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Erdős and Pach (1983) introduced the natural degree-based gen-
eralisations of Ramsey numbers, where instead of seeking large
monochromatic cliques in a 2-edge coloured complete graph, we
seek monochromatic subgraphs of high minimum or average de-
gree. Here we expand the study of these so-called quasi-Ramsey
numbers in a few ways, in particular, to multiple colours and to
uniform hypergraphs.

Quasi-Ramsey numbers are known to exhibit a certain unique
phase transition and we show that this is also the case across the
settings we consider. Our results depend on a density-biased notion
of hypergraph discrepancy optimised over sets of bounded size,
which may be of independent interest.
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1. Introduction

Frank Plumpton Ramsey [22] originally addressed the following question.
Fixing q, r ≥ 2, for any k, is there always a finite n such that in any as-
signment of q colours to the r-element subsets of [n] = {1, . . . , n}, there is
guaranteed to be a k-element subset of [n] all of whose r-element subsets
have the same colour? Ramsey’s Theorem states that the answer is yes. The

search for the smallest values R
(r)
q (k) of n in this question (the Ramsey

numbers) is a central part of combinatorial mathematics. This search was
begun in seminal papers by Erdős and Szekeres [12] and Erdős [6] for the
case q = r = 2 showing that

√
2
k ≤ R

(2)
2 (k) ≤ 4k.

After decades, these remain very near to the best known bounds for this
parameter.

When q > 2 or r > 2, our knowledge of the situation is even worse.

If q > 2 and r = 2, then R
(2)
q (k) is exponential in k, but the best known

bounds on the constants in the base of the exponential are weaker for larger

q. More significantly, if r > 2 and q = 2, then R
(r)
2 (k) is known to grow like

a tower of exponentials in k [8], but the height of this tower is unknown and
is subject to a $500 Erdős prize. On the other hand, note that Erdős and

Hajnal (cf. [14]) have shown that ln lnR
(3)
4 (k) = Θ(k) as k → ∞.

For q = r = 2, Erdős and Pach [9] formulated a natural degree-based
generalisation of the Ramsey numbers. Given c ∈ [0, 1], the basic question is
as follows: for any k, what is the smallest n := Rc(k) such that for any graph
G = (V,E) on n vertices there exists a subset S ⊆ V of size � at least k such
that eitherG[S] or its complementG[S] has minimum degree at least c(�−1)?
We may also ask this question with average degree instead of minimum
degree and denote the corresponding number Rc(k). Clearly Rc(k) ≤ Rc(k)
always. We refer to Rc(k) and Rc(k) as quasi-Ramsey numbers. Of course, by
taking c = 1 we recover the classical two-colour Ramsey numbers for graphs.
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Erdős and Pach [9] found that the quasi-Ramsey numbers undergo a
dramatic change in growth in k in a narrow window around c = 1/2: if
c < 1/2 then they have linear growth, while if c > 1/2 they have singly
exponential growth. They developed a fairly precise understanding of the
transition at the point c = 1/2 — the present authors together with Pach [17]
and with Long [15] have recently refined this.

Our purpose in the present paper is to extend the study of quasi-Ramsey
numbers to multiple colours and uniform hypergraphs (as was initially con-
sidered by Ramsey).

We have been able to show that the precise transition behaviour at the
point c = 1/2 for r = q = 2 is present in a similar way when r > 2 or
q > 2. The proofs of our results rely critically on a density-biased notion of
hypergraph discrepancy which is optimised only over those vertex subsets
up to a certain size. In fact the most difficult part of the paper is devoted
to proving a bound for this type of discrepancy, cf. Theorem 4 below, which
we believe to be of independent interest.

1.1. Multi-colour quasi-Ramsey for graphs

For the case r = 2, we would first like to study the behaviour of quasi-
Ramsey numbers if rather than two colours (namely the graph and its
complement) there are q ≥ 2 colours assigned to the edges of Kn. Moti-
vated partly by related recent work by Falgas-Ravry, Markström, and Ver-
straëte [13], we treat an even more general setting where each of the q colours
has an associated “degree share”. Based on Theorem 4 below, we prove the
following in Section 3.

Theorem 1. Fix q ≥ 2, (ρ1, . . . , ρq) ∈ (0, 1)q such that
∑q

i=1 ρi = 1, and
ν ≥ 0. Then there exists a constant C = C(ν) > 0 such that for each k large
enough and any q-colouring of the edges of the complete graph on at least
Ck ln k vertices, there exists a colour j and a subset S of the vertices of size
� ≥ k such that the subgraph induced by S in colour j has minimum degree
at least ρj(�− 1) + ν

√
�− 1.

By a clever weighted random construction (cf. also [17]), Erdős and Pach
proved that R1/2(k) = Ω(k ln k/ ln ln k), which means that the quasi-Ramsey
number bound for c = 1/2 implicit in Theorem 1 is sharp up to a ln ln k
factor.

We remark that Theorem 1 gives progress on a question posed by Falgas-
Ravry, Markström, and Verstraëte [13]. Given a graph G on n vertices with
edge density p, they asked for the largest integer m = g(G) such that G
contains an induced subgraph on at least m vertices with minimum degree
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at least p(m−1) (what they called a full subgraph) or with maximum degree
at most p(m−1) (a co-full subgraph). In an earlier version of [13], the authors
showed that if p(1 − p) ≥ 1/n then g(G) = Ω(n/(lnn)2) for all graphs G,
and asked whether this bound could be improved to Ω(n/ lnn). In the latest
version of [13], they show g(G) = Ω(n/(lnn)) and no longer require the
condition p(1 − p) ≥ 1/n (see Theorem 4). Here (addressing the question
in the earlier version) we obtain (a strengthening and generalisation of) the
same result via Theorem 1 and Corollary 8. Indeed, in the case where the
edge density p is fixed, Theorem 1 is a strengthening since we can guarantee
slightly higher degree than required by taking q = 2 and ρ1 = p. It is a
generalisation in the sense of allowing more colours. In Section 3, we show
that this Ω(n/ lnn) bound is also valid for non-constant p, cf. Corollary 8.

1.2. Multi-colour quasi-Ramsey for hypergraphs

The multicolour quasi-Ramsey investigation above naturally extends also
to r-uniform hypergraphs, where we consider colourings of the hyperedges

of the complete r-uniform hypergraph K
(r)
n on n vertices. The degree of a

vertex is the number of hyperedges incident with the vertex.
As Ramsey numbers for hypergraphs are even less well understood than

for graphs, despite a long history, one might expect the hypergraph quasi-
Ramsey problem to put up significant resistance. To the contrary, we have
found that the precise threshold in quasi-Ramsey numbers for graphs es-
tablished in [17] is present in an analogous way for hypergraphs. Based on
Theorem 4 below and a standard random construction we establish the fol-
lowing result in Section 4.

Theorem 2. Let r ≥ 2. Fix q ≥ 2 and (ρ1, . . . , ρq) ∈ (0, 1)q with
∑q

i=1 ρi =
1.

(i) Let ν ≥ 0. Then there exists a constant C > 0 such that for each ε > 0
and k large enough, for any q-colouring of the edges of the complete r-
uniform hypergraph on at least kν

2C2(1+ε)+2r/(r+1) vertices there exists
a colour j and a subset S of the vertices of size � ≥ k such that the
subhypergraph induced by S in colour j has minimum degree at least

ρj

(
�− 1

r − 1

)
+ ν

√
�r−1 ln �.

(ii) There is a constant C > 0 such that, if ν(·) is a non-decreasing non-
negative function, then for each k large enough there is a q-colouring of
the edges of the complete r-uniform hypergraph on Ckν(k)

2+1 vertices
such that the following holds. For any colour j and any subset S of the
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vertices of size � ≥ k, the subhypergraph induced by S in colour j has
average degree less than

ρj

(
�− 1

r − 1

)
+ ν(�)

√
r

(
�− 1

r − 1

)
ln �.

We note that if we wish to find induced subgraphs with exactly (rather
than at least) k vertices, then the following applies for for

∑q
i=1 ρi < 1. The

proof appears in Section 4.

Proposition 3. Let r ≥ 2. Fix q ≥ 2 and (ρ1, . . . , ρq) ∈ [0, 1]q with∑q
i=1 ρi < 1. Then there exists a constant C > 0 such that for each k

large enough, for any q-colouring of the edges of the complete r-uniform hy-
pergraph on at most Ck vertices there exists a colour j and a subset S of
the vertices of size k such that the subhypergraph induced by S in colour j
has minimum degree at least ρi

(
k−1
r−1

)
.

The situation could be more nuanced if
∑q

i=1 ρi > 1. It is of course
unknown what precisely happens when

∑q
i=1 ρi = q, that is, the regime of

the classical hypergraph Ramsey numbers, but we also do not know much
for 1 <

∑q
i=1 ρi < q. We will elaborate on this and state some open questions

in Section 5.

Organisation. As mentioned above the proofs of our main results rely on a
discrepancy result, which we state and prove in the next section. In Section 3
we prove Theorem 1 and in Section 4 we prove Theorem 2 and Proposition 3.
We conclude with some remarks and open questions in Section 5.

2. Discrepancy over sets of bounded size

In this section we introduce our main tool, a p-discrepancy result for bounded
sets in uniform hypergraphs, cf. Theorem 4 below.

Let r ≥ 2 and let H = (V,E) be an r-uniform hypergraph. For p ∈ [0, 1]
and S ⊆ V , the p-discrepancy of S is defined as

Dp(S) := e(S)− p

(
|S|
r

)
,

the number of hyperedges in the subhypergraph induced by S less a p propor-
tion of the total possible number of hyperedges on S. For several r-uniform
hypergraphs defined on the same vertex set, we specify Dp,H(S). The p-
discrepancy of H is defined as



92 Ross J. Kang et al.

Dp(H) := max
S⊆V

|Dp(S)|.(1)

For the classic choice p = 1/2, we usually refer to this just as discrepancy. If

p is chosen as |E|/
(|V |

r

)
, the hyperedge density of H, then the p-discrepancy

measures how uniformly the hyperedges are distributed over the vertices.

A well-known result of Erdős and Spencer [10] states that there exists

C = C(r) > 0 such that, provided n is large enough, the discrepancy of any

r-uniform hypergraph H = (V,E) on n vertices satisfies

D1/2(H) ≥ Cn(r+1)/2.(2)

This is sharp up to the choice of the constant C. The same statement for

p-discrepancy with p = |E|/
(|V |

r

)
was shown by Erdős, Goldberg, Pach and

Spencer [7] for r = 2 and by Bollobás and Scott [1] for r > 2 (where the

constant C depends on p).

It is natural to wonder what happens when the sets over which the

maximum is taken in (1) all have a bounded number t of vertices. Clearly, one

can obtain a constant times t(r+1)/2, but in fact one gains a little more. Below

we prove the following, generalising the results of Erdős and Spencer [10, 11],

of Erdős, Goldberg, Pach and Spencer [7] and, partially, of Bollobás and

Scott [1].

Theorem 4. Let r ≥ 2. There exist constants C,D > 0 such that for any

p ∈ (0, 1) the following holds. For each n large enough and all (lnn)/D ≤ t ≤
n, we have that any r-uniform hypergraph H = (V,E) on n vertices satisfies

max
S⊆V,|S|≤t

|Dp(S)| ≥ Cmin{p, 1− p}t(r+1)/2
√

ln(n/t).(3)

Note that p in Theorem 4 is not assumed to be the density of the hy-

pergraph. We also note that the case p = 1/2 of Theorem 4 was proved for

r = 2 (i.e. graphs) and shown to be tight up to the choice of the constant C

by Erdős and Spencer [11, Theorem 7.1]. A slightly stronger form for the hy-

pergraph case (for p = 1/2) was announced and its proof left as a “difficult”

exercise in [11, Chapter 7]. To the best of our knowledge no proof has been

published. Although Theorem 4 suffices for our purposes, for p varying as

a function of n, there is still room for potential improvement in the bound,

since a random r-uniform hypergraph with edge density p supplies an upper

bound example with instead the factor min{√p,
√
1− p} in (3).
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2.1. Proof of Theorem 4

Our proof may be viewed as an extension of the proof of Erdős and
Spencer [10] of (2). We will first prove several lemmas extending lemmas
from [10]. We start with the following adaptation of [10, Lemma 2].

Lemma 5. Fix c > 0. Then, for all m, all y ≥ 2 such that ln y ≤ cm/4,
and any choice of real numbers x1, . . . , xm satisfying |xi| ≥ 1 for at least cm
of the i ∈ [m], we have ∣∣∣∣∣

∑
i∈V

xi

∣∣∣∣∣ ≥ 4−1
√

cm ln(y),(4)

for at least (8y)−12m choices of V ⊆ [m].

Proof. For simplicity, let us assume that cm ∈ N and that x1, . . . , xcm all
have absolute value at least 1. For V ⊆ [m] set φ(V ) :=

∑
i∈V xi, V1 :=

V ∩ [cm] and V2 := V \V1. Then φ(V ) = φ(V1)+φ(V2). Set c1 = 16−1cm ln y.
Then (4) does not hold if and only if φ(V1) ∈ (−φ(V2)−

√
c1,−φ(V2)+

√
c1).

By a result of Erdős [5] this holds for fixed V2 for at most

∑
r : |r− cm

2
|≤√

c1

(
cm

r

)

choices of V1 ⊆ [cm]. Since
√
c1 ≤ cm/8 by assumption on y, it follows from

elementary arguments, cf. Proposition 7.3.2 in the lecture notes of Matoušek
and Vondrák [19], that

2cm −
∑

r : |r− cm

2
|≤√

c1

(
cm

r

)
≥ 2cm+1

15
exp

(
−16c1
cm

)
=

2cm+1

15y
>

2cm

8y
.

In other words, for fixed V2, we have for at least (8y)−12cm choices of V1

that (4) holds. Now summing over all possible V2 proves the lemma.

We will next prove a result about r-partite r-uniform hypergraphs, or
(r, r)-graphs for short. Recall that an r-uniform hypergraph H = (V,E) is
said to be r-partite if there exists a partition of V into r sets V1, . . . , Vr

such that every hyperedge e intersects all of the Vi exactly once. In this case
we sometimes say H is an (r, r)-graph on V1 ∪ · · · ∪ Vr. For an r-uniform
hypergraph H = (V,E) and pairwise disjoint subsets S1, . . . , Sr ⊆ V , define
e(S1, . . . , Sr) to be the number of hyperedges of H that have exactly one
endpoint in Si for i ∈ [r]. Then define
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Dp(S1, . . . , Sr) := e(S1, . . . , Sr)− p

r∏
i=1

|Si|.

The next lemma extends [10, Lemma 1].

Lemma 6. Let r ≥ 2 and p ∈ (0, 1). There exists constants cr, dr > 0 such
that for all t large enough, all y ≥ 2 such that ln y ≤ drt, and any (r, r)-graph
H on A1 ∪ · · · ∪ Ar, with |Ai| = t for each i, we have |Dp(B1, . . . , Br)| ≥
min{p, 1 − p}crtr/2

√
ln y for at least y−1dr2

tr choices of subsets Bi ⊆ Ai,
i ∈ [r].

Proof. The proof is by induction on r. In case r = 1, we have for a (1, 1)-
graph H = (V,E) and S ⊆ V that Dp(S) =

∑
i∈S xi, with xi = 1 − p if

i ∈ E and xi = −p if i /∈ E. Let p̂ = min{p, 1 − p}. Then |xi/p̂| ≥ 1 for
all i ∈ V . So by Lemma 5 it follows that for at least (8y)−12t choices of
S ⊆ V we have |Dp(S)| ≥ 4−1p̂

√
t ln y. The base case holds with d1 = 8−1

and c1 = 4−1.
Now assume r > 1. For any fixed a ∈ Ar we can form a (r−1, r−1)-graph

Ha on A1 ∪ · · · ∪ Ar−1 by letting e ∈ E(Ha) if and only if e ∪ {a} ∈ E(H).
Define Y to be the set

{(B1, . . . , Br−1, a) | Bj ⊆ Aj , a ∈ Ar, |Dp,Ha
(B1, . . . , Br−1)| ≥ p̂cr−1t

(r−1)/2}

By induction, for t large enough, we know that for any a ∈ Ar, the cardinality
of the set

{(B1, . . . , Br−1) | Bj ⊆ Aj , |Dp,Ha
(B1, . . . , Br−1)| ≥ p̂cr−1t

(r−1)/2}

is at least dr−12
t(r−1)/e. (Here, we have applied the statement for (r−1, r−

1)-graphs with y = e.) Let us write d = e−1dr−1. So |Y | ≥ dt2t(r−1). This
implies that out of the 2t(r−1) choices of (B1, . . . , Br−1) at least

1
2d2

t(r−1) of

them satisfy that |{a ∈ Ar : |Dp,Ha
(B1, . . . , Br−1)| ≥ p̂cr−1t

(r−1)/2}| ≥ dt/2.
(Otherwise, |Y | < 1

2d2
t(r−1)|Ar| + 2t(r−1)dt/2 < dt2t(r−1), a contradiction.)

Fix such a (B1, . . . , Br−1) and define for a ∈ Ar

xa =
Dp,Ha

(B1, . . . , Br−1)

p̂cr−1t(r−1)/2
.

Then |xa| ≥ 1 for at least dt/2 of the a in Ar. By Lemma 5, we have, for
ln y ≤ dt/8, for at least (8y)−12t choices of Br ⊆ Ar that

|Dp(B1, . . . , Br−1, Br)| =
∣∣∣∣∣
∑
a∈Br

eHa
(B1, . . . , Br−1)− p

r∏
i=1

|Bi|
∣∣∣∣∣



Discrepancy and large dense monochromatic subsets 95

=

∣∣∣∣∣
∑
a∈Br

Dp,Ha
(B1, . . . , Br−1)

∣∣∣∣∣ = p̂cr−1t
(r−1)/2

∣∣∣∣∣
∑
a∈Br

xa

∣∣∣∣∣
≥tr/2p̂cr−1

√
32−1d ln y.(5)

As this holds for at least 1
2d2

t(r−1) choices of (B1, . . . , Br−1), it follows
that (5) holds for at least d(16y)−12tr = dry

−12tr choices of (B1, . . . , Br).
So setting, dr = d/16 and cr = cr−1

√
32−1d, the proof is finished.

Lemma 7. Let r ≥ 2 and p ∈ (0, 1). There exists constants c′r > 0, d′r > 0
such that, for each n large enough and any t satisfying (lnn)/d′r ≤ t ≤ n/2,
each r-uniform hypergraph H = (V,E) on n vertices has pairwise disjoint
subsets B1, . . . , Br ⊆ V with |Bi| ≤ t/r for all i such that

|Dp(B1, . . . , Br)| ≥ min{p, 1− p}c′rt(r+1)/2
√

ln(n/t).

The proof of this lemma is based on ideas from [11, Chapter 7].

Proof. Write p̂ = min{p, 1 − p} and write α = �t/r�(r−1)/2
√

ln(n/t). Now
partition V into r pairwise disjoint sets A1, . . . , Ar with A1, . . . , Ar−1 each
of size �t/r� and Ar of size n− (r−1)�t/r� ≥ n/2. For a ∈ Ar, let Ha be the
(r − 1, r − 1)-graph on A1 ∪ · · · ∪Ar−1 with e ∈ E(Ha) if e ∪ {a} ∈ E(H).

Let c = cr−1 and d = dr−1 > 0 be the constants from Lemma 6. Setting
d′r = d

r+1 , we see that we may apply Lemma 6 to Ha with y = n/t to
find that when selecting Bi ⊆ Ai independently and uniformly at random
for i ∈ [r − 1], then |Dp,Ha

(B1, . . . ,Br−1)| > p̂cα with probability at least
dt/n for each a ∈ Ar. We may assume that d ≤ 8/r. For convenience write
B = (B1, . . . ,Br−1) and let

X(B) := |{a ∈ Ar | |Dp,Ha
(B)| > p̂cα}|.

Then, as |Ar| ≥ n/2, E(X(B)) ≥ dt/2. This implies that there exists B =
(B1, . . . , Br−1) with Bi ⊆ Ai for i ∈ [r − 1] such that X(B) ≥ dt/2. By
symmetry we may assume that |{a ∈ Ar | Dp,Ha

(B) > p̂cα}| ≥ dt/4. Now
fix Br ⊆ Ar of size dt/4 ≤ t/r such that Dp,Ha

(B) > p̂cα for each a ∈ Br.
Then

Dp(B1, . . . , Br) =
∑
a∈Br

Dp,Ha
(B) ≥ p̂c′rt

(r+1)/2
√

ln(n/t)(6)

for n large enough, with c′r = cd/(4r(r−1)/2+1). This finishes the proof.

We can now prove Theorem 4.
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Proof of Theorem 4. Let D be the constant d′r from Lemma 7. The cases
t > n/2 follow from the case t = n/2. So we may assume (lnn)/D ≤ t ≤ n/2.
By the previous lemma, there is a constant c > 0 and sets B1, . . . , Br of size
at most t/r such that |Dp(B1, . . . , Br)| ≥ cmin{p, 1 − p}t(r+1)/2

√
log(n/t).

Now we claim that

(7)
∑
S⊆[r]

(−1)|S|Dp(
⋃
i∈S

Bi) = (−1)rDp(B1, B2, . . . , Br),

which we will prove shortly. Let us first observe that it implies, for at least
one of the 2r − 1 nonempty subsets S of [r], we have

|Dp(
⋃
i∈S

Bi)| ≥ 2−rDp(B1 . . . Br) ≥ 2−rcmin{p, 1− p}t(κ+1)/2
√

log(n/t).

As |
⋃

i∈S Bi)| ≤ t, setting C = 2−rc, this finishes the proof of the theorem.
To prove (7), let us define for a subset U = {i1, . . . , im} ⊆ [r] and

α ∈ Z
m
≥0 such that

∑m
i=1 αi = r, e(Bα1

i1
, . . . , Bαm

im
) to be the number of

hyperedges of H that have αj endpoints in Bij and define

Dp(B
α1

i1
, . . . , Bαm

im
) = e(Bα1

i1
. . . Bαm

im
)− p

m∏
j=1

(
|Bij |
αj

)
.

Then for any U = {i1, . . . , im} ⊆ [r] we have

(8) Dp(
⋃
i∈U

Bi) =
∑

α∈Zm
≥0∑m

i=1 αi=r

Dp(B
α1

i1
, . . . , Bαm

im
).

We substitute (8) into the left hand side of (7) and examine the various
contributions. Let us fix U = {i1, . . . , im} ⊆ [r] and α ∈ Z

m such that∑m
i=1 αi = r and such that each αi > 0 and look at the contribution of

Dp(B
α1

i1
, . . . , Bαm

im
) to (7). Clearly, there is a contribution if and only if S

contains U . For m′ ≥ m there are exactly
(

r−m
m′−m

)
sets S that give a contri-

bution of (−1)m
′
Dp(B

α1

i1
, . . . , Bαm

im
). So the contribution of the pair U,α to

(7) is given by

r−m∑
i=0

(−1)i+m

(
r −m

i

)
= (−1)m

r−m∑
i=0

(
r −m

i

)
=

{
0 if m < r

(−1)r if m = r.

This proves (7).
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3. Multi-colour quasi-Ramsey results for graphs

Here we give a proof of Theorem 1 and discuss some consequences of it. Our
proof of Theorem 1 is based on the proof of [15, Theorem 2], which in turn
is inspired by a method of Erdős and Pach [9].

Proof of Theorem 1. Let φ :
(
[n]
2

)
→ [q] be a colouring of the edges of the

complete graph on n ≥ Ck ln k vertices. Let us write Gj = ([n], φ−1({j})),
the graph given by colour j for j ∈ [q]. For a set S ⊆ V and j ∈ [q], we
define the following form of skew-discrepancy

Dj,ν(S) := Dρj ,Gj
(S)− ν|S|3/2.

By Dj(S) we mean Dj,0(S) and we refer to ν|S|3/2 as the skew factor of the
set S.

Let us construct a sequence of graphs as follows. We define V0 := [n]. For
i > 0, suppose Xi−1 and Vi−1 are given. Then amongst all choices of (S, j)
where S ⊆ Vi−1 and j is a colour, let (Xi, c(i)) maximize Dj,ν(S) and set
Vi := Vi−1 \Xi. Note that by Theorem 4 we alway have that Dc(i),ν(Xi) > 0.
We stop at step t, the first time that |Vt| < n/2. Define for j ∈ [q], Ij :=
{i ∈ [t] | c(i) = j}.
Claim 1. For each j ∈ [q] and each i ∈ Ij,

δ(Gj [Xi]) ≥ ρj(|Xi| − 1) + ν(|Xi| − 1)1/2.

Proof. Suppose there exists a vertex x ∈ Xi with strictly smaller minimum
degree. Write ni := |Xi|. We may of course assume that ni ≥ 2. Set X ′

i :=
Xi \{x}. Then e(X ′

i) = e(Xi)−degGj
(x) > e(Xi)−ρj(ni−1)−ν(ni−1)1/2.

So it follows that

Dj,ν(X
′
i) > e(Xi)− ρj

(
ni − 1

2

)
− ν(ni − 1)3/2 − ρj(ni − 1)− ν(ni − 1)1/2

= e(Xi)− ρj

(
ni

2

)
− ν((ni − 1)(3/2 + (ni − 1)1/2).(9)

Now note that n
3/2
i = (ni−1+1)n

1/2
i > (ni−1)3/2+(ni−1)1/2. This implies

by (9) that Dj,ν(X
′
i) > Dj,ν(Xi), contradicting the maximality of Dj,ν(Xi).

♦

By Claim 1 we may assume that |Xi| ≤ k − 1 for all i ∈ Ij and j ∈ [q],
for else we are done. By symmetry among the colours, we may assume that
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∑
i∈I1

|Xi| ≥
n

2q
.(10)

Writing I1 := {i1, . . . , im}, we have that for each s ∈ [m− q − 1]:

⎛
⎝q+1∑

j=1

|Xis+j
|

⎞
⎠

3/2

≤ (q + 1)3/2(k − 1)3/2.(11)

We next show the following:

Claim 2. For each s ∈ [m− q − 1], D1(Xis+q+1
) ≤ 5

2(q+1)D1(Xis).

Proof. For any i = j ∈ I1 define

D1(Xi, Xj) := eG1
(Xi, Xj)− ρ1|Xi||Xj |,

where eG1
(Xi, Xj) denotes the number of edges between Xi and Xj in the

graph G1. Then D1(Xi∪Xj) = D1(Xi)+D1(Xj)+D1(Xi, Xj). Let s ∈ [m−
1]. Then, by maximality ofD1,ν(Xis), we haveD1,ν(Xis) ≥ D1,ν(Xis∪Xis+1

),
which implies that

D1(Xis+1
) ≤ −D1(Xis , Xis+1

) + ν|Xis ∪Xis+1
|3/2.

Using the obvious fact that ν|X|3/2 ≤ ν|Y |3/2 if |X| ≤ |Y |, this implies

q+1∑
t=1

tD1(Xis+t
) ≤ −

∑
0≤j<l≤q+1

D1(Xis+j
, Xis+l

) +

(
q + 1

2

)
ν
∣∣∣∪q+1

j=0Xis+j

∣∣∣3/2 .
(12)

Let us now fix s ∈ [m− q − 1]. Then, since D1(X) = −
∑q

c=2Dc(X) for
any set X, it follows that

−D1(∪q+1
j=0Xis+j

) =

q∑
c=2

Dc(∪q+1
j=0Xis+j

)

=

q∑
c=2

Dc,ν(∪q+1
j=0Xis+j

) + (q − 1)ν
∣∣∣∪q+1

j=0Xis+j

∣∣∣3/2

≤ (q − 1)

(
D1(Xis) + ν

∣∣∣∪q+1
j=0Xis+j

∣∣∣3/2) ,

by maximality of D1,ν(Xis). This clearly implies
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−
q+1∑
j=1

D1(Xis+j
)−

∑
0≤j<l≤q+1

D1(Xis+j
, Xis+l

)(13)

≤ qD1(Xis) + (q − 1)ν
∣∣∣∪q+1

j=0Xis+j

∣∣∣3/2 .
Combining (13) and (12) we obtain

q+1∑
t=2

(t− 1)D1(Xis+t
) ≤ qD1(Xis) +

((
q + 1

2

)
+ q − 1

)
ν
∣∣∣∪q+1

j=0Xis+j

∣∣∣3/2 ,
from which it follows, using maximality of D1,ν(Xis+t

), that

q(q + 1)

2
D1(Xis+q+1

) ≤ qD1(Xis) + (q(q + 1) + q − 1))ν
∣∣∣∪q+1

j=0Xis+j

∣∣∣3/2 .
So by (11)

D1(Xis+q+1
) ≤ 2

q + 1
D1(Xis) + 3(q + 1)3/2ν(k − 1)3/2.(14)

As |Vi| ≥ n/2 for all i < t we know by Theorem 4 that there exists a set
X ⊆ Vis of size at most k whose ρj-discrepancy satisfies

Dρj ,Gj
(X) ≥ max

j′∈[q]
min{ρj′ , 1− ρj′}Ck3/2

√
ln(C(ν) ln k),(15)

for some j ∈ [q]. Since the skew factor of this setX is at most νk3/2, it follows
that if k (or C(ν)) is large enough, then D1(Xis) ≥ 6(q + 1)5/2ν(k − 1)3/2.
Combining this with (14) finishes the proof of the claim. ♦
Claim 2 now implies that for s = m− q − 1 we have

D1(Xis) ≤
(

5

2(q + 1)

)s/(q+1)

D1(Xi1)

(where for simplicity we have assumed that s ≡ 0 (mod (q+1))). Note that
D1(Xis) ≥ 6(q+1)5/2ν(k−1)3/2 (by the proof of Claim 2) and that this is at
least 1 when k is large enough. From this we deduce that m is bounded by

(q + 1) ln(D(Xi1))

ln(25(q + 1))
+ (q + 1) ≤

2(q + 1)(1 + ln(25(q + 1))

ln(25(q + 1))
ln(k − 1)

=: c(q) ln(k − 1).
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So by (10) we deduce that at least one of the m sets Xi with i ∈ I1 sat-

isfies |Xi| ≥ C(ν)k
2qc(q) , which for C(ν) large enough contradicts the fact that

|Xi| ≤ k − 1 for all i ∈ I1. This proves the theorem.

In case ν = 0 in Theorem 1 the proof shows that the statement can
actually be strengthened to the case that (ρ1, . . . , ρq) are not constant. In-
deed, from (14) we can directly argue that m is bounded by a constant
depending on q times k−1. This means we do not need (15), which requires
that ρi is not too small in terms of k or C(ν). So we have the following
corollary, which in particular implies that for any graph G on n vertices,
g(G) = Ω(n/ lnn), partly answering the question of Falgas-Ravry, Mark-
ström, and Verstraëte [13].

Corollary 8. For any q ≥ 2 there exists a constant C such that for any
k ∈ N, any q-colouring of the edges of the complete graph on n = Ck ln k
vertices and any (ρ1, . . . , ρq) ∈ (0, 1)q such that

∑q
i=1 ρi = 1, there exists a

colour j ∈ [q] and set of vertices S of size � at least k such that the graph
induced by S in colour j has minimum degree at least ρj(�− 1).

Remark. By adapting some results in [15], which are based on discrepancy
results of Spencer [23] and Lovász, Spencer and Vesztergombi [18], one can
deduce from Theorem 1 that there is a set S of size exactly k which has
minimum degree at least ρi(k− 1) plus a constant times

√
(k − 1)/ ln k. We

leave the details to the reader.

4. A precise threshold for uniform hypergraphs

In this section we prove Proposition 3 and Theorem 2.

4.1. The linear regime

We prove Proposition 3 by combining a greedy deletion argument together
with probabilistic thinning, similar to what was done for graphs in [17]. We
require the following concentration inequality [20, Corollary 6.10].

Theorem 9 (McDiarmid [20]). Let Z1, . . . , Zn be random variables with
Zi taking values in a set Ai and let Z = (Z1, . . . , Zn). Let f :

∏
Ai → R

be measurable. Suppose there exist constants c1, . . . , cn such that for each
k = 1, . . . , n,∣∣E(f(Z) | Zi = zi, i ∈ [k])− E(f(Z) | Zi = zi, i ∈ [k − 1], Zk = z′k)

∣∣ ≤ ck
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for all (z1, . . . , zk−1) ∈
∏k−1

i=1 Ai and zk, z
′
k ∈ Ak. Then for all t > 0 we have

P(|f(Z)− E(f(Z))| > t) ≤ exp

(
−2t2

/
n∑

i=1

c2i

)
.

Using this result, we can prove the following lemma, which is a stan-
dard application of martingale inequalities, but we spell out the details for
completeness.

Lemma 10. Let H = (V,E) be an r-uniform hypergraph with N vertices
and p

(
N
r

)
edges. If S ⊆ V is a uniformly random subset of n distinct vertices,

then for any p > ε > 0,

P

(
e(H[S]) ≤ (p− ε)

(
n

r

))
< exp

(
−2ε2(n− 2(r − 1))

r2

)
.

Proof. We formulate the setup to apply Theorem 9. Pick the random subset
S by picking its vertices one at a time uniformly at random from the pool
of remaining vertices, and let Z1, . . . , Zn be the vertices picked, and let
Z = (Z1, . . . , Zn).

For v = (v1, . . . , vn) ∈ V n, writeH[v] := H[{v1, . . . vn}]. Let f : V n → N

be defined by setting f(v1, . . . , vn) to be the number of edges in H[v]. Note
that

P

(
e(H[S]) ≤ (p− ε)

(
n

r

))
= P

(
f(Z) ≤ (p− ε)

(
n

r

))
.

Write V (k) for the set of k-component vectors in which all components are
distinct. Furthermore, given z = (z1, . . . , zk) ∈ V k, write V (n)|z for the set
of vectors in V (n) whose first k components are (z1, . . . , zk).

Given two vectors z = (z1, . . . , zi−1, zi) and z′ = (z1, . . . , zi−1, z
′
i) ∈ V (i),

we define a function g : V (n)|z → V (n)|z′ such that g fixes v if z′i occurs
as a component of v and replaces zi with z′i in v if z′i does not occur as a
component in v. It is easy to see that g is a bijection.

Now we check the bounded difference condition in Theorem 9. Note first
that for z = (z1, . . . , zi−1, zi) ∈ V (i),

E (f(Z) | (Z1, . . . , Zi) = z) =
∑

v∈V (n)|z

(
N − i

n− i

)−1

e(H[v]).

Taking z′ = (z1, . . . , zi−1, z
′
i) ∈ V (i), we have∣∣E (f(Z) | (Z1, . . . , Zi) = z)− E

(
f(Z) | (Z1, . . . , Zi) = z′

)∣∣
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=

∣∣∣∣ ∑
v∈V (n)|z

(
N − i

n− i

)−1

e(H[v])−
∑

v∈V (n)|z′

(
N − i

n− i

)−1

e(H[v])

∣∣∣∣
=

∣∣∣∣ ∑
v∈V (n)|z

(
N − i

n− i

)−1

(e(H[v])− e(H[g(v)])

∣∣∣∣
≤ max

v∈V (n)|z
|e(H[v])− e(H[g(v)])| ≤

(
n

r − 1

)
.

The last quantity is bounded above by
(

n
r−1

)
because H[v] and H[g(v)]

are two hypergraphs that differ in at most one vertex. Now observing that
E(f(Z)) = p

(
n
r

)
and applying Theorem 9 with ck =

(
n

r−1

)
for all k yields the

result.

We can now give a proof of Proposition 3.

Proof of Proposition 3. Assume
∑q

i=1 ρi < 1 − ε for some ε > 0 and let
N = Ck, where C is to be determined later. Given any q-colouring of the
edges of the complete r-uniform hypergraph on N vertices, let Hi be the
subhypergraph consisting of edges coloured i and let pi be the edge density
of Hi. Then for some i, we must have that pi > ρi + ε/q. Set ε′ = ε/q. We
may assume without loss of generality that p1 > ρ1 + ε′.

Now, starting with H1 and n = N , we repeatedly remove an arbitrary
vertex of degree less than [ρ1 + (ε′/2)]

(
n−1
r−1

)
. If we continue for t iterations,

then we have removed at most

t∑
i=1

[ρ1 + (ε′/2)]

(
N − i

r − 1

)
= [ρ1 + (ε′/2)]

((
N

r

)
−
(
N − t

r

))

vertices from H1. So after t iterations the number of vertices is n = N − t
and the number of edges remaining in the hypergraph is at least

(ε′/2)

(
N

r

)
.

Since this hypergraph can only have at most
(
n
r

)
edges, it follows that

(ε′/2)

(
N

r

)
≤

(
N − t

r

)
.

It is easy to see that there exists c = c(ε′, r) such that for n = N − t ≤
cN , this inequality fails. Hence we find a set T of vertices such that with
|T | = n = cN vertices such that every vertex in H1[T ] has degree at least
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[ρ1 + (ε′/2)]
(
n−1
r−1

)
in H1[T ]. We want that |T | ≥ k, so it suffices to take

C ≥ 1/c.
Finally we pick S ⊆ T uniformly at random such that |S| = k. Let

v ∈ T . Then, conditional on v ∈ S, the set S \{v} is a uniformly random set
S′ ⊆ T \ {v} such that |S′| = k − 1. Now, if H ′ denotes the (r − 1)-uniform
hypergraph H ′ on T \ {v} induced by the at least [ρ1 + (ε′/2)]

(
n−1
r−1

)
edges

incident with v, then the degree of v is the same as e(H ′[S′]). So it follows
from the previous lemma that, conditional on v ∈ S, the probability that
the degree of v is at most [ρ1 + (ε′/4)]

(
k−1
r−1

)
is exponentially small in k.

Since the probability that v ∈ S is k/n, we have that, unconditionally, the
probability that there exists v ∈ T with degree at most [ρ1 + (ε′/4)]

(
k−1
r−1

)
is at most n · k

n exp(−Ω(k)) → 0 as k → ∞. We conclude that for large
enough k there exists S of size k such that H1[S] has minimum degree at
least [ρ1 + (ε′/4)]

(
k−1
r−1

)
, as required.

4.2. From polynomial to super-polynomial growth

Although we treat the significantly more general situation of hypergraphs
and multiple biased colours, our proof of Theorem 2 has strong similarities
to that of [17, Theorem 3].

Proof of Theorem 2(i). Let c be the constant from Theorem 4 and let C :=
maxj∈[q](cρj)

−1. Define for ν ≥ 0 and j ∈ [q] the following form of skew
discrepancy for a set S ⊆ V :

Dν,j(S) := Dρj ,Hj
(S)− ν|S|(r+1)/2

√
ln |S|.

Let X ⊆ V attain the maximum skew discrepancy over all subsets of V and
j ∈ [n]. By symmetry we may assume that it is attained at colour 1. Using
that

(
�−1
r

)
+

(
�−1
r−1

)
=

(
�
r

)
, we find by a similar argument as in the proof of

Claim 1, that

δ(H1[X]) ≥ ρ1

(
|X| − 1

r − 1

)
+ |X|(r−1)/2ν

√
ln |X|.

So it now suffices to show that |X| ≥ k. By Theorem 4 there exists a
set Y ⊆ V of size at most k2r/(r+1) such that Dρ1,H1

(Y ) ≥ cmin{ρ1, 1 −
ρ1}krνC

√
(1 + ε) ln k ≥ krν

√
(1 + ε) ln k. As ε > 0, the skew factor of X is

dominated by νkr
√

(1 + ε) ln k and hence for k large enough we know that
Dν,j(X) ≥ kr. This clearly implies that |X| ≥ k and finishes the proof.

For the proof of Theorem 2(ii), first we describe the expected behaviour
of what we refer to here as t-dense sets — vertex subsets that induce average
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degree deg at least t— in the random r-uniform hypergraphH
(r)
n,ρ with vertex

set [n] = {1, . . . , n} and hyperedge probability ρ. For this, we need a result
best stated with large deviations notation, cf. [4]. For ρ ∈ (0, 1), let

Λ∗
ρ(x) =

{
x ln x

ρ + (1− x) ln 1−x
1−ρ for x ∈ [0, 1]

∞ otherwise

(where Λ∗
ρ(0) = − ln(1−ρ) and Λ∗

ρ(1) = − ln ρ). This is the Fenchel-Legendre
transform of the logarithmic moment generating function associated with
the Bernoulli distribution with probability ρ (cf. Exercise 2.2.23(b) of [4]).
Some calculus checks that Λ∗

ρ(x) has a global minimum of 0 at x = ρ, is
strictly decreasing on [0, ρ) and strictly increasing on (ρ, 1]. The following
is a straightforward adaptation of Lemma 2.2(i) in [16] and bounds the

probability that a given subset of k vertices in H
(r)
n,ρ is t-dense.

Lemma 11. Given t, k with t ≥ ρ
(
k−1
r−1

)
,

Pr
(
deg

(
H

(r)
k,ρ

)
≥ t

)
≤ exp

(
−
(
k

r

)
Λ∗
ρ

(
t

/(
k − 1

r − 1

)))
.

Proof of Theorem 2(ii). For any η > 1 let

n =

⌊
kν(k)

2+1

ηe

⌋
,

where k is some large enough integer. For each i ∈ [q] we write

fi(�) = ρi

(
�− 1

r − 1

)
+ ν(�)

√
r

(
�− 1

r − 1

)
ln �.

Let us consider a random q-colouring of
(
[n]
r

)
, the hyperedges of K

(r)
n , where

independently and uniformly each hyperedge is assigned the colour i with
probability ρi. So, writing Hi for the subhypergraph induced on [n] by the
hyperedges of colour i, we see that Hi is distributed as the random r-uniform

hypergraph H
(r)
n,ρi .

Given a subset S ⊆ [n] of � ≥ k vertices, let AS be the event that
deg(Hi[S]) ≥ fi(�) for some i ∈ [r]. Since fi(�) ≥ ρi

(
�−1
r−1

)
for each i, we have

by Lemma 11 that

Pr(AS) ≤
q∑

i=1

exp

(
−
(
�

r

)
Λ∗
ρi

(
fi(�)

/(
�− 1

r − 1

)))
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≤
q∑

i=1

exp

(
−
(
�

r

)
Λ∗
ρi

(
ρi + ν(�)

√
r ln �

/(
�− 1

r − 1

)))
.

Now, writing

ε = ε(�) = ν(�)

√
r ln �

/(
�− 1

r − 1

)
,

we have by Taylor expansion of Λ∗
ρi

(assuming ε < min{ρi, 1− ρi}) that

Λ∗
ρi
(ρi + ε) = (ρi + ε) ln

(
1 +

ε

ρi

)
+ (1− ρi − ε) ln

(
1− ε

1− ρi

)

=

∞∑
j=1

ε2j

(2j − 1)2j

(
1

ρi2j−1
+

1

(1− ρi)2j−1

)

+

∞∑
j=1

ε2j+1

2j(2j + 1)

(
1

(1− ρi)2j
− 1

ρi2j

)

=
ε2

2ρi(1− ρi)
+O(ε3) ≥ ε2

for ε small enough (and hence k large enough). So the probability that AS

holds for some set S ⊆ [n] of � ≥ k vertices is at most

∑
S⊆[n],|S|≥k

Pr(AS) ≤
n∑

�=k

(
n

�

) q∑
i=1

exp

(
−
(
�

r

)
Λ∗
ρi
(ρi + ε)

)

≤ q

n∑
�=k

(
en

�
exp

(
−1

r

(
�− 1

r − 1

)
ε2
))�

≤ q

n∑
�=k

η−� < 1,

where in this sequence of inequalities we have used the definition of n, the
fact that � ≥ k and η > 1, and a choice of k large enough. Thus for k large

enough there is a q-colouring of the edges of K
(r)
n where for each i ∈ [q]

every vertex subset of size � ≥ k induces a subhypergraph in colour i with
average degree less than fi(�), so the result follows.

5. Concluding remarks and open questions

Let us introduce some notation to facilitate our discussion. Fix q ≥ 2 and
let (ρi)

q
i=1 be a sequence of q numbers in [0, 1]. Given a colouring φ of the

complete r-uniform hypergraph K
(r)
n on vertex set [n] that assigns each hy-
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peredge a colour from [q], we let Hφ,j denote the subhypergraph ([n], φ−1(j))

induced by all hyperedges of colour j for j ∈ [q]. The basic question now

becomes the following: for any k, what is the smallest number n := R
(r)
(ρi)i

(k)

such that, for any q-colouring φ of the hyperedges of K
(r)
n , there is guaran-

teed to be a subset S ⊆ [n] of size � at least k such that the subhypergraph
Hφ,j [S] induced on S in colour j has minimum degree at least ρj

(
�−1
r−1

)
for

some j ∈ [q]? We may also ask this question with average degree instead

of minimum degree and denote the corresponding number R
(r)
(ρi)i

(k). Clearly

R
(r)
(ρi)i

(k) ≤ R
(r)
(ρi)i

(k) always. We refer to R
(r)
(ρi)i

(k) and R
(r)
(ρi)i

(k) as q-colour

hypergraph quasi-Ramsey numbers. Note that when
∑q

i=1 ρi = q we retrieve
the ordinary hypergraph Ramsey-numbers.

With this notation we see that for
∑q

i=1 ρi < 1, Proposition 3 shows that

R
(r)
(ρi)i

(k), and hence R
(r)
(ρi)i

(k), has linear growth in k; Theorem 2 precisely

describes the transition from polynomial to super-polynomial growth of the

q-colour hypergraph quasi-Ramsey numbers. In particular, for
∑q

i=1 ρi > 1,

Theorem 2(ii) implies that R
(r)
(ρi)i

(k), and hence R
(r)
(ρi)i

(k), is at least singly

exponential in k. This implies for hypergraph quasi-Ramsey numbers that,

irrespective of a well-known conjecture of Erdős, Hajnal and Rado [8] (con-

cerning the case
∑q

i=1 ρi = q), there must be a transition for r-uniform

hypergraphs with r ≥ 4 from singly exponential to doubly exponential (or
higher) growth in k that takes place for 1 <

∑q
i=1 ρi ≤ q. It would be an

interesting challenge to understand the nature of this transition.

We note that if all the ρi are uniformly bounded below 1, Conlon, Fox

and Sudakov [2, 3] proved results that imply R
(r)
(ρi)i

(k), and hence R
(r)
(ρi)i

(k),

has growth that is at most singly exponential in k:

Proposition 12 (Conlon, Fox and Sudakov [2, 3]). Let r ≥ 2. Fix q ≥ 2

and ε > 0 and let ρ1 = · · · = ρq = 1− ε. Then

R
(r)
(ρi)i

(k) =

{
2O(k2) if q = 3 [3, Theorem 2] and

2O(kD) if q ≥ 4 [2, Proposition 6.3]

where D > 0 is a fixed constant that depends on r, q and ε.

Along these lines, a first question to resolve is perhaps whether a strength-

ening of Proposition 12 holds: given r ≥ 3, q ≥ 2 and ε > 0, is there some

D such that lnR
(r)
(ρi)i

(k) = O(kD) if
∑q

i=1 ρi < q − ε? Or could it instead be

the case, say, that, given r ≥ 4, q ≥ 2 and ε > 0, there is some D > 0 such
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that ln lnR
(r)
(ρi)i

(k) = Ω(kD) if ρ1 = 1 and ρi = ε/(q − 1) for i ∈ {2, . . . , q}?
These questions can be considered part of a refinement of a problem of Erdős
(cf. [21, pp. 21–22]), a problem he described as “interesting and mysterious”
and for whose solution he offered $500. Borrowing his intuition, it might be
more natural to believe that the answer to the first question is ‘yes’ and to
the second ‘no’. On the other hand, in light of a result of Erdős and Hajnal
that was mentioned in the introduction, the answers could depend on r and
q.
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[8] P. Erdős, A. Hajnal, and R. Rado. Partition relations for cardinal num-
bers. Acta Math. Acad. Sci. Hungar., 16:93–196, 1965. MR0202613

http://www.ams.org/mathscinet-getitem?mr=2223387
http://www.ams.org/mathscinet-getitem?mr=2552253
http://www.ams.org/mathscinet-getitem?mr=2773050
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=0014608
http://www.ams.org/mathscinet-getitem?mr=0019911
http://www.ams.org/mathscinet-getitem?mr=0928742
http://www.ams.org/mathscinet-getitem?mr=0202613


108 Ross J. Kang et al.

[9] P. Erdős and J. Pach. On a quasi-Ramsey problem. J. Graph Theory,
7(1):137–147, 1983. MR0693030
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