotheses.

A generalization we have not considered is (fractional)Ks-decomposition
of complete r-partite graphs for s ≤ r. Of course, given a Kr-decomposition,
it is possible to replace each r-clique with a scaled average of s-cliques, but
then the minimum degree threshold will depend on r rather than s. When
r ≥ s + 2, Montgomery has observed that the gadget technique of [1] can
produce reasonable thresholds for this problem that depend on s.

For hypergraphs in the partite setting, the problem is still in early stages.
Our outline in Section 6.3 offers a starting point for this problem.

We close with some remarks on convex-geometric barriers for our prob-
lem. A locally balanced 3-partite graph on 3n vertices admits a fractional
triangle decomposition if and only if it belongs to the cone of weighted
graphs generated by triangles in Kn,n,n. The facet structure of this cone (its
description by inequalities) is perhaps of some interest in its own right. For
instance, in the case n = 2, a weighted graph belongs to the cone only if
twice the sum of edge weights on two disjoint triangles exceeds the sum of
edge weights crossing between them. This inequality defines one of 16 dis-
tinct facets of the cone for n = 2. We have computed 207 distinct facets for
n = 3, arising from four isomorphism classes, and 113740 distinct facets for
n = 4, falling into 15 isomorphism classes. More precisely, these classes are
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orbits under the action of Aut(Kn,n,n) = Sn � S3. It is clear from these ex-
periments that the cone is very complex; however, even a partial description
may lead to a better understanding of geometric barriers for the fractional
decomposition problem.
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[5] A.G. Chetwynd and R. Häggkvist, Completing partial n × n latin
squares where each row, column and symbol is used at most cn times.
Reports, Dept. of Mathematics, University of Stockholm, 1985.
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