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Rational exponents for hypergraph Turan problems

Matthew Fitch

Given a family of k-hypergraphs F , ex(n,F) is the maximum num-
ber of edges a k-hypergraph can have, knowing that said hyper-
graph has n vertices but contains no copy of any hypergraph from
F as a subgraph. We prove that for a rational r, there exists some
finite family F of k-hypergraphs for which ex(n,F) = Θ(nk−r) if
and only if 0 ≤ r ≤ k − 1 or r = k.

1. Introduction

Given an integer k ≥ 2, a k-hypergraph G is a set of points (called the
vertices), together with a collection of k-subsets of the vertices (called the
edges). For such a k-hypergraph, |G| refers to its number of vertices and
e(G) refers to the number of edges.

Given k-hypergraphs G and X, a graph homomorphism (often shortened
to homomorphism) from G to X means a function f that assigns to each
vertex of G some vertex in X and that also preserves edges, i.e. for every
edge {x1, x2..., xk} in G, {f(x1), f(x2), ..., f(xk)} is also an edge of X. The
set of all such graph homomorphisms is called Hom(G,X). The image of
such a graph homomorphism is called a homomorphic copy of G in X.

Given k-hypergraphs G and X, Inj(G,X) is a subset of Hom(G,X), and
is defined to be the set of all injective graph homomorphisms from G to
X, i.e., those homomorphisms f with the property that for any 2 distinct
vertices x and y, f(x) �= f(y). When | Inj(G,X)| ≥ 1 we say that X contains
G as a subgraph.

Given an integer k ≥ 2 and a family F of k-hypergraphs, ex(n,F) is
defined to be the maximum number of edges across all k-hypergraphs that
have n vertices and do not contain any element of F as a subgraph. In
general, this quantity can be anything from 0 (as in the case F = {E},
where E is just a single edge) to

(
n
k

)
(as in the case where F is empty).

Finding ex(n, {F}) for a fixed graph or hypergraph F is known as the
Turán problem. For ordinary (k = 2) non-bipartite graphs, we have a rea-
sonable understanding: Turán gave an exact solution when F is a complete
graph [12], while Erdös and Stone gave an asymptotic solution for any non-
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bipartite graph [4]. However, for bipartite graphs and more general hyper-
graphs (k ≥ 3), very little is known, not even asymptotically. It is a major
open problem in extremal combinatorics to come up with some sort of un-
derstanding of these numbers.

For a lot of families of hypergraphs, ex(n,F) is of order Ω(nk). However,
there are some for which ex(n,F) is of order o(nk). We call this case a
degenerate Turán problem. This categery includes the bipartite graph case
and these are going to be the ones we will look at in this paper.

In 1979, Erdős conjectured that for every rational r between 1 and 2,
there exists a finite family of bipartite graphs F with ex(n,F) = Θ(nr) [2].
This conjecture was later proved in 2015 by Bukh and Conlon [1].

In 1986, Frankl proved a related result for hypergraphs: for every rational
r ≥ 1, there exists some k ∈ N and some finite family F of k-hypergraphs
such that ex(n,F) is of order nr. (Sidenote: the F that Frankl used also had
the property that every F ∈ F had exactly 2 edges.) [5].

In 2016, Ma, Yuan and Zhang discovered an infinite family of k-hyper-
graphs for which they could solve the Turán problem asymptotically. They

proved that K
(k)
s1,s2,...,sk , the complete k-partite k-hypergraph with partition

sizes s1, s2, ..., sk has ex(n,K
(k)
s1,s2,...,sk) = Θ(n

k− 1

s1s2s3...sk ) [8].
In this paper, we will extend Bukh and Conlon’s result to hypergraphs,

i.e., we will prove that for every rational r between 1 and k, there exists a
finite family of k-hypergraphs F with ex(n,F) = Θ(nr). This also an im-
provement on Frankl’s result since we now have a family of k-hypergraphs for
all k ≥ r, instead of for just one specific k. This is also of interest as an infinite
family of k-hypergraphs for which the answer to the Turán problem is known.

To prove this we will use similar methods as Bukh and Conlon, both in
the construction of F and for the lower bound. However, the proof of the
upper bound (ex(n,F) ≤ c·nr for some constant c) does not easily generalise
to hypergraphs. We come up with an alternative proof, where [11] ends up
being very helpful.

For simplicity, we will be exchanging r and k−r for the rest of the paper.
We will at first only consider the case where 0 ≤ r < 1:

Theorem 1. Given a rational r, 0 ≤ r < 1, there exists some finite collec-
tion of k-hypergraphs F such that ex(n,F) = Θ(nk−r).

Our first section deals with the construction of the family of hypergraphs
F that will solve Theorem 1. They will be hypergraph versions of the graphs
from [1].

In our second section, we prove the lower bound, i.e. that ex(n,F) ≥
Θ(nk−r). This involves constructing a hypergraph with n vertices and
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Θ(nk− a

b ) edges but that does not contain any copy of any hypergraph from
F . The proof is again adapted from [1].

In our third section, we prove the upper bound, i.e. that ex(n,F) ≤
Θ(nk−r). However, unlike in the first two sections, the proof from [1] cannot
be easily extended to hypergraphs. We instead use a partial version of the
Sidorenko Conjecture [9] (also conjectured by Simonovits [10]) from the
paper of Szegedy [11]. When n is a sufficiently large interger, this allows us
to find some copy of an element of F in any hypergraph X with n vertices
and with at least Θ(nk−r) edges, thereby proving the upper bound.

In our final section, we consider what happens for other rs. We first
extend the result from 0 ≤ r < 1 to 0 ≤ r ≤ k − 1:

Theorem 2. Given a rational r, 0 ≤ r < k− 1, there exists some collection
of k-hypergraphs F such that ex(n,F) = Θ(nk−r).

Observation: The case where k − 1 < r < k is impossible. This is a
corollary of the Sunflower Lemma [3], which involves hypergraphs called
sunflowers. A sunflower is a k-hypergraph which contains a specific kernal,
a set between 0 and k − 1 points, and any two edges of the sunflower in-
tersect in exactly the kernal. The sunflower lemma states that whenever F
is a collection of k-hypergraphs such that for all 0 ≤ i ≤ k − 1, F con-
tains a sunflower with kernal size i, then ex(n, F ) is bounded by a constant
(independent of n). We shall provide more details in the final section.

Some notation: P(A) means the probability that event A will occur.
E(B) means the expected value of the random variable B
P(A|C) and E(B|C) mean respectively the probability of A and the

expectation of B given that event C will occur.

Algebraic geometry

The proof will use some algebraic geometry. What follows in this section is
a brief overview of the results we will use. See [6] for more information and
proofs.

Definition 1. (1.1.2 in [6]) Given an algebraically closed field F, an affine
algebraic variety V (often shorted to just variety) over F is a set of points in
Fn such that there exist finitely many polynomials, P1, P2, ..., Pm all defined
over F with n variables, such that: V = {(x1, x2, ..., xn) ∈ F

n | ∀i Pi(x1, x2, ...,
xn) = 0}.
Lemma 1. (1.1.4 and 1.1.5 in [6]) If U and V are varieties over F, then
U ∩ V and U ∪ V are also varieties over F.
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Definition 2. (1.1.10 in [6]) Given a variety V over F, we say that V is
reducible if there exist varieties U,U ′ � V such that V = U ∪ U ′. If V is
not reducible, we say it is irreducible.

Lemma 2. (1.1.12a in [6]) A variety V can be decomposed uniquely (up to
ordering) into maximal irreducible components: V = U1∪U2∪ ...∪Uk where
the Ui are all irreducible.

That means that if we have two decompositions V =
⋃k

i=1 Ui =
⋃l

j=1 U
′
j,

then for every 1 ≤ i ≤ k, there exists some 1 ≤ j ≤ l such that Ui ⊆ U ′
j and

vice-versa.
Furthermore, the number of components in such a decomposition is

bounded above by dm where m is the number of polynomials that generate
the variety, and d is their maximum degree.

Definition 3. (1.2.15 to 1.2.17 in [6]) Given a non-empty irreducible va-
riety V over F, its dimension δ is the length of the longest sequence: V =
Vδ � Vδ−1 � Vd2

� ... � V0 � ∅, where every Vi is irreducible. This is well
defined for every non-empty irreducible variety.

When V is reducible, we say its dimension is the largest dimension of
one of its irreducible components.

It is fairly easy to see that a finite set of points has dimension 0, the space
F
n
has dimension n, and that when V is a non-empty variety generated by

k polynomials in n variables: P1, P2, ..., Pm ∈ F[X1, X2, ..., Xn], then V has
dimension at least n−m.

Although we require F to be algebraically closed for the theory to work,
most practical applications involve fields that are not algebraically closed.
However, this isn’t a problem because if F′ is an arbitrary field, then it has
an algebraic closure F′. We can then the use properties of algebraic varieties
over F′ to say things about the corresponding set over F′:

Definition 4. Given a variety V over an algebraically closed field F and
a subfield F′ ⊆ F (which might not be algebraically closed), the F′-rational
points of the variety, denoted by V (F′), are defined to be the points of V that
can be written using elements of F′, i.e.: V (F′) = V ∩ F′n.

Theorem 3. (Lang-Weil bound) [7] Let Fp be the finite field of order p,
where p is a power of a prime. Let V be an irreducible variety of dimension
δ over Fp. Then V (Fp) is either empty or has |V (Fp)| = pδ(1 +O(p−1/2))

2. The set of hypergraphs

Since r is a rational smaller than 1, we can write r = a
b for a and b positive

integers and b > a. By multiplying a and b by some constant, we can assume
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without loss of generality that b ≥ a− k + 3. Now given a,b,k integers such

that b ≥ a− k + 3, consider the hypergraph as in the picture:

◦ ◦ ◦ ◦ ◦ ◦ ... ◦

•

•

•

•

•

•

•

•

•

•

•
... } b− a + k − 1

} a
Example of the hypergraph T in the case k = 3

It is essentially a hypergraph version of the graph from [1]. It is com-

prised of an ordered set of a vertices (in white) with edges (the ellipses) being

sets of k vertices in a row. We add to this b − a + k − 1 vertices (in black)

and for each one, an edge (the triangles) connecting it to k− 1 vertices in a

row. This makes the total number of edges to be b. These black vertices are

as evenly spaced as possible (see picture below). Formally, the ith black ver-

tex is connected to the �1 + (i−1)(a−k+2)
b−a+k−2 
th (k− 1)-set of consecutive white

vertices. There is one exception, and that is the last (i.e.: (b− a+ k− 1)th)

black vertex is connected to the last (i.e.: (a − k + 2)th) consecutive set of

white vertices, not, as the formula suggests, the (a− k+ 3)th, because that

one doesn’t exist. We call the vertex-set of this hypergraph T , the subset of

black vertices R and call these black vertices the roots of T .

consecutive sets of
k − 1 white vertices

black vertices)
(i.e., the roots)

[ [ [ [ [ [ ]
1 2 3

...
a− k + 1

a− k + 2

1 2 3 4 5 ... b−
a+

k −
4

b−
a+

k −
3

b−
a+

k −
2

b−
a+

k −
1

Example of how the roots are connected

to the sets of k − 1 consecutive non-roots

In this picture for example, the second (k − 1)-set of non-roots is
connected to both the 3rd and 4th root but no others. When a root lands
exactly on a border, it gets connected to the (k − 1)-set corresponding to
the interval on its right EXCEPT for the very last one, which gets con-
nected to the (k − 1)-set on its left (because there is nothing to the right)
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2.1. T is balanced

Definition 5. Given a set S of non-roots, define ε(S) to be the number of
edges that contain a point of S.

Definition 6. A rooted k-hypergraph U with vertex set U and set of roots

R is balanced if for any subset S ⊂ U −R, we have: ε(S)
|S| ≥ ε(U−R)

|U−R| .

Notice that in the case of our hypergraph T (whose vertex set is T ), we
have ε(T −R) is the total number of edges in the hypergraph, i.e. ε(T −R) =
b.

Lemma 3. The hypergraph T defined above is balanced.

Proof. First of all, if every edge of T contains an element of S, then the result
is trivial since |S| ≤ |T − R|. Without loss of generality, we can therefore
assume that there is at least one edge that doesn’t contain any element of S,
which means there is a section of length at least k− 1 that does not contain
any element of S. Call this a hole. We also seperate S into a sequence of
blocks, by which we mean a maximal sequence of elements of S with no gaps
between them.

Suppose we have a block directly to the left of a hole and also suppose
that it does not contain the leftmost vertex of T . Call this block R. What
happens if we shift the entire block to the left? Because the black vertices
(roots) are evenly distributed, the number of edges containing roots (the
triangular edges) adjacent to R varies by at most 1. The number of edges
not containing roots (the elliptical edges) containing a point of R stays the
same unless we are reaching the left edge of T , in which case it goes down. If
we do not reach the left side of T , then that means there is another block in
the way. In this case, the edges containing points of that block and the edges
containing points of R will start to coincide. Regardless of which case we are
in, when we do this step, the number of elliptical edges containing elements
of S goes down by at least 1, while the number of triangular edges changes
by at most 1; therefore, the overall number of edges containing elements of
S goes down or stays constant, while |S| stays constant. Therefore, we can
assume without loss of generality that this step has been completed.

By repeating this step multiple times, we can move blocks left until they
merge with other blocks, and then continue moving the bigger blocks until
we eventually have everything to the left of the hole is in one big block as
left as it can go. By a similar argument, everything to the right of the hole
is in one big block as far right as it goes. Say the big block on the left has
size x and the one on the left has size y.



Rational exponents for hypergraph Turan problems 67

If the total number of vertices in left big block is x then we get x elliptical
edges. The triangular edges we get are those that connect to the first x
(k−1)-sets. Recall from the definition, that the ith triangular edge connects

to the �1 + (i−1)(a−k+2)
b−a+k−2 
th (k − 1)-set. Therefore, the number of triangular

edges is the maximal i such that �1+ (i−1)(a−k+2)
b−a+k−2 
 ≤ x, i.e. s.t. (i−1)(a−k+2)

b−a+k−2 <

x, i.e. i = �x(b−a+k−2)
a−k+2 �. Similarly, we can calculate the number of elliptical

edges in the right big block as y and the number of triangular edges in

it as �y(b−a+k−2)
a−k+2 
 + 1. Therefore ε(S) is at least |S| + � |S|(b−a+k−2)

a−k+2 � =

�|S| b
a−k+2� ≥ |S| ba . Thus, T is indeed a balanced rooted hypergraph.

Definition 7. T ≤s, the sth power of the rooted hypergraph T , is defined
to be the set of all k-hypergraphs that are formed by taking the union of s
copies of T and making them agree on the roots. For the non-roots (i.e., the
s copies of each non-root), any disposition is allowed: they can be distinct,
they can coincide with each other, or they can even coincide with different
non-roots from other copies of T .

Definition 8. T s = T ≤s\T ≤s−1.

Lemma 4. For any H in T s, the number of edges in H is at least (|H| −
|R|) ba .
Proof. We prove this lemma by induction. The case s = 1 is trivial since
then H = T .

Given H ∈ T s, we can write v(H) as v(H ′) ∪ S where H ′ is in T s−1

and S is all the extra vertices from the sth copy of T that aren’t already
included in H. We can consider S as a subset of T −R. Since T is balanced,
we have that the number of edges containing an element of S is at least |S| ba .
By induction, the number of edges in H ′ is at least (|H ′|− |R|) ba . Therefore,
the total number of edges in H is at least (|S|+ |H ′|− |R|) ba = (|H|− |R|) ba .

Therefore, by induction, we have proved that H has at least |H − R| ba
edges.

The set of hypergraphs F we will take to prove Theorem 1 is T p for a
and b such that r = a

b and some sufficiently large p (which we will define
later as a function of a, b and k).

3. The lower bound

To prove that ex(n,F) ≥ Θ(nk−r), we need to construct a hypergraph X
with at least Θ(nk−r) edges but without any copies of F . The hypergraph
we will take will also be a hypergraph version of the graph from [1].
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Pick constants s = b(b− a+ k − 1) + a+ 1 and d = bs− 1 = b2(b− a+
k − 1) + ab+ b− 1. Then pick a sufficiently large prime q. In particular, we
will require q ≥

(
d+1
2

)
.

The set of vertices of X is Fb
q�Fb

q� ...�Fb
q, where there are k copies of Fb

q.
Also pick uniformly independently at random a polynomials in k variables
of degree at most d: f1, f2, ..., fa: F

b
q × Fb

q × Fb
q × ... × Fb

q → Fq (there are

k copies of Fb
q). [Note: picking a polynomial of degree at most d at random

here means that for every coefficient of degree ≤ d, pick an element of Fq

uniformly at random and independently of the others.] The edges of X are
defined to be (x1, x2, ..., xk) such that fi(x1, x2, ..., xk) = 0 for all i.

Thus X is k-partite and has kqb = N vertices. The set of edges of X are
equivalent to the rational points of variety V (Fq), defined by a polynomials:
f1, f2, ..., fa. By the Lang-Weil bound [7], this variety is either empty or has
size at least (c−Θ(q−1/2)∗qdim(V ), where c is some constant depending only
on k,a,b and d but is independent of q. Since we have only a polynomials
defining the variety, we have dim(V ) ≥ bk−a (unless it’s empty). Therefore,
either there are 0 edges inX, or there are at least Θ(qbk−a) = Θ(Nk− a

b ) edges
in X, no matter which fis we choose.

3.0.0.1. Probability that X is empty Suppose we have already picked all
the non-constant coefficients of all the fis. Pick some points (x1, x2, ..., xk)
arbitrarily. Then for each fi, there is exactly one value for the constant
coefficient that makes fi(x1, ..., xk) = 0. The probability we pick it is 1/q.
Multiplying these together, the probability we pick exactly the right value
for every fi is 1/qa because we picked the functions independently of each
other. Therefore,X contains (x1, x2, ..., xn) (and in particular, is non-empty)
with probability at least 1/qa. For the next parts, we’ll only be considering
the case where X is indeed non-empty.

3.0.0.2. Proof that this hypergraph is T p-free with positive probability Given
a copy A of a hypergraphH ∈ T ≤s in X, we know it has an ordered set of b−
a+k−1 roots. We’ll call this ordered set r(A) = (w1, w2, ..., wb−a+k−1) = w.

Before finding a suitable A ∈ T m, we’ll start by picking out a potential
candidate for r(A). This means we are arbitrarily picking an ordered set of
b− a+ k − 1 vertices: (w1, w2, ..., wb−a+k−1) = w. Now in some cases, some
wis might be in the wrong parts which makes it impossible for any copy of T
to appear with those roots. We will assume we are not in this case, and that
the wis are all in the correct parts so that copies of T are in fact possible.
We will consider these wis as elements of Fb

q.
Let C be the set of all copies of T in X that have w1, w2, ..., wb−a+k−1

as its roots. We are interested in this because whenever we have a copy
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of a hypergraph of T p with the given roots, that implies |C| ≥ p. For the

moment, our goal will be to find an upper bound for P(|C| ≥ p), since that

will also be an upper bound on the probability of getting a copy of T p.

Lemma 5. Given k, a,b and d, there exists some p such that for all q

sufficiently large, |C| ≥ p ⇔ |C| ≥ q/2

[Note: This is how we define the p when we did F = T p. Since d is

defined as a function of a and b, this p only depends on a, b and k.]

Proof. We will treat vertices of our hypergraph as elements in Fb
q. Further-

more, we will identify copies of T rooted at w with vectors of the form

(x1, x2, ...xa), where the xis represent the a non-roots in our copy of T in

the correct order.

When is (x1, x2, ..., xa) in C?. It is in C iff (1) all the sets of the form

{xj , xj+1, ..., xj+k−1} and {xj , xj+1, ..., xj+k−2, wl} that correspond to edges

of T are actually edges in X and (2) xi �= xj whenever those two vertices

are in the same part and (3) xi �= wj whenever those two vertices are in the

same part.

The first condition is equivalent to for all i, j, fi(xj , xj+1, ..., xj+k−1) = 0

and for all i, j, fi(xj , xj+1, ..., xj+k−2, wl) = 0 whenever this corresponds to

an edge of T . So the set of {x1, x2, ..., xa} that satisfy condition (1) form

the rational points of a variety V , made up of at most a · b equations, each

of degree at most d.

The second and third condition together make up a system of at most(
a
2

)
+ a · (b − a + k − 1) complements of linear equations, so the set of

(x1, x2, ..., xa)s that satisfy these conditions is the complement of the rational

points of a variety U made up of the product of at most
(
a
2

)
+a·(b−a+k−1)

linear equations.

We have C ∼= V (Fq)\U(Fq), where the 2 varieties, U and V , both have

bounded complexity. We can then split V into a number of irreducible

components V = V1 ∪ V2 ∪ ... ∪ Vv, where v is bounded as a function of

the complexity, i.e. it depends on a,b,d and k but not on q. Then C ∼=
V1(Fq)\U(Fq)∪ V2(Fq)\U(Fq)∪ ...∪ Vv(Fq)\U(Fq). Now for each irreducible

component Vi, either Vi ⊂ U (in which case Vi\U = ∅, so we can ig-

nore this component), or Vi ∩ U has dimension strictly smaller than Vi.

By the Lang-Weil bound [7], |Vi(Fq)| = (1 + O(q−1/2)) · qdim(Vi), while

|Vi(Fq) ∩ U(Fq)| = (c + O(q−1/2)) · qdim(Vi∩U) for some c that is bounded

as a function of the complexity (independent of q). Therefore, when q is

large enough, we have 2qdim(Vi) > |Vi(Fq)\U(Fq)| ≥ 1
2q

dim(Vi). Adding all

the pieces up, we have 2v · qdim(V ) > |V (Fq)\U(Fq)| ≥ 1
2q

dim(V ). When
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dim(V ) ≥ 1, this gives us |V (Fq)\U(Fq)| ≥ q/2. Otherwise, dim(V ) = 0 and
|V (Fq)\U(Fq)| < 2v.

Since v is bounded by a function of a, b, d and k, we can set p to be twice
the upper bound, which ensures that |V (Fq)\U(Fq)| < p when dim(V ) = 0.
Now the lemma is proved: we either have |C| ≥ q/2 or |C| < p, as required,
(where p is independent of q).

Continuing on with the main proof, we have P(|C| ≥ p) = P(|C| ≥
q/2) = P(|C|s ≤ (q/2)s), which by Markov’s inequality is ≤ E(|C|s)

(q/2)s . We

now want to calculate E(|C|s). Because T ≤s was defined to be the set of all
graphs you can make by taking the union of s copies of T all rooted at the
same place, an element of |C|s corresponds to a copy of an element H in
T ≤s (obtained by taking the union). Also, for every element H in T ≤s, let
γs(H) be the number of ways of expressing it as a union of s copies of T .
This means that:

E(|C|s)) ≤
∑

H∈T ≤s

γs(H) · E(|{A ∈ Hom(H,X) : r(A) = w}|)

To get any further, we will need the following lemma:

Lemma 6. For any H ∈ T ≤s, we have E(|{A ∈ Hom(H,X) : r(A) =
w}|)) = qb·|H|−a·e(H). In other words, the expected number of copies of H
rooted at w is equal to qb·|H|−a·e(H)

Proof. Callm = |H|−|R|. We have: (x1, x2, ..., xm) forms a copy ofH rooted
at w if and only if for all i, fi(xj1 , xj2 , ..., xjk) = 0 whenever this corresponds
to an edge of H and for all i, fi(xj1 , xj2 , ..., xjk−1,wjk

) = 0 whenever that
corresponds to an edge of H. The fis are independent from each other so
we only need to find, for each i, the probability that fi(xj1 , xj2 , ..., xjk) = 0
whenever this corresponds to an edge of H and fi(xj1 , xj2 , ..., xjk−1,wjk

) = 0
whenever that corresponds to an edge of H.

For simplicity, we shall call the e(H) points in (Fb
q)

k corresponding to
edges of H: y1, y2, ..., ye(H) and fix them. We want to calculate P( ∀j fi(yj) =
0), knowing that fi is a random polynomial of degree ≤ d. We can first
without loss of generality make a change of variable π such that the first
coordinate of each yj is different. To do so, we proceed as follows: a change
of variable is just an invertable bk × bk matrix acting on the yjs. The first
coordinates of π(yj) is given by the dot product of yj with the first row
vector of π. Given any j and j′, the first coordinate of π(yj) is equal to
the first coordinate of π(yj′) if and only if the elements of first row vector
of π satisfy some linear equation. Thus by repeating this operation over all
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choices of j, j′, we get a set of
(
e(H)
2

)
linear equations in bk variables. The set

of all possible first rows for π has size qbk−1 (we have bk coordinates and the
only thing we require is that not all of them are 0). The set of all possible
first rows that satisfy one particular linear equation has size qbk−1−1 (there
is some variable that we can express as a function of the bk − 1 others, and
we still disallow the 0). So if we disallow all first rows that satisfy one of

the equations, we end up with at least qbk − 1 −
(
e(H)
2

)
(qbk−1 − 1) possible

first rows of π. Note that because H ∈ T s, we have e(H) ≤ sb = d+ 1, and

since we assumed that q >
(
d+1
2

)
, we have

(
e(H)
2

)
/q < 1. Thus, this number

is positive, so there is some choice for a first row of π that makes the first
coordinate of each π(yj) different. From there, add on the other bk− 1 rows
of π arbitrarily just making sure that π is invertable. On top of replacing
the yjs, we’ll also be replacing fi with fiπ

−1 so that fi(yj) stays the same.
Note that because fi was chosen uniformly at random amongst polynomials
of degree at most d and because π is a bijection, fiπ

−1’s distribution is also
uniform amongst polynomials of degree at most d. Therefore, without loss
of generality, we can assume that the first coordinate of the yjs are distinct.
We’ll let zj be the first coordinate of yj .

Now suppose we are given a random polynomial of degree at most d:
f(x1, x2, ..., xkb). Consider the coefficients in front of the terms 1, x1, x

2
1,

x31,... and x
e(H)
1 ; call them c0,c1,...,ce(H) respectively. These cis are random

variables chosen independently and uniformly in Fq. We can write f as:

f = c0 + c1x1 + c2x
2
1 + ...+ ce(H)x

e(H)
1 + f ′

where f ′ consists of all the other terms that aren’t already written down.

By letting c′e(H)−1 = ce(H)−1 + ce(H)ze(H), we can rewrite ce(H)x
e(H)
1 +

ce(H)−1x
e(H)−1
1 as ce(H)x

e(H)−1
1 (x1−ze(H))+ c′e(H)−1x

e(H)−1
1 . Note that since

ce(H)−1 was chosen uniformly at random in Fq independent of all the other
cs and independently of f ′, c′e(H)−1 also has the same properties. We can
repeat this process multiple times until we write f as:

f = f ′ + c0 + (x1 − z1)

×
[
c′1 + (x1 − z2)

[
c′2 + (x1 − z3)

[
...
[
c′e(H)−1 + (x1 − ze(H))c

′
e(H)

]
...
]]]

where all the c′is are uniformly chosen in Fq independently of each other and
independently of f ′.

Suppose we fix f ′. The polynomial is 0 at y1 iff c′0 = −f ′(y1), which
has probability 1/q. Then given that f(y1) = 0, the polynomial is 0 at y2 iff
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c′1 =
c′0+f ′(y2)
z1−z2

, which also has probability 1/q (remember that all the zis were
distinct so w are not dividing by 0). We continue in this fashion by induction
until we reach f(ye(H)) is 0 with probability 1/q given that all the others
are also 0. Multiplying everything together, we get that the probability that
f(yj) = 0 for all j is q−e(H).

Going back to the last inequality, we get the probabilibity that (x1, x2, ...,
xm) forms a copy of H rooted at w is equal to

∏a
i=1 q

−e(H) = q−a·e(H).
Therefore, the expected number of copies of H rooted at w is equal to
qb·|H|−a·e(H) and the lemma is proved.

Remember from Lemma 4 that for all Hs in T ≤s, we have e(H) ≥ |H| ba ,
so by combining Lemmas 4 and 6 we get: E(|{A ∈ Hom(H,X) : r(A) =
w}|) ≤ 1.

Putting this back in the previous inequality, we have:

E(|C|s) ≤
∑

H∈T ≤s

γs(H) · E(|{A ∈ Hom(H,X) : r(A) = w}|)

≤
∑

H∈T ≤s

γs(H)

which is a constant depending only on s. We will call this βs.
Again putting this back into the first inequality, we get: P(|C| ≥ p) ≤

E(|C|s)
(q/2)s ≤ 2sβs

qs .

At this point, we know that when we pick w1, w2, ..., wb−a+k−1 at random
(in the correct parts), we have a probability of less than 2sβs

qs of finding a
hypergraph of T p rooted at w. Let D be the number of choices for w that
do lead to finding such a hypergraph. E(D) ≤ k! · (qb)(b−a+k−1) · 2sβs

qs . But

now remember that s was defined as b(b − a + k − 1) + a + 1, so we get
E(D) ≤ k!2sβs

qa+1 .
At this point we’re finally ready to reconsider the cases whereX is empty.

We can split the expectation of D into the case where X is empty and the
case where it is not: E(D) = E(D |X empty).P(X empty) +
E(D |X non-empty).P(X non-empty). We clearly have no copies of the for-
bidden hypergraphs when X is empty, so E(D |X empty) = 0. Meanwhile,
we know from earlier that P(X non-empty) ≥ q−a. Putting this together,
we get: E(D |X non-empty) ≤ E(D).qa ≤ k!2sβs

q

Now this has order Θ(1/q) so when q is large enough, we get:
E(D |X non-empty) < 1. This proves that there is some choice of f1, f2, ...,
fb−a+k−1 for which X is non-empty but that gives no elements of T p inside
X.



Rational exponents for hypergraph Turan problems 73

Thus, we have constructed a hypergraph X with Θ(Nk− a

b ) edges and
that does not contain any element of T p. Thus, ex(n, T p) = Ω(nk− a

b ) and
the proof of the lower bound is complete.

4. The upper bound

In [1], the upper bound used the fact that given graph, we can pick a
subgraph with high minimal codegree. This fact is not true in general for
hypergraphs, so we will have to do something different. We will instead use
a hypergraph version of Sidorenko’s conjecture [9] (also posed by Erdos and
Simonovits [10] ) that applies to our hypergraph T . The conjecture states
that if H is a k-partite k-hypergraph with |H| vertices and e(H) edges
and if X is a k-hypergraph with n vertices and nk−r/k! edges, then there
are at least n|H|−e(H)r homomorphic copies of H in X. We give the proof
from [11] that this is true in the case of hypertrees. However, just having
a homomorphism isn’t enough; we also need it to be injective, otherwise it
could intersect itself. We will use a probabilibistic method to fix this problem
and prove that the number of actual (non-self-intersecting) copies of T in X
is also of order at least Ω(n|T |−e(T )r). Finally at the end, we use this large
number of copies of T to find a copy of T p.

Definition 9. In a k-hypergraph, a set of vertices is called adjacent if there
exists a single edge that contains all of them.

Definition 10. A hypertree is the hypergraph version of a tree. They can be
constructed, starting from a single edge, by adding edges one at a time such
that every new edge intersects the old hypergraph in a set of k − 1 adjacent
vertices. Notice this makes it so there is exactly 1 new vertex for every new
edge.

Also notice that T is a hypertree.

4.0.0.3. Entropy method

Definition 11. In a k-hypergraph G, an ordered edge is a sequence of k
vertices (x1, x2, ..., xk) such that the corresponding k-set {x1, x2, ..., xk} is an
edge. Notice how, for each edge, we can find exactly k! corresponding ordered
edges.

Lemma 7. Let H be a k-hypertree with |H| vertices and e(H) edges, and
let X be a k-hypergraph with n vertices and nk−r/k! edges (so X has nk−r

ordered edges). Then |Hom(H,X)| ≥ n|H|−e(H)r.

Reformulation: The statement of the lemma is equivalent to

− ln( |Hom(H,X)|
n|H| ) ≤ −e(H) ln(n−r), which is equivalent to− ln( |Hom(H,X)|

n|H| ) ≤
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−e(H) ln( |Hom(E,X|)
nk ), where E is the hypergraph consisting of just a just a

single edge. This is again equivalent to:

ln(n|H|) +
∑

Hom(H,X)

ln

(
1

|Hom(H,X)|

)
1

|Hom(H,X)|

≤ −e(H) ln

(
|Hom(E,X|)

nk

)

The key point here is to notice that
∑

Hom(H,X) ln
(

1
|Hom(H,X)|

)
1

|Hom(H,X)|
is the entropy of the uniform probability distribution on the set Hom(H,X),
and that therefore this is minimal amongst all other distributions μ on
Hom(H,X).

Now for any distribution μ on Hom(H,X), we set D(μ) = ln(n|H|) +∑
A∈Hom(H,X) ln (μ(A))μ(A), and then because the uniform distribution has

the smallest entropy, the problem is equivalent to finding some distribution
μ on Hom(H,X) with

D(μ) ≤ e(H) ln

(
nk

|Hom(E,X)|

)

Two other examples of distributions (which will end up being useful)
are:

• ε, the uniform distribution on ordered edges, where ε(B) = 1
nk−r for

any ordered edge B of X.

•κ, the distribution on ordered (k−1) sets where for any ordered (k−1)-

set T of X, we have κ(T ) = deg(T )
nk−r [deg(T ) means the number of edges that

contain T ]. This is a well-defined probability distribution because the sum

of all the probabilities is equal to 1:
∑

T
deg(T )
nk−r =

∑
T

∑
B edge |T⊂B

1
nk−r =∑

B edge

∑
T ordered (k − 1)-set |T⊂B

1
nk−r =

∑
B edge

k!
nk−r = 1

Using the ε distribution, we can immedidiately reformulate the problem
as finding some distribution μ on Hom(H,X) such that D(μ) ≤ e(H)D(ε).

Some notation: for A ∈ Hom(H,X) and S ⊂ H, we write A|S to denote

the element of Hom(S,X) formed by restricting A from H to S.

4.0.0.4. Proof by induction We will prove by induction on the number

of edges, that for any hypertree H, there does exist a distribution μ on
Hom(H,X) such that:

(1) D(μ) ≤ e(H)D(ε), and
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(2) such that for any ordered set S of k−1 adjacent vertices of H, and for
any ordered set T of k−1 vertices inX, we have:

∑
A∈Hom(H,X):A|S=T μ(A) =

κ(T ) = deg(T )
nk−r .

This means that if you pick an ordered (k − 1)-set of X at random by
first picking a copy of H following distribution μ, and then picking any one
set of adjacent k − 1 vertices, then that will be exactly the same as simply
picking an ordered (k− 1)-set of X at random by following the κ rule where
each (k − 1)-set is weighted by its degree.

The base case is when H is a single edge, in which case we take μ = ε,
which assigns to each edge of X the probability 1

nk−r . Then (1) holds by defi-
nition. As for (2), we have for any k−1 set T ofX,

∑
edges that contain T

1
nk−r =

deg(T )
nk−r , as required.

Now suppose we have a hypertree H and we want to add another edge E
to it to make a bigger hypertree G, and where K = E∩H is the place where
the edge is being added. Because we are constructing a hypertree, K is a
set of (k − 1) adjacent vertices. By the induction hypothesis, we have some
distribution μ on Hom(H,X) with properties (1) and (2). See the following
diagram for reference.

G

H

K E
S

C

A

D B
T

X

→

Diagram describing the sets used in the proof

Now we define a probability distribution λ on Hom(G,X) as follows:
For C a homomorphic copy of G, write C = A ∪ B, where A is the

corresponding homomorphic copy of H and B is a single edge corresponding
to E. Also let D be the set of (k−1) vertices corresponding to K (i.e.: where
A gets attached to B). We now define:

λ(C) = μ(A)
1

deg(D)

We are essentially picking a random copy of G by first picking a random
copy of H and then adding another edge to it uniformly at random among
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all the available choices. Note that there will always be SOME choice (or
equivalently, deg(D) ≥ 1) because D is a set of adjacent vertices, so are
contained in an edge.

This distribution λ satisfies property (1) because:

ln(n|G|) +
∑

C∈Hom(G,X)

ln (λ(C))λ(C)

= ln(n|H|+1) +
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D
B∈Hom(E,X) :B|K=D

ln

(
μ(A)

1

deg(D)

)
μ(A)

1

deg(D)

= ln(n|H|) + ln(n) +
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

ln

(
μ(A)

1

deg(D)

)
μ(A)

= ln(n|H|) + ln(n) +
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

ln (μ(A))μ(A)

−
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

ln (deg(D))μ(A)

We use property (2) applied to H,D which make this:

= ln(n|H|) + ln(n) +
∑

A∈Hom(H,X)

ln (μ(A))μ(A)

−
∑

D∈Hom(K,X)

ln (deg(D))
deg(D)

nk−r

= D(μ) + ln(n)−
∑

D∈Hom(K,X)

ln (deg(D))
deg(D)

nk−r

= D(μ)−

⎡
⎣ln(nk−1) +

∑
D∈Hom(K,X)

ln

(
deg(D)

nk−r

)
deg(D)

nk−r

⎤
⎦

+

⎡
⎣ln(nk) +

∑
D∈Hom(K,X)

ln

(
1

nk−r

)
deg(D)

nk−r

⎤
⎦

= D(μ)−D(κ) +D(ε)

≤ [e(H) + 1]D(ε) [← we used property (1) applied to H]
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= e(G)D(ε)

Therefore, the bigger hypertree G also satisfies property (1) as required.
Now we prove G satisfies property (2). Let S be a set of k − 1 adjacent

vertices in G. There are two possibilities: either S is a set of adjacent vertices
in H, or S is contained within the new edge E.

In the case where S ⊂ H, we have, for any (k − 1)-set T in X,

∑
C∈Hom(G,X) :C|S=T

λ(C)

=
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D and A|S=T

B∈Hom(E,X) :B|K=D

μ(A)
1

deg(D)

=
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D and A|S=T

μ(A)

=
∑

A∈Hom(H,X) :A|S=T

μ(A)

=
deg(T )

nk−r
[← we used property (2) applied to H,T ]

In the second case where S ⊂ E, we get:

∑
C∈Hom(G,X) :C|S=T

λ(C)

=
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

B∈Hom(E,X) :B|K=D and B|S=T

μ(A)
1

deg(D)

=
∑

D∈Hom(K,X)
B∈Hom(E,X) :B|K=D and B|S=T

1

nk−r
[← (2) applied to H,D]

=
∑

B∈Hom(E,X) :B|S=T

1

nk−r
=

deg(T )

nk−r

So the new distribution λ on Hom(G,X) satisfies property (2).
By induction on all hypertrees, we can conclude that for any hyper-

tree H, there exists some distribution μ on Hom(H,X) such that D(μ) ≤
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e(H)D(ε), and therefore all hypertrees satisfy Sidorenko’s conjecture; we

have n|H|−e(H)r homomorphic copies of H in X.

4.0.0.5. Probability that a homomorphism is injective The above is strong

indication that we should be able to find a large number of copies of H in X.

However, in the above we only found homomorphisms from H to G. What

we actually want is the following:

Lemma 8. Let H be a k-hypertree with |H| vertices and e(H) edges, and

let X be a k-hypergraph with n vertices and nk−r edges. Then | Inj(H,X)| =
Ω(n|H|−e(H)r)

To prove this lemma, we will ask ourselves what is the probability that

a homomorphism from H to X (picked at random following distribution μ)

is not actually injective? We will bound the answer by using induction.

The base case is a single edge E, which cannot intersects itself, and

therefore the probability is 0.

Now suppose G = H ∪ E is a hypertree, and C = A ∪ B is a copy of

our hypertree in X, as in the previous part. If C intersects itself, then either

A intersects itself or B intersects H. (B cannot intersect itself because it’s

a single edge.) By the induction hypothesis, we know the probability of A

intersecting itself, so all that remains is to show that the probability that B

intersects with A is not too big.

Remember that λ(C) = μ(A) 1
deg(D) . If we fix A and pick a suitable copy

of E at random, then note that adding E only adds 1 single vertex to the

hypergraph. Therefore, there are at most |A| − k + 1 possibilities for E to

intersect A (each of which corresponds to the new vertex being somewhere

in A but outside A ∩ B). So the probability that B intersects A is at most

μ(A) |A|−k+1
deg(D) ≤ μ(A) |H|−k+1

deg(D) . Summing these up across all choices of A, we

get

∑
D∈Hom(K,X)

A∈Hom(H,X) :A|K=D

μ(A)

deg(D)
(|H| − k + 1)

=
∑

D∈Hom(K,X)

1

nk−r
(|H| − k + 1) [← (2) applied to H,D]

≤ nk−1

nk−r
(|H| − k + 1)

= nr−1(|H| − k + 1)
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Summing everything up, we get that the overall probability that G inter-

sects itself is at most: nr−1[1+2+3+...+(|G|−k)] = nr−1 |G|2−(2k−1)|G|+k(k−1)
2 .

When r < 1, this is small.
For clarity, we will set the probability that a hypertree of size |G| inter-

sects itself to be P|G| ≤ nr−1 |G|2−(2k−1)|G|+k(k−1)
2 .

4.0.0.6. Size of Inj(G,X) We know the number of homomorphic images of
G, and we know the probability that one is injective. From this, we want to
find the number of injective images of G. This is slightly more complicated
than it seems because the probability is not uniform. However, we can still
find a lower bound. First, we do another entropy inequality:

ln(| Inj(G,X)|) =
∑

C∈Inj(G,X)

− ln

(
1

| Inj(G,X)|

)
1

| Inj(G,X)|

≥
∑

C∈Inj(G,X)

− ln

(
λ(C)

1− P|G|

)
λ(C)

1− P|G|

= ln(1− P|G|) +

∑
C∈Inj(G,X)− ln(λ(C))λ(C)

1− P|G|

So now we want to know find a lower bound on
∑

C∈Inj(G,X)− ln(λ(C))λ(C).

We claim that there is one of size ln
(
n(1−r)|G|+(k−1)r

)
− O

(
nr−1 ln(n)

)
.

We will prove it by induction on |G|. For |G| = k, ie G is a single edge,
we get

∑
C∈Hom(G,X)− ln(λ(C))λ(C) =

∑
C∈Hom(G,X)− ln

(
1

nk−r

)
1

nk−r =

ln(nk−r) = ln(n(1−r)k+(k−1)r) so it is true for |G| = k. For larger Gs, we
have:

∑
C∈Inj(G,X)

− ln(λ(C))λ(C)

=
∑

D∈Hom(K,X)
A∈Inj(H,X) :A|K=D

B∈Hom(E,X) :B|K=D and B∩A=D

− ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)

≥
∑

D∈Hom(K,X)
A∈Inj(H,X) :A|K=D

− ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)− |H|
deg(D)

=

⎡
⎣ ∑
A∈Inj(H,X)

− ln(μ(A))μ(A)

⎤
⎦
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+

⎡
⎢⎢⎢⎣

∑
D∈Hom(K,X)

A∈Inj(H,X) :A|K=D

ln

(
deg(D)

nk−r

)
μ(A)

⎤
⎥⎥⎥⎦

+

⎡
⎣ ∑
A∈Inj(H,X)

ln(nk−r)μ(A)

⎤
⎦

+

⎡
⎢⎢⎢⎣

∑
D∈Hom(K,X)

A∈Inj(H,X) :A|K=D

ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)
|H|

⎤
⎥⎥⎥⎦

There are 4 terms in this inequality, which we will simplify seperately.

The first can be found by induction on |H|:
∑

A∈Inj(H,X)

− ln(λ(A))λ(A) ≥ ln
(
n(1−r)|H|+(k−1)r

)
−O

(
nr−1 ln(n)

)

For the second one, we have:

∑
D∈Hom(K,X)

A∈Inj(H,X) :A|K=D

ln

(
deg(D)

nk−r

)
μ(A) ≥

∑
D∈Hom(K,X)

A∈Hom(H,X) :A|K=D

ln

(
deg(D)

nk−r

)
μ(A)

=
∑

D∈Hom(K,X)

ln

(
deg(D)

nk−r

)
deg(D)

nk−r
≥ ln

(
1

|Hom(K,X)|

)
= − ln(nk−1)

For the third term, we have
∑

A∈Inj(H,X) ln(n
k−r)μ(A) = ln(nk−r)(1 −

P|H|) by definition of P|H|. Now using the fact that P|H| ≤
nr−1 |H|2−(2k−1)|H|+k(k−1)

2 , we get that this is ln(nk−r) − O(
(
nr−1 ln(n)

)
Fi-

nally, for the fourth term, we have:

∑
D∈Hom(K,X)

A∈Inj(H,X) :A|K=D

ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)
|H|

≥
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)
|H|
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Remember that we had for all D ∈ Hom(K,X),∑
A∈Hom(H,X) :A|K=D μ(A) = deg(D)

nk−r . Using this property, we get that:

∑
D∈Hom(K,X)

A∈Hom(H,X) :A|K=D

μ(A)

deg(D)
=

∑
D∈Hom(K,X)

1

nk−r
= nr−1

We can now do another entropy inequality to get that the fourth term is at

least:

∑
D∈Hom(K,X)

A∈Hom(H,X) :A|K=D

ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)
|H|

≥
∑

D∈Hom(K,X)
A∈Hom(H,X) :A|K=D

ln

(
nr−1

|Hom(H,X)|

)
nr−1

|Hom(H,X)| |H|

= ln

(
nr−1

|Hom(H,X)|

)
nr−1|H|

So now we want to bound |Hom(H,X)| from above. We can take the

trivial bound where we pick an ordered edge, and then |H|−k other vertices

arbitrarily. This gives us |Hom(H,X)| ≤ nk−rn|H|−k = n|H|−r. Plugging this

in gives:

∑
D∈Hom(K,X)

A∈Hom(H,X) :A|K=D

ln

(
μ(A)

deg(D)

)
μ(A)

deg(D)
|H|

≥ ln

(
nr−1

n|H|−r

)
nr−1|H|

= |H| (2r − 1− |H|)) ln(n)nr−1

= −O(nr−1 ln(n))

Thus, by adding up the four terms back together again, we get:

∑
C∈Inj(G,X)

− ln(λ(C))λ(C)

≥ ln
(
n(1−r)|H|+(k−1)r

)
− ln(nk−1) + ln(nk−r)−O

(
nr−1 ln(n)

)
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= ln

(
n(1−r)|H|+(k−1)r.nk−r

nk−1

)
−O

(
nr−1 ln(n)

)

= ln
(
n(1−r)|G|+(k−1)r

)
−O

(
nr−1 ln(n)

)

This completes the induction. Remember from earlier that

ln(| Inj(G,X)|) ≥ ln(1 − P|G|) +
∑

C∈Inj(G,X) − ln(λ(C))λ(C)

1−P|G|
. Replacing both∑

C∈Inj(G,X)− ln(λ(C))λ(C) ≥ ln
(
n(1−r)|G|+(k−1)r

)
− O

(
nr−1 ln(n)

)
and

P|G| ≤ O
(
nr−1

)
, we get:

ln(| Inj(G,X)|)

≥ ln
(
1−O

(
nr−1

))
+

ln
(
n(1−r)|G|+(k−1)r

)
−O

(
nr−1 ln(n)

)
1−O (nr−1)

= ln
(
1−O

(
nr−1

))
+ ln

(
n(1−r)|G|+(k−1)r

)
−O

(
n1−r ln(n)

)
+ ln

(
n(1−r)|G|+(k−1)r

)
∗O

(
nr−1

)
= ln

(
1−O

(
nr−1

))
+ ln

(
n(1−r)|G|+(k−1)r

)
−O

(
nr−1 ln(n)

)
= ln

(
1−O

(
nr−1

))
+ ln

(
n(1−r)|G|+(k−1)r

)
+ ln

(
1−O

(
nr−1 ln(n)

))
= ln

((
n(1−r)|G|+(k−1)r

) (
1−O

(
nr−1

)) (
1−O

(
nr−1 ln(n)

)))

= ln
((

n(1−r)|G|+(k−1)r
) (

1−O
(
nr−1 ln(n)

)))

Thus, | Inj(G,X)| ≥
(
n(1−r)|G|+(k−1)r

) (
1−O

(
ln(n)
n1−r

))
.

4.0.0.7. Finishing up the upper bound Our hypergraph T from the first
part is a hypertree, so we know that there are at least

(
n(1−r)|T |+(k−1)r

)
×(

1− c ln(n)n1−r

)
=

(
nb+k−1−rb

) (
1− c ln(n)n1−r

)
copies of it in any large enough

hypergraph X with n vertices and nk−r ordered edges (where c is a constant
depending only on |T |). Now note that there are only nb−a+k−1 possibilities
for choosing distinct roots. Therefore, given a random ordered set of b−a+
k − 1 vertices of X, the expected number of copies of T rooted at them is
(nb+k−1−rb)(1−c ln(n)

n1−r )
nb−a+k−1 = na−rb

(
1− c ln(n)n1−r

)
.

If r is small (i.e.: there are lots of edges), then this quantity will be
bigger than any constant. An element of T ≤p−1 can have at most (p − 1)a
non-roots, which means that we can find at most [(p−1)a]!/[(p−2)a]! copies
of T in it (just choose the order of the vertices). So if our r is small enough
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that we have at least [(p − 1)a]!/[(p − 2)a]! + 1 copies of T all rooted at
the same place, then their union cannot fit into T ≤p−1, therefore it has to
be an element of T ≤u\T ≤p−1 for some large u. By removing extra edges
and vertices as needed, we can find an element of T ≤p\T ≤p−1 = T p. For
simplicity, set p′ = [(p− 1)a]!/[(p− 2)a]! + 1.

If we set r = a
b −

ln(2p′)
b ln(n) , we get that the expected number of copies of T

rooted at a specific place is at least 2p′
(
1− c ln(n)n1−r

)
. Now as n → ∞, ln(n)

n1−r →

0, so in particular, when n is large enough, we will have
(
1− c ln(n)n1−r

)
≥ 1/2,

and hence the expected number of copies of T rooted at a specific place
is at least p′. This is an expectation, so there must exist some choice of
b− a+ k− 1 roots such that there are actually at least p′ copies of T rooted
at them, and hence an element of T p

Therefore, if there are at least (2p′)1/bnk− a

b edges in the hypergraph X
and n is sufficiently large, then we have a copy of a hypergraph of T p inside
X. Therefore, ex(n, T p) ≤ O(nk− a

b ). Combining this with the lower bound
we proved in the first section we get ex(n, T p) = Θ(nk− a

b ) and the proof is
complete.

5. The case where r ≥ 1

We will now try to prove Theorem 2, which is the generalisation of Theorem
1 from 0 ≤ r < 1 to 0 ≤ r < k − 1. To do so, we use the following lemma:

Lemma 9. Given a set of l-hypergraphs F (each of which contains 2 disjoint
edges) and some k > l, there exists some set F ′ of k-hypergraphs with ex(n+
k − l,F ′) = ex(n,F) for all n.

This will directly prove Theorem 2 when we set l = �k − r�, because in
that case, k − r = l − r′ for some 0 ≤ r′ < 1 so we know from Theorem 1
that we have a set of l-hypergraphs F with ex(n,F) = Θ(nl−r′) = Θ(nk−r).
Also for b ≥ k (which we can assume without loss of generality), there will
be at least 2 disjoint edges in every hypergraph. Applying the lemma gives
us some set F ′ of k-hypergraphs with ex(n,F ′) = Θ(nk−r).

Proof of Lemma 9. For a l-hypergraph F and vertices x1, x2, ..., xk−l, define
the k-hypergraph (F, x1, x2, ..., xk−l) to have vertices F ∪ {x1, x2, ..., xk−l}
and edges {E ∪ {x1, x2, ..., xk−l} : E an edge of F}. We define (F , x1, x2, ...,
xk−l) = {(F, x1, x2, ..., xk−l) : F ∈ F}∪ {k-hypergraphs with ≤ l + 2 edges
not of the form (H,x1, x2, ..., xk−l)}. We claim that F ′=(F , x1, x2, ..., xk−l))
will solve the problem.



84 Matthew Fitch

Suppose G is a l-hypergraph with ex(n,F) edges that doesn’t contain
any element of F . Consider (G, y1, y2, ..., yk−l) for some vertices y1, y2, ...,
yk−l. Then first of all, every set of ≤ l+2 edges of (G, y1, y2, ..., yk−l) is of the
form (H, y1, y2, ..., yk−l) because every edge contains y1, y2, ..., yk−l. Now sup-
pose it contains a different element of (F , x1, x2, ..., xk−l), say (F, x1, x2, ...,
xk−l). Now F contains 2 edges that do not intersect, so (F, x1, x2, ..., xk−l)
contains two edges that intersect only at x1, x2, ..., xk−l. Since any two
edges of (G, y1, y2, ..., yk−l) intersect at y1, y2, ..., yk−l, that must mean that
y1, y2, ..., yk−l are the images of x1, x2, ..., xk−l in some order. Now taking
that copy of (F, x1, x2, ..., xk−l) in (G, y1, y2, ..., yk−l) and removing y1, y2, ...,
yk−l from all the edges, we end up with a copy of F inside G. This con-
tradicts our original assumption about G. Therefore (G, y1, y2, ..., yk−l) is
a k-hypergraph with ex(n,F) edges that does not contain any element of
(F , x), so ex(n+ k − l, (F , x1, x2, ..., xk−l)) ≥ ex(n,F), as required.

Respectively, suppose that G is a k − hypergraph that doesn’t contain
any element of (F , x1, x2, ..., xk−l). Since every set of l + 2 edges is of the
form (H,x1, x2, ..., xk−l), that means that the entire hypergraph is of the
form (K,x1, x2, ..., xk−l) for some K.

Indeed, suppose for a contradiction that the hypergraph is not of that
form. Pick two edges e1 and e2. They intersect in at most k− 1 places. Pick
k − l of those and call the set S. Now the hypergraph is not of the form
(H,x1, x2, ..., xk−l), so that means that there is some other edge, e3, that
doesn’t contain S. Now e1,e2,e3 intersect in at most k−2 places. Repeat the
argument several times until we get edges e1, e2, e3, ..., el+2 that intersect in
at most k− l− 1 places. Thus, we have l+ 2 edges that are not of the form
(H,x1, x2, ..., xk−l), contradicting our assumption. Therefore, G must be of
the form (H,x1, x2, ..., xk−l).

Then this K cannot contain any element F of F because otherwise
G = (K,x1, x2, ..., xk−l) would contain (F, x1, x2, ..., xk−l). Therefore, K has
at most ex(n,F) edges, so G also has at most ex(n,F) edges. Thus ex(n+
k − l, (F , x1, x2, ..., xk−l)) ≤ ex(n,F)

This proves that ex(n,F) = ex(n+k−l, (F , x1, x2, ..., xk−l)), completing
the proof of the lemma, and thus proving Theorem 2.

5.1. Final few cases:

The case k > r > k − 1 is impossible : Suppose that F is a collection of
k-graphs which has ex(n,F) = Θ(nk−r) for some k > r > k − 1.

Now consider X to be the k-hypergraph with n vertices defined as fol-
lows: it consists of some set S of t vertices, for some 0 ≤ t ≤ k−1. The other
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n− t vertices are partitioned into �(n− t)/(k − t)
 sets of size k − t, which
we will call e1, e2, ..., e�(n−t)/(k−t)�. The edges of the hypergraph are exactly
ei∪S for 1 ≤ i ≤ �(n− t)/(k− t)
. This hypergraph X has the property that
the intersection of any two edges is exactly S; therefore, it is a sunflower.
It also has Θ(n) edges, which is larger than c · nk−r for large enough n.
Therefore, F must contain a subgraph of X. However, any subgraph of X
must also have the property that any the intersection of two edges is exactly
S, i.e. it is another sunflower. We will call this sunflower Ft

In this way, we get for all 0 ≤ t ≤ k − 1, a sunflower Ft in F with
kernal size t. The sunflower lemma states that when this occurs, ex(n,F)
has order O(1). This contradicts our assumption that ex(n,F) = Θ(nk−r).
Therefore, it is indeed impossible to have a collection of k-hypergraphs with
ex(n,F) = Θ(nk−r) for any k > r > k − 1.

5.1.0.8. The case r = k is possible: The hypergraph E consisting of just 1
edge has ex(n,E) = 0.

5.1.0.9. The case r = k−1 is possible: Firstly, when k = 2, it is fairly easy
to see that the path of length 3, P3, has ex(n, P3) = n or n − 1, which is
of the correct order Θ(n). For larger k, we simply apply Lemma 9 to get a
collection of k-hypergraphs F with ex(n,F) = Θ(n) as required.

So in conclusion, the rationals r for which there exist some finite F
with ex(n,F) = Θ(nk−r) are exactly those in the set: {r ∈ Q : 0 ≤ r ≤
k − 1} ∪ {k}.
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