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This is the second part of joint research in which we show that
every 2-connected graph G has the F4 property. That is, given
distinct xi ∈ V (G), 1 ≤ i ≤ 4, there is an x1x2-hamiltonian path in
G2 containing different edges x3y3, x4y4 ∈ E(G) for some y3, y4 ∈
V (G). However, it was shown already in [3, Theorem 2] that 2-
connected DT-graphs have the F4 property; based on this result
we generalize it to arbitrary 2-connected graphs. We also show that
these results are best possible.
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1. Introduction

This is the second part of joint research in which we establish the most
general result for the square of a block (i.e., a 2-connected graph) to be
hamiltonian connected. In the first part this was achieved in [3, Theorem 2]
for the case of DT-graphs (i.e., graphs in which every edge is incident to a
vertex of degree two). In the past, the approach to deal with 2-connected
DT-graphs first and then generalize the corresponding results to blocks in
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general, was a logical consequence of the proof methods developed in [6]–[9],
say. However, since the 1990’s shorter proofs of what has become known
as Fleischner’s Theorem, were developed first by Ř́ıha in [16] and later by
Georgakopoulos in [11]. A short proof of an even stronger version of that
theorem was proved by Müttel and Rautenbach in [13]. Unfortunately, the
methods developed for these shorter proofs do not seem to suffice to prove
the main result of this paper (Theorem 4). This is why we had to resort to
the concept of EPS-graphs (see, e.g., [6]).

All concepts not defined in this paper, can be found in the cited liter-
ature; in cases where contradictions regarding terminology may arise, we
prefer the definitions as given in the papers by Fleischner. We also included
some additional references to give the interested reader a better insight re-
garding past developments of the topic. However, to make it easier to read
this paper we repeat some definitions. In particular, by a uv-path we mean
a path from u to v. If a uv-path is hamiltonian, we call it a uv-hamiltonian
path. Also, we understand an eulerian graph to be a not necessarily con-
nected graph all of whose vertices have even degree. Moreover, we let δu = u
if d(u) = 1, and δu = ∅, otherwise.

Next, we repeat some results quoted or proved in [3], using the same
numbering as in [3]. Theorems proved in the 1970’s and quoted already in
[3] are numbered by upper-case letters using the same letters as in [3].

Definition 1. Let G be a graph and let A = {x1, x2, . . . , xk} be a set of k (≥
3) distinct vertices in G. An x1x2-hamiltonian path in G2 which contains
k−2 distinct edges xiyi ∈ E(G), i = 3, . . . , k is said to be Fk. Hence we speak
of an Fk x1x2-hamiltonian path in G2. If xi is adjacent to xj, we insist that
xiyi and xjyj are distinct edges. A graph G is said to have the Fk property
if for any set A = {x1, x2 . . . , xk} ⊆ V (G), there is an Fk x1x2-hamiltonian
path in G2.

By an EPS-graph, JEPS-graph of G, denoted S = E ∪P , S = J ∪E ∪P
respectively, we mean a spanning connected subgraph S of G which is the
edge-disjoint union of an eulerian graph E (which may be disconnected) and
a linear forest P , respectively a linear forest P together with an open trail
J .

Lemma 1. ([3, Lemma 1]) Suppose G is a block chain with a cutvertex, v
and w are vertices in different endblocks of G and are not cutvertices. Then

(i) there exists an EPS-graph E ∪ P ⊆ G such that dP (v), dP (w) ≤ 1.
If the endblock which contains v is 2-connected, then we have dP (v) = 0 and
dP (w) ≤ 1; and
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(ii) there exists a JEPS-graph J ∪ E ∪ P ⊆ G such that dP (v) = 0 =
dP (w). Moreover, v, w are the only odd vertices of J . Also, we have dP (c) =
2 for at most one cutvertex c of G (and hence dP (c

′) ≤ 1 for all other
cutvertices c′ of G).

Theorem A. [3, Theorem 1]) Suppose G is a 2-connected graph and v, w
are two distinct vertices in G. Then either

(i) there exists an EPS-graph S = E ∪P ⊆ G with dP (v) = 0 = dP (w);
or
(ii) there exists a JEPS-graph S = J ∪ E ∪ P ⊆ G with v, w being the

only odd vertices of J , and dP (v) = 0 = dP (w).

By a [v;w1, . . . , wn]-EPS-graph of G, we mean an EPS-graph S = E∪P
of G such that dP (v) = 0 and dP (wi) ≤ 1 for every i = 1, . . . , n.

Theorem B. ([9, Theorem 3]) Let G be a 2-connected graph and let v, w1, w2,
w3 be distinct vertices of G. Suppose K is a cycle in G such that
{v, w1, w2, w3} ⊆ K. Then G has a [v;w1, w2, w3]-EPS-graph S = E ∪ P
such that K ⊆ E.

Suppose G is a 2-connected graph and v, w1, w2 are distinct vertices in
G. A cycle K in G is a [v;w1, w2]-maximal cycle in G if {v, w1} ⊆ V (K),
and w2 ∈ V (K) unless G has no cycle containing all of {v, w1, w2}.
Theorem C. ([9, Theorem 2]) Let G be a 2-connected graph and let v, w1, w2

be three distinct vertices of G. Suppose K is a [v;w1, w2]-maximal cycle in
G. Then G has a [v;w1, w2]-EPS graph S = E ∪ P such that K ⊆ E.

Theorem D. ([6, Theorem 2]) Let G be a 2-connected graph and let v, w
be two distinct vertices of G. Let K be a cycle through v, w. Then G has a
[v;w]-EPS-graph S = E ∪ P with K ⊆ E.

Theorem E. ([8, Theorem 3]). Suppose v and w are two arbitrarily chosen
vertices of a 2-connected graph G. Then G2 contains a hamiltonian cycle C
such that the edges of C incident to v are in G and at least one of the edges
of C incident to w is in G. Further, if v and w are adjacent in G, then these
are three different edges.

A hamiltonian cycle in G2 satisfying the conclusion of Theorem E is also
called a [v;w]-hamiltonian cycle. More generally, a hamiltonian cycle C in
G2 which contains two edges of G incident to v, and at least one edge G
incident to each wi, i = 1, . . . , k, is called a [v;w1, . . . , wk]-hamiltonian cycle,
provided the edges in question are all different.
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Theorem F. ([8, Theorem 4]). Let G be a 2-connected graph. Then the
following hold.

(i) G has the F3 property.
(ii) For a given q ∈ {x, y}, G2 has an xy-hamiltonian path containing

an edge of G incident to q.

By applying Theorems E and F to each block of a block chain B, we
have the following.

Corollary 1. Suppose B is a non-trivial block chain with |V (B)| ≥ 3 and v
and w are vertices in different endblocks of G. Assume further that v, w are
not cutvertices of B. Then

(i) B2 has a hamiltonian cycle which contains an edge of B incident to v
and an edge of B incident to w. In the case that the endblock which contains
v is 2-connected, then B2 has a hamiltonian cycle which contains two edges
of B incident to v and an edge of B incident to w. Also,

(ii) B2 has a vw-hamiltonian path containing an edge of B incident to
v and an edge of B incident to w.

Recall that a graph is called a DT -graph if every edge is incident to a
2-valent vertex. If G is a graph, we let V2(G) denote the set of all vertices
of degree 2 in G.

The main result of [3] is the following result which is the larger part of
the proof of Theorem 4 below.

Theorem 1. Every 2-connected DT -graph has the F4 property.

In proving Theorem 1 we made use of the following Lemma which plays
a role also in this paper.

Lemma 2. Let G be a 2-connected DT-graph and let G+ = G∪{x1y, x2y, y},
y �∈ V (G) (see [3]), with N(x3) �⊆ V2(G) and N(x4) �⊆ V2(G). Suppose
N(xi) ⊆ V2(G) for some i ∈ {1, 2}. Assume further that every proper 2-
connected subgraph of G has the F4 property. Then (G+)2 has a hamiltonian
cycle containing the edges x1y, x2y, x3z3, x4z4 where x3z3, x4z4 are different
edges of G.

Note that in the ensuing discussion and proofs we make use of the fact
that in DT -graphs G, the existence of an EPS-graph of G yields a hamilto-
nian cycle of G2. In order to keep the paper as short as possible the reader
is referred to the constructions expounded in [6].

However, before dealing with the main result, Theorem 4 in section 3,
we need to prove several preliminary results.
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2. Beyond F3

We now proceed to prove some results needed to shorten the proof of The-
orem 4.

Lemma 3. Let G be a 2-connected DT -graph with at least four vertices,
and let v, w1, w2 be three distinct vertices in G with N(v) ⊆ V2(G) and
N(w1) ⊆ V2(G). Then G2 has a [v;w1, w2]-hamiltonian cycle.

Proof: Since G is a 2-connected graph, G has a cycle K containing v, w1.
Suppose K has been chosen such that it is [v;w1, w2]-maximal. Then G has
a [v;w1, w2]-EPS-graph S = E ∪ P with K ⊆ E by Theorem C.

If N(w2) ⊆ V2(G), then it is straightforward to see that S2 yields
a hamiltonian cycle having the required properties. Note that the case
N(w2) = {v, w1} yields vw1 /∈ E(G) in this case (since |V (G)| ≥ 4) and
K contains a path v0vw2w1w0 or G = K = C4 (v0 ∈ N(v), w0 ∈ N(w1)) all
of whose vertices are 2-valent in G and thus the four edges of that path are
contained in some hamiltonian cycle of S2. Hence N(w2) � V2(G) and w2

is a 2-valent vertex.

Depending on the position of w2 vis-a-vis v and w1 we now consider the
following cases.

Case (A) N(w2) = {v, w1}. It is easy to see that vw1 /∈ E(G).
Next we need to consider two cases separately.

(1) G − w2 is 2-connected. We apply Theorem A and correspondingly
consider the following cases.

First we assume that G−w2 has an EPS-graph S = E∪P with dP (v) =
dP (w1) = 0. By the construction according to the method developed in [6]
we have in (G−w2)

2 a hamiltonian cycle H whose edges in v and in w1 are
in G − w2. Now it is trivial to expand H to a hamiltonian cycle in G2 as
required.

On the other hand, if G−w2 has a JEPS-graph S = J∪E∪P with v, w1

being the only odd vertices of J and dP (v) = dP (w1) = 0, then (G − w2)
2

has a hamiltonian path P (v, w1) starting in v with an edge of G and ending
in w1 with an edge of G, then P (v, w1)∪{w1w2, w2v} defines a hamiltonian
cycle of G2 as claimed by the lemma.

(2) G − w2 is not 2-connected; hence it is a block chain with v and w1

belonging to different endblocks of G − w2, and they are not cutvertices
of G − w2. By Corollary 1(ii), (G − w2)

2 has a hamiltonian path P (v, w1)
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starting in v with an edge of G and ending in w1 with and edge of G. Thus

P (v1w1) ∪ {w1w2, w2v} defines hamiltonian cycle of G2 as claimed by the

lemma and thus finishes Case (A).

Because of the cases already treated it follows that there is t ∈ V (G)

satisfying

Case (B) t ∈ N(w2)−V2(G). We assume additionally |N(w2)∩{v, w1}| =
1.

(i) t ∈ {v, w1}. Let t′ = N(w2)− t. Hence vw1 /∈ E(G) and t′ /∈ {v, w1}.
Moreover, w2 ∈ V (K) and t′ ∈ V2(G); otherwise we could treat t′ like t in

(ii) below. In this case we can write

K = v, . . . , t′, w2, w1, w
′
1, . . . , v

′′, v if t = w1

or

K = v, w2, t
′, . . . , w1, w

′
1, . . . , v

′′, v if t = v.

In any case, a [v;w1, w2]-EPS-graph S = E ∪ E with K ⊆ E exists by

Theorem C and yields in S2 a hamiltonian cycle of G2 as required.

(ii) t �∈ {v, w1}. Since {v, w1, w2} ⊂ V (K) we also have t ∈ V (K), and

by Theorem C, a [v; t, w1]-EPS-graph S = E∪P with K ⊆ E exists. Also in

this case, S2 has a hamiltonian cycle as claimed by the lemma (in particular,

it contains tw2).

We are thus led to the following case.

Case (C) t ∈ N(w2)− V2(G) and N(w2) ∩ {v, w1} = ∅.

Further we assume that w2 is not contained in the cycle K; otherwise,

for t as above, K contains v, w1, w2, t, and G has a [v;w1, w2, t]-EPS-graph

S = E∪P with K ⊆ E by Theorem B. Again, S2 yields a hamiltonian cycle

with the required properties.

Partition K into two vw1-paths, K = P1(v, w1)∪P2(v, w1). Since G is 2-

connected, there exists a w2u1-path P (w2, u1) and a w2u2-path P (w2, u2) in

G which are internally disjoint, with u1, u2 ∈ V (K) and such that

(P (w2, ui)− ui) ∩K = ∅, i = 1, 2.

Suppose u1, u2 ∈ Pj(v, w1) for some j ∈ {1, 2}. Then there is a cycle K∗

in G containing the vertices v, w1, w2, t which contradicts the choice of K.

Hence we assume that ui ∈ Pi(v, w1), i = 1, 2; it is an internal vertex of

Pi(v, w1).



Special types of Hamiltonian paths in the square of a block 169

Now consider

min
K⊃{v,w1}

min
u1,u2∈V (K)

{ l(P (w2, u1)) + l(P (w2, u2)) } ;

fix a cycle K and u1, u2 ∈ V (K) together with P (w2, u1), P (w2, u2) which

satisfy this minimality condition.

Set P (w2) = P (w2, u1) ∪ P (w2, u2) and let G2 ⊂ G be induced by

V (P (w2)) and by all vertices y lying on a path Py with endvertices vy, wy ∈
V (P (w2)) such that {vy, wy} �= {u1, u2} and satisfying (V (Py)−{vy, wy})∩
V (K) = ∅. G2 is uniquely determined and it is a (trivial or non-trivial) block

chain with u1, u2 belonging to endblocks of G2; they are not cutvertices of

G2.

Likewise, define GK as induced by all vertices z lying on a path Pz with

endvertices vz, wz ∈ V (K) and satisfying (V (Pz) − {vz, wz}) ∩ V (G2) = ∅.
GK is 2-connected because of K ⊂ GK .

Observe, that the minimality condition guarantees that there is no path

P (x, y) with x ∈ V (GK) − {u1, u2} and y ∈ V (G2) − {u1, u2}. Now it is

straightforward to see that G = GK ∪ G2, GK ∩ G2 = {u1, u2} because of

the minimality condition.

Note that the above arguments apply to arbitrary 2-connected graphs.

In what follows we restrict ourselves to DT -graphs.

Also, from the choice of K it follows that {u1, u2}∩{v, w1} = ∅. However

K ⊃ {v, w1, u1, u2} which is a set of four distinct vertices on K. Hence GK

has a [v;w1, u1, u2]-EPS graph SK = EK ∪ PK with K ⊆ EK because of

Theorem B.

Now consider the graph G2.

(a) Suppose w2 is incident with a bridge of G2. Then G2 has an EPS-

graph

S2 = E2 ∪ P2 with w2 �∈ E2, dP2
(w2) = 2 and dP2

(ui) ≤ 1, i = 1, 2 by

Lemma 1 (i). It follows that for E = EK ∪ E2 and P = PK ∪ (P2 − w2t),

t ∈ N(w2), S = E ∪ P is an EPS-graph of G with K ⊆ E, dP (w2) = 1 and

w2 is a pendant vertex in S, dP (v) = 0, dP (w1) ≤ 1, and dP (ui) ≤ 2, i = 1, 2.

It now follows that S2 yields a hamiltonian cycle C in G2 as required: its

edges incident to v are edges of G, and at least one edge of C incident to wi

is in G, i = 1, 2.
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(b) Suppose w2 lies in a cycle of G2, i.e., w2 lies in a 2-connected block
B(w2) of G2. Let zi ∈ V (B(w2)) be such that zi = ui if ui ∈ V (B(w2)),
i = 1, 2; otherwise, let zi be a cutvertex of G2.

If G2 is a non-trivial block chain we apply Corollary 1(i) to obtain a
hamiltonian cycle C2 of G2

2. C2 contains u1y1, u1v1, u2v2 ∈ E(C2) ∩ E(G2)
provided the endblock B(u1) containing u1 is 2-connected; and {y1, v1} ⊆
N(u1), v2 ∈ N(u2). However, if B(u1) is a bridge u1y1 then u1y1 ∈ E(C2),
and u1v1 ∈ E(C2) − E(G). Moreover, in constructing C2 (which results
from applying Theorem E to the 2-connected blocks of G2) we may apply
Lemma 3 by induction to the block B(w2) containing also s ∈ N(w2), to
obtain w2s ∈ E(C2) as well.

If however, G2 is 2-connected, we apply induction to G2 to obtain a
hamiltonian cycle C2 of G2

2 where edges incident to u1 are in G2 and so is
sw2 and an edge incident to u2.

To obtain H2 missing u1, we make a ‘shortcut’ by replacing u1y1, u1v1
with y1v1.

Now, SK yields a hamiltonian cycle HK ⊆ (GK)2 with its two edges in v
belonging to GK and in each of w1, u1, u2, HK traverses at least one edge of
GK (note that N(w1) ∪N(u1) ∪N(u2) ⊂ V2(G)). Likewise, H2 contains an
edge of G2 incident with w2, and one edge of G2 incident with u2. Denote
u2vK ∈ HK ∩GK , u2v2 ∈ H2 ∩G2. Then H = (HK −u2vK)∪ (H2−u2v2)∪
{vKv2} is a hamiltonian cycle C in G2 as required.

By an edge-critical block, we mean a block which fails to be a block when
any edge is deleted from it.

Let G be a graph and let D(G) = {uv ∈ E(G) | d(u) > 2, d(v) > 2}.
Note that G is a DT -graph if and only if D(G) = ∅.
Theorem G. ([8, Theorem 1]) Suppose G is an edge-critical block which
is not a DT -graph. Let x, y be any two distinct vertices in G. Then D(G)
contains an edge e such that G− e has a DT -endblock B such that {x, y} �⊂
V (B), and if x ∈ V (B), then x is a cutvertex of G− e.

We shall now prove a stronger version of Theorem F(ii).

Theorem 2. Let G be a 2-connected graph and let x, y be two vertices in
G. Then G2 has an xy-hamiltonian path P (x, y) such that

(i) xz ∈ E(G) ∩ E(P (x, y)) for some z ∈ V (G), and
(ii) either yw ∈ E(G) ∩ E(P (x, y)) for some w ∈ V (G), or else P (x, y)

contains an edge uv for some vertices u, v ∈ N(y).
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Proof: Without loss of generality, assume that G is edge-critical since oth-

erwise we can delete edges of G until we reach an edge-critical block. We

consider two cases.

Case (A) D(G) = ∅.
Let G∗ denote the 2-connected graph obtained from G by adding a new

vertex z∗ and joining z∗ to both x and y.

First assume that x and y are not adjacent in G.

(i) Assume that NG(x) ∪NG(y) ⊆ V2(G).

Let C∗ denote any cycle containing z∗ and let S∗ = E∗∪P ∗ be an [x; y]-

EPS-graph of G∗ with C∗ ⊆ E∗ by Theorem D. Let S = S∗ − z∗. Then
S = J ∪E∪P is a JEPS-graph of G with P = P ∗ and the component of S∗

containing C∗ becomes the open trail J from x to y in S. By following the

construction of an xy-hamiltonian path P (x, y) in S2 which was used in [6],

it is clear that P (x, y) can start with an edge of S incident to x and ends

with an edge of S incident to y unless dP (y) = 1. If dP (y) = 1, we jump

from a vertex u preceding y in J to the vertex v in P0 adjacent to y, where

P0 is the component of P containing y.

(ii) Assume that NG(x) �⊆ V2(G) and NG(y) ⊆ V2(G).

Then at least one of the two neighbors of x, say x′ has degree greater

than 2. Let C∗ be a cycle containing z∗ and the edge xx′. Note that this is

possible because G is 2-connected (so that there is an xy-path in G starting

with any given edge). In this case, let S∗ = E∗ ∪ P ∗ be an [x;x′, y]-EPS-

graph of G∗ with C∗ ⊂ E∗ by Theorem C because C∗ is [x;x′, y]-maximal.

Then proceed as in case (i) and note that x is a pendant vertex in S. A

required hamiltonian path in S2 (with S = E ∪ P ∪ J as in case (i)) can be

constructed starting with the pendant edge incident to x.

(iii) Assume that NG(y) �⊆ V2(G) and NG(x) ⊆ V2(G).

This case can be treated symmetrically to case (ii), starting with an

[x; y′, y]-EPS-graph S∗ = E∗ ∪P ∗ of G∗ and y′ ∈ (NG(y)− V2(G))∩ V (C∗).

(iv) Assume that NG(x) �⊆ V2(G) and NG(y) �⊆ V2(G).

Proceed as in case (ii) with C∗ as defined there. Here we operate with

an [x;x′, y′]-EPS-graph S∗ = E∗ ∪ P ∗ of G∗ with C∗ ⊆ E∗, where y′y ∈
E(C∗ − z∗), assuming first that x′ �= y′ (i.e., �(C∗) > 4) and applying

Theorem C. Then dP ∗(y) ≤ 1 (because dG∗(y) = 3). Again we get a required

xy-hamiltonian path HP in G2.
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Note that, if y′′ ∈ NG(y) − y′ and dP ∗(y′′) = 2, dP ∗(y) = 1 then yy′′ is
an end-edge of the path in P ∗ incident to y and y′y′′ ∈ E(HP ).

Now assume that x′ = y′, (i.e. �(C∗) = 4). Since G is 2-connected,
there is an x′y-path P (x′, y) in G − x not containing x′y (x′y lies in a 2-
connected block of G− x). Then {xx′} ∪ P (x′, y) is an xy-path in G which
together with xz∗y yields a cycle C ′ ⊂ G∗ − x′y with �(C ′) > 4, for which
the preceding argument goes through if we operate with an [x;x′, y′′]-EPS-
graph of G∗ − x′y where y′′ is as above (x′y is a chord of C ′ in G∗).

Next we assume that x and y are adjacent. In this case, we take a longest
xy-path in G−xy and combine it with xz∗y to form the cycle C∗; l(C∗) ≥ 5
follows unless N(x)∩N(y) �= ∅ in which case G = K3 since G is a DT -graph
and we are done. If �(C∗) ≥ 5 we proceed as before.

Case (B) D(G) �= ∅.
By [7, Theorem 1], D(G) contains an edge e = st such that G − e is a

block chain with at least one of its endblocks, say Be, being a DT -block.
Without loss of generality t ∈ V (Be).

Suppose (V (Be) − ce) ∩ {x, y} = ∅, where ce is the cutvertex of G − e
belonging to Be. Then we replace Be by a path P ∗ of length 3 joining t and
ce. The resulting graph H is an edge-critical block and |D(H)| < |D(G)|.
By induction H2 has an xy-hamiltonian path with properties (i) and (ii)
as stated by the theorem. Assuming that it contains as many edges of H
as possible, any such xy-hamiltonian path in H2 can be converted into an
xy-hamiltonian path in G2 having properties (i) and (ii) of the theorem, by
the same method used in [7] as long as ce /∈ {x, y}. The same conclusion can
be drawn if said hamiltonian path in H2 satisfies ce ∈ {x, y}. For, we may
proceed as in [7, pp. 32-33], cases 2 and 4: we just look at the xy-hamiltonian
path

P (x, y) = ce . . . u
∗v∗ . . . r

(u∗ ∈ V (P ∗), v∗ ∈ V (H) − V (P ∗), {r, ce} = {x, y}) in H2 just as we would
look at a hamiltonian cycle H1 in H2 in [7]

H1 = ce . . . u
∗v∗ . . . ce

and using a hamiltonian path in B2
e starting in t and ending at ce with an

edge of Be.

Hence we assume that for every DT -endblock Be of G − e (where e ∈
D(G)),

|(V (Be)− ce) ∩ {x, y}| = 1
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(note that D(G) �= ∅ implies that G has at least two DT -endblocks like Be).
In particular, we assume x ∈ V (Be)− ce.

Let B′
e be the other endblock of G − e. If B′

e is a DT -block, then it
follows from the preceding argument that |(V (B′

e)− c′e) ∩ {x, y}| = 1 where
c′e is the cutvertex of G − e belonging to B′

e. If B
′
e is not a DT -endblock,

then B′
e contains a DT -endblock Be′ for some e′ ∈ D(G), and we have the

same conclusion as in the preceding sentence. Thus we conclude in any case
that y ∈ V (B′

e)− c′e.

Set G0 = G− e− (Be ∪B′
e); G0 is a (trivial or non-trivial) block chain.

Possibly G0 = ∅ in which case ce = c′e.

By Theorem F(ii), (Be)
2 has an xce hamiltonian path P (x, ec) starting

with an edge xz1 of Be; (B
′
e)

2 has an c′ey-hamiltonian path P (c′e, y) ending
with an edge z2y of B′

e. By Corollary 1 (ii), (G0)
2 has a cec

′
e-hamiltonian

path P0(ce, c
′
e), being just a vertex if ce = c′e. Then

P (x, ce)P0(ce, c
′
e)P (c′e, y)

is an xy-hamiltonian path in G2 having properties (i) and (ii) of the theo-
rem.

Definition 2. A graph G is said to have the strong F3 property if for any
set of three distinct vertices {x1, x2, x3} in G, there is an x1x2-hamiltonian
path in G2 containing x3z3, xizi which are distinct edges of G for a given
i ∈ {1, 2}. Such an x1x2-hamiltonian path in G2 is called a strong F3 x1x2-
hamiltonian path.

Theorem 3. Every 2-connected graph has the strong F3 property.

Proof: Let G be a 2-connected graph. Without loss of generality, assume
that G is an edge-critical block; otherwise, we delete edges from G until we
reach an edge-critical block. Trivially, the theorem is true if G is a triangle.
Thus we assume that |V (G)| ≥ 4.

(I) Assume that G is a DT -graph.

Proceeding analogously to what we did in proving ([3, Theorem 2]), let
G+ denote the graph obtained from G by adding a new vertex z and join z
to x1, x2. We shall show that (G+)2 has a hamiltonian cycle Ci containing
zx1, zx2, xizi, x3z3 which are distinct edges of G+ for a given i ∈ {1, 2}.
Then Ci − z = Pi(x1, x2) is a required strong F3 x1x2-hamiltonian path in
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G2 containing the edges xizi, x3z3 of G. Basically, we apply the construction
of a hamiltonian cycle in the square of an EPS-graph in a DT -graph (see [6]
and Observation (*) in [3]). In some of the cases, however, we shall proceed
by induction, noting that the theorem is trivially true if it is a cycle; and
sometimes we proceed by a direct proof.

Let C+ be a cycle in G+ containing z, x1, x2, x3.

Case (A): N(xj) ⊆ V2(G), j = 1, 2, 3.

By Theorem C, let S = E ∪ P be an [xi;x3−i, x3]-EPS-graph of G+

with C+ ⊆ E. Hence (G+)2 has an [xi;x3−i, x3]-hamiltonian cycle Ci for
any i ∈ {1, 2} provided �(C+) > 4 (see the corresponding argument in the
proof of Theorem 2).

However, if �(C+) = 4, then G− = G − x3 is a non-trivial block chain
(x1x2 ∈ E(G) yields G being a triangle, contrary to the assumption at the
beginning of the proof).

Moreover, x1 and x2 are pendant vertices of G−. By Corollary 1(ii),
(G−)2 has an x1x2-hamiltonian path P−

1,2 starting with x1v1 ∈ E(G) and
ending with v2x2 ∈ E(G). Thus

(P−
1,2 − x1v1) ∪ {x1x3, x3v1}

and

(P−
1,2 − v2x2) ∪ {x3x2, x3v2}

yield the hamiltonian paths in G2 as required by the theorem.

Case (B): N(xi) ⊆ V2(G), i = 1, 2 and N(x3) �⊆ V2(G).

Then dG(x3) = 2. Let N(x3) = {u3, v3}.
(a) {u3, v3} �= {x1, x2}. Without loss of generality assume that u3 �∈

{x1, x2}.
Again, by Theorem C, let S = E ∪ P be an [xi;x3−i, u3]-EPS-graph

of G+ with C+ ⊆ E. A required hamiltonian cycle Ci in (G+)2 can be
constructed using S.

(b) {u3, v3} = {x1, x2}.
Consider the graph G′ = G− x3.

(b1) Suppose G′ is 2-connected. We apply Theorem A with x1, x2
in place of v, w.
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(i) Suppose G′ has an EPS-graph S′ = E′∪P ′ with dP ′(xi) = 0, i = 1, 2.
Let H ′ be a hamiltonian cycle of (S′)2: the edges of H ′ incident to xi, i = 1, 2
are in G′; denote them by ei = xiui, fi = xivi, i = 1, 2. Without loss of
generality the notation is chosen in such a way that P (e1, e2) is the path in
H ′ starting in x1 with e1 and ending in x2 with e2; P (f2, f1) ⊂ H ′ is defined
analogously. Then

x1(P (e1, e2)− e2)u2v2(P (f2, f1)− {f1, f2})v1x3x2

is a hamiltonian path as required for i = 1. By a symmetrical argument one
obtains a hamiltonian path ending with f2, say, and containing x1x3.

(ii) Suppose G′ has a JEPS-graph S′ = J ′ ∪ E′ ∪ P ′ with x1, x2 being
the only odd vertices of J ′ and dP ′(xi) = 0, i = 1, 2. (S′)2 contains a
hamiltonian path P ∗ starting with g1 = x1y1 and ending with g2 = x2y2,
{g1, g2} ⊆ E(G). We extend P ∗ to a hamiltonian path P as required by
setting P = x1x3y1(P

∗ − g1) or P = (P ∗ − g2)y2x3x2.

(b2) Suppose G′ is not 2-connected. Then G′ is a block chain. By
Lemma 1(ii) with x1 = v and x2 = w, G′ has a JEPS-graph S′ = J ′∪E′∪P ′

with dP ′(x1) = 0 = dP ′(x2); and x1, x2 are the odd vertices of J ′. Now pro-
ceed as in (b1)(ii): (S′)2 has an x1x2-hamiltonian path P ∗ starting and
ending with edges h1, h2 of G; one extends P ∗ to a corresponding hamilto-
nian path in G2 by either traversing x1x3 first and ending with h2 in x2, or
traversing h1 first and ending in x2 with x3x2.

Case (C): N(x1) ⊆ V2(G) and N(x2) �⊆ V2(G).

Then dG(x2) = 2; let N(x2) = {u2, v2}. Without loss of generality as-
sume that u2 is on the cycle C+.

(1) N(x3) ⊆ V2(G).

(a) Suppose x3 �∈ N(x2).

By Theorem B, let S = E ∪ P be an [xi;x3−i, u2, x3]-EPS-graph of
G+ with C+ ⊆ E. Then a required hamiltonian cycle in (G+)2 can be
constructed for each i ∈ {1, 2}.

(b) Suppose x3 ∈ N(x2); that is, x3 = u2.

Let G′ = G+ − x2x3 which is a DT -graph.

(i) Suppose G′ is 2-connected.

There is a cycle C ′ in G′ containing z, x1, x2, v2, x3: this follows from the
fact that G′ contains in this case a path P (x1, v2) with x3 ∈ V (P (x1, v2)); it
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cannot contain z because dG′(x2) = dG′(z) = 2. By Theorem C, let S = E∪P
be an [x1; v2, x3]-EPS-graph of G′ with C ′ ⊆ E. Hence a required hamil-
tonian cycle Ci of (G

+)2 can be constructed. A corresponding hamiltonian
path in G2 starts and ends with edges of G.

(ii) Suppose G′ is not 2-connected.

Then G′ is a block chain with a 2-connected endblock Bz containing
z, x1, x2, v2, and a block chain G3 = G′ − Bz containing x3 (which is not a
cutvertex of G3 and belongs to an endblock of G3). G3 is a DT -graph unless
G3 = K2. Denote V (Bz) ∩ V (G3) = {c}.

By Lemma 1(i), if G3 has a cutvertex, then it has an EPS-graph S3 =
E3 ∪P3 such that dP3

(x3) ≤ 1 and dP3
(c) ≤ 1. Moreover, if the endblock Bc

in G3 containing c is 2-connected, then we may achieve dP3
(c) = 0; if Bc is

a bridge, then dP3
(c) = 1 and c is a pendant vertex in S3. However, if G3 is

2-connected, then we apply Theorem D to obtain such S3. If G3 = K2, then
S3 = {cx3} and E3 = ∅, P3 = {cx3} and dP3

(c) = dP3
(x3) = 1.

Let Cz be a cycle in Bz containing z, x1, x2, v2, c. Such Cz exists because
d(x2) = 2.

If c �∈ {x1, v2}, then by Theorem B, let Sz = Ez ∪ Pz be an [x1; v2, c, z]-
EPS-graph of Bz with Cz ⊆ Ez. Set E = Ez∪E3 and P = Pz∪P3. Then we
have an EPS-graph S = E∪P in G with Cz ⊆ E and dP (x1) = 0 = dP (x2),
dP (v2) ≤ 1 and dP (c) ≤ 2, dP (x3) ≤ 1. Thus a hamiltonian cycle in (G+)2

can be constructed which contains edges of G incident with x1, x2 together
with another edge of G incident to x3,and also containing zx1, zx2.

If c = v2, then v2 is a cutvertex of G: for, (G3 ∪ {cx2, x2x3}) ∩ (Bz −
{cx2} − z) = c and (G3 ∪ {cx2, x2x3}) ∪ (Bz − {cx2} − z) = G. This yields
a contradiction.

Hence we are left with the case c = x1.

Suppose dG3
(x1) > 1. Then G3 has an [x1;x3]-EPS-graph S3 = E3 ∪P3

which we combine with an [x1; v2]-EPS-graph Sz = Ez ∪ Pz of Bz (see
Theorem D) to obtain the EPS-graph S = E ∪ P by putting E = E3 ∪ Ez

and P = P3∪Pz. We have dP (x1) = 0 = dP (x2), dP (x3) ≤ 1, dP (v2) ≤ 1, and
since G′ is a DT -graph, S2 has a hamiltonian cycle as required containing
x1w1, x2v2, x3w3 ∈ E(G), and also containing zx1, zx2.

Finally, assume dG3
(x1) = 1; i.e., G3 is a non-trivial block chain or

G3 = K2. Suppose first that G3 �= K2. By Corollary 1, (G3)
2 has a hamil-

tonian cycle H3 ⊃ {x1y1, x3w3} with {x1y1, x3w3} ⊂ E(G3); and it has a
hamiltonian path P1,3 starting with x1y1 and ending with x3z3, say, which
are edges of G3. Likewise, since G2 = (G−x2x3)−G3 = Bz−z is a non-trivial
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block chain (x2 is a pendant vertex of G2), (G2 − δx1)
2 has a hamiltonian

cycle H2 containing v2x2 and if dG2
(x1) > 1, then x1s1, x1t1 ∈ E(G2) unless

G− δx1 = K2 in which case H2 = x2v2. It also has a hamiltonian path P1,2

starting with x1z1, say, and ending with v2x2 which are edges of G2.

Setting H ′
2 = H2 if δx1 = x1 and H ′

2 = (H2 − {x1s1, x1t1}) ∪ {s1t1}
if δx1 = ∅, we obtain hamiltonian paths P1(x1, x2), P2(x1, x2) in G2 as
required and defined by

E(P1(x1, x2)) = E(P1,3 ∪ (H ′
2 − x2v2)) ∪ {x3v2}

E(P2(x1, x2)) = (E(P1,2 ∪H3)− {x1z1, x1y1}) ∪ {y1z1}.

If, however,G3 = K2, thenNG+(z) = NG+(x3) = {x1, x2}, i.e.,G+−x3 is
isomorphic to G. Since dG(x2) = 2 and because of the assumption dG3

(x1) =
1 and because c = x1, it follows thatG−x3 is a non-trivial block chain and x2
is an endvertex of G−x3 and c = x1 is not a cutvertex belonging to the other
endblock of G−x3 unless x1x2 ∈ E(G−x3). However, if x1x2 ∈ E(G−x3),
then we conclude that G is a triangle in this exceptional case, contradicting
the assumption |V (G)| ≥ 4 at the beginning of the proof. Hence G− x3 is a
non-trivial block chain.

Now we apply Corollary 1(ii) to obtain in (G−x3)
2 a hamiltonian path

P (3)(x1, x2) starting with x1v1 ∈ E(G) and ending in x2 with v2x2 ∈ E(G).
Now, for i = 1, 2,

(P (3)(x1, x2)− xivi) ∪ {xix3, x3vi}

yields a hamiltonian path in G2 as required.

(2) N(x3) �⊆ V2(G).

Then dG(x3) = 2. Let N(x3) = {u3, v3}. Suppose without loss of gener-
ality that C+ is of the form zx1u1 . . . u3x3v3 . . . u2x2z.

(a) {u3, v3} �= {x1, x2}.
By Theorem B, let S = E ∪ P be an [xi;x3−i, x

∗
3, u2]-EPS-graph of

G with C+ ⊆ E, where x∗3 ∈ {u3, v3} − {x1, x2}. If �(C+) > 5, then it is
straightforward to see that a required hamiltonian cycle Ci in (G+)2 can be
constructed from S for any i ∈ {1, 2}, independent of the size of N(x3) ∩
(N(x1) ∪N(x2)).

Observe that �(C+) ≥ 4. However, �(C+) = 4 implies N(x3) = {x1, x2},
contrary to the assumption {u3, v3} �= {x1, x2}.
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To finish this case (a) we are thus left with the case �(C+) = 5 which
implies |{u3, v3} ∩ {x1, x2}| = 1. More precisely, we have

C+ = zx1u1u2x2z,

i.e., x3 ∈ {u1, u2}.
Suppose dG(u2) = 2; then G− = G − {u1, u2} is a non-trivial block

chain (the case G− = K2 is impossible). By Corollary 1(ii), (G−)2 has a
hamiltonian path P− starting with x1t1 ∈ E(G) and ending with v2x2 ∈
E(G). Now

(P− − x1t1) ∪ {x1u2, u2u1, u1t1}
and

(P− − v2x2) ∪ {v2u2, u2u1, u1x2}
yield the required hamiltonian paths.

Finally, suppose dG(u2) > 2. Then x3 = u1 since dG(x3) = 2.

Now G − x3 is either a non-trivial block chain or it is 2-connected. In
any case, x2 and u2 are not cutvertices of G − x3 and they belong to the
same 2-connected block B∗ of G − x3. If G − x3 is not 2-connected, let c∗

denote the cutvertex of G−x3 in (the endblock) B∗. Set G∗ = (G−x3)−B∗.
By Corollary 1(ii) or if G∗ = K2, (G

∗)2 has an x1c
∗-hamiltonian path P ∗

starting with an edge x1t1 ∈ E(G), provided G∗ �= ∅; if G∗ = ∅ set P ∗ = ∅.
In any case, however, (B∗)2 has by induction c∗x2-hamiltonian paths, one
starting in c∗ with c∗t∗ ∈ E(B∗), whereas the other ends in x2 with t2x2 ∈
E(B∗), and both containing an edge u2w2 ∈ E(B∗). Denote these paths by
P ∗
1 and P ∗

2 , respectively. If G
∗ = ∅, then set c∗ = x1.

It follows that for both i = 1, 2,

P ∗ ∪ (P ∗
i − u2w2) ∪ {w2u1, u1u2}

yield x1x2-hamiltonian paths as required. This finishes case (a).

(b) {u3, v3} = {x1, x2}.
ThenG′ = G+−x3 is 2-connected; it contains a cycle C

′ ⊇ {z, x1, x2, v2}.
By Theorem D, let S′ = E′∪P ′ be an [x1; v2]-EPS-graph ofG′ with C ′ ⊆ E′.
Then dP ′(z) = 0 = dP ′(x1) = dP ′(x2) and dP ′(v2) ≤ 1. Let E = E′ and
P = P ′ ∪ {xix3}. Then S = E ∪ P is an EPS-graph of G+ and a required
hamiltonian cycle Ci in (G+)2 containing xix3, x3−iz3−i (z3−i ∈ N(x3−i)),
which are edges of G, can be constructed for each i ∈ {1, 2}.
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Since the case N(x1) �⊆ V2(G) and N(x2) ⊆ V2(G) is symmetrical to
Case (C) just considered, we are left with the consideration of one more
large case for DT -graphs.

Case (D): N(x1) �⊆ V2(G) and N(x2) �⊆ V2(G).

Then dG(xi) = 2 for i = 1, 2. Let N(xi) = {ui, vi}, i ∈ {1, 2}. Suppose
C+ is of the form zx1u1 . . . u3x3v3 . . . u2x2z as in Case (C) (2) above.

(1) Suppose N(x3) ⊆ V2(G).

(a) Suppose x3 /∈ (N(x1) ∪N(x2)) ∩ V (C+); That is, x3 /∈ {u1, u2}.
Let S = E ∪ P be an [xi;u1, u2, x3]-EPS-graph of G+ with C+ ⊆ E

which exists by Theorem B. Then a required hamiltonian cycle Ci in (G+)2

can be constructed for each i ∈ {1, 2}.
(b) Suppose x3 ∈ N(x1) ∩N(x2) ∩ V (C+); hence x3 = u1 = u2.

Suppose first that dG(x3) > 2. Consider G′
2 = G− x2x3. Note that x2 is

a pendant vertex in G′
2. Let B2 be the endblock of G′

2 with x1, x3 ∈ V (B2),
and they are not cutvertices. Then G′

2 − B2 �= ∅ is a trivial or non-trivial
block chain with c2 = V (B2) ∩ V (G′

2 − B2) being the cutvertex of G′
2 in

B2. Using induction on B2 we have a hamiltonian path P (x1, c2) in (B2)
2

starting with x1s1 ∈ E(B2) and containing another edge x3s3 ∈ E(B2).
Moreover (G′

2 −B2)
2 has a hamiltonian path P (c2, x2) starting with x2s2 ∈

E(G′
2 −B2) by Corollary 1(ii) or if G′

2 −B2 = K2. Then P (x1, c2)P (c2, x2)
is a hamiltonian path as required.

If however, dG(x3) = 2, then we set G′′ = G− x3 which is a non-trivial
block chain with pendant vertices x1, x2, otherwise G = K3 and this case
has been solved at the beginning of the proof. Thus (G′′)2 has a hamiltonian
path P (x1, x2) starting and ending with edges in G′′, by Corollary 1(ii). Now
it is trivial to enlarge P (x1, x2) to a hamiltonian path P of G2 as required
by appropriately using x3xi, i ∈ {1, 2} as the last edge in P . This finishes
case (b).

(c) Suppose x3 ∈ (N(xi) − N(x3−i)) ∩ V (C+), i ∈ {1, 2}. Without loss
of generality i = 2. Hence x3 /∈ {u1, v1} and x3 = u2.

Consider G′ = G+ − x2x3.

IfG′ is 2-connected, then we consider a cycle C∗ traversing x1, z, x2, v2, x3
in this order (observe that G′ contains a cycle through x2 and x3, and
dG′(z) = dG′(x2) = 2). Because of case (b) before we may assume that
x1x3 /∈ E(G′). Therefore we denote t1 = NC∗(x1)−{z}, hence t1 /∈ {v2, x3}.
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Now we apply Theorem B to obtain an [x1; t1, v2, x3]-EPS-graph S∗ =

E∗∪P ∗ of G′ with C∗ ⊆ E∗. Now it is straightforward to see that (S∗)2 has

a hamiltonian cycle as required (containing an edge of G incident to xi for

both i = 1 and i = 2).

If G′ is not 2-connected, we define Bz, G3, and correspondingly S3 as in

Case (C)(1)(b)(ii).

Let Cz be a cycle inBz containing z, x1, x2, v2, t1, c, where t1 = NCz
(x1)−

{z}.
If c /∈ {x1, v2, t1}, then by Theorem B let Sz = Ez∪Pz be an [x1; v2, c, t1]-

EPS-graph of Bz with Cz ⊆ Ez. Now we continue as in Case (C)(1)(b)(ii),

additionally using that dPz
≤ 1.

If c = v2, then again v2 is a cutvertex of G, a contradiction.

Now suppose c = x1. Hence dG3
(x1) = 1 and G3 is a non-trivial block

chain (note that G3 = K2 is not possible because of x3 /∈ N(x1) in this case).

Now we continue as in the corresponding subcase of Case (C)(1)(b)(ii) with

both of x1 and x2 being pendant vertices of G2 = Bz − z.

Finally suppose c = t1. Because of C
+ we conclude that t1 = u1. We have

{z, x1, x2, u1, v1, v2} ⊂ V (Bz). Thus there is a cycle C1 ⊂ Bz traversing

x1u1, x1v1. Consequently, z, x2 �∈ C1. In fact, Ĉ = C+
C1 is a cycle con-

taining u1, v1, x1, z, x2, x3 in this order; i.e., x1u1 is a chord of Ĉ. Hence

G′′ = G+ − x1u1 is 2-connected. Therefore G′′′ = G′′ − x2x3 is a non-trivial

block chain with one endblock B′′′
z ⊂ Bz since G3 ⊂ G′′′ (z ∈ V (B′′′

z )). Thus

we can write

G+ − {x1u1, x2x3} = G′′′ = B′′′
z ∪G′′′

3 with B′′′
z ∩G′′′

3 = {c0},
where c0 is a cutvertex of G′′′ (possibly c0 = c).

Then (G′′′
3 )

2 has a hamiltonian cycle H3 containing c0w0, x3w3 ∈ E(G′′′
3 )

by Corollary 1 (i) if G′′′
3 is a non-trivial block chain, or by Theorem E if

G′′′
3 is 2-connected. Note that G′′′

3 = K2 = u1x3 is not possible because of

dG(u1) > 2 and N(x3) ⊆ V2(G) in this case.

Let Cz be a cycle in B′′′
z containing z, x1, x2, c0.

If c0 �∈ {v1, v2}, we operate with a [vi; v3−i, c0]-EPS-graph S′′′ = E′′′ ∪
P ′′′ of B′′′

z with Cz ⊆ E′′′, i ∈ {1, 2}, which exists by Theorem C. (S′′′)2 con-
tains a hamiltonian cycle H ′′′ containing zx1, zx2, x1v1, c0z0, x2v2 ∈ E(Bz).

(H3− c0w0)∪ (H ′′′− c0z0)∪{w0z0} is a required hamiltonian cycle in (G+)2

with x1v1, x2v2, x3z3 ∈ E(G).



Special types of Hamiltonian paths in the square of a block 181

If c0 = vi and c0 �= v3−i, i ∈ {1, 2}, we operate with a [vi; v3−i]-EPS-
graph S′′′ = E′′′ ∪ P ′′′ of B′′′

z with Cz ⊆ E′′′, which exists by Theorem D.
(S′′′)2 contains a hamiltonian cycleH ′′′ containing zx1, zx2, x1v1, c0z0, x2v2 ∈
E(Bz). Again, (H3− c0w0)∪ (H ′′′− c0z0)∪{w0z0} is a required hamiltonian
cycle in (G+)2 with x1v1, x2v2, x3z3 ∈ E(G).

If c0 = v1 = v2, then B′′′
z = zx1c0x2z. (H3−c0w0)∪(B′′′

z −xic0)∪{xiw0}
is a required hamiltonian cycle in (G+)2 with x3−ic0, x3z3 ∈ E(G) for each
i ∈ {1, 2}.

(2) Suppose N(x3) �⊆ V2(G).

Then dG(x3) = 2. Set N(x3) = {u3, v3}. Now we set x∗3 ∈ N(x3)−V2(G).
As before, let C+ be of the form zx1u1 · · ·u3x3v3 · · ·u2x2z.

(a) Suppose x3 �∈ N(x1) ∪N(x2).

(a1) x∗3 �∈ {u1, u2}.
By Theorem B, let S = E ∪ P be an [xi;u1, u2, x

∗
3]-EPS-graph of G+

with C+ ⊆ E for any i ∈ {1, 2}. Since dP (xi) = 0 = dP (z), dP (u1) ≤ 1 and
dP (u2) ≤ 1, a required hamiltonian cycle Ci in (G+)2 can be constructed in
S2 for each i ∈ {1, 2} due to the restriction on x∗3.

(a2) x∗3 = u3 = u1 (the case x∗3 = u2 is symmetrical and therefore
does not need separate consideration).

(i) v3 �= u2. In this case we operate with an [xi;u1, v3, u2]-EPS-graph
Si = Ei∪Pi with C+ ⊆ Ei, i = 1, 2 (see Theorem B). The restrictions on x∗3
and v3 guarantee that (S1)

2 and (S2)
2 yield hamiltonian cycles as claimed

by the theorem.

(ii) v3 = u2. That is, C
+ = zx1u1x3u2x2z.

Assume first that one of u1, u2 is 2-valent, i.e., dG(u2) = 2 since u1 =
x∗3 �∈ V2(G). Then we operate with an [xi;u1, x3−i]-EPS-graph Si = Ei ∪Pi

with C+ ⊆ Ei for each i ∈ {1, 2}, which exists by Theorem C. A required
hamiltonian cycle in (G+)2 containing xiui, x3u1 ∈ E(G) can be constructed
for each i ∈ {1, 2}.

Hence assume that dG(ui) > 2, i = 1, 2. G′ = G − x3 is a trivial or
non-trivial block chain.

Suppose G′ is 2-connected. Using induction, (G′)2 has an x1x2-hamilton-
ian path P ′

i (x1, x2) containing xiwi, uizi ∈ E(G′) for each i ∈ {1, 2}. Then

(Pi(x1, x2)− uizi) ∪ {uix3zi}

is a required hamiltonian path in G2 for each i ∈ {1, 2}.
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Finally assume that G′ is a non-trivial block chain. The endblock B′
i

in G′ containing ui, xi is 2-connected (since dG′(ui) ≥ 2), i ∈ {1, 2}; it

also contains vi since dG(xi) = 2. Let P (xi, ui) denote an xiui-path in B′
i

containing vi for any i ∈ {1, 2}. Define the cycle C̃i by

E(C̃i) = (E(C+)− xiui) ∪ E(P (xi, ui)).

Let G̃i = G+ − xiui, i ∈ {1, 2}; G̃i is 2-connected because xiui is a chord of

C̃i. C̃i contains z, x1, x2, x3, u1, u2, vi. By Theorem C, there is a [ui; vi, u3−i]-

EPS-graph S̃i = Ẽi ∪ P̃i ⊂ G̃i with C̃i ⊆ Ẽi. A required hamiltonian cycle

in (S̃i)
2 containing xivi, x3ui ∈ E(G) can be constructed, for each i ∈ {1, 2}.

(b) Suppose x3 ∈ N(x1) but x3 �∈ N(x2); that is, x3 = u1. By definition

of x∗3 we have x∗3 = v3.

Suppose v3 �= u2, i.e., N(x3) ∩ N(x2) ∩ C+ = ∅. To get a required

hamiltonian cycle Ci containing xiui, x3x
∗
3, we operate with an [xi;u2, x

∗
3]-

EPS-graph Si = Ei ∪ Pi of G
+ with C+ ⊆ Ei, which exists by Theorem C.

Hence suppose v3 = u2, i.e., N(x3) ∩ N(x2) ∩ C+ �= ∅. Because of

dG(x
∗
3) > 2 there exists w3 ∈ N(x∗3) − {x3, x2}. There is a w3v2-path

P (w3, v2) in G not containing x∗3 and therefore, x1, x2 �∈ P (w3, v2). Then

C∗ = zx1x3u2w3P (w3, v2)v2x2z is a cycle inG+ withN(x3)∩N(x2)∩C∗ = ∅;
thus we are back to the preceding case.

(c) Suppose x3 �∈ N(x1) but x3 ∈ N(x2).

This case is symmetrical to case (b) above.

(d) Suppose x3 ∈ N(x1) ∩ N(x2). This case is not possible because of

N(xi) � V2(G), i = 1, 2, 3.

(II) Assume that D(G) �= ∅.

We apply Theorem G to G with respect to {x1, x2} to conclude that

D(G) contains an edge e such that G− e has a DT -endblock Be such that

A = {x1, x2} �⊂ V (Be), and if xi ∈ V (Be), then it is a cutvertex of G − e.

Let B′
e denote the other endblock of G − e. Also, let c and c′ denote the

cutvertices of G − e belonging to Be and B′
e respectively. If c �= c′, set

G0 = G − e − (Be ∪ B′
e); it is a block chain containing c, c′ which are not

cutvertices of G0. Also, for the above e, denote e = xx′ where x ∈ V (Be)

and x′ ∈ V (B′
e).
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Let X = {x1, x2, x3}. Suppose X ∩ V (Be) = ∅. Then we replace the
subgraph Be in G with a path of length 3 to obtain the 2-connected edge-
critical graph H. By induction, H has the strong F3 property. Moreover
any strong F3 x1x2-hamiltonian path in H2 can be converted into a strong
F3 x1x2-hamiltonian path in G2 by the method used in [7]. Hence we can
assume that X ∩ V (Be) �= ∅. We also note that it is tacitly assumed that
the hamiltonian paths/cycles in the square of the smaller graphs contain as
many edges of the given graphs as possible. The purpose of this assump-
tion (already formulated in [7] and subsequent papers) is to facilitate the
induction step and to keep the various cases arising, under control.

With the same argument as above, we see that X ∩V (B′
e) �= ∅ if B′

e is a
DT -block. If B′

e is not a DT -block, then there is an edge f ∈ E(B′
e)∩D(G)

such that one of the endblocks Bf of G − f is a DT -block and V (Bf ) ⊂
V (B′

e). This means that X ∩ V (Bf ) = ∅ if X ∩ V (B′
e) = ∅, and again the

above argument can similarly be applied.

In the ensuing discussion we keep in mind that there are at least two
DT -endblocks B∗ and B∗∗ defined by the same element e∗ or by different
elements e∗, f∗ ∈ D(G); and B∗ ∩ B∗∗ = ∅, or B∗ ∩ B∗∗ = c∗ where c∗ is a
cutvertex of G − e∗. Therefore, a case not considered in B∗ implies a (sort
of complementary) case in B∗∗ which is being taken care of when it occurs
in B∗.

Next, we consider two special cases.

Case (A):X∩(V (Be)−c) = ∅, or x3 ∈ V (Be)−{c, x} and A∩V (Be) = ∅.
In the first case, it follows from the preceding argument that c ∈ {x3, xi}

for some i ∈ {1, 2}. As before, we replace the subgraph Be in G with a path
of length 3 to obtain the 2-connected edge-critical graph H. By induction,
H has the strong F3 property. Moreover, by a careful study of the method
used in [7] one sees that any strong F3 x1x2-hamiltonian path PH in H2 can
be converted into a strong F3 x1x2-hamiltonian path in G2. This applies, in
particular, to the case where c ∈ A and PH contains an edge of H incident
to c (here, some of the 13 cases listed in [7] need not be considered). Hence
we are left with the case where X ∩ V (Be) = x3 and x3 �= c, x.

We proceed as before, replacing Be with a path P3 of length 3; again,
the resulting graph is denoted by H. By induction on |D(G)|, H2 has a
strong F3 x1x2-hamiltonian path containing eu ∈ E(G) incident to u for
some u ∈ V (G)− V (Be). In fact, a careful study of the procedure employed
before shows that PH can be converted into a strong F3 x1x2-hamiltonian
path P1,2 of G2 containing an edge of G incident to x3. Namely, depending
on the various cases of the traversal of V (P3) by PH ,



184 Herbert Fleischner and Gek L. Chia

• one either applies Lemma 3 to use a hamiltonian cycle Ce of (Be)
2 such

that Ce traverses in c edges of Be, and likewise, Ce traverses at least
one edge in x and at least one edge in x3, belonging to Be (observe
that |V (Be)| ≥ 4 since G is edge-critical and thus does not have a
triangle);

• or one applies induction to use a hamiltonian path Pe of (Be)
2 joining

x and c and containing at least one edge of Be incident to x3 and an
edge of Be incident to any given t ∈ {x, c}.

Case (B): X ∩ V (Be) = x3 = x.
It follows that A ∩ V (B′

e) �= ∅; without loss of generality x1 ∈ V (B′
e).

Assume the notation chosen in such a way that x1 �= c′ if A ⊂ V (B′
e).

Moreover, if A ∩ V (B′
e) = x1 it follows from the preceding considerations

that x1 belongs to the DT-endblock Bf ⊆ B′
e for some f ∈ D(G) if E(B′

e)∩
D(G) �= ∅, or else Be′ is a DT-endblock; and x1 �= cf by Theorem G, where
cf is the cutvertex of G−f in Bf . Also, cf = c′ if c′ ∈ V (Bf ). Hence x1 �= c′

can be assumed in any case.
Denote the blocks of G − e by B0, . . . , Bk according to their order in

bc(G− e) such that B0 = B′
e, Bk = Be, and let j be the smallest index such

that x2 ∈ V (Bj); possibly j = 0. Set

G0,j :=

j⋃
i=0

Bi and Gj+1,k :=

k⋃
i=j+1

Bi.

(i) Suppose j > 0. By applying induction to the individual 2-connected
blocks of G0,j it follows that (G0,j)

2 has a hamiltonian x1x2-path P1,2 con-
taining xiyi ∈ E(G0,j), i = 1, 2, for some y1, y2 ∈ V (G0,j), as well as
x′y′ ∈ E(B′

e), c
∗y∗ ∈ E(Bj) where c∗ = Bj ∩ Bj+1, and x′y′ = x1y1 if

x′ = x1, c
∗y∗ = x2y2 if c∗ = x2. Likewise by Corollary 1(i), (Gj+1,k)

2 has a
hamiltonian cycle C̃ containing x3y3, x3z3 ∈ E(Be) and c∗z∗ ∈ E(Bj+1).

In any case,

(P1,2 ∪ C̃ − {c∗y∗, c∗z∗}) ∪ {y∗z∗} (1)

defines a hamiltonian x1x2-path of G2 containing x1y1 and x3y3; it also
contains x2y2 if x2 �= c∗. On the other hand, if c∗ = x2 we construct a
hamiltonian x1x2-path of G2 containing x2y2 and x3y3 as follows: if j+1 < k
and κ(Bj+1) ≥ 2, then C̃ can be assumed to contain c∗z∗, c∗x∗ ∈ E(Bj+1),
and we set

˜̃C = (C̃ − {c∗z∗, c∗x∗}) ∪ {x∗z∗}
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which defines a hamiltonian cycle of (Gj+1,k − c∗)2 containing x3y3, x3z3.
The same type of hamiltonian cycle is obtained if Bj+1 is a bridge of G− e.
Thus, in both cases

(P1,2 ∪ ˜̃C − {x′y′, x3z3}) ∪ {x′z3, y′x3} (2)

defines a hamiltonian x1x2-path of G2 containing x2y2 and x3y3.

Thus we are left with the case j + 1 = k implying x2 �= c and thus
κ(Bj) ≥ 2. We now proceed as in (1) above.

(ii) j = 0. That is, G0,0 = B′
e; {x1, x2} ⊆ V (B′

e) follows.

If {x1, x2} �= {x′, c′} we obtain by induction a hamiltonian x1x2-path

(P
(i)
1,2) of (B

′
e)

2 containing xiyi ∈ E(B′
e) for any i ∈ {1, 2}, but also an edge

et′ incident to t′ ∈ {x′, c′}−{x1, x2}. If t′ = c′ we proceed as in (1), whereas
we proceed as in (2) if t′ = x′.

Thus we assume {x1, x2} = {x′, c′}; by the initial choice of notation,
x1 = x′ and x2 = c′ follows. Also, c′ �= c by the hypothesis of this Case (B).

Since c′ �= c, G′ := G− e−B′
e is a non-trivial block chain. By Corollary

1(ii), (G′)2 has a hamiltonian x2x3-path P2,3 containing edges x2y2, x3y3 ∈
E(G′). By Theorem E, (B′

e)
2 has an [xi;x3−i]-hamiltonian cycle Ci for every

i ∈ {1, 2}. Denote the corresponding edges of Ci ∩ E(B′
e) by x1y

(1)
1 , x1z

(1)
1

and x2z
(1)
2 if i = 1, and by x1y

(2)
1 and x2u

(2)
2 , x2z

(2)
2 if i = 2.

Assume further the notation chosen in such a way that the x1x2-path

in Ci containing x1y
(i)
1 also contains x2z

(i)
2 ; denote it by P

(i)
1 and set P

(i)
2 =

Ci − P
(i)
1 .

(P
(i)
1 − x2) ∪ {z(1)2 y2} ∪ (P2,3 − x2) ∪ {x3z(1)1 } ∪ (P

(1)
2 − x1)

defines a hamiltonian x1x2-path of G2 starting with x1y
(1)
1 ∈ E(G). Likewise

(P
(2)
2 − x2) ∪ {u(2)2 z

(2)
2 } ∪ (P

(2)
1 − {x1, x2}) ∪ {y(2)1 x3} ∪ P2,3

defines a hamiltonian x1x2-path of G2 ending with x2y2 ∈ E(G).

This finishes Case (B).

For the remaining cases of the proof of Theorem 3 we consider D1(G)
comprising those edges of D(G) such that for every g ∈ D1(G) one of the
endblocks of G − g, Bg say, is a DT -graph. Let cg denote the cutvertex
of G − g in Bg. Having solved the Cases (A) and (B) we conclude that
X∩(V (Bg)−cg) �= ∅ in any case. Note that G has at least two DT -endblocks
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as just described: one is the aforementioned Be, another one is either B
′
e, or

B′
e contains f ∈ D1(G) such that the corresponding DT -endblock Bf is a

proper subgraph of B′
e. Be ∩Bf = ∅ or Be ∩Bf = c where c = cf = ce.

We proceed analogous to Case (B) denoting the blocks of G − e by
B0, . . . , Bm with B0 = Be, Bm = B′

e.
Suppose first that |X ∩ V (Be)| = 1. In view of Cases (A) and (B) we

have

X ∩ V (Be) = A ∩ V (Be) = A ∩ (V (Be)− c) = xi ;

without loss of generality i = 1. By the same token x2 ∈ V (Bf ) ⊆ V (B′
e)

and x2 �= c′.
Let P (c, x1) be a c, x1-hamiltonian path of B2

e with x1z1 ∈ (P (c, x1)) ∩
E(Be), which exists by Theorem F (ii).

If x3 ∈ V (B′
e)−{c′}, we operate with an x2c

′-hamiltonian path P (x2, c
′)

of (B′
e)

2 with x2z2, x3z3 ∈ E(P (x2, c
′))∩E(B′

e) using induction, and trivially
with a c′c-hamiltonian path P0 of G2

0. Note that P0 = ∅ if c = c′ in this case.
If x3 /∈ V (B′

e)−{c′}, we operate with an x2c
′-hamiltonian path P (x2, c

′)
of (B′

e)
2 with x2 ∈ E(P (x2, c

′)) ∩ E(B′
e) which exists by Theorem F (ii),

and with a c′c-hamiltonian path P0 of G2
0 containing x3z3 ∈ E(G0) applying

Theorem F to each 2-connected block of G0. Note that c = c′ = x3 is
not possible by the assumption X ∩ V (Be) = x1 and it covers the case
x3 = c′ �= c.

Then

P (x2, c
′), P0, P (c, x1)

is a hamiltonian x1x2-path of G2 containing x3z3, xizi ∈ E(G), for i = 1, 2.
This settles the case |X ∩ V (Be)| = 1.

Now suppose |X ∩ V (Be)| = 2. Because of the case just settled we must
also have |X∩V (Bf )| = 2 implying cf = c′ = c ∈ X. Again, suppose without
loss of generality that x1 ∈ Be.

If c = x3, let P0 be an x1x3-hamiltonian path of B2
e such that x1z1 ∈

E(P0)∩E(Be) and P1 be an x3x2-hamiltonian path of B2
e′ such that x3z3 ∈

E(P1) ∩ E(Be′), which exist by Theorem F (ii). Hence

P0P1

is an x1x2-hamiltonian path of G2 with x1z1, x3z3 ∈ E(G). We proceed
analogously to obtain an x2x1-hamiltonian path of G2 with x2z2, x3z3 ∈
E(G) as required by the theorem.

Now suppose without loss of generality that c = x1 and x3 ∈ V (Be)− c.
Hence we have x1, x2 ∈ V (Bf ), i.e., x1, x2 ∈ V (B′

e). We apply Theorem E
to Be and either Theorem F(ii) or Theorem 2 to B′

e.
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By Theorem E, B2
e contains a hamiltonian cycle Ce with x1y1, x1z1 ∈

E(Ce) ∩ E(Be) and x3u3 ∈ E(Ce) ∩ E(Be).
As for (B′

e)
2, it has an x1x2-hamiltonian path P1,2 with x1u1 ∈ E(P1,2)∩

E(B′
e), by Theorem F(ii). Thus,

E(P1,2) ∪ E(Ce) ∪ {u1y1} − {x1u1, x1y1}

defines on x1x2-hamiltonian path of G2, containing x1z1 ∈ E(G), but also
x3u3 ∈ E(G).

Likewise, Theorem 2 implies that (B′
e)

2 has either an x1x2-hamiltonian
path P1,2 with x1u1, x2z2 ∈ E(P1,2) ∩ E(B′

e), or it has an x1x2-hamiltonian
path P1,2 with x2z2 ∈ E(P1,2)∩E(B′

e) and u1v1 ∈ E(P1,2) for some u1, v1 ∈
N(x1). In the first case, we define an x1x2-hamiltonian path of G2 as above;
it contains x2z2, x3u3 ∈ E(G). In the second case we proceed similarly: here,

E(P1,2) ∪ E(Ce) ∪ {u1y1, v1z1} − {u1v1, x1y1, x1z1}

defines an x1x2-hamiltonian path containing x2z2, x3u3 ∈ E(G). Thus G has
the strong F3 property.

The case X ⊂ V (Be) needs no separate consideration since it implies
|X ∩ V (Bf )| ≤ 1, in which case we may consider Bf instead of Be. This
finishes the proof of Theorem 3.

3. Arbitrary 2-connected graphs

We now proceed to prove the main result of this paper.

Theorem 4. Let G be a 2-connected graph. Then G has the F4 property.

Proof: We may assume that G is an edge-critical block since otherwise we
can delete edges of G until we reach an edge-critical block.

If G is a DT -block, then the result is true by Theorem 1. So assume
that G is not a DT -block. The rest of the proof is by induction on |D(G)|,
or on |V (G)|. That is, if H is an edge-critical block with |D(H)| < |D(G)|
or |V (H)| < |V (G)|, then H has the F4 property.

By [7, Theorem 1], D(G) contains an edge e such that G− e is a block
chain with at least one of its endblocks, say Be, being a DT -block. Let B′

e

be the other endblock of G− e.

Throughout, we let e = xx′ where x ∈ V (Be) and x′ ∈ V (B′
e).
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We claim thatD(G) contains an edge e∗ such that G−e∗ has an endblock
Be∗ which is aDT -block satisfying |V (Be)∩V (Be∗)| ≤ 1. To see this, we note
that if B′

e is also a DT -block, then e∗ = e and B′
e = Be∗ , and the inequality

holds trivially. If B′
e is not a DT -block, then it is edge-critical and again [7,

Theorem 1] applies and e∗ is in D(G) ∩ B′
e, and Be∗ is a subgraph of B′

e.
Since |V (Be) ∩ V (B′

e)| ≤ 1 the claimed inequality holds.

Let X = {x1, x2, x3, x4} and let k = min {|V (Be) ∩X|, |V (Be∗)∩X|}.
Then clearly k ≤ 2. Without loss of generality, we assume that |V (Be)∩X| =
k.

We first dispose of the case k = 0 proceeding as in the proof of Theo-
rem 3: we replace Be by a path of length 3. The resulting graph H is an
edge-critical block and |D(H)| < |D(G)|. By induction H has the F4 prop-
erty. Any F4 hamiltonian path in H2 can then be converted into an F4

hamiltonian path in G2 by the same method used in [7].

Hence we assume that k ∈ {1, 2}.
Let c and c′ be the cutvertices of G− e belonging to Be and B′

e respec-
tively. Note that if c = c′, then G− e is a block chain with only 2 blocks Be

and B′
e.

If k = 2, then we may assume without loss of generality that either
V (Be) ∩ X = {x3, x4} or V (Be) ∩ X = {x2, x4}, or V (Be) ∩ X = {x1, x2}
(namely, if c = c′ = xi ∈ {x1, x2}, {x3, x4} ⊆ V (Be∗), and B′

e = Be∗).

If k = 1, then we may assume without loss of generality that either
V (Be) ∩ X = {x2} or V (Be) ∩ X = {x4}. In any case, we note that c �∈
{x2, x4}: otherwise, we replace Be by a path of length 3 to obtain H which
has an F4 x1x2-hamiltonian path in H2. Again, as before, we apply the
method used in [7] to see that any corresponding F4 hamiltonian path in
H2 can be converted into an F4 hamiltonian path in G2.

Case (A): c = c′

(1) Suppose k = 2.

(a) Suppose x3, x4 ∈ V (Be). Then x1, x2 ∈ V (B′
e) and there is an x1x2-

hamiltonian path P ′(x1, x2) in (B′
e)

2 containing an edge cw′ of B′
e, by The-

orem F (note that c �∈ {x1, x2} by assumption). Let w ∈ N(c) ∩ V (Be).
Then, by Theorem 1, there is an F4 cw-hamiltonian path P (c, w) in (Be)

2

containing x3z3, x4z4 which are edges of Be if {c, w} ∩ {x3, x4} = ∅.
Suppose |{c, w} ∩ {x3, x4}| = 1. Without loss of generality, assume that

x3 ∈ {c, w}. By Theorem 3, Be has the strong F3 property. Consequently,
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B2
e has a cw-hamiltonian path P (c, w) containing x4z4, cz ∈ E(Be), cz �= cw

if x3 = c; or it contains x4z4, wv ∈ E(Be), wv �= cw, if x3 = w.

Suppose {c, w} = {x3, x4}. If dBe
(c) > 2, then consider u ∈ N(c) ∩

V (Be) − w such that u �∈ {x3, x4} and argue with u in place of w as in
the preceding case. Thus we may assume that dBe

(c) = 2. By Theorem E,
(Be)

2 has a [c;w]-hamiltonian cycle Cw containing cw, vw, cz which are three
different edges of Be. Let Cw − cw = P (c, w).

By deleting in all cases the edge cw′ from P ′(x1, x2) and adding ww′ ∈
E(G2), we have a required F4 x1x2-hamiltonian path in G2.

(b) Suppose x2, x4 ∈ V (Be). Then x1, x3 ∈ V (B′
e). Note that c �∈ {x1, x3}

since k = 2.

If x2 �= c, then by Theorem F, there is an x2c-hamiltonian path P (x2, c)
in (Be)

2 containing an edge x4z4 of Be (independent of x4 = c or x4 �= c) and
there is an x1c-hamiltonian path P ′(x1, c) in (B′

e)
2 containing x3z3 ∈ E(B′

e).
P ′(x1, c) and P (x2, c) form a required F4 x1x2-hamiltonian path in G2.

If x2 = c, we apply Theorem E to Be to obtain a hamiltonian cycle
C in (Be)

2 containing x2v1, x2v2, x4z4 which are edges of Be. By Theo-
rem 3, (B′

e)
2 has a strong F3 x1x2-hamiltonian path P ′(x1, x2) containing

x2w
′, x3z3 which are edges of B′

e. A required F4 x1x2-hamiltonian path in
G2 is given by (C − x2v1) ∪ (P ′(x1, x2)− x2w

′) ∪ {v1w′}.
(c) Suppose V (Be) ∩ X = {x1, x2} with xi = c for some i ∈ {1, 2};

without loss of generality x2 = c = c′. x3, x4 ∈ V (B′
e) follows (note that the

case c �∈ {x1, x2} can be treated symmetrically to case (a)). By Theorem
F, (Be)

2 has an x1x2-hamiltonian path P (x1, x2) containing an edge x2v ∈
E(Be).

Suppose w′ ∈ (N(c′)−{x3, x4})∩V (B′
e) exists. By induction, (B′

e)
2 has

a w′x2-hamiltonian path P ′ containing edges x3z3, x4z4 ∈ E(B′
e). Clearly,

(P (x1, x2) ∪ P ′ − x2v) ∪ {w′v}

defines an x1x2-hamiltonian path of G2 as required.

Finally suppose N(c′)∩V (B′
e) = {x3, x4}. That is, c′ = c = x2 is 2-valent

in B′
e. In this case we apply Theorem E to obtain a [c′;x3]-hamiltonian cycle

C ′ in (B′
e)

2 containing three different edges c′x3, c′x4, x3z3 ∈ E(B′
e).

It follows that

(P (x1, x2)− x2v) ∪ (C ′ − x3c
′) ∪ {vx3}
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defines an F4 x1y2-hamiltonian path of G2 as required. This settles case (1).

(2) Suppose k = 1.

(a) Suppose x2 ∈ V (Be). Then x1, x3, x4 ∈ V (B′
e) − c. Hence by in-

duction there is an F4 x1c-hamiltonian path P ′(x1, c) in (B′
e)

2 containing
x3z3, x4z4 ∈ E(B′

e). In (Be)
2, there is an x2c-hamiltonian path P (x2, c)

which together with P ′(x1, c) form a required F4 x1x2-hamiltonian path in
G2.

(b) Suppose x4 ∈ V (Be). Then x1, x2, x3 ∈ V (B′
e) − c and by induc-

tion there is an F4 x1x2-hamiltonian path P ′(x1, x2) in (B′
e)

2 containing
x3z3, cw

′ ∈ E(B′
e). In (Be)

2, there is a hamiltonian cycle Cc containing
three different edges cw, cz, x4z4 ∈ E(Be) by Theorem E. Delete cw′ from
P ′(x1, x2) and cw from Cc and join w′ to w to obtain a required F4 x1x2-
hamiltonian path in G2. This settles case (2) and thus finishes the proof of
Case (A).

Case (B): c �= c′

Let G0 = G− (e ∪Be ∪B′
e).

(1) Suppose k = 2.

In this case (V (G0) − {c, c′}) ∩ X = ∅. By Corollary 1, (G0)
2 has a

hamiltonian cycle C0 containing c′w′
0, cw0 which are edges of G0, provided

G0 is a non-trivial block chain. If, however, G0 �= K2 is a block, then such
hamiltonian cycle C0 exists by Theorem E. Moreover, we only have to deal
with the cases (1.1), (1.2) below; otherwise, we could consider Be∗ ⊆ B′

e.

(1.1) Suppose x3, x4 ∈ V (Be).

Then x1, x2 ∈ V (B′
e). If c

′ �∈ {x1, x2}, then by Theorem F(i), (B′
e)

2 has
an F3 x1x2-hamiltonian path P ′(x1, x2) containing an edge c′w′ of B′

e. If
c′ ∈ {x1, x2}, say c′ = x1, then we let P ′(x1, x2) denote an x1x2-hamiltonian
path in (B′

e)
2 containing an edge x1w

′ = c′w′ of B′
e (see Theorem F(ii)).

(a) Suppose c = xi for some i ∈ {3, 4}. Let Cc denote an [xi;x7−i]-
hamiltonian cycle in (Be)

2 containing xizi, xiwi, x7−iz7−i which are edges of
Be. In this case,

(P ′(x1, x2)− c′w′) ∪ (C0 − {c′w′
0, cw0}) ∪ (Cc − xiwi) ∪ {w′w′

0, w0wi}

defines a required F4 x1x2-hamiltonian path in G2 provided G0 �= K2. If,
however, G0 = K2, then

(P ′(x1, x2)− c′w′) ∪ (Cc − xiwi) ∪ {c′wi, cw
′}
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yields the required result.

(b) Suppose c �= xi for any i ∈ {3, 4}.
(i) Suppose N(c) ∩ {x3, x4} = ∅. Let w ∈ N(c) ∩ V (Be). By induction,

there is an F4 cw-hamiltonian path Pe(c, w) in (Be)
2 containing x3z3, x4z4

which are edges of Be. In this case,

(P ′(x1, x2)− c′w′) ∪ (C0 − {c′w′
0, cw0}) ∪ Pe(c, w) ∪ {w′w′

0, ww0}

yields a required F4 x1x2-hamiltonian path in G2; and if G0 = K2, then we
obtain the required result analogously as in case (a).

(ii) Hence we assume that N(c) ∩ {x3, x4} �= ∅.
If there exists w ∈ N(c) ∩ V (Be) such that w �∈ {x3, x4}, then the

argument used in (i) applies and we have a required F4 x1x2-hamiltonian
path in G2 as before.

So assume that N(c) ∩ V (Be) = {x3, x4}. Let Cc denote an [c;x3]-
hamiltonian cycle in (Be)

2 containing x3c, x3z3, x4z4 which are edges of Be.
Then

(P ′(x1, x2)− c′w′) ∪ (C0 − {c′w′
0, cw0}) ∪ (Cc − x3c) ∪ {w′w′

0, w0x3}

yields a required F4 x1x2-hamiltonian path in G2 if G0 �= K2; and the case
G0 = K2 is treated analogously as before.

(1.2) Suppose x2, x4 ∈ V (Be).

Then x1, x3 ∈ V (B′
e). If x1 �= c′, then by Theorem F, (B′

e)
2 has an

F3 x1c
′-hamiltonian path P ′(x1, c′) containing an edge x3z3 of B′

e (even if
x3 = c′). If c′ = x1, then by Theorem E, (B′

e)
2 has an [x1;x3]-hamiltonian

cycle C ′ containing three edges x1w1, x1z1, x3z3 ∈ E(B′
e). In this case, let

P ′(x1, w1) = C ′ − x1w1.

Consider Be. If x2 �= c, then by Theorem F, (Be)
2 has an F3 x2c-

hamiltonian path P (x2, c) containing an edge x4z4 of Be (even if x4 = c). If
c = x2, then by Theorem E, (Be)

2 has an [x2;x4]-hamiltonian cycle C con-
taining x2w2, x2z2, x4z4 which are edges of Be. In this case, let P (x2, w2) =
C − x2w2.

(a) Suppose G0 �= K2.

By Corollary 1(ii), Theorem F respectively, (G0)
2 has a cc′-hamiltonian

path P0(c, c
′) containing an edge cw0 of G0 incident to c, or an edge c′w′

0 of
G0 incident to c′. In the case that G0 has 2 or more blocks, then P0(c, c

′)
can be chosen to contain both cw0 and c′w′

0.
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(i) Suppose c �= x2 and c′ �= x1. Then P ′(x1, c′) ∪ P0(c
′, c) ∪ P (x2, c)

yields a required F4 x1x2-hamiltonian path in G2.

(ii) Suppose c �= x2 and c′ = x1. Then P ′(x1, w1) ∪ (P0(c
′, c) − c′w′

0) ∪
P (x2, c) ∪ {w′

0w1} yields a required F4 x1x2-hamiltonian path in G2.

(iii) Suppose c = x2 and c′ �= x1. Then P ′(x1, c′) ∪ (P0(c
′, c) − cw0) ∪

P (x2, w2) ∪ {w0w2} yields a required F4 x1x2-hamiltonian path in G2.

(iv) Suppose c = x2 and c′ = x1.

First assume that G0 has 2 or more blocks. Then

P ′(x1, w1) ∪ (P0(c
′, c)− {c′w′

0, cw0}) ∪ P (x2, w2) ∪ {w′
0w1, w0w2}

yields a required F4 x1x2-hamiltonian path in G2.

Next assume that G0 is 2-connected. By Theorem 2, (G0)
2 has a cc′-

hamiltonian path P0(c, c
′) containing an edge cw0 of G0 and P0(c, c

′) either
contains an edge c′w′

0 of G0 or else contains an edge uv for some vertices
u, v ∈ N(c′) ∩ V (G0). In the former case, we proceed as in the case where
G0 has 2 or more blocks, to obtain a required x1x2-hamiltonian path in G2.
In the latter case,

P (x2, w2)∪ (P0(c, c
′)−{cw0, uv})∪ (P ′(x1, w1)−{z1x1})∪{w2w0, w1v, z1u}

yields a required x1x2-hamiltonian path in G2.

(b) Suppose G0 = K2.

If c �= x2 or c′ �= x1, then the methods used in the above cases (a)
(i), (ii), (iii) can be used to construct a required F4 x1x2-hamiltonian path
in G2. Hence we assume that c = x2, c

′ = x1. Then by Theorem F, (Be)
2

(respectively (B′
e)

2) has an F3 x2x-hamiltonian path P (x2, x) containing
x4z4 (respectively x1x

′-hamiltonian path P ′(x1, x′) containing x3z3) where
x3z3, x4z4 ∈ E(G) (even if x4 = x and x3 = x′). Then P (x2, x) ∪ {xx′} ∪
P ′(x1, x′) is a required F4 x1x2-hamiltonian path in G2.

(2) Suppose k = 1.

Recall that, in this case, either V (Be) ∩X = {x2} or else V (Be) ∩X =
{x4} and that c �∈ {x2, x4}.

(2.1) Suppose x2 ∈ V (Be) and x2 = x.

Write the block chain G−e as B1∪B2∪· · ·∪Bk, k > 2 with Bi∩Bi+1 = ci
for i = 1, 2, . . . , k − 1 where B1 = B′

e and Bk = Be so that c1 = c′, ck−1 = c
and G0 = B2 ∪ · · · ∪Bk−1.
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(a) Suppose (V (B′
e)− c1) ∩X = ∅ and c1 = x1.

Then either (i) B′
e is a DT -graph or else (ii) B′

e contains an edge f ∈
D(G) such that one of its endblocks Bf of G− f is a DT -graph of B′

e (and
thus of G− e). Moreover, if x1 ∈ V (Bf ), then x1 is a cutvertex of G−f (see
Theorem G).

In either case, we reduce G to the graph H by replacing either B′
e (in

case (i)) or else Bf (in case (ii)) by a path of length 3. By induction, H2

has an F4 x1x2-hamiltonian path. This hamiltonian path can be converted
to an F4 x1x2-hamiltonian path in G2 by the same method used in [7].

(b) Suppose x1 ∈ V (B′
e)− c1.

In (B1)
2, we take an x1c1-hamiltonian path P1(x1, c1) containing edges of

B1 incident to xr if xr is in B1 for every r ∈ {3, 4}. For each i ∈ {2, . . . , k−1},
we take a ci−1ci-hamiltonian path Pi(ci−1, ci) in (Bi)

2 containing edges of
Bi incident to xr if xr ∈ V (Bi), for every r ∈ {3, 4}. In (Bk)

2, we take
a ck−1x2-hamiltonian path Pk(ck−1, x2). Note that this is always possible
either trivially or by induction (to get an F4 hamiltonian path in (Bi)

2) or
by Theorem 3 (to get a strong F3 hamiltonian path in (Bi)

2).Then

P1(x1, c1) ∪ P2(c1, c2) ∪ · · · ∪ Pk(ck−1, x2)

yields a required x1x2-hamiltonian path in G2.

Consequently, if x1 �∈ V (B′
e)− c1, then xr ∈ V (B′

e)− c1 for at least one
r ∈ {3, 4}.

(c) Suppose x1 = c1.

Because of case (a) settled already, we have xr ∈ V (B′
e)− c1 for at least

one r ∈ {3, 4}.
(i) Suppose x3, x4 ∈ V (B′

e)− c1.

Proceeding as in case (b), we can construct a c1x2-hamiltonian path
P2(c1, x2) in (G0 ∪Be)

2 containing an edge c1w1 of B2.

If there is a vertex w ∈ N(c1) ∩ V (B1) such that w �∈ {x3, x4}, then by
induction let P1(x1, w) be an F4 x1w-hamiltonian path in (B1)

2 containing
an edge of B1 incident to xr for each r ∈ {3, 4}. A required x1x2-hamiltonian
path in G2 is given by P1(x1, w) ∪ (P2(c1, x2)− c1w1) ∪ {ww1}.

So assume that N(c1)∩V (B1) = {x3, x4}. Then by Theorem E let C1 be
an [x1;x3]-hamiltonian cycle in (B1)

2 containing x1x3, x1x4, x3w3 which are
edges of B1. Let P1(x1, x3) = C1 − x1x3. Then a required x1x2-hamiltonian
path in G2 is given by P1(x1, x3) ∪ (P2(c1, x2)− c1w1) ∪ {x3w1}.
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(ii) Suppose x3 ∈ V (B′
e)− c1 and x4 ∈ V (G0).

Let w ∈ N(x1) ∩ V (B1). By Theorem F, there is an x1w-hamiltonian
path P1(x1, w) in (B1)

2 containing an edge x3w3 of B1. As in case (i), we can
construct an x1x2-hamiltonian path P2(x1, x2) in (G0 ∪ Be)

2 containing an
edge x1w1 of B2 and an edge x4w4 of G0 (apply Theorem 3 if w1, x4 ∈ V (B2)
and apply Theorem F otherwise). Then a required x1x2-hamiltonian path
in G2 is given by P1(x1, w) ∪ (P2(x1, x2)− x1w1) ∪ {ww1}.

(d) Suppose x1 ∈ V (G0)− c1.

Then x1 ∈ V (Bt) for some t ∈ {2, . . . , k − 1}. In the case that x1 is a
cutvertex of G− e, then x1 = ct with t < k − 1. Let Gt = B1 ∪ · · · ∪Bt and
Ht = Bt+1 ∪ · · · ∪Bk.

(i) Suppose {x3, x4} ⊆ V (Gt).

Then by induction or by applying Theorem F or Theorem 3 to each 2-
connected block of Gt, we can construct an x1x

′-hamiltonian path P1(x1, x
′)

in (Gt)
2 containing x3z3, x4z4 which are edges of Gt. Since X ∩ (V (Ht) −

ct) = {x2}, by applying Theorem E to each 2-connected block of Ht, we can
construct a hamiltonian cycle Ce in (Ht)

2 − ct containing an edge x2v of
Be. Then a required x1x2-hamiltonian path in G2 is defined by P1(x1, x

′) ∪
(Ce − x2v) ∪ {x′v}.

(ii) Suppose {x3, x4} ∩ V (Gt) �= ∅ and {x3, x4} ∩ V (Ht) �= ∅.
Assume without loss of generality that x3 ∈ V (Gt) and x4 ∈ (V (Ht) −

V (Bk)). Because of the preceding discussion, we have x3 ∈ V (B1)− c1.

Suppose x4 ∈ V (Bq) where t < q < k. Split Ht into two block chains
Jt and Lq where Jt = Bt+1 ∪ · · · ∪ Bq and x4 is not a cutvertex of Jt; and
Lq = Bq+1 ∪ · · · ∪Bk.

Let P1(x1, x
′) denote an x1x

′-hamiltonian path in (Gt)
2 containing x3w3,

ctwt which are edges of Gt. Note that this is possible because x3 �= ct,
|V (Bt) ∩X| < 3 and by applying Theorem 3 or Theorem F, respectively.

Let C4 denote an hamiltonian cycle in (Jt)
2 containing ctzt, x4z4 which

are edges of Jt. Note that this is possible by applying Theorem E to each
block of Jt, provided Jt is not a bridge of Ht. In the case that Jt is a bridge
ctx4, then C4 denotes ctx4 in (Jt)

2.

Proceed analogously to case (i) to obtain a hamiltonian cycle Ce in
(Lq)

2 − cq containing an edge x2v of Be. Then a required x1x2-hamiltonian
path in G2 is defined by

(P1(x1, x
′)− ctwt) ∪ (C4 − ctzt) ∪ (Ce − x2v) ∪ {wtzt, x

′v}
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if Jt is not a bridge; otherwise, it is defined by

(P1(x1, x
′)− ctwt) ∪ {ctx4} ∪ (Ce − x2v) ∪ {wtx4, x

′v}.

This settles case (d) and thus finishes the proof of case (2.1).

For the remaining cases of the proof of the theorem, we adopt a different
strategy of proof. For this purpose, let B+ denote the graph obtained from
B′

e ∪G0 by adding a new edge cx′. Then B+ is an edge-critical block. Since
|V (B+)| < |V (G)|, by induction, B+ has the F4 property. Also, as before it
is tacitly assumed that the hamiltonian paths constructed in the (B+)2 will
traverse as many edges of B+ as possible.

We note that, E((B+)2) = E((B′
e ∪G0)

2) ∪ E+ where

E+ = {cx′} ∪ {x′wc, u
′c | wc ∈ N(c) ∩ V (G0), u

′ ∈ N(x′) ∩ V (B′
e)}.

In what follows, any vertex in N(c) ∩ V (G0) will be subscribed with c,
and any vertex in N(x′)∩ V (B′

e) will be superscribed with ′. Also, we use y
to denote a neighbor of x in Be.

(2.2) Suppose x2 ∈ V (Be) and x2 �= x.

Then x1, x3, x4 ∈ V (B+)−{c}. Let P+(x1, c) denote an F4 x1c-hamilton-
ian path in (B+)2 containing x3z3, x4z4 which are different edges of B+ using
induction. Note that xizi = x′c is possible for i ∈ {3, 4}.

Set E∗ = E(P+(x1, c)) ∩ E+ and set |E∗| = r. Clearly, 0 ≤ r ≤ 3.
Observe that r = 4 would imply that x′ and c are internal vertices of the
corresponding hamiltonian path, which is not possible. However, the case
r = 3 could be reduced to the case (b) (i) below traversing more edges of
B+ than the original path. Thus r = 3 is also impossible.

(a) Suppose r = 0 in which case xizi �= x′c for i = 3, 4.

Trivially (Be)
2 has an x2c-hamiltonian path P2(x2, c) (since x2 /∈ {c, x}).

Then P+(x1, c) ∪ P2(x2, c) defines a required F4 x1x2-hamiltonian path in
G2.

(b) Suppose r = 1.

By Theorem F (i), (Be)
2 has an x2x-hamiltonian path P2(x2, x) con-

taining an edge cw of Be.

(i) If E∗ = {cx′}, then (P+(x1, c) − cx′) ∪ P2(x2, x) ∪ {xx′} defines a
required F4 x1x2-hamiltonian path in G2. Note that xizi = x′c for i ∈ {3, 4}
is not an obstacle.
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From now on we can assume that xizi �= x′c for i = 3, 4.

(ii) If E∗ = {cu′}, then (P+(x1, c) − cu′) ∪ P2(x2, x) ∪ {xu′} defines a
required F4 x1x2-hamiltonian path in G2.

(iii) If E∗ = {x′wc}, then (P+(x1, c)−x′wc)∪(P2(x2, x)−cw)∪{xx′, wwc}
defines a required F4 x1x2-hamiltonian path in G2. This holds true even if
wc ∈ {x3, x4} and wcc ∈ E(P+(x1, c)).

(c) Suppose r = 2.

By Theorem F, (Be)
2 has an x2c-hamiltonian path P2(x2, c) containing

an edge xy of Be.

(i) If E∗ = {cx′, x′wc}, then

(P+(x1, c)− {cx′, x′wc}) ∪ (P2(x2, c)− xy) ∪ {yx′, xx′, cwc}

defines a required F4 x1x2-hamiltonian path inG2, even if {x3, x4}∩{x′, wc} �=
∅. Note that xizi = x′c for i ∈ {3, 4} is not an obstacle.

From now on we ca assume that xizi �= x′c for i = 3, 4.

(ii) If E∗ = {x′uc, x′wc}, then

(P+(x1, c)− {x′uc, x′wc}) ∪ (P2(x2, c)− xy) ∪ {yx′, xx′, wcuc}

defines a required F4 x1x2-hamiltonian path in G2.

(iii) If E∗ = {x′uc, w′c}, then

(P+(x1, c)− {x′uc, w′c}) ∪ (P2(x2, c)) ∪ {cuc, w′x′}

defines a required F4 x1x2-hamiltonian path in G2.

(2.3) Suppose x4 ∈ V (Be).

Then x1, x2, x3 ∈ V (B+) − {c}. Let P+(x1, x2) denote an F4 x1x2-
hamiltonian path in (B+)2 containing x3z3, cc

∗, where c∗ ∈ {wc, x
′}, which

are different edges of B+ using induction. Note that x3z3 = x′c is possible.

Now set E∗ = E(P+(x1, x2)) ∩E+ and set |E∗| = r. Clearly, 0 ≤ r ≤ 4.
Note that the case r = 4 yields a contradiction just as did the case r = 3 in
the subcase (2.2) above.

(a) Suppose r = 0, in which case c∗ = wc and x3z3 �= x′c.

By Theorem E, (Be)
2 has a [c;x4]-hamiltonian cycle Ce containing cw, cz,

x4z4 which are edges of Be. Then (P+(x1, x2) − cwc) ∪ (Ce − cw) ∪ {wwc}
defines a required F4 x1x2-hamiltonian path in G2.
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(b) Suppose r = 1.

(i) Suppose E∗ = {x′c} or E∗ = {w′c}. By Theorem F, (Be)
2 has a cx-

hamiltonian path P4(c, x) containing an edge x4z4 of Be. Then (P+(x1, x2)−
zc) ∪ P4(c, x) ∪ {zx} is a required F4 x1x2-hamiltonian path in G2 for any
vertex z ∈ {x′, w′}. Note that either c∗ = x′ or x3z3 = x′c is not an obstacle.

(ii) Suppose E∗ = {x′uc}. Hence c∗ = wc and x3z3 �= x′c. By Theorem 3,
(Be)

2 has a cx-hamiltonian path P4(c, x) containing cw, x4z4 which are edges
of Be. As for the x1x2-hamiltonian path P+(x1, x2) in (B+)2 we possibly
have uc = wc. In any case, (P+(x1, x2)−x′uc)∪ (P4(c, x)− cw)∪{x′x,wuc}
defines a required F4 x1x2-hamiltonian path in G2.

(c) Suppose r = 2. Note that x4 �= c in this case and xc /∈ E(Be) because
of G is edge-critical.

(c1) E∗ = {x′c, w′c}, in which case c∗ = x′ and hence x3z3 �= x′c. By
Theorem F, (Be)

2 has an xy-hamiltonian path P4(x, y) containing an edge
x4z4 of Be. Then (P+(x1, x2) − {x′c, w′c}) ∪ P4(x, y) ∪ {x′y, w′x} yields a
required F4 x1x2-hamiltonian path in G2.

(c2) E∗ = {x′c, x′uc}.
Let y ∈ N(x) ∩ V (Be) where y �= x4, and let P4(x, y) be an F4 xy-

hamiltonian path in (Be)
2 containing x4z4, cw which are edges of Be (by

induction or by Theorem 3). Then (P+(x1, x2) − {x′c, x′uc}) ∪ (P4(x, y) −
cw) ∪ {x′x, x′y, wuc} results in a required F4 x1x2-hamiltonian path in G2.
Note that either c∗ = x′ or x3z3 = x′c is not an obstacle.

From now on we can assume that c∗ = wc and x3z3 �= x′c.

(c3) E∗ = {x′yc, x′uc}.
By Lemma 3, there is a [c;x, x4]-hamiltonian cycle Ce in (Be)

2 containing
cw, cu, xy, x4z4 which are edges of Be provided x4 �= x; otherwise, let C4 be
an [c;x4]-hamiltonian cycle of (Be)

2 containing cw, cu, xy which are edges
of Be resulting from an application of Theorem E. Then

(P+(x1, x2)− {x′yc, x′uc}) ∪ (Ce − {cw, cu, xy}) ∪ {wyc, uuc, xx′, yx′}

defines a required F4 x1x2-hamiltonian path in G2 independent of the posi-
tion of x4.

(c4) E∗ = {x′yc, w′c}. Then there are two subcases to consider.

(i) Suppose yc = wc. Let P4(x, y) be as defined in case (c2). Then

(P+(x1, x2)− {x′yc, w′c}) ∪ (P4(x, y)− cw) ∪ {w′x, x′y, wyc}
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yields a required F4 x1x2-hamiltonian path in G2.

(ii) Suppose yc �= wc. There are four possibilities.

If P+(x1, x2) takes the form x1 · · ·x′yc · · ·wccw
′ · · ·x2, then proceed as

in (i) to obtain a required F4 x1x2-hamiltonian path in G2.

If P+(x1, x2) takes the form

x1 · · · ycx′ · · ·wccw
′ · · ·x2 or x1 · · ·x′yc · · ·w′cwc · · ·x2,

then we can reduce this case to case (a) where r = 0 as follows. Delete
x′yc, w′c from P+(x1, x2) and add to it the edges x′w′, cyc.

If P+(x1, x2) takes the form x1 · · · ycx′ · · ·w′cwc · · ·x2, then let P4(x, y)
denote an xy-hamiltonian path in (Be)

2 as defined in case (c2). Then

(P+(x1, x2)− {x′yc, w′c}) ∪ (P4(x, y)− cw) ∪ {w′x, x′y, ycw}

defines a required F4 x1x2-hamiltonian path in G2.
The other cases are symmetrical.

(c5) E∗ = {cv′, cw′}. This case cannot happen since E∗ ∩ E(B+) = ∅,
but cwc ∈ E(P2(x1, x2)) ∩ E(B+).

(d) Suppose r = 3. Thus E∗ must be one of the following three sets:
E∗ = {x′uc, x′c, w′c}, E∗ = {x′uc, x′yc, w′c}, E∗ = {w′c, v′c, x′uc}. It is now
straightforward to see that in each of these three cases the corresponding
P+(x1, x2) can be modified so as to contain more edges of B+ and satisfying
E∗ = {x′c}, i.e., r = 1. Namely, in the respective case

form ({x′uc, x′c, w′c} − {x′uc, w′c}) ∪ {w′x′, cuc};
replace {x′uc, x′yc, w′c} with {w′x′, x′c, ucyc};
replace {w′c, v′c, x′uc} with {w′v′, x′c, cuc}.
Theorem 4 now follows.

As a special case of Theorem 4 we obtain the following.

Corollary 2. Let G be a 2-connected graph on n ≥ 4 vertices, and let
e = xy ∈ E(G) and u, v ∈ V (G) such that {x, y} ∩ {u, v} = ∅. Then G2 has
a hamiltonian cycle C with e ∈ E(C), and at least one of the edges of u in
C at least one of the edges of v in C are edges of G.

4. Final remarks

In subsequent papers we shall use some of the theorems of this paper to
describe (among other results) the most general structure a graph may have
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such that its square is hamiltonian or hamiltonian connected, respectively.

This will also solve a problem raised in [4] in the affirmative and proves a

conjecture raised in [19]; we shall also present a partial solution of a conjec-

ture stated in [5].

It is easy to see that the complete bipartite graph K2,k−2 does not have

the Fk property for every integer k ≥ 5. For example, take x1, x2 to be the

two vertices of degree k − 2 and x3, . . . , xk to be the rest of the vertices.

Hence, Theorem 4 is best possible.

A graph G is said to have the F property if it has three 2-valent vertices

x, y, z such that N(x) = N(y) = N(z). From the above observation, we see

that if G has the F property, then G does not have the Fk property for any

k ≥ 5.

While it is now known that Theorem F(i) can be generalized to Theorem

4, it is also of interest to know whether or not Theorem E can be generalized

to 3 given vertices. That is, given three arbitrary vertices v, w1, w2 of a 2-

connected graph G, does G2 contain a [v;w1, w2]-hamiltonian cycle C? The

following example shows that this is not true in general.

Let k ≥ 5 be an integer and let v1v2 · · · vnv1 be a cycle with n vertices

where n ≥ k + 3. Take a new vertex v and join it to v1 and vk to get

the graph H. Let w1 = v1 and w2 = vk. Then it is easy to see that H2

admits no hamiltonian cycle C containing the edges vw1, vw2 and wizi where

zi ∈ N(wi), i = 1, 2.
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