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In 1966, T. Gallai asked whether every connected graph has a ver-
tex that appears in all longest paths. Since then this question has
attracted much attention and much work has been done on this
topic. One important open question in this area is to ask whether
any three longest paths contain a common vertex in a connected
graph. It was conjectured that the answer to this question is posi-
tive. In this paper, we propose a new approach in view of distances
among longest paths in a connected graph, and give a substantial
progress towards the conjecture along the idea.

1. Introduction

In [5] Gallai asked whether every connected graph has a vertex that appears
in all longest paths. This question has attracted much attention and many
work has been done around this area of study. The answer to this question
is false as stated; actually several counterexamples were given in [11, 12, 13].
A graph G is hypotraceable if G has no Hamiltonian path but every vertex-
deleted subgraph G − v has. Note that hypotraceable graphs constitute a
large class of counterexamples. Thomassen [10] showed that there are infinite
planar hypotraceable graphs, meaning that there are infinite counterexam-
ples towards the question.

Yet there are classes of graphs for which the answer to Gallai’s question
is positive. To see this, note that, in a tree, all longest paths must contain its
center(s). Klavz̆ar and Petkovs̆ek [8] showed that the answer is also positive
for split graphs, cacti, and some other classes of graphs. Balister et al. [2],
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Joos [7] and Chen et al. [3] obtained similar results for the class of interval
graphs, circular arc graphs, series-parallel graphs, respectively. Some other
related results were obtained by Rautenbach and Sereni [9].

Regarding Gallai’s question, what happens if we consider the intersec-
tion of a smaller number of longest paths? While we can easily check that
every two longest paths share a vertex, it is not known whether every three
longest paths also share a vertex. In [6] it appears as a conjecture, which
has originally been asked by Zamfirescu since the 1980s (see [14]).

Conjecture 1.1. For every connected graph, any three of its longest paths
have a common vertex.

So far, very little progress has been made on this conjecture. Axenovich
[1] proved that Conjecture 1.1 is true for connected outerplanar graphs, and
de Rezende et al. [4] proved that Conjecture 1.1 is true for connected graphs
in which all nontrivial blocks are Hamiltonian.

In this paper, we introduce a new graph parameter in view of distances
among longest paths in a connected graph. To state this, we give some basic
definitions. For a graph G, let P be a path in G, and let x and y be the end-
vertices of P . Note that |V (P )| = 1 if and only if x = y. For X,Y ⊆ V (G),
P is called an X-Y path if V (P ) ∩ X = {x} and V (P ) ∩ Y = {y}. Let
u, v ∈ V (P ). We let uPv denote the {u}-{v} path on P . Furthermore, we
let ǔPv = uPv − u, uP v̌ = uPv − v and ǔP v̌ = uPv − {u, v}.

Let G be a connected graph. Let l(G) be the length of any longest path
in G, and let L(G) be the set of longest paths of G; thus L(G) = {P | P is
a path in G with |V (P )| = l(G) + 1}. For x, y ∈ V (G) let dG(x, y) be the
distance between x and y in G (i.e., the length of a shortest path joining
x and y in G). Also, for a vertex x ∈ V (G) and a subset U ⊆ V (G), let
dG(x, U) = min{dG(x, y) | y ∈ U}. For P ⊆ L(G), the distance sum of a
vertex v from P is defined as

∑
P∈P dG(v, V (P )), and let f(G,P) be the

minimum of the distance sum from P over all vertices in G.

Using this graph parameter, we can formulate Conjecture 1.1 as follows.

Conjecture 1.2. Let G be a connected graph, and let P be a subset of L(G)
with |P| = 3. Then f(G,P) = 0.

As mentioned before, it is easy to check that any two longest paths of
a connected graph have a common vertex. We now give the proof in this
context.

Proposition 1.3. Let G be a connected graph, and let P be a subset of L(G)
with |P| = 2. Then f(G,P) = 0.
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Proof. Write P = {P1, P2}, and for each i ∈ {1, 2}, let ui and vi be the

end-vertices of Pi. Since G is connected, G has a V (P1)-V (P2) path Q. Note

that V (P1) ∩ V (P2) �= ∅ if and only if |V (Q)| = 1. For each i ∈ {1, 2},
write V (Pi)∩V (Q) = {wi}. We may assume that |V (uiPiwi)| ≥ |V (viPiwi)|
for each i ∈ {1, 2}. Then the length of the path u1P1w1Qw2P2u2 in G is

(|V (u1P1w1)|−1)+(|V (Q)|−1)+(|V (u2P2w2)|−1). On the other hand, for

each i ∈ {1, 2}, |V (uiPiwi)|−1 ≥ ((|V (uiPiwi)|−1)+(|V (viPiwi)|−1))/2 =

(|V (Pi)| − 1)/2 = l(G)/2. Consequently,

(|V (u1P1w1)| − 1) + (|V (u2P2w2)| − 1)

≥ l(G)

2
+

l(G)

2
= l(G)

≥ (|V (u1P1w1)| − 1) + (|V (Q)| − 1) + (|V (u2P2w2)| − 1).

This leads to |V (Q)| = 1, and hence V (P1) ∩ V (P2) �= ∅.
In this paper, we give an upper bound of f(G,P) with |P| = 3, which is

linear in terms of |V (G)|.

Theorem 1.4. Let G be a connected graph of order n, and let P be a subset

of L(G) with |P| = 3. Then f(G,P) ≤ (n+ 6)/13.

After proving this bound in Section 2, in the follow-up section we show

that to prove the conjecture it would be enough to improve our linear bound

to any nondecreasing sublinear bound. Namely, we propose an equivalent

conjecture towards Conjecture 1.1 in terms of the function f(G,P).

2. Proof of Theorem 1.4

We start with some lemmas.

For a set P of graphs and P ∈ P , setXP(P )=V (P )−(
⋃

P ′∈P−{P}V (P ′)).

Lemma 2.1. Let G be a connected graph of order n, and let P ⊆ L(G) with

|P| = 3. If f(G,P) > 0, then n ≥ (3l(G) +
∑

P∈P |XP(P )|+ 3)/2.

Proof. Write P = {P1, P2, P3}. Since
⋂

1≤i≤3 V (Pi) = ∅,

n ≥ |
⋃

1≤i≤3

V (P )| =
∑

1≤i≤3

|XP(Pi)|+
∑

1≤i<j≤3

|V (Pi) ∩ V (Pj)|.(2.1)
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Since l(G) + 1 = |V (Pi)| = |XP(Pi)| +
∑

j �=i |V (Pi) ∩ V (Pj)| for each 1 ≤
i ≤ 3,

3l(G) + 3 =
∑

1≤i≤3

|XP(Pi)|+
∑

1≤i≤3

(
∑

j �=i

|V (Pi) ∩ V (Pj)|)

=
∑

1≤i≤3

|XP(Pi)|+ 2
∑

1≤i<j≤3

|V (Pi) ∩ V (Pj)|.(2.2)

By (2.1) and (2.2),

n ≥
∑

1≤i≤3

|XP(Pi)|+
∑

1≤i<j≤3

|V (Pi) ∩ V (Pj)|

=
∑

1≤i≤3

|XP(Pi)|+ (3l(G) + 3−
∑

1≤i≤3

|XP(Pi)|)/2

= (3l(G) + 3 +
∑

1≤i≤3

|XP(Pi)|)/2.

Thus we get the desired conclusion.
For a set P of three paths and P ∈ P , let tP(P ) be the number of

V (P1)-V (P2) paths on P , where P − {P} = {P1, P2}. If P consists of three
longest paths of a connected graph, then tP(P ) ≥ 1 for every P ∈ P by
Proposition 1.3.

Lemma 2.2. Let G be a connected graph, and let P ⊆ L(G) with |P| = 3.
Then |XP(P )| ≥ tP(P )(f(G,P)− 1) for each P ∈ P.

Proof. We may assume that f(G,P) ≥ 1. Write P−{P} = {P1, P2}, and let
Q be the set of V (P1)-V (P2) paths on P . Note that every path inQ has order
at least two and |Q| = tP(P ). Let Q ∈ Q, and let u and v be the end-vertices
of Q with u ∈ V (P1) and v ∈ V (P2). Then V (Q)∩XP(P ) = V (Q)−{u, v}.
Since u ∈ V (P ) ∩ V (P1), f(G,P) ≤

∑
P ′∈P dG(u, V (P ′)) = dG(u, V (P2)) ≤

dG(u, v) ≤ |V (Q)| − 1. Hence |V (Q) ∩XP(P )| = |V (Q)| − 2 ≥ f(G,P)− 1.
Since Q is arbitrary,

∑

Q∈Q
|V (Q) ∩XP(P )| ≥ tP(P )(f(G,P)− 1).(2.3)

Clearly, each vertex in XP(P ) belongs to at most one path in Q. This
together with (2.3) implies that |XP(P )| ≥ |

⋃
Q∈Q(V (Q) ∩ XP(P ))| =∑

Q∈Q |V (Q) ∩XP(P )| ≥ tP(P )(f(G,P)− 1).
We also need the following lemma, which was originally proven in [1].

We give the proof of this lemma for the convenience of readers.
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Figure 1: paths in P .

Lemma 2.3. Let G be a connected graph, and let P ⊆ L(G) with |P| = 3.

If there exists a path P ∈ P with tP(P ) = 1, then f(G,P) = 0.

Proof. Suppose that f(G,P) > 0. Let u and v be the end-vertices of P .

Write P−{P} = {P1, P2}, and for each i ∈ {1, 2}, let wi be the vertex which

is contained in Pi and the unique V (P1)-V (P2) path on P (see Figure 1).

We may assume that |V (uPw1)| ≤ |V (uPw2)|. Since f(G,P) > 0, w1 �=
w2, and hence |V (w1Pv)| > |V (w2Pv)|. Furthermore, we may assume that

|V (uPw1)| ≤ |V (vPw2)|. Since l(G) = |V (uPw1)|+ |V (w1Pv)| − 2,

|V (w1Pv)| >
|V (w1Pv)|

2
+

|V (w2Pv)|
2

=
l(G)− |V (uPw1)|+ 2

2
+

|V (w2Pv)|
2

≥ l(G)− |V (vPw2)|+ 2

2
+

|V (w2Pv)|
2

=
l(G) + 2

2
.(2.4)

Let u1 and v1 be the end-vertices of P1. We may assume that |V (u1P1w1)| ≥
|V (w1P1v1)|. Since l(G) = |V (u1P1w1)|+ |V (w1P1v1)| − 2,

|V (u1P1w1)| ≥
|V (u1P1w1)|+ |V (w1P1v1)|

2
=

l(G) + 2

2
.(2.5)

By (2.4) and (2.5), |V (u1P1w1)|+ |V (w1Pv)| − 2 > (l(G) + 2)/2 + (l(G) +

2)/2−2 = l(G). By the assumption that tP(P ) = 1, the path w̌1Pv contains

no vertex in V (P1). Hence P
(1)
1 = u1P1w1Pv is a path in G with length

|V (u1P1w1)|+ |V (w1Pv)| − 2 > l(G), which is a contradiction.
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Figure 2: paths in P .

Proof of Theorem 1.4. We may assume that f(G,P) ≥ 1. Choose P ∈ P
so that t = tP(P ) is as small as possible. Then tP(P ) ≥ 2 by Lemma 2.3.
Let u and v be the end-vertices of P . Write P − {P} = {P1, P2}, and let
ui and vi be the end-vertices of Pi for each i ∈ {1, 2}. Let Q1, Q2, · · · , Qt

be the V (P1)-V (P2) paths on P which are aligned on P in order of indices
with initial point u (i.e. for each 2 ≤ i ≤ t, the unique {u}-V (Qi) path on
P contains

⋃
1≤j≤i−1 V (Qj)). We may assume that the length of the unique

{u}-V (Q1) path on P is at least that of the unique {v}-V (Qt) path on P .

For each 1 ≤ i ≤ t and each j ∈ {1, 2}, write V (Qi) ∩ V (Pj) = {w(j)
i }. We

may assume that |V (uPw
(1)
1 )| ≤ |V (uPw

(2)
1 )|. Let R be a {w(1)

1 }-V (P2) path
on P1, and write V (R) ∩ V (P2) = {x}. For each i ∈ {1, 2}, we may assume

that |V (uiPiw
(i)
1 )| ≤ |V (uiPix)| (see Figure 2).

Since w
(1)
1 ∈ V (P ) ∩ V (P1), f(G,P) ≤

∑
P ′∈P dG(w

(1)
1 , V (P ′)) =

dG(w
(1)
1 , V (P2)) ≤ min{dG(w(1)

1 , w
(2)
1 ), dG(w

(1)
1 , x)} ≤ min{|V (Q1)| − 1,

|V (R)| − 1}. Hence

|V (Q1)| ≥ f(G,P) + 1 and |V (R)| ≥ f(G,P) + 1.(2.6)

Since w
(2)
1 Q1w̌

(1)
1 contains no vertex in V (P1), w

(2)
1 Q1w

(1)
1 Rx is a path

in G. Furthermore, since w̌
(2)
1 Q1w

(1)
1 P1x̌ contains no vertex in V (P2),

(i) S1 = v2P2w
(2)
1 Q1w

(1)
1 Rx̌,

(ii) S2 = u2P2w
(2)
1 Q1w

(1)
1 RxP2v2 and

(iii) S3 = u2P2xRw
(1)
1 Q1w̌

(2)
1 .

are paths in G (see Figure 3).

Since the length of S1 is (|V (v2P2w
(2)
1 )| − 1) + (|V (Q1)| − 1) +

(|V (w
(1)
1 Rx̌)| − 1) and |V (w

(1)
1 Rx̌)| = |V (R)| − 1, we have (|V (v2P2w

(2)
1 )| −

1) + (|V (w
(2)
1 P2u2)| − 1) = |V (P2)| − 1 = l(G) ≥ (|V (v2P2w

(2)
1 | − 1) +
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Figure 3: path Si.

(|V (Q1)| − 1) + (|V (R)| − 2). This together with (2.6) leads to

|V (u2P2w
(2)
1 )| ≥ |V (Q1)|+ |V (R)| − 2 ≥ 2f(G,P).(2.7)

By comparing the length of P2 and S2 and (2.6), we have

|V (w
(2)
1 P2x)| ≥ |V (Q1)|+ |V (R)| − 1 ≥ 2f(G,P) + 1.(2.8)

By comparing the length of P2 and S3 and (2.6), we also have

|V (xP2v2)| ≥ |V (Q1)|+ |V (R)| − 2 ≥ 2f(G,P).(2.9)

Therefore

l(G) = |V (P2)| − 1

= |V (u2P2w
(2)
1 )|+ |V (w

(2)
1 P2x)|+ |V (xP2v2)| − 3

≥ 2f(G,P) + (2f(G,P) + 1) + 2f(G,P)− 3

= 6f(G,P)− 2.(2.10)

Case 1: tP(P ) = 2.

It is easy to check that |V (vPw
(1)
2 )| ≤ |V (vPw

(2)
2 )|. Since the path

uPw̌
(2)
1 contains no vertex in V (P2), T = uPw

(2)
1 P2v2 is a path in G (see

Figure 4). Since the length of T is (|V (uPw
(1)
1 )| − 1) + (|V (Q1)| − 1) +

(|V (w
(2)
1 P2v2)|−1), (|V (u2P2w

(2)
1 )|−1)+(|V (w

(2)
1 P2v2)|−1) = |V (P2)|−1 =

l(G) ≥ (|V (uPw
(1)
1 )|−1)+(|V (Q1)|−1)+(|V (w

(2)
1 P2v2)|−1). This together

with (2.6) leads to

|V (u2P2w
(2)
1 )| ≥ |V (uPw

(1)
1 )|+ |V (Q1)| − 1 ≥ |V (uPw

(1)
1 )|+ f(G,P).

(2.11)
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Figure 4: path T .

Figure 5: path Ti.

Since the path w̌
(1)
2 Pw̌

(1)
1 contains no vertex in V (P1), both T1 =

w̌
(1)
2 Pw

(1)
1 P1u1 and T2 = w̌

(1)
2 Pw

(1)
1 P1v1 are paths in G (see Figure 5).

Since the length of T1 is (|V (w̌
(1)
2 Pw

(1)
1 )|−1)+(|V (w

(1)
1 P1u1)|−1), we have

(|V (vPw
(1)
2 )|−1)+(|V (w

(1)
2 Pw

(1)
1 )|−1)+(|V (w

(1)
1 Pu)|−1) = |V (P )|−1 =

l(G) ≥ (|V (w̌
(1)
2 Pw

(1)
1 )| − 1) + (|V (w

(1)
1 P1u1)| − 1). Consequently, we have

|V (vPw
(1)
2 )|+ |V (w

(1)
1 Pu)| ≥ |V (w

(1)
1 P1u1)|. By comparing the length of P

and T2, we also have |V (vPw
(1)
2 )|+ |V (w

(1)
1 Pu)| ≥ |V (w

(1)
1 P1v1)|. Hence

l(G) = |V (P1)| − 1

= |V (u1P1w
(1)
1 )|+ |V (w

(1)
1 P1v1)| − 2

≤ 2(|V (vPw
(1)
2 )|+ |V (w

(1)
1 Pu)|)− 2.(2.12)

Recall that the length of the unique {u}-V (Q1) path on P (i.e. uPw
(1)
1 )

is at least that of the unique {v}-V (Q2) path on P (i.e. vPw
(1)
2 ). Hence

|V (uPw
(1)
1 )| ≥ |V (vPw

(1)
2 )|. By (2.12), l(G) ≤ 2(|V (vPw

(1)
2 )| +

|V (w
(1)
1 Pu)|) − 2 ≤ 4|V (uPw

(1)
1 )| − 2, and so |V (uPw

(1)
1 )| ≥ (l(G) + 2)/4.
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This together with (2.11) implies that

|V (u2P2w
(2)
1 )| ≥ l(G) + 2

4
+ f(G,P).(2.13)

By (2.8), (2.9) and (2.13),

l(G) = |V (P2)| − 1

= |V (u2P2w
(2)
1 )|+ |V (w

(2)
1 P2x)|+ |V (xP2v2)| − 3

≥ (
l(G) + 2

4
+ f(G,P)) + (2f(G,P) + 1) + 2f(G,P)− 3

=
l(G)− 6

4
+ 5f(G,P),

and so

l(G) ≥ 20f(G,P)− 6

3
.(2.14)

By the choice of P , tP(P ′) ≥ 2 for every P ′ ∈ P . By Lemma 2.2,∑
P ′∈P |XP(P ′)| ≥

∑
P ′∈P tP(P ′)(f(G,P) − 1) ≥ 6(f(G,P) − 1). This to-

gether with Lemma 2.1 and (2.14) implies that

n ≥
3l(G) +

∑
P ′∈P |XP(P ′)|+ 3

2

≥
3 · 20f(G,P)−6

3 + 6(f(G,P)− 1) + 3

2

=
26f(G,P)− 9

2
,

and hence f(G,P) ≤ (2n+ 9)/26.

Case 2: tP(P ) ≥ 3.

By the choice of P , tP(P ′) ≥ 3 for every P ′ ∈ P . By Lemma 2.2,∑
P ′∈P |XP(P ′)| ≥

∑
P ′∈P tP(P ′)(f(G,P) − 1) ≥ 9(f(G,P) − 1). This to-
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gether with Lemma 2.1 and (2.10) implies that

n ≥
3l(G) +

∑
P ′∈P |XP(P ′)|+ 3

2

≥ 3(6f(G,P)− 2) + 9(f(G,P)− 1) + 3

2

=
27f(G,P)− 12

2
,

and hence f(G,P) ≤ (2n+ 12)/27.
This completes the proof of Theorem 1.4.
To conclude this section, we propose the following conjecture.

Conjecture 2.4. Let G be a connected graph, and let P ⊆ L(G) with |P| =
3. If there exists a path P ∈ P with tP(P ) = 2, then f(G,P) = 0.

If Conjecture 2.4 is true, then we can improve the upper bound of
f(G,P) in Theorem 1.4 to (2n + 12)/27 (by the argument in the proof
of Theorem 1.4).

3. Bounding the value of f(G,P) by a sublinear function

A function g is sublinear if limn→+∞
g(n)
n = 0. It follows from the definition

that, if g is sublinear, then for any two constants c0, c1, we have g(c0t +
c1) < t for any large t. Here we pose the following new conjecture, which
concerns Conjecture 1.2. Although Conjecture 3.1 is seemingly weaker than
Conjecture 1.2, we will show that Conjecture 3.1 is indeed equivalent with
Conjecture 1.2.

Conjecture 3.1. There exists a sublinear non-decreasing function g such
that for every connected graph G of order n and every subset P of L(G) with
|P| = 3, f(G,P) ≤ g(n).

To prove that this seemingly weaker conjecture is equivalent to Conjec-
ture 1.2, we first show that for a given graph G with a set {P1, P2, P3} of
three longest paths one can choose a subdivision of G so that subdivisions
of Pi’s i = 1, 2, 3 are the new longest paths and show that the minimum
distance from these three subdivided paths in the subdivided graph grows
linearly in the order of subdivision. For the exact statement we introduce
the following notation.

Let G be a connected graph and let P = {P1, P2, P3} be a set of three
longest paths. Let G′ be obtained by adding a new edge to each end-vertex
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of Pi’s, i = 1, 2, 3; thus, minimum of two and maximum of six new vertices
and edges are added. Let P ′

i , i = 1, 2, 3 be the path corresponding to Pi with
two new edges at the two ends. We define Gt to be the graph obtained from
G′ by subdividing each edge t times. Let P t

i , i = 1, 2, 3 be the corresponding
path of P ′

i in Gt. We write Pt = {P t
1, P

t
2, P

t
3}. Also, let Vf(G,P) = {v ∈

V (G) |
∑

P∈P dG(v, V (P )) = f(G,P)}.
We have the following proposition.

Proposition 3.2. Given a connected graph G and a set P = {P1, P2, P3} of
three longest paths, the set Pt = {P t

1, P
t
2, P

t
3} is a set of three longest paths

of Gt. Furthermore, f(Gt,Pt) = (t+ 1)f(G,P).

Proof. Note that for each i ∈ {1, 2, 3}, P t
i has of length (t+1)(|V (Pi)|+1).

If there is a path P t in Gt that is longer than P t
1, then by replacing all

subdivided paths to the original edges in G, P t corresponds to a path in
G of length at least |V (P1)|. However, it is longer than P1, a contradiction.
Therefore, the first assertion holds.

To prove the second assertion, we show that a vertex of Vf(Gt,Pt) could
be chosen as an original vertex of G. The assertion then would follow, as
the vertex of G attaining the distance sum f(G,P) from P has the distance
sum (t+ 1)f(G,P) from Pt in Gt.

Now let u be a vertex attaining the distance sum f(Gt,Pt) from Pt. It is
easy to check that u is not an end-vertex of P t

i for any i. If u ∈ V (G), then
we have nothing to prove. Otherwise u is a new vertex subdividing an edge,
say xy, of G. We may assume, without loss of generality, that at least two
of the shortest paths from u to P t

i go through x. However, x has a smaller
distance sum than f(Gt,Pt), a contradiction. We note that if u belongs to
one or two of these paths then so does x and y, and hence this would not
affect the argument. The contradiction proves that u must be a vertex of G
and we have f(Gt,Pt) = (t+ 1)f(G,P).

Keeping the above proposition in mind, we can prove the following the-
orem.

Theorem 3.3. Conjecture 1.2 is true if and only if Conjecture 3.1 is true.

Proof. The “only if” part is trivial, and hence we only show the “if” part.
Suppose that G together with P = {P1, P2, P3} is a counterexample for

Conjecture 1.2, i.e., f(G,P) ≥ 1. The subgraph of G induced by edges and
vertices of P1, P2, P3 is also a counterexample (where P is also a set of non-
intersecting three longest paths). Note that, in view of Proposition 1.3, such
a subgraph is connected. Thus we may assume from the start that vertices
and edges of G are union of vertices and edges of P1, P2, P3.
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Let n0 be the number of vertices of G. Since G is the union of three
paths of length at most n0 − 1, we conclude that G has at most 3(n0 − 1)
edges. Therefore, G′ has at most n0 + 6 vertices and at most 3(n0 + 1)
edges. Since Gt is obtained by subdividing edges of G′ (each edge exactly t
times), we have |V (Gt)| ≤ n0 + 6 + 3(n0 + 1)t. On the other hand, we have
f(Gt,Pt) = (t+ 1)f(G,P) ≥ t+ 1. Hence for constants c0 = 3(n0 + 1) and
c1 = n0 + 6, it follows from Conjecture 3.1 that

g(c0t+ c1) ≥ g(|V (Gt)|) ≥ f(Gt,Pt) ≥ t+ 1.

(The first inequality follows from the condition that g is non-decreasing).
Therefore, the inequality g(c0t+c1) ≥ t+1 holds for any t, which contradicts
the fact that g is a sublinear function.

In conclusion, Theorem 3.3 tells us that giving a substantial improvement
on the magnitude of the upper bound of f(G,P) in Theorem 1.4 settles the
longstanding conjecture on intersecting three longest paths in a connected
graph.
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