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Forbidden subgraphs for k vertex-disjoint stars

Michitaka Furuya
∗
and Naoki Matsumoto

For a connected graph H, a graph G is said to be H-free if G
does not contain H as an induced subgraph. In this context, H is
called a forbidden subgraph. In this paper, we study a transition of
forbidden subgraphs for the existence of vertex-disjoint stars. For
t ≥ 1, k ≥ 1 and d ≥ t, let H(t, k, d) be the family of connected
graphs H such that every H-free graph G of sufficiently large order
with δ(G) ≥ d has k vertex-disjoint K1,t. We characterize the fam-
ily H(t, k, d) for almost all triples (t, k, d). In particular, we give a
complete characterization of H(t, k, d) for t ≤ 4.
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1. Introduction

For a connected graph H, a graph G is said to be H-free if G contains no
induced subgraph isomorphic to H. In this context, H is called a forbidden
subgraph. Let K1,r denote the star of order r + 1.

A star has been widely studied as one of the most important forbid-
den subgraphs. For example, Sumner [13] proved that every m-connected
K1,m+1-free graph of even order has a perfect matching, and Matthews and
Sumner [11] gave a well-known conjecture that every 4-connected K1,3-free
graph is Hamiltonian. Moreover, the star-free condition itself has been stud-
ied (for example, see [3, 7]).

Here one may estimate that if a graph H has similar properties like the
star from the point of view of forbidden subgraphs, then a result concerning
star-free graphs will provide useful information to H-free graphs. To find a
graph H satisfying such an assumption, we study a transition of forbidden
subgraphs. For example, it has been known that a transition of the star-free
condition for the existence of a perfect matching depends on the connectivity
as mentioned above. Our main aim is to find a larger transition of forbidden
subgraphs.
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Now we focus on the problem concerning the existence of vertex-disjoint
stars in a graph. The problem comes from a famous result which gives a rela-
tionship between the size of a matching and the minimum degree condition.
We let δ(G) denote the minimum degree of a graph G.

Theorem A (Erdős and Pósa [6]). Let k be a positive integer, and let G be
a graph with |V (G)| ≥ 2k and δ(G) ≥ k. Then G has a matching of size k.

We can regard a matching in a graph as special vertex-disjoint stars.
Egawa and Ota [5] and Ota [12] studied the minimum degree condition for
the existence of k vertex-disjoint K1,t. (After that Fujita [8] and Chiba [1]
improved the order condition in Theorem D.)

Theorem B (Ota [12]). Let k be a positive integer, and let G be a graph
with |V (G)| ≥ 3k + 2 and δ(G) ≥ k + 1. Then G has k vertex-disjoint K1,2.

Theorem C (Egawa and Ota [5]). Let k be a positive integer, and let G be
a graph with |V (G)| ≥ 4k+6 and δ(G) ≥ k+2. Then G has k vertex-disjoint
K1,3.

Theorem D (Ota [12]). Let t and k be positive integers with t ≥ 4, and let
G be a graph with |V (G)| ≥ (t + 1)k + 2t2 − 3t − 1 and δ(G) ≥ t + k − 1.
Then G has k vertex-disjoint K1,t.

On the other hand, Fujita [9, 10] gave the forbidden subgraph condition
for the existence of k vertex-disjoint K1,t as follows.

Theorem E (Fujita [9, 10]). Let t and k be positive integers with t ≥ 3
and k ≥ 3, and let H be a connected graph. Then there exists an integer
n = n(H) such that every H-free graph G with |V (G)| ≥ n and δ(G) ≥ t
has k vertex-disjoint K1,t if and only if H is a star.

However, for positive integers t, k and d with t+1 ≤ d ≤ t+k−2, it has
not been known what kind of forbidden subgraphs H assure the existence
of k vertex-disjoint K1,t in an H-free graph with minimum degree at least
d. We formally consider the following families H(t, k, d): Let G be the set
of connected graphs of order at least three. For positive integers t, k and d
with d ≥ t, let H(t, k, d) be the family of graphs H ∈ G satisfying that there
exists an integer n = n(H) such that every H-free graph G with |V (G)| ≥ n
and δ(G) ≥ d has k vertex-disjoint K1,t.

We let Kn denote the complete graph of order n, and let Kn1,n2
denote

the complete bipartite graph with partite sets having cardinalities n1 and
n2. For two disjoint graphs H1 and H2, we let H1 ∪H2 and H1 +H2 denote
the union and the join of H1 and H2, respectively. For a graph H and
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an integer s, we let sH denote the union of s disjoint copies of H. Let

K = {K1,r : r ≥ 2}, and for a positive integer j, let K(j) = {K1 + (r1K1 ∪
r2K2) : r1 ≥ 0, r2 ≥ 0, r1 + 2r2 ≥ 2} ∪ {K2 + rK1 : 1 ≤ r ≤ j}. Note that

K(1) = {K1 + (r1K1 ∪ r2K2) : r1 ≥ 0, r2 ≥ 0, r1 +2r2 ≥ 2}. Our main result

is the following. (Note that Theorem 1.1(i) includes Theorem E.)

Theorem 1.1. Let t, k and d be positive integers with d ≥ t. Then the

following hold:

(i) If d ≤ max{k − 1, t+ �k−1
2 � − 1}, then H(t, k, d) = K.

(ii) If max{k, t+ �k−1
2 �} ≤ d ≤ t+ k − 2, then

K(2d− 2t− k + 3) ⊆ H(t, k, d) ⊆ K(max{2d− 2t− k + 3, t− 1}).

Furthermore, if d ≥ min{3t+k−4
2 , t

2+(k−2)t−k+1
t }, then H(t, k, d) =

K(2d− 2t− k + 3).

(iii) If t ≥ 4, then H(t, 4, t+ 1) = K(2).

(iv) If t ≥ 4, then H(t, 2t− 2, 2t− 2) = K(1).

(v) If d ≥ t+ k − 1, then H(t, k, d) = G.

By Theorem 1.1, we get a transition of forbidden subgraphs (and so we

suspect that K(j) is one of natural generalizations of the family K). Hence

our main purpose is attained.

We continue to investigate H(t, k, d). The family H(t, k, d) has not char-

acterized in Theorem 1.1 if and only if the triple (t, k, d) satisfies

(H1) max{k, t+ �k−1
2 �} ≤ d < min{3t+k−4

2 , t
2+(k−2)t−k+1

t }, and
(H2) (t, k, d) /∈ {(t, 4, t+ 1), (t, 2t− 2, 2t− 2)}.

By simple calculations, for a fixed integer t ≥ 1, we check that the number

of triples (t, k, d) satisfying (H1) and (H2) is finite (and we omit its detail).

Hence for an integer t ≥ 1, Theorem 1.1 determines H(t, k, d) with finite

exceptions. On the other hand, it seems difficult to completely characterize

H(t, k, d) for every triple (t, k, d). So one may pose a natural problem: For

a fixed t, find some properties of H(t, k, d). In this paper, by a few addi-

tional proofs together with Theorem 1.1, we could completely characterize

H(t, k, d) for 1 ≤ t ≤ 4.

Theorem 1.2. Let t, k and d be positive integers with 1 ≤ t ≤ 4 and

d ≥ t. Then
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H(t, k, d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K (d ≤ max{k − 1, t+ �k−1
2 � − 1})

K(2d− 2t− k + 3) (max{k, t+ �k−1
2 �} ≤ d ≤ t+ k − 2

and (t, k, d) 	= (4, 4, 5))

K(2) ((t, k, d) = (4, 4, 5))

G (d ≥ t+ k − 1).

We will use the following notation and terminology. Let G be a graph,

and let x ∈ V (G). For an integer i ≥ 1, we let N
(i)
G (x) = {y ∈ V (G): the

distance between x and y is i}. We write NG(x) for N
(1)
G (x). We let dG(x)

denote the degree of x in G. For X ⊆ V (G), we let G[X] be the subgraph
of G which is induced by X. For F ⊆ E(G), we let V (F ) denote the set of
vertices incident with an edge in F . For terms and symbols not defined here,
we refer the reader to [4].

2. Triples (t, k, d) with either H(t, k, d) = G or
H(t, k, d) = K

In this section, we study triples (t, k, d) with either H(t, k, d) = G or
H(t, k, d) = K. By the definition of H(t, k, d), we have H(t, k, d) ⊆ G. Let
H ∈ G be a graph, and let t and k be positive integers. Then by Theo-
rems A–D, every H-free graph G with |V (G)| ≥ (t + 1)k + 2t2 − 3t + 1
and δ(G) ≥ t+ k − 1 has k vertex-disjoint K1,t. Hence we get the following
proposition.

Proposition 2.1. Let t, k and d be positive integers with d ≥ t + k − 1.
Then H(t, k, d) = G.

Now we consider triples (t, k, d) with H(t, k, d) = K. Let G be a graph

with δ(G) ≥ t. A family X ⊆
(
V (G)
t+1

)
is t-proper if X ∩ X ′ = ∅ and G[X]

contains a spanning K1,t for any X,X ′ ∈ X with X 	= X ′. Note that G has
a non-empty t-proper family. We start with the following lemma which will
be used in the proof of Propositions 2.4 and 3.2.

Lemma 2.2. Let t, k and d be positive integers with d ≥ t. Let G be a
graph with δ(G) ≥ d, and let X be a maximum t-proper family of G. If
|X | ≤ k − 1, then there exists a set S ⊆

⋃
X∈X X such that |S ∩ X| = 1

for each X ∈ X and the number of vertices y in V (G) − (
⋃

X∈X X) with
NG(y) ∩ (

⋃
X∈X X) ⊆ S is at least |V (G)| − (k − 1)(2t2 + 1).

Proof. Set X0 =
⋃

X∈X X. For each X ∈ X , choose a vertex xX ∈ X so that
|NG(xX) ∩ (V (G)−X0)| is as large as possible. Let S = {xX : X ∈ X}. We
show that S is a desired set.



Forbidden subgraphs for k vertex-disjoint stars 725

Suppose that |NG(x) ∩ (V (G)−X0)| ≥ 2t for some x ∈ X0 − S, and let
U ⊆ NG(x) ∩ (V (G) − X0) be a set with |U | = t. Let X ∈ X be the set
containing x. By the choice of xX , |NG(xX) ∩ (V (G)−X0)| ≥ 2t. Let U ′ ⊆
NG(xX)∩ (V (G)− (X0∪U)) be a set with |U ′| = t. Then (X −{X})∪{U ∪
{x}, U ′ ∪{xX}} is a t-proper family of G, which contradicts the maximality
of X . Thus |NG(x)∩(V (G)−X0)| ≤ 2t−1 for every x ∈ X0−S. In particular,
the number of vertices y ∈ V (G) − X0 satisfying NG(y) ∩ (X0 − S) 	= ∅ is
at most (k − 1)t(2t − 1), and hence the number of vertices y ∈ V (G) −X0

satisfying NG(y)∩X0 ⊆ S is at least |V (G)|−(k−1)(t+1)−(k−1)t(2t−1)(=
|V (G)| − (k − 1)(2t2 + 1)).

We also use the following lemma.

Lemma 2.3 (Chvátal [2]). Let t and r be positive integers. Then
R(K1,t,Kr) ≤ t(r − 1) + 1 where R(K1,t,Kr) is the Ramsey number for
K1,t and Kr.

Our main result in this section is the following.

Proposition 2.4. Let t, k and d be positive integers with t ≤ d ≤ max{k−
1, t+ �k−1

2 � − 1}. Then H(t, k, d) = K.

Proof. We first show that H(t, k, d) ⊇ K. Let H ∈ K; that is H = K1,r for
some r ≥ 2. Let G be a graph with |V (G)| ≥ (k − 1)(2t2 + tr − t + 2) and
δ(G) ≥ t, and assume that G has no k vertex-disjoint K1,t. We show that G
contains K1,r as an induced subgraph. Let X be a maximum t-proper family
of G, and set X0 =

⋃
X∈X X. Then |X | ≤ k−1 and |X0| ≤ (k−1)(t+1). By

Lemma 2.2, there exists a set S ⊆ X0 such that |S ∩X| = 1 for each X ∈ X
and the number of vertices y in V (G)−X0 with NG(y)∩X0 ⊆ S is at least
|V (G)| − (k− 1)(2t2 +1). Let Y = {y ∈ V (G)−X0 : NG(y)∩X0 ⊆ S}, and
take x0 ∈ S so that |NG(x0)∩ Y | is as large as possible. Since δ(G) ≥ t and
δ(G−X0) ≤ t− 1 by the maximality of X , NG(y) ∩ S 	= ∅ for every y ∈ Y .

It follows from Lemma 2.3 that |NG(x0) ∩ Y | ≥ |Y |
|S| ≥

|V (G)|−(k−1)(2t2+1)
k−1 ≥

t(r− 1)+1 ≥ R(K1,t,Kr). Since δ(G−X0) ≤ t− 1, G[NG(x0)∩Y ] contains
an independent set Z with |Z| = r. Since x0 is adjacent to all vertices in
Z, G[{x0} ∪ Z] contains K1,r as an induced subgraph. Consequently H =
K1,r ∈ H(t, k, d). Since H is arbitrary, we have H(t, k, d) ⊇ K.

We next show that H(t, k, d) ⊆ K. Let H ∈ H(t, k, d). By the definition
of H, there exists an integer n = n(H) such that every H-free graph G with
|V (G)| ≥ n and δ(G) ≥ d has k vertex-disjoint K1,t.

Now we show that there exists a K3-free connected graph G1 with
|V (G1)| ≥ n and δ(G1) ≥ d having no k vertex-disjointK1,t. If d ≤ k−1, then
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the graph G1 = Kk−1,max{n,d} satisfies the above conditions. Thus we may

assume that d ≥ k. Then d ≤ t+ �k−1
2 � − 1. Let X1 and X2 be disjoint sets

with |X1| = k−1
2 � and |X2| = �k−1

2 �. For i ∈ {1, 2} and 1 ≤ j ≤ max{n, d},
let A

(j)
i be a set with |A(j)

i | = t− 1. Let G1 be the graph defined by

V (G1) =
⋃

i∈{1,2}

⎛
⎝Xi ∪

⎛
⎝ ⋃

1≤j≤max{n,d}
A

(j)
i

⎞
⎠
⎞
⎠

and

E(G1) =
⋃

1≤j≤max{n,d}

{
x1a1, x2a2, a1a2 : x1 ∈ X1, x2 ∈ X2,

a1 ∈ A
(j)
1 , a2 ∈ A

(j)
2

}
.

Then G1 is a K3-free graph with |V (G1)| ≥ n and δ(G1) ≥ d. By considering

the range of d, we have k ≥ 2, and so X1 	= ∅. In particular, G1 is connected.

Furthermore, since any subgraphs K1,t of G1 contain a vertex in X1 ∪X2,

G1 has no k vertex-disjoint K1,t. Consequently G1 is a desired graph. Hence

G1 is not H-free (i.e., G1 contains H as an induced subgraph). Since G1 is

K3-free, H is also K3-free.

Let G2 = Kk−1 + nKt. Then G2 is a connected graph with |V (G2)| ≥ n

and δ(G2) ≥ d having no k vertex-disjoint K1,t. Hence G2 is not H-free.

Since H is connected and K3-free, this implies that H is a star. Since H is

arbitrary, we have H(t, k, d) ⊆ K.

This completes the proof of Proposition 2.4.

3. A subfamily of H(t, k, d)

In this section, we focus on subfamilies of H(t, k, d) for the triples (t, k, d)

considered in Theorem 1.1(ii).

A matching M of a graph G is induced if E(G[V (M)]) = M . We give a

lemma concerning induced matchings.

Lemma 3.1. Let j be a positive integer, and let H ∈ K(j). Let G be a graph,

and let T0 ⊆ V (G) be a set with |T0| ≥ j. Let M be an induced matching of

G with V (M) ∩ T0 = ∅ and |V (M)| ≥ 2|V (H)|. If every vertex in V (M) is

adjacent to all vertices in T0, then G contains H as an induced subgraph.
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Proof. Note that G[V (M) ∪ {x}] contains K1 + |V (H)|K2 as an induced
subgraph, where x ∈ T0. If H = K1 + (r1K1 ∪ r2K2) for some integers
r1 and r2, then K1 + |V (H)|K2 contains H as an induced subgraph, and
hence G also contains H as an induced subgraph, as desired. Thus we may
assume that H = K2 + mK1 for some integer m (1 ≤ m ≤ j). If T0 is an
independent set of G, then G[{u, v}∪T0] containsH as an induced subgraph,
where uv ∈ M , as desired. Thus we may assume that G[T0] has an edge xy.
Since |V (M)| ≥ 2|V (H)|, there exists an independent set A ⊆ V (M) of G
with |A| = |V (H)| − 2. Then {x, y} ∪A induces H in G.

Our main result in this section is the following.

Proposition 3.2. Let t, k and d be positive integers with max{k, t+�k−1
2 �}≤

d ≤ t+ k − 2. Then the following hold.

(a) H(t, k, d) ⊇ K(2d− 2t− k + 3).
(b) If t ≥ 4 and (k, d) = (4, t+ 1), then H(t, k, d) ⊇ K(2).

Proof. Let G be a graph with δ(G) ≥ d, and assume that G has no k vertex-
disjoint K1,t. Suppose for the moment that |V (G)| ≥ (k − 1)(2t2 + 1) + 1.
Let X be a maximum t-proper set of G, and let X0 =

⋃
X∈X X. Then

|X | ≤ k−1 and |X0| ≤ (k−1)(t+1). This together with Lemma 2.2 implies
that there exists a set S ⊆ X0 such that |S ∩X| = 1 for each X ∈ X and
the number of vertices y in V (G) − X0 with NG(y) ∩ X0 ⊆ S is at least
|V (G)|− (k−1)(2t2+1). Let Y = {y ∈ V (G)−X0 : NG(y)∩X0 ⊆ S}. Note
that |Y | ≥ |V (G)| − (k − 1)(2t2 + 1) (≥ 1).

Since δ(G) ≥ d and δ(G−X0) ≤ t−1 by the maximality of X , |NG(y)∩
S| ≥ d−t+1 for every y ∈ Y . In particular, |S| ≥ d−t+1. For each y ∈ Y , let
Ty ∈

(
S

d−t+1

)
be a set so that Ty ⊆ NG(y) (without regard to the intersection

of S − Ty and NG(y)). For each T ∈
(

S
d−t+1

)
, set YT = {y ∈ Y : Ty = T}.

Then
⋃

T∈( S

d−t+1)
YT = Y and YT ∩ YT ′ = ∅ for all T, T ′ ∈

(
S

d−t+1

)
with

T 	= T ′. For each T ∈
(

S
d−t+1

)
, let ZT ⊆ YT be the set of vertices which are

adjacent to no vertex in V (G)− (S ∪ Y ).

For two sets U1, U2 ⊆ V (G) (which might not be disjoint), an edge
e ∈ E(G) is a U1-U2 edge if one endvertex of e belongs to U1 and the other
belongs to U2.

Claim 3.1. Let m be a positive integer, and suppose that |V (G)| ≥ (k −
1)(2m

(
k−1

d−t+1

)2
(t2−3t+3)+2t3+t). Then for some sets T1, T2 ∈

(
S

d−t+1

)
, there

exists an induced matching M of G[Y ] with |V (M)| ≥ 2m which consists of
ZT1

-YT2
edges.



728 Michitaka Furuya and Naoki Matsumoto

Proof of Claim 3.1. By the maximality of X , every vertex in V (G)−(X0∪Y )
is adjacent to at most t− 1 vertices in V (G)−X0. Hence∣∣∣∣∣∣∣

⋃
T∈( S

d−t+1)

ZT

∣∣∣∣∣∣∣
= |Y | −

∣∣∣∣∣∣∣
⋃

T∈( S

d−t+1)

(YT − ZT )

∣∣∣∣∣∣∣
≥ |Y | − (t− 1)(|V (G)| − |X0| − |Y |)
≥ t|Y | − (t− 1)|V (G)|
≥ t(|V (G)| − (k − 1)(2t2 + 1))− (t− 1)|V (G)|
= |V (G)| − (k − 1)(2t3 + t)

≥ 2m(k − 1)

(
k − 1

d− t+ 1

)2

(t2 − 3t+ 3).(3.1)

Choose T1 ∈
(

S
d−t+1

)
so that |ZT1

| is as large as possible. Then by (3.1),

(3.2) |ZT1
| ≥

∣∣∣⋃T∈( S

d−t+1)
ZT

∣∣∣∣∣∣( S
d−t+1

)∣∣∣ ≥ 2m(k − 1)

(
k − 1

d− t+ 1

)
(t2 − 3t+ 3).

Since δ(G) ≥ d ≥ k > |S|, every vertex in ZT1
is adjacent to a vertex in Y .

In particular, G[Y ] has an edge which is incident with a vertex in ZT1
. Let

M be an induced matching of G[Y ] such that every edge in M is incident
with a vertex in ZT1

. Choose M so that |V (M)| is as large as possible.
Suppose that |V (M)| < 2m

(
k−1

d−t+1

)
. Let W =

⋃
z∈V (M)(NG[Y ](z) ∪

N
(2)
G[Y ](z)). Note that V (M) ⊆ W . Since every vertex in Y is adjacent to at

most t− 1 vertices in Y , |W | ≤ |V (M)|+ (t− 2)|V (M)|+ (t− 2)2|V (M)| =
|V (M)|(t2 − 3t + 3) < 2m

(
k−1

d−t+1

)
(t2 − 3t + 3). On the other hand, |ZT1

| ≥
2m

(
k−1

d−t+1

)
(t2−3t+3) by (3.2). Hence ZT1

−W 	= ∅. Let z1 ∈ ZT1
−W . Since

dG(z1) ≥ d ≥ k, NG[Y ](z1) 	= ∅ by the definition of ZT1
. Let z′1 ∈ NG[Y ](z1).

Then M ′ = M ∪{z1z′1} is an induced matching of G[Y ] such that every edge
in M ′ is incident with a vertex in ZT1

, which contradicts the maximality of
M . Consequently |V (M)| ≥ 2m

(
k−1

d−t+1

)
.

For T ∈
(

S
d−t+1

)
, let MT = {uv ∈ M : u ∈ ZT1

, v ∈ YT }. Note that⋃
T∈( S

d−t+1)
MT = M and MT1

= {uv ∈ M : u, v ∈ YT1
}. Let T2 ∈

(
S

d−t+1

)
be

a set so that |V (MT2
)| is as large as possible. Then

|V (MT2
)| ≥ |V (M)|

|
(

S
d−t+1

)
|
≥ 2m.

Since every edge in MT2
is ZT1

-YT2
edge, T1 and T2 are desired sets.
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We first show (a). Let H ∈ K(2d − 2t − k + 3), and set m = |V (H)|.
Assume that |V (G)| ≥ (k−1)(2m

(
k−1

d−t+1

)2
(t2−3t+3)+2t3+t). We show that

G contains H as an induced subgraph. By Claim 3.1, for some sets T1, T2 ∈(
S

d−t+1

)
, there exists an induced matching M of G[Y ] with |V (M)| ≥ 2m

which consists of ZT1
-YT2

edges. Since |T1∪T2| ≤ |S| ≤ k−1, |T1∩T2| = |T1|+
|T2|−|T1∪T2| ≥ 2(d−t+1)−(k−1) = 2d−2t−k+3. Furthermore, every vertex
in V (M) is adjacent to all vertices in T1 ∩ T2. Hence, applying Lemma 3.1
with T0 replaced by T1 ∩ T2, G contains H as an induced subgraph. Since
H is arbitrary, (a) holds.

We next consider (b). Assume that t ≥ 4 and (k, d) = (4, t + 1). We
show that H(t, k, d) = H(t, 4, t + 1) ⊇ K(2). By (a), H(t, 4, t + 1) ⊇ K(1).
Since H(t, 3, t + 1) ⊇ K(2) by (a), if G has no 3 vertex-disjoint K1,t and
the order of G is sufficiently large, then G contains K2 +2K1 as an induced
subgraph. Thus it suffices to show that if G has 3 vertex-disjoint K1,t and
|V (G)| ≥ 6t3 +108t2 − 321t+324, then G contains K2 +2K1 as an induced
subgraph. Note that |X | = |S| = 3, d− t+1 = 2 and |V (G)| ≥ 6t3+108t2−
321t+324 = (k− 1)(2 · 2

(
k−1

d−t+1

)2
(t2 − 3t+3)+ 2t3 + t). Then by Claim 3.1,

for some sets T1, T2 ∈
(
S
2

)
, there exists an induced matching M of G[Y ]

with |V (M)| ≥ 4 consisting of ZT1
-YT2

edges. For each edge e ∈ M , fix an
endvertex ue of M belonging to ZT1

. Note that {ue : e ∈ M} is independent.

Claim 3.2. If YT1
is not independent, then G contains K2 + 2K1 as an

induced subgraph.

Proof of Claim 3.2. Assume that YT1
is not independent, and let uv ∈ G[YT1

].
If T1 is independent, then {u, v}∪T1 induces K2+2K1 in G, as desired. Thus
we may assume that G[T1] has an edge (i.e., G[T1] � K2). Then T1∪{ue, ue′}
induces K2 + 2K1 in G, where e, e′ ∈ M with e 	= e′.

By Claim 3.2, we may assume that YT1
is independent.

Claim 3.3. For an edge e ∈ M , if S 	⊆ NG(ue), then G contains K2 + 2K1

as an induced subgraph.

Proof of Claim 3.3. Let e ∈ M , and suppose that S 	⊆ NG(ue). Since T1 ⊆
NG(ue), S − NG(ue) consists of exactly one vertex, say s0. Since dG(ue) ≥
t + 1 ≥ 5, |NG(ue) ∩ Y | ≥ 3. This together with the assumption that YT1

is independent leads to |NG(ue) ∩ YT | ≥ 2 for some T ∈
(
S
2

)
− {T1}. Let

y1, y2 ∈ NG(ue)∩YT with y1 	= y2. Note that T = (T1∩T )∪{s0} (i.e., (T1∩
T ) ∪ {s0} ⊆ NG(yi) for i ∈ {1, 2}). If y1y2 ∈ E(G), {ue, s0, y1, y2} induces
K2+2K1 in G; if y1y2 	∈ E(G), then (T1∩T )∪{ue, y1, y2} induces K2+2K1

in G. In either case, G contains K2 + 2K1 as an induced subgraph.
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By Claim 3.3, we may assume that S ⊆ NG(ue) for every e ∈ M . If G[S]
contains an edge xx′, then {ue, ue′ , x, x′} inducesK2+2K1 inG, where e, e′ ∈
M with e 	= e′, as desired. Thus we may assume that S is an independent
set of G. Let uv ∈ M . Then both u and v are adjacent to all vertices in T2.
Hence T2 ∪ {u, v} induces K2 + 2K1 in G. Consequently (b) holds.

This completes the proof of Proposition 3.2.

4. Proof of Theorems 1.1 and 1.2

In this section, we complete the proof of Theorems 1.1 and 1.2. By Propo-
sitions 2.1 and 2.4, we obtain Theorem 1.1(v) and (i), respectively. Further-
more, the following two propositions which will be proved in this section
imply Theorem 1.1(ii)(iii).

Proposition 4.1. Let t, k and d be positive integers with max{k, t+�k−1
2 �} ≤

d ≤ t+k−2. Then H(t, k, d) ⊆ K(max{2d−2t−k+3, t−1}). Furthermore,
if k = 2, then H(t, k, d) ⊆ K(1).

Proposition 4.2. Let t, k and d be positive integers with max{k, t+�k−1
2 �} ≤

d ≤ t+ k − 2. Then the following hold:

(a) If d ≥ min{3t+k−4
2 , t

2+(k−2)t−k+1
t }, then H(t, k, d) ⊆ K(2d−2t−k+3).

(b) If t ≥ 4, then H(t, 4, t+ 1) = K(2).

Proof of Proposition 4.1. We let H ∈ H(t, k, d) and show that H ∈
K(max{2d − 2t − k + 3, t − 1}). By the definition of H, there exists an
integer n = n(H) such that every H-free graph G with |V (G)| ≥ n and
δ(G) ≥ d has k vertex-disjoint K1,t.

Now we construct two graphs G1 and G2 similar to graphs in the proof of
Proposition 2.4. Let X be a set with |X| = k−1, and for each i (1 ≤ i ≤ n),
let Yi be a complete graph of order t. Let G1 be the graph defined by

V (G1) = X ∪

⎛
⎝ ⋃

1≤i≤n

V (Yi)

⎞
⎠

and

E(G1) = {xx′ : x, x′ ∈ X,x 	= x′}

∪

⎛
⎝ ⋃

1≤i≤n

(E(Yi) ∪ {xy : x ∈ X, y ∈ V (Yi)})

⎞
⎠ ;
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that is to say G1 � Kk−1 + nKt. Since |X| = k − 1, we have d − t + 1 ≤
|X| ≤ 2(d − t + 1). Hence there exist two sets X1, X2 ⊆ X with |Xi| =
d−t+1 (i ∈ {1, 2}) and X1∪X2 = X. Note that |X1∩X2| = 2d−2t−k+3 ≥
2(t+ �k−1

2 �)− 2t− k+3 > 0. For i ∈ {1, 2} and 1 ≤ j ≤ max{n, d}, let A(j)
i

be a set with |A(j)
i | = t− 1. Let G2 be the graph defined by

V (G2) = X ∪

⎛
⎝ ⋃

1≤j≤max{n,d}
(A

(j)
1 ∪A

(j)
2 )

⎞
⎠

and

E(G2) =
⋃

1≤j≤max{n,d}

{
x1a1, x2a2, a1a2 : x1 ∈ X1, x2 ∈ X2,

a1 ∈ A
(j)
1 , a2 ∈ A

(j)
2

}
.

Then Gh (h ∈ {1, 2}) is a connected graph with |V (Gh)| ≥ n and δ(Gh) ≥ d.
Furthermore, since any subgraphs K1,t of Gh contain a vertex in X, Gh has
no k vertex-disjoint K1,t. Hence G1 and G2 are not H-free (i.e., H is a
common induced subgraph of G1 and G2).

Let U1 ⊆ V (G1) be a set with G1[U1] � H. Since G2 contains no K4,
H also contains no K4. This implies that if |U1 ∩ Z| ≥ 3 for some Z ∈
{X} ∪ {V (Yi) : 1 ≤ i ≤ n}, then H is a triangle (i.e., H ∈ K(max{2d −
2t− k + 3, t− 1})), as desired. Thus we may assume that |U1 ∩X| ≤ 2 and
|U1 ∩ V (Yi)| ≤ 2 for every 1 ≤ i ≤ n. Since |V (H)| ≥ 3 and H is connected,
U1 ∩X 	= ∅. If |U1 ∩X| = 1, then H is an induced subgraph of K1 + nK2

(i.e., H ∈ K(max{2d− 2t− k+3, t− 1})), as desired. In particular, if k = 2,
then H(t, k, d) ⊆ K(1). Thus we may assume that |U1 ∩ X| = 2. Since H
contains no K4, we see that |U1 ∩ V (Yi)| ≤ 1 for every 1 ≤ i ≤ n, and hence
H = K2 +mK1 for some m ≥ 1.

Now we fix an edge uv of G2. Since G2[X] contains no edge, we may
assume that u ∈ V (G2)−X. If v 	∈ X, then NG2

(u)∩NG2
(v) = X1∩X2, and

hence |NG2
(u)∩NG2

(v)| = 2d−2t−k+3; if v ∈ X, then NG2
(u)∩NG2

(v) ⊆
NG2

(u) −X, and hence |NG2
(u) ∩NG2

(v)| ≤ t − 1. In either case, we have
|NG2

(u) ∩ NG2
(v)| ≤ max{2d − 2t − k + 3, t − 1}. Since uv is arbitrary, if

K2+mK1 is an induced subgraph of G2, then m ≤ max{2d−2t−k+3, t−1}.
Therefore H ∈ K(max{2d− 2t− k+3, t− 1}). Since H is arbitrary, we have
H(t, k, d) ⊆ K(max{2d− 2t− k + 3, t− 1}).

This completes the proof of Proposition 4.1.
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Now we give a lemma which is useful when we construct some examples.
Let t, k and d be positive integers with max{k, t+ �k−1

2 �} ≤ d ≤ t+ k − 2,
and let [k − 1] = {1, 2, · · · , k − 1}. For a K3-free (t− 1)-regular graph G, a

labeling f : V (G) →
( [k−1]
d−t+1

)
of G is (t, k, d)-good if

(F1) for every i ∈ [k − 1], there exists a vertex u ∈ V (G) with i ∈ f(u),
(F2) for every uv ∈ E(G), |f(u) ∩ f(v)| ≤ 2d− 2t− k + 3, and
(F3) for every i ∈ [k − 1], if i ∈ f(u), then |{v ∈ NG(u) : i ∈ f(v)}| ≤

2d− 2t− k + 3.

Lemma 4.3. Let t, k and d be positive integers with max{k, t + �k−1
2 �} ≤

d ≤ t+k−2. If there exists a K3-free (t−1)-regular graph having a (t, k, d)-
good labeling, then H(t, k, d) = K(2d− 2t− k + 3).

Proof. By Proposition 3.2, it suffices to show that H(t, k, d) ⊆ K(2d− 2t−
k+3). Let H ∈ H(t, k, d). We show that H ∈ K(2d− 2t− k+3). If H is an
induced subgraph of K1+nK2 for some n ≥ 1, then H ∈ K(2d−2t−k+3),
as desired. Thus by Proposition 4.1, we may assume that H = K2 +mK1

for some integer m (1 ≤ m ≤ max{2d− 2t− k+3, t− 1}). By the definition
of H, there exists an integer n = n(H) such that every H-free graph G with
|V (G)| ≥ n and δ(G) ≥ d has k vertex-disjoint K1,t.

Let A be a K3-free (t− 1)-regular graph having a (t, k, d)-good labeling.
Let s = max{n, d}. Let A1, · · · , As be s disjoint copies of A, and for each
i (1 ≤ i ≤ s), let fi be a (t, k, d)-good labeling of Ai. Let G be the graph
defined by

V (G) = [k − 1] ∪

⎛
⎝ ⋃

1≤i≤s

V (Ai)

⎞
⎠

and

E(G) =
⋃

1≤i≤s

(E(Ai) ∪ {uj : u ∈ V (Ai), j ∈ [k − 1], j ∈ f(u)}).

Then |V (G)| ≥ n and δ(G) = d. Furthermore, since any subgraphs K1,t of
G contain a vertex in [k−1], G has no k vertex-disjoint K1,t. Hence G is not
H-free. Let U ⊆ V (G) be a set such that G[U ] � H, and let uv ∈ E(G[U ])
be an edge which is contained in all triangles of G[U ]. We may assume that
u ∈

⋃
1≤i≤s V (Ai). If v ∈ [k − 1], then |NG(u) ∩ NG(v)| ≤ 2d − 2t − k + 3

by the condition (F3); if v 	∈ [k − 1], then |NG(u) ∩ NG(v)| ≤ 2d − 2t −
k + 3 by the condition (F2) since A is K3-free. In either case, we have
|NG(u) ∩ NG(v)| ≤ 2d − 2t − k + 3, and hence H = K2 + mK1 for some
1 ≤ m ≤ 2d− 2t− k + 3. Consequently, H ∈ K(2d− 2t− k + 3). Since H is
arbitrary, we have H(t, k, d) ⊆ K(2d− 2t− k + 3).
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Proof of Proposition 4.2. We first prove (a). If d ≥ 3t+k−4
2 , then t − 1 ≤

2d−2t−k+3, and hence H(t, k, d) ⊆ K(2d−2t−k+3) by Proposition 4.1.

Thus we may assume that d < 3t+k−4
2 (and so d ≥ t2+(k−2)t−k+1

t ). Then

t(t+ k − 2− d) ≤ k − 1. We let H ∈ H(t, k, d), and show that H ∈ K(2d−
2t−k+3). By Proposition 4.1, H ∈ K(max{2d−2t−k+3, t−1}). If H is an

induced subgraph of K1+nK2 for some n ≥ 1, then H ∈ K(2d−2t−k+3),

as desired. Thus we may assume that H = K2+mK1 for some m (1 ≤ m ≤
max{2d− 2t− k + 3, t− 1}). By the definition of H, there exists an integer

n = n(H) such that every H-free graph G with |V (G)| ≥ n and δ(G) ≥ d

has k vertex-disjoint K1,t.

Case 1: t ≤ 3.

By simple calculations, (t, k, d) = (3, 2, 3) and (t, k, d) = (3, 4, 4) are the

only triples satisfying all conditions. If (t, k, d) = (3, 2, 3), then H(t, k, d) ⊆
K(1) by Proposition 4.1, as desired. Thus we may assume that (t, k, d) =

(3, 4, 4). Let C = x1x2 · · ·x6 be the cycle of order 6, and let f : V (G) →
(
[3]
2

)
be a labeling with

f(x) =

⎧⎪⎨
⎪⎩
{1, 2} (x ∈ {x1, x4})
{2, 3} (x ∈ {x2, x5})
{1, 3} (x ∈ {x3, x6}).

Then C is a K3-free 2-regular graph and f is a (3, 4, 4)-good labeling of C.

Hence by Lemma 4.3, we have H(3, 4, 4) = K(1).

Case 2: t ≥ 4.

Let X be a set with |X| = k − 1. Since t(t + k − 2 − d) ≤ k − 1, there

exist disjoint t sets X1, · · · , Xt ∈
(

X
t+k−2−d

)
. Note that if d = t+ k− 2, then

Xi = ∅ for each 1 ≤ i ≤ t. Let s = max{n, d}. For each 1 ≤ j ≤ s, let Yj be

a complete graph of order t, and write V (Yj) = {y(j)1 , · · · , y(j)t }. Let G1 be

the graph defined by

V (G1) = X ∪

⎛
⎝ ⋃

1≤j≤s

V (Yj)

⎞
⎠

and

E(G1) =
⋃

1≤j≤s

⎛
⎝E(Yj) ∪

⎛
⎝ ⋃

1≤i≤t

{xy(j)i : x ∈ X −Xi}

⎞
⎠
⎞
⎠ .
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Then G1 is a connected graph with |V (G1)| ≥ n and δ(G1) = dG1
(y

(1)
1 ) =

(t−1)+(k−1− (t+k−2−d)) = d. Furthermore, since any subgraphs K1,t

of G1 contain a vertex in X, G1 has no k vertex-disjoint K1,t. Hence G1 is
not H-free.

Now we fix an edge uv of G1. Since G1[X] contains no edge, we may as-
sume that u ∈ V (G1)−X. If v ∈ X, thenNG1

(u)∩NG1
(v) induces a complete

graph in G1; if v 	∈ X, then the independence number of G1[NG1
(u)∩NG1

(v)]
is exactly (k − 1) − 2(t + k − 2 − d) = 2d − 2t − k + 3 because t ≥ 4. In
either case, the independence number of G1[NG1

(u) ∩ NG1
(v)] is at most

2d− 2t− k + 3. Since uv is arbitrary, if K2 +mK1 is an induced subgraph
of G1, then m ≤ 2d − 2t − k + 3. Therefore H ∈ K(2d − 2t − k + 3). Since
H is arbitrary, (a) holds.

We next show (b). By (a), H(t, 3, t + 1) ⊆ K(2). Furthermore, we see
that H(t, 4, t + 1) ⊆ H(t, 3, t + 1), and hence H(t, 4, t + 1) ⊆ K(2). This
together with Proposition 3.2(b) implies that H(t, 4, t+ 1) = K(2).

This completes the proof of Proposition 4.1.

Now we complete the proof of Theorem 1.1. It suffices to show Theo-
rem 1.1(iv). Let p and q be positive integers with p ≥ 2q + 1. Let fp,q :(
[p]
q

)
→

(
[p]
p−q

)
be a mapping with fp,q(A) = [p]−A for all A ∈

(
[p]
q

)
. Then we

can easily verify the following observation.

Observation 4.4. Let p and q be positive integers with p ≥ 2q + 1. Then
fp,q satisfies the following:

(1) for every i ∈ [p], there exists A ∈
(
[p]
q

)
with i ∈ fp,q(A),

(2) for every A1, A2 ∈
(
[p]
q

)
with A1∩A2 = ∅, |fp,q(A1)∩fp,q(A2)| = p−2q,

and
(3) for every i ∈ [p], if i ∈ fp,q(A), then |{A′ : A ∩A′ = ∅, i ∈ fp,q(A

′)}| =(
p−q−1

q

)
.

TheKneser graph, denoted by KN(p, q), is the graph on
(
[p]
q

)
such that for

A1, A2 ∈
(
[p]
q

)
, A1 and A2 are adjacent in KN(p, q) if and only if A1∩A2 = ∅.

By the definition, KN(3, 1) is isomorphic to K3 and KN(5, 2) is isomorphic
to the Petersen graph. Furthermore, we have the following observation.

Observation 4.5. Let p and q be positive integers with p ≥ 2q + 1. Then
KN(p, q) is

(
p−q
q

)
-regular. Furthermore, if p ≤ 3q − 1, then KN(p, q) is K3-

free.

We let t ≥ 2, and focus on f2t−3,t−2 and KN(2t− 3, t− 2). By Observa-
tion 4.4, we have the following:
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(1) for every i ∈ [2t− 3], there exists A ∈
(
[2t−3]
t−2

)
with i ∈ f2t−3,t−2(A),

(2) for every A1, A2 ∈
(
[2t−3]
t−2

)
with A1 ∩ A2 = ∅, |f2t−3,t−2(A1) ∩

f2t−3,t−2(A2)| = 1, and

(3) for every i ∈ [2t − 3], if i ∈ f2t−3,t−2(A), then |{A′ : A ∩ A′ = ∅, i ∈
f2t−3,t−2(A

′)}| = 1.

By Observation 4.5, KN(2t− 3, t− 2) is K3-free and (t− 1)-regular. In par-

ticular, f2t−3,t−2 is a (t, 2t−2, 2t−2)-good labeling of KN(2t−3, t−2). This

together with Lemma 4.3 implies H(t, 2t− 2, 2t− 2) = K(1). Consequently,

we obtain Theorem 1.1(iv).

Finally, we show Theorem 1.2. By Theorem 1.1, it suffices to show that

H(4, k, k) = K(k−5) for k ∈ {7, 8}. For each k ∈ {7, 8}, let Yk be the graph,

vertices of which are labeled by k − 3 elements of [k − 1], as in Figure 1 (to

simplify the labeling, we use sequences instead of sets). Then Yk is a K3-

free 3-regular graph having a (4, k, k)-good labeling. Hence it follows from

Lemma 4.3 that H(4, k, k) = K(k − 5) for k ∈ {7, 8}, as desired.

5. Concluding remarks

In this paper, we characterize H(t, k, d) for almost all triples (t, k, d). By

Theorems 1.1 and 1.2, H(t, k, d) have not been determined yet for triples

(t, k, d) with t ≥ 5 satisfying (H1) and (H2).

As we checked above, it is an important problem to find K3-free (t− 1)-

regular graphs having (t, k, d)-good labelings, and the Kneser graphs have

nice properties for good labeling. On the other hand, there exist non-Kneser

graphs having a good labeling (for example, Y7 and Y8 are such graphs).

However, Y8 is a subgraph of KN(7, 2) and its good labeling can be obtained

from f7,2. Hence Kneser graphs might be strong tools.

By observing Proposition 4.1, such familiesH(t, k, d) may equal toK(2d−
2t− k+ 3). On the other hand, for example, we can easily check that every

K3-free 4-regular graph has no (5, 6, 7)-good labeling. So we cannot judge

whether H(5, 6, 7) is equal to K(1) or not from Lemma 4.3. (Indeed, we

suspect that H(5, 6, 7) 	= K(1).) We conclude this paper by presenting a

problem related to the determination of H(t, k, d).

Problem 1. Let t, k and d be positive integers with t ≥ 5 satisfying (H1)

and (H2). Is it true that H(t, k, d) = K(2d− 2t− k + 3) if and only if there

exists a K3-free (t− 1)-regular graph having a (t, k, d)-good labeling?
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Figure 1: Graphs Y7 and Y8.
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