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We construct the generating functions for shifted Schur functions
and describe their vertex operator realization.
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1. Introduction

The algebra of shifted symmetric functions is a deformation of the classical
algebra of symmetric functions. There are a lot of applications and connec-
tions of shifted symmetric functions in representation theory: the study of
centers of universal enveloping algebras, Capelli-type identities, asymptotic
characters for unitary groups and symmetric groups, infinite-dimensional
quantum groups, and Yangians etc. In particular, the Harish-Chandra iso-
morphism identifies the center of the universal enveloping algebra of the
general linear Lie algebra gl,,(C) with the algebra of shifted symmetric func-
tions, sending a central element to its eigenvalue on a highest weight module.
With a distinguished basis of the center the images of the elements of the
basis under the Harish-Chandra isomorphism are exactly the shifted Schur
functions [9], [10], [8], [11].

In this note we prove a new formula for the generating function of shifted
Schur functions

(1.1) det [ i =) }HH* i—i+1)= Z (Ul‘)\l)'?\' (w\)’

1(M)<I
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where H*(u) is the generating function of the homogeneous complete shifted
symmetric functions A} = s’(kr). This result can be compared with the formula
for classical Schur functions s)

l
(1.2) H( —%)HH(uz): Z Sx\u11"-ul)‘l,
v/ =1 I(N)<I

1<j

where H(u) is the generating function of the homogeneous complete sym-
metric functions h, = s, (see e.g. [7, Ex. 29, Chapter 1]).

The origin of the formula (1.2) lies in the renowned vertex operator
realization of Schur functions in the framework of the boson-fermion corre-
spondence. Several important families of symmetric functions (such as Schur
symmetric functions, Schur -functions and more generally, Hall-Littlewood
symmetric functions) can be interpreted as coefficients of the generating
functions defined by certain correlation factors. In such a case there is a
simple and natural way to introduce the action of the Clifford algebra or a
modified Clifford algebra on the vector space spanned by the coefficients of
the generating function. This in turn gives rise to (in some cases modified)
vertex operators. Generalization of this approach allowed us to construct
the generating function (1.1) and describe the action of the Clifford algebra
on the space of shifted symmetric functions. The generating function (1.1) is
interpreted as a result of a successive applications of certain vertex operators
to the vacuum vector.

The paper is organized as follows. In Sections 2 and 3, we review defini-
tions related to shifted symmetric functions and the classical boson-fermion
correspondence. In Section 4, we construct the generating function for shifted
Schur functions. In Section 5, the Clifford algebra action and the resulting
vertex operator presentation are described.

2. Shifted symmetric functions

We follow the notations and definitions of [10]. Combinatorially a shifted
Schur polynomial s} (z1,...,%,) can be defined as the ratio of determinants

_det(w; +n —i|\j +n—j)
- det(x; +n —iln— )

sy, .., xn) ,

where the falling factorial power of z is defined by
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z(x—1)--(x—k+1) fork=1,2...,
(z|k) =<1, for k=0,

1 _
m fOI‘k——l,—Q....

The stability property of shifted Schur polynomials allows one to introduce
the shifted Schur functions s§ = s}(x1, %2, ...). In particular, the complete
shifted Schur functions A} = sfr) are

(21)  hi(xy,x,...) = > (i —r D@, —r42)-m,
1<, <<, <00

and elementary shifted Schur functions ey = s’(*lr) are

(2.2) e (x1,20,...) = Y (@waAr =D, +r—2)-@,.
1<i1 << <00

By [10, Corollary 1.6], the shifted Schur functions s} form a linear basis in
the ring B* of shifted symmetric functions, which is also a polynomial ring
in the shifted complete or elementary symmetric functions:

B* = C[hi,h,...] = Clel,e5,...].
Theorem 13.1 in [10] states that for any partition A of length I(\)
(23)  si=det[! TRy i hicigen sy = det[r eR, iy li<ij<m,

where [, m are arbitrary fixed integers such that [ > [(\), m > A\, and 7 is
the automorphism of B* defined by the formula

7(h) = hi + (k= Dhi_y, 77 (ef) = e + (k= Dej_y.
3. Boson-fermion correspondence

Consider the infinite-dimensional complex vector space V = @;czCv; with a
linear basis {v;};ez. Define F™ (m € Z) as the linear span of semi-infinite
monomials v; Aw; _, A... with the properties:

(1) > 1 > .-y

(2) i = k for k << 0.

The monomial of the form |m) = v, Avy—1 A ... is called the mth vacuum
vector. The elements of F(™) are linear combinations of monomials v; =
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vi, Avi, A. .. that are different from |m) only at a finitely many places, and
I = {iy,i9,...}. The fermionic Fock space is defined to be the graded space

F = OmezF™.

Many important algebraic structures act on the Fock space, these include
the (infinite dimensional) Clifford algebra, the Heisenberg algebra A, the
Virasoro algebra and the infinite-dimensional Lie algebra gl . Their actions
are closely related to each other.

The Clifford algebra acts on the Fock space F by wedge operators w,":
and contraction operators ¢, (k € Z):

i Vi, Avig A--) = v Avi, Ay A~ -
@D;(Uil/\UiQ/\"~)
= (5]971'1’1),'2 NVig N\ r— 5k,igvi1 NUig N -+ 5k,i37}i1 ANV

The operators satisfy the relations

ViU + Vbl = km, UL+ bl =0, Y, + iy = 0.

Combine the operators wki in the generating functions (formal distributions)

(3.1) Ut (u) = Zwljuk and U (u) = Zv,/}k_u_k.

kEZ keZ

Then the action of the Heisenberg algebra A on the Fock fermionic space
F can be introduced with the help of the normal ordered product of these
formal distributions. Set

() = T ()T () = T () T () — T ()T (u)_,
where the cut-off parts are given by

UH(u)p = ik, Thu) =) gt

E>1 k<0

The coefficients ay of the formal distribution a(u) = > azu™" and central
element 1 then satisfy the relations of Heisenberg algebra A (see e.g. [6,
16.3)):

1,ar] =0, [og,om] =mdy, — (k,m € Z).
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On the other hand, there is also a natural action of the Heisenberg
algebra A on Fock boson space B = 2™C|[py,pa, .. .]:

0

=, ap=nps, ay=m (neN, mel)

The boson — fermion correspondence identifies the spaces B(™) and F(™)
as equivalent A-modules (see e.g. [1], [2], [3], [4], [6]). The construction of
the correspondence relies on the interpretation of B = C[py, pa,...] as a ring
of symmetric functions, where py’s are interpreted as the k-th (normalized)
power sums. Then each graded component B(™ is viewed as a ring of sym-
metric functions, which is known to be the ring of polynomials in variables
pr’s. The linear basis of elements vy = (Ux,+m A Ury4m—1 A Urg4m—2 - ..) of
F(m) labeled by partitions A = (A;,> Ag,> --- > \; > 0) corresponds to
the linear basis z™sy of B, where s is the Schur functions associated
with the partition A (see e.g. [6] Theorem 6.1).

The correspondence carries the action of operators w,f on F to the action
on the graded space @,B"). It can be described by generating functions
U+ (u,m), traditionally written in a vertex operator form

(3.2) T (u,m) = u™ 1 zexp (ijuj) exp ( - Z aif"u*j),
izl iz J

(3.3) T (u,m) =u ™z Lexp ( — ijuj) exp (Z aif"u*j).
i1 iz )

The formulae (3.2), (3.3) can be simplified if one changes the set of generators
of the ring of symmetric functions. Namely, introduce generating functions
E(u), H(u) for the operators of multiplication by elementary symmetric
functions e, = s(;-) and complete symmetric functions h, = s(,). Note that
H(u)E(—u) = 1. The ring of symmetric functions possesses a natural scalar
product, where the classical Schur functions s) constitute an orthonormal
basis: (sx,s,) = - Then for any symmetric function f one can define
the adjoint operator Dy acting on the ring of symmetric functions by the
standard rule: (Dyg,w) = (g, fw), where g, f,w € A. The properties of
adjoint operators are described in [7, 1.5]. Set

DE(u) =Y Deu*, DH(u)=)» Dy
k>0 k>0
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Then
(3.4) \Il+(u, m) = um Tty H(u)DE (—ufl) ,
U (u,m) =u""z ' BE(—u)DH (u™").

4. Generating functions for s}

Let f(u) be a formal series or a function in variable u in some general sense.
We introduce the shift operator

M (f(u)) = flut k).

This exponential notation is motivated by Taylor series expansion formula,
where for an appropriate class of functions in the domain of convergence one
can write

flut+k)=>Y"
s=0

We use the short notation e 9

on f(uy,...,up).
Note that a shifted k-th power sum is a result of application to the

:= ek % for shifts along variable u; acting

constant function 1 of the k-th power of the operator (ue_au)k:

(ue_a”)k (1) = (ulk).

We will be interested in shifted generating functions, which will be infinite
sums in monomials of shifted powers of formal variables u;’s.
Consider?

@ =Y s B = Y (1 e - k)

k=0 k=0

It is proved in [10] (Corollary 12.3) that

H*(w)E*(u) = 1.

LH*(u) and E*(u) in this note correspond to H*(u) and E*(—u— 1) respectively
in [10].
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Also consider the formal series of the following form:
YH"(u) = Zh* le_a“ ' YE*(u) = Z(—l)ke* ea“l '
k u ’ k u ’
£>0 E>0

where h; and e} are viewed as the multiplication operators by these functions
acting on the space B*. Then

H*(u) =YH"(u) (1), E*(u)=YE"(u)(l).

For a matrix A = (a;j)ij=1,..,v with non-commutative entries the deter-
minant is defined by det(A) = > g 591n(0)a151) - - ano(n)- Set

i i | l
(4.2) YH*(uy,...,u) = det <i€_0i> 6(1_3)811 o H Y H*(u;),
i i=1

Uj

i 1\7 !
(4.3)  YE*(uy,...,u) = det (J%—) 60—1)&] o [JYE*(w).
L =1

U

The result of application of (4.2) or (4.3) to the constant function 1 is a
formal series in shifted powers of u with coefficients in B*:

(4.4) H*(uy,...,w) =YH"(uy,...,u)(1),
(45) E*(ul,...,ul):YE*(ul,...,ul)(l).

Proposition 4.1.

l

1
(4.6) H*(u,...,u) =det | ——— H*(u; —i+1),
b [(aﬂzﬁm
l
(4.7) E*(uy, ... up) = det [(uglj — )] [ B (ui +i - 1).
=1
Also
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1 1—1 l
(49  E*(ur,...,w) =[] (eai;) [T —w) TT B (wi)
i v i=1

i=1 1<J

Proof. Since (%e‘au)]C = (ij)e_ka“ for any k € Z, one has

l
H 199 o Y H* (u;),

1
YH*(uy,...,u) = det [7]
(ugli = ) ie1

and similarly,

l
YE*(uy, ..., u) =det [(u;]j — )] [ eV o YE* ().
=1

Then (4.6) and (4.7) follow by application of Y H*(uy,...,u;) and Y E*(uq,
.,uy) to the vacuum vector 1.

For the proof of (4.8) and (4.9), we see that

! i-1 [ 1
11 (uia) [Tt [T )

=1 1<J
l l 1 i—1
. 8
:HH*(ui—Z+1)H<u—i€ ) H(uj—uz)
i=1 i=1 1<]

Lemma 4.1.

ﬁ(%“za)l [(us —w) | = det [ﬁ}

i=1 1<J
l 1 1—1
9. . .
i ) | = det [(wlj — i)
() [Tt - w0 | =dotlCli =0

Proof. We can rewrite the first product using the Vandermonde determi-
nant:
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l

([ | (IR

= i<] i= 1 1<J
l
:Hﬁm“ﬁ—j“)—w—mn
! . | B
:gmdet[(ui—z+2)1 ]

Recall that shifted and ordinary powers of a variable x are related by

ij )RS (m, k)a(x +1) - (x4 k — 1),
k=0

where S(m, k) are the Stirling numbers of the second kind, and S(m,m) = 1.
Therefore, with * = u; — i + 2 we can expand by linearity the columns of
the determinant

ﬁ;det[(u-i+2)(u-i+3)---(u-i+ )] = det [;}
L =) ™ ’ I i - )
Similarly,

l

51\ l . o
11 <e u—> [T Cws —wi) | = JJ(wlt = 4) detf(u; + i — 1)77]

i=1 i<j i=1

l
H will — ) det](u; +i — 1|5 — 1)] = det[(w;]j — 7)].

0
Then (4.8) and (4.9) follow from Lemma 4.1. This completes the proof
of the proposition. O

Remark 4.1. Note from (4.8), (4.9) that the change of order of variables
leads to the following equalities:

1

e H (w0, up,up, ) = _56_8“H*(%U,U27U37 2,
) ) 1
eauaE*(u7U’u2”UJ3’ .. ) = —edv ;E*(’U,U,’LLQ,Ug, s )
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Our next goal is to identify coefficients of the shifted expansion of the
generating functions H*(uy,...,w;) and E*(uq,...,w;) with shifted Schur
functions. Following [10], Section 13, observe that the formal action of the
shift operator e~% on the generating function H*(u) corresponds to an
automorphism 7 : B* — B* of shifted symmetric functions. Namely, write

for a € Zzo,

@410) e a) = e () = e = S O,

Note that for k. =1,2,...,

L S
(w—11k) (k) (@k+1)
(4.11) (u+1| = k) = (u — k) — k(u| — k — 1).

Hence, the explicit action of 7 on the generators hj (k = 1,2,...) is given
by

(4.12) T(hi) = by + (k= D)hi_y,

(4.13) (R} = Z; <?> (k—1l)hi_;, (a=1,2,...).
Similarly, for k =1,2,...,

(414) M) = ef+ (k- Defy,

(4.15) 779(e}) = Z; <“Z‘> (k—1li)ef_;, (a=1,2,...),

which by (4.11) corresponds to a shift of a variable of the generating function
E*(u) for a € Z>o:

"B (u) = B (u+a) = Y _(=1)Fef(ural—k) = Y (=1)" 7 (ef) (ul = k).
x k

We need the following statement.

Lemma 4.2. Let 7% be the automorphisms of B* defined by (4.12), (4.14),
and let ki € Z>o,m; € Z (i =1,...,1).Then in the shifted expansions
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l

Humm - mi) ZC (U1 A) - <ul|Al>’

=1
l

T (il = ma) B (ui + ki + ma) = Daua| = Ax) -+ (wg] = Ap),
=1

where the coefficient C), in the first expansion is the monomial given by

k1 k
CA:T ( Kl—ml)'”T l(hil—ml)7
and the coefficient Dy in the second expansion is the monomial given by

Dy = (1) 2m) R el TR e -

Proof. The statement is implied by the following argument for k € Z>q,m €
Z:

L k= m) = ) 5 )
myF )‘;u\m)(u—mmr?(

ulm + p)
—Z

The following theorem states that H*(uy,...,u;) and E*(uq,...,u;) are
generating functions for the shifted Schur functions.

Theorem 4.1. Let \ be an integer vector with at most [ non-zero parts, let
N =3".\i, and let X be a conjugate vector. The coefficient of m
in a shifted expansion of H*(u1,...,w;) is a shifted Schur function s, and

the coefficient of (u| — A1) ---(u] —X) in E*(ui,...,u) is a shifted Schur
function (—1)Vs3, :

) _ S
Hwsw) = D, oy Gl

1(N)<I
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E*(ur,...ow) = > (~DNsh (] = M) -+ (] = N).

I(N<I

Proof. The expansion of determinant (4.6) gives

H*(ul,...,ul):ZSQn(a)( 1 HH* i—i+1)

= ui|l —o(1)) ul]l—a

1 1
> sgn(o) (1]l —o(1))  (w|l—o(l)

TESH
XHH* — (i —o(i)) — (o(i) — 1)).

Set ki =o0(i) —1 and m; =i —o(i) for i = 1,...,l. Observe that k; >Ofor
any ¢ = 1,...,1, so by Lemma 4.2, we obtain the coefficient of m

Z 59”(0)70(1)_1(h§1—1+a(1)) To(l)_l(hf\,—ug(l)) det[r/ 'Y iy ).
UES;

Then Jacobi—Trudi identity (2.3) provides identification of this coefficient
with s}. The second statement is proved along the same lines. O

Remark 4.2. Note that (2.3) allows us to extend the definition of sy to any
integer vector. Namely, define

(4.16) st = det[r/ " hy, i ili<i <
for any vector o = (a1, @, . .., ;) with entries «; € Z. Then it is clear that
(417) S>(k...7ai,ai+17... )y = _S?..., aip1—1,a;41,...)"

This follows from permutation of the rows of the determinant (4.16). Let

= ({1 —-1,1-2,...,0), where [ is such a number that at most [ entries
of the integer vector o are non-zero. It is easy to see that s}, # 0 if and
only if & — p; = o(A — p;) for some permutation o € S; and some partition
A=A >X>---> XN >0), (A € Z>p). In such a case,

(4.18) sy, = sgn(o)sy.

* ok ¥ ok X
For example, s, 5) = (1 30) = ~S(22) = S(2,-1,3) = ~S(1,-1,4)"
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5. Creation and annihilation operators for shifted Schur
functions

We introduce creation and annihilation operators \I/;f, k € Z, acting on the
set of s}’s labeled by partitions A, as

(5.1) ‘I’;(Si) = Szkk,)\)a \I’:k(si) = (_1)ksz‘k,)\/)/7

where s}, = sgn(o)sy,, if @ — py = o(XA — p;) for some o and partition A,

and s}, = 0 otherwise. Shifted Schur functions s} span the space B*, hence
(5.1) defines the action of linear operators \Ilki on B*. The lowering-raising
property (4.17) implies exactly the same commutation relations of operators
\I/ZF as in the classical case:

B\ A IR

VU 4+ U, Uy =0,

U U+ U0 =6y

Let us rewrite these relations in terms of shifted generating functions. Define

n
) =3 (;I]—’;C) U (0) = 3 W (0] — k).
kEZ
Then
Ut () (H (u1,...,w)) = H* (v, uy,...u),
U™ (v) (E*(u1,...,u)) = E*(v,uq,...u),

and generating functions of shifted Schur functions can be viewed as a result
of application of U*(v) to vacuum vector:

H*(uy, . owg) = U (ug) o+ 0 U () (1),
E*(u, .. w) = U (uy) 0+ 0 U= (ug) (1).

The commutation relations are

(5.2) %e_au o Ut (u) o Ut(v) + %e_a“ o Ut (v) o WF(u) =0,
(5.3) e o l\IJ_(u) o U~ (v) + €% o l\If_(v) oU™ (u) =0,

u v
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(5.4) Ut (u) o U™ (v) + ¥ (v) o Ut (u) = Z EZ:Z; - 1d.
kezZ

Our next goal is to find a “normally ordered form” of U*(u), similar to
(3.4), (3.5). Let

DE*(u Z DE* (ulm), DH*(u Z DH* w—m

be the formal shifted series with DEY DH} being linear operators acting
on B*, such that series DE*(u) and DH*(u) have the property

(5.5) DE*(u)(H"(v) = “e (v — ) H*(v)) = (1 ot 1) H*(w— 1),

v v

(5.6) DH*(u)(E*(v)) = e&’% (v —u)E*(v)) = (1 — %) E*(v+1).

Formulae (5.5), (5.6) describe the action of DE},, DH}, on generators hj
and ej respectively. For example, DE?, (h}) is the coefficient of (( ||m)) in the

expansion of the first equation of (5.6):

u+1 < T hy) = hy
H (v—-1) — H*(v—1) 1 .
(v—1) . (v kzo( (u+ )kio i)

Therefore, for k =0,1,2,...,

DEg(hi) = 7(hi) = hj—y = hig + (k — 2)hy_y,
DEF(h}) = —hi_,, DEL(h)=0 (m=23,...).

Similarly, (—1)*DH},(e}) is the coefficient of ((;)I':rliz)) in the expansion of
the second equation of (5.6), which gives for £k =0,1,2,...

DHj(ey) = 77" () = efq = ek + (k = 2)ef_y,
DHi(e;)=¢€5_y, DH}(ef)=0 (m=2,3,...).

Next, we extend the action of DE},, DH, to all of B* by linearity and
by the rule

l
(5.7) DE*(u) (H ) HDE* (H* (),

i=1
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(5.8) DH*(u (H E*(u; ) HDH* (E*(u;)).
In particular, write
hil A h;l

!
EH*(W) = Z () - ()’

0<Ay,...,\; <00

l
[[Erw) = D (—D)Pex - e (ua] = M) -+ (] = N,
=1

0§>\17...,)\1<OO

(here |[A] = >_ ;) to get the action of DE*(u) on the monomials that span
B*:
DE*(u)(hy, ... h3,) = DE*(u)(h},) --- DE*(u)(h3,)

l

= [ [k + (N = 2)hr, 1 = ha,w),
i=1
DH*(u)(ey, - --€3,) = DE*(u)(e},) - - - DE™(u)(e},)

l
H@\ + (N —2e>\,1+e)\u)
=1

and expand these products in shifted powers of u to get the explicit values
of DE}, (hy, ---hY, ) and DHpy (e ---¢€} ). For example,

DE*(u)(Wh) =(ha + (@ — 2)ha_1)(hy + (b — 2)hy 1)
— u(hahb + (a — 2)hbha,1 + (b — Q)hahb_l) + (u’Q)hahb.

Hence,

DE;(hsh) = (ha + (a — 2)ha—1)(hy + (b — 2)hy_1),
EX(hihE) = —(hahy + (@ — 2)hphat + (b — 2)hahy_1),
DE;(h:hE) = hahy, DEL(REHD) =0, (m=3,4,...).

Finally, from (5.7), (5.8) we write the action of DE*(v) on H*(u1,...,u;) and
of DH*(v) on E*(uy,...,u;). Formulae (5.5), (5.6), (4.8), (4.9) immediately

imply

(5.9) H*(v) o DE*(v)(H* (w1, ..., w)) = H*(v,u1,...,u),
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(5.10) E*(v) o DH*(v)(E*(u1,...,w)) = E*(v,u1,...,u),

and from (5.9), (5.10) follows the “normally ordered” presentation of U (u)
analogous to (3.4), (3.5) (see also [5]).

Proposition 5.1.

1]

[10]

Ut (v) = H*(v) o DE*(v), ¥ (v) = E*(v) o DH*(v).
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