Forbidden subgraphs for k vertex-disjoint stars

Michitaka Furuya[∗](#page-0-0) and Naoki Matsumoto

For a connected graph H , a graph G is said to be H -free if G does not contain H as an induced subgraph. In this context, H is called a forbidden subgraph. In this paper, we study a transition of forbidden subgraphs for the existence of vertex-disjoint stars. For $t \geq 1$, $k \geq 1$ and $d \geq t$, let $\mathcal{H}(t, k, d)$ be the family of connected graphs H such that every H -free graph G of sufficiently large order with $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$. We characterize the family $\mathcal{H}(t, k, d)$ for almost all triples (t, k, d) . In particular, we give a complete characterization of $\mathcal{H}(t, k, d)$ for $t \leq 4$.

AMS 2000 subject classifications: Primary 05C70. Keywords and phrases: Vertex-disjoint star, forbidden subgraph, starfree graph.

1. Introduction

For a connected graph H , a graph G is said to be H -free if G contains no induced subgraph isomorphic to H . In this context, H is called a *forbidden* subgraph. Let $K_{1,r}$ denote the star of order $r+1$.

A star has been widely studied as one of the most important forbidden subgraphs. For example, Sumner $[13]$ $[13]$ proved that every m-connected $K_{1,m+1}$ -free graph of even order has a perfect matching, and Matthews and Sumner [\[11\]](#page-16-1) gave a well-known conjecture that every 4-connected $K_{1,3}$ -free graph is Hamiltonian. Moreover, the star-free condition itself has been studied (for example, see [\[3](#page-16-2), [7](#page-16-3)]).

Here one may estimate that if a graph H has similar properties like the star from the point of view of forbidden subgraphs, then a result concerning star-free graphs will provide useful information to H -free graphs. To find a graph H satisfying such an assumption, we study a transition of forbidden subgraphs. For example, it has been known that a transition of the star-free condition for the existence of a perfect matching depends on the connectivity as mentioned above. Our main aim is to find a larger transition of forbidden subgraphs.

[∗]This work was supported by JSPS KAKENHI Grant number 26800086.

Now we focus on the problem concerning the existence of vertex-disjoint stars in a graph. The problem comes from a famous result which gives a relationship between the size of a matching and the minimum degree condition. We let $\delta(G)$ denote the minimum degree of a graph G.

Theorem A (Erdős and Pósa $[6]$ $[6]$). Let k be a positive integer, and let G be a graph with $|V(G)| \geq 2k$ and $\delta(G) \geq k$. Then G has a matching of size k.

We can regard a matching in a graph as special vertex-disjoint stars. Egawa and Ota [\[5](#page-16-5)] and Ota [\[12](#page-16-6)] studied the minimum degree condition for the existence of k vertex-disjoint $K_{1,t}$. (After that Fujita [\[8\]](#page-16-7) and Chiba [\[1](#page-16-8)] improved the order condition in Theorem [D.](#page-1-0))

Theorem B (Ota [\[12](#page-16-6)]). Let k be a positive integer, and let G be a graph with $|V(G)| \geq 3k + 2$ and $\delta(G) \geq k + 1$. Then G has k vertex-disjoint $K_{1,2}$.

Theorem C (Egawa and Ota $[5]$). Let k be a positive integer, and let G be a graph with $|V(G)| \geq 4k+6$ and $\delta(G) \geq k+2$. Then G has k vertex-disjoint $K_{1,3}$.

Theorem D (Ota [\[12](#page-16-6)]). Let t and k be positive integers with $t \geq 4$, and let G be a graph with $|V(G)| \ge (t+1)k + 2t^2 - 3t - 1$ and $\delta(G) \ge t + k - 1$. Then G has k vertex-disjoint $K_{1,t}$.

On the other hand, Fujita [\[9](#page-16-9), [10](#page-16-10)] gave the forbidden subgraph condition for the existence of k vertex-disjoint $K_{1,t}$ as follows.

Theorem E (Fujita [\[9](#page-16-9), [10](#page-16-10)]). Let t and k be positive integers with $t \geq 3$ and $k \geq 3$, and let H be a connected graph. Then there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq t$ has k vertex-disjoint $K_{1,t}$ if and only if H is a star.

However, for positive integers t, k and d with $t+1 \leq d \leq t+k-2$, it has not been known what kind of forbidden subgraphs H assure the existence of k vertex-disjoint $K_{1,t}$ in an H-free graph with minimum degree at least d. We formally consider the following families $\mathcal{H}(t, k, d)$: Let $\mathcal G$ be the set of connected graphs of order at least three. For positive integers t, k and d with $d \geq t$, let $\mathcal{H}(t, k, d)$ be the family of graphs $H \in \mathcal{G}$ satisfying that there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$.

We let K_n denote the complete graph of order n, and let K_{n_1,n_2} denote the complete bipartite graph with partite sets having cardinalities n_1 and n_2 . For two disjoint graphs H_1 and H_2 , we let $H_1 \cup H_2$ and $H_1 + H_2$ denote the union and the join of H_1 and H_2 , respectively. For a graph H and an integer s, we let sH denote the union of s disjoint copies of H. Let $\mathcal{K} = \{K_{1,r} : r \geq 2\}$, and for a positive integer j, let $\mathcal{K}(j) = \{K_1 + (r_1K_1 \cup$ r_2K_2 : $r_1 \geq 0, r_2 \geq 0, r_1 + 2r_2 \geq 2$ \cup $\{K_2 + rK_1 : 1 \leq r \leq j\}$. Note that $\mathcal{K}(1) = \{K_1 + (r_1K_1 \cup r_2K_2) : r_1 \geq 0, r_2 \geq 0, r_1 + 2r_2 \geq 2\}$. Our main result is the following. (Note that Theorem $1.1(i)$ $1.1(i)$ includes Theorem [E.](#page-1-1))

Theorem 1.1. Let t, k and d be positive integers with $d \geq t$. Then the following hold:

- (i) If $d \le \max\{k-1, t + \lfloor \frac{k-1}{2} \rfloor 1\}$, then $\mathcal{H}(t, k, d) = \mathcal{K}$.
- (ii) If $\max\{k, t + \lfloor \frac{k-1}{2} \rfloor\} \leq d \leq t + k 2$, then

$$
\mathcal{K}(2d-2t-k+3) \subseteq \mathcal{H}(t,k,d) \subseteq \mathcal{K}(\max\{2d-2t-k+3,t-1\}).
$$

Furthermore, if $d \ge \min\{\frac{3t+k-4}{2}, \frac{t^2+(k-2)t-k+1}{t}\},\$ then $\mathcal{H}(t, k, d) =$ $\mathcal{K}(2d - 2t - k + 3).$

- (iii) If $t \geq 4$, then $\mathcal{H}(t, 4, t+1) = \mathcal{K}(2)$.
- (iv) If $t \geq 4$, then $\mathcal{H}(t, 2t 2, 2t 2) = \mathcal{K}(1)$.
- (v) If $d \geq t + k 1$, then $\mathcal{H}(t, k, d) = \mathcal{G}$.

By Theorem [1.1,](#page-2-0) we get a transition of forbidden subgraphs (and so we suspect that $\mathcal{K}(j)$ is one of natural generalizations of the family \mathcal{K}). Hence our main purpose is attained.

We continue to investigate $\mathcal{H}(t, k, d)$. The family $\mathcal{H}(t, k, d)$ has not char-acterized in Theorem [1.1](#page-2-0) if and only if the triple (t, k, d) satisfies

(H1)
$$
\max\{k, t + \lfloor \frac{k-1}{2} \rfloor\} \le d < \min\{\frac{3t+k-4}{2}, \frac{t^2+(k-2)t-k+1}{t}\}
$$
, and
(H2) $(t, k, d) \notin \{(t, 4, t+1), (t, 2t-2, 2t-2)\}.$

By simple calculations, for a fixed integer $t \geq 1$, we check that the number of triples (t, k, d) satisfying $(H1)$ and $(H2)$ is finite (and we omit its detail). Hence for an integer $t \geq 1$, Theorem [1.1](#page-2-0) determines $\mathcal{H}(t, k, d)$ with finite exceptions. On the other hand, it seems difficult to completely characterize $\mathcal{H}(t, k, d)$ for every triple (t, k, d) . So one may pose a natural problem: For a fixed t, find some properties of $\mathcal{H}(t, k, d)$. In this paper, by a few additional proofs together with Theorem [1.1,](#page-2-0) we could completely characterize $\mathcal{H}(t, k, d)$ for $1 \leq t \leq 4$.

Theorem 1.2. Let t, k and d be positive integers with $1 \leq t \leq 4$ and $d \geq t$. Then

$$
\mathcal{H}(t,k,d) = \begin{cases}\n\mathcal{K} & (d \le \max\{k-1, t+\lfloor \frac{k-1}{2} \rfloor - 1\}) \\
\mathcal{K}(2d - 2t - k + 3) & (\max\{k, t+\lfloor \frac{k-1}{2} \rfloor\} \le d \le t + k - 2 \\
& and (t, k, d) \ne (4, 4, 5)) \\
\mathcal{K}(2) & ((t, k, d) = (4, 4, 5)) \\
\mathcal{G} & (d \ge t + k - 1).\n\end{cases}
$$

We will use the following notation and terminology. Let G be a graph, and let $x \in V(G)$. For an integer $i \geq 1$, we let $N_G^{(i)}(x) = \{y \in V(G): \text{the }$ distance between x and y is i}. We write $N_G(x)$ for $N_G^{(1)}(x)$. We let $d_G(x)$ denote the *degree* of x in G. For $X \subseteq V(G)$, we let $G[X]$ be the subgraph of G which is induced by X. For $F \subseteq E(G)$, we let $V(F)$ denote the set of vertices incident with an edge in F . For terms and symbols not defined here, we refer the reader to [\[4\]](#page-16-11).

2. Triples (t, k, d) with either $\mathcal{H}(t, k, d) = \mathcal{G}$ or $\mathcal{H}(t, k, d) = \mathcal{K}$

In this section, we study triples (t, k, d) with either $\mathcal{H}(t, k, d) = \mathcal{G}$ or $\mathcal{H}(t, k, d) = \mathcal{K}$. By the definition of $\mathcal{H}(t, k, d)$, we have $\mathcal{H}(t, k, d) \subseteq \mathcal{G}$. Let $H \in \mathcal{G}$ be a graph, and let t and k be positive integers. Then by Theo-rems [A–](#page-1-2)[D,](#page-1-0) every H-free graph G with $|V(G)| \ge (t+1)k + 2t^2 - 3t + 1$ and $\delta(G) \geq t + k - 1$ has k vertex-disjoint $K_{1,t}$. Hence we get the following proposition.

Proposition 2.1. Let t, k and d be positive integers with $d \geq t + k - 1$. Then $\mathcal{H}(t, k, d) = \mathcal{G}.$

Now we consider triples (t, k, d) with $\mathcal{H}(t, k, d) = \mathcal{K}$. Let G be a graph with $\delta(G) \geq t$. A family $\mathcal{X} \subseteq \binom{V(G)}{t+1}$ is t-proper if $X \cap X' = \emptyset$ and $G[X]$ contains a spanning $K_{1,t}$ for any $X, X' \in \mathcal{X}$ with $X \neq X'$. Note that G has a non-empty t-proper family. We start with the following lemma which will be used in the proof of Propositions [2.4](#page-4-0) and [3.2.](#page-6-0)

Lemma 2.2. Let t, k and d be positive integers with $d \geq t$. Let G be a graph with $\delta(G) \geq d$, and let X be a maximum t-proper family of G. If $|\mathcal{X}| \leq k-1$, then there exists a set $S \subseteq \bigcup_{X \in \mathcal{X}} X$ such that $|S \cap X| = 1$ for each $X \in \mathcal{X}$ and the number of vertices y in $V(G) - (\bigcup_{X \in \mathcal{X}} X)$ with $N_G(y) \cap (\bigcup_{X \in \mathcal{X}} X) \subseteq S$ is at least $|V(G)| - (k-1)(2t^2 + 1)$.

Proof. Set $X_0 = \bigcup_{X \in \mathcal{X}} X$. For each $X \in \mathcal{X}$, choose a vertex $x_X \in X$ so that $|N_G(x_X) \cap (V(G) - X_0)|$ is as large as possible. Let $S = \{x_X : X \in \mathcal{X}\}\.$ We show that S is a desired set.

Suppose that $|N_G(x) \cap (V(G) - X_0)| \geq 2t$ for some $x \in X_0 - S$, and let $U \subseteq N_G(x) \cap (V(G) - X_0)$ be a set with $|U| = t$. Let $X \in \mathcal{X}$ be the set containing x. By the choice of x_X , $|N_G(x_X) \cap (V(G) - X_0)| \geq 2t$. Let $U' \subseteq$ $N_G(x_X) \cap (V(G) - (X_0 \cup U))$ be a set with $|U'| = t$. Then $(\mathcal{X} - \{X\}) \cup \{U \cup$ ${x}$, $U' \cup {x_X}$ is a t-proper family of G, which contradicts the maximality of X. Thus $|N_G(x) \cap (V(G)-X_0)| \leq 2t-1$ for every $x \in X_0-S$. In particular, the number of vertices $y \in V(G) - X_0$ satisfying $N_G(y) \cap (X_0 - S) \neq \emptyset$ is at most $(k-1)t(2t-1)$, and hence the number of vertices $y \in V(G) - X_0$ satisfying $N_G(y) \cap X_0 \subseteq S$ is at least $|V(G)|-(k-1)(t+1)-(k-1)t(2t-1)(=$ $|V(G)| - (k-1)(2t^2+1)$. \Box

We also use the following lemma.

Lemma 2.3 (Chvátal $[2]$ $[2]$). Let t and r be positive integers. Then $R(K_{1,t}, K_r) \leq t(r-1) + 1$ where $R(K_{1,t}, K_r)$ is the Ramsey number for $K_{1,t}$ and K_r .

Our main result in this section is the following.

Proposition 2.4. Let t, k and d be positive integers with $t \leq d \leq \max\{k 1, t + \lfloor \frac{k-1}{2} \rfloor - 1$. Then $\mathcal{H}(t, k, d) = \mathcal{K}$.

Proof. We first show that $\mathcal{H}(t, k, d) \supseteq \mathcal{K}$. Let $H \in \mathcal{K}$; that is $H = K_{1,r}$ for some $r \geq 2$. Let G be a graph with $|V(G)| \geq (k-1)(2t^2 + tr - t + 2)$ and $\delta(G) \geq t$, and assume that G has no k vertex-disjoint $K_{1,t}$. We show that G contains $K_{1,r}$ as an induced subgraph. Let X be a maximum t-proper family of G, and set $X_0 = \bigcup_{X \in \mathcal{X}} X$. Then $|\mathcal{X}| \leq k - 1$ and $|X_0| \leq (k - 1)(t + 1)$. By Lemma [2.2,](#page-3-0) there exists a set $S \subseteq X_0$ such that $|S \cap X| = 1$ for each $X \in \mathcal{X}$ and the number of vertices y in $V(G) - X_0$ with $N_G(y) \cap X_0 \subseteq S$ is at least $|V(G)| - (k-1)(2t^2+1)$. Let $Y = \{y \in V(G) - X_0 : N_G(y) \cap X_0 \subseteq S\}$, and take $x_0 \in S$ so that $|N_G(x_0) \cap Y|$ is as large as possible. Since $\delta(G) \geq t$ and $\delta(G - X_0) \leq t - 1$ by the maximality of X, $N_G(y) \cap S \neq \emptyset$ for every $y \in Y$. It follows from Lemma [2.3](#page-4-1) that $|N_G(x_0) \cap Y| \geq \frac{|Y|}{|S|} \geq \frac{|V(G)|-(k-1)(2t^2+1)}{k-1} \geq$ $t(r-1) + 1 \ge R(K_{1,t}, K_r)$. Since $\delta(G - X_0) \le t - 1$, $G[N_G(x_0) \cap Y]$ contains an independent set Z with $|Z| = r$. Since x_0 is adjacent to all vertices in Z, $G[\lbrace x_0 \rbrace \cup Z]$ contains $K_{1,r}$ as an induced subgraph. Consequently $H =$ $K_{1,r} \in \mathcal{H}(t,k,d)$. Since H is arbitrary, we have $\mathcal{H}(t,k,d) \supseteq \mathcal{K}$.

We next show that $\mathcal{H}(t, k, d) \subseteq \mathcal{K}$. Let $H \in \mathcal{H}(t, k, d)$. By the definition of H, there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$.

Now we show that there exists a K_3 -free connected graph G_1 with $|V(G_1)| \geq n$ and $\delta(G_1) \geq d$ having no k vertex-disjoint $K_{1,t}$. If $d \leq k-1$, then the graph $G_1 = K_{k-1,\max\{n,d\}}$ satisfies the above conditions. Thus we may assume that $d \geq k$. Then $d \leq t + \lfloor \frac{k-1}{2} \rfloor - 1$. Let X_1 and X_2 be disjoint sets with $|X_1| = \lceil \frac{k-1}{2} \rceil$ and $|X_2| = \lfloor \frac{k-1}{2} \rfloor$. For $i \in \{1, 2\}$ and $1 \le j \le \max\{n, d\}$, let $A_i^{(j)}$ be a set with $|A_i^{(j)}| = t - 1$. Let G_1 be the graph defined by

$$
V(G_1) = \bigcup_{i \in \{1,2\}} \left(X_i \cup \left(\bigcup_{1 \leq j \leq \max\{n,d\}} A_i^{(j)} \right) \right)
$$

and

$$
E(G_1) = \bigcup_{1 \le j \le \max\{n,d\}} \left\{ x_1 a_1, x_2 a_2, a_1 a_2 : x_1 \in X_1, x_2 \in X_2, \right\}
$$

$$
a_1 \in A_1^{(j)}, a_2 \in A_2^{(j)} \left\}.
$$

Then G_1 is a K_3 -free graph with $|V(G_1)| \geq n$ and $\delta(G_1) \geq d$. By considering the range of d, we have $k \geq 2$, and so $X_1 \neq \emptyset$. In particular, G_1 is connected. Furthermore, since any subgraphs $K_{1,t}$ of G_1 contain a vertex in $X_1 \cup X_2$, G_1 has no k vertex-disjoint $K_{1,t}$. Consequently G_1 is a desired graph. Hence G_1 is not H-free (i.e., G_1 contains H as an induced subgraph). Since G_1 is K_3 -free, H is also K_3 -free.

Let $G_2 = K_{k-1} + nK_t$. Then G_2 is a connected graph with $|V(G_2)| \geq n$ and $\delta(G_2) \geq d$ having no k vertex-disjoint $K_{1,t}$. Hence G_2 is not H-free. Since H is connected and K_3 -free, this implies that H is a star. Since H is arbitrary, we have $\mathcal{H}(t, k, d) \subseteq \mathcal{K}$.

 \Box

This completes the proof of Proposition [2.4.](#page-4-0)

3. A subfamily of $\mathcal{H}(t, k, d)$

In this section, we focus on subfamilies of $\mathcal{H}(t, k, d)$ for the triples (t, k, d) considered in Theorem [1.1\(](#page-2-0)ii).

A matching M of a graph G is induced if $E(G[V(M)]) = M$. We give a lemma concerning induced matchings.

Lemma 3.1. Let j be a positive integer, and let $H \in \mathcal{K}(j)$. Let G be a graph, and let $T_0 \subseteq V(G)$ be a set with $|T_0| \geq j$. Let M be an induced matching of G with $V(M) \cap T_0 = \emptyset$ and $|V(M)| \geq 2|V(H)|$. If every vertex in $V(M)$ is adjacent to all vertices in T_0 , then G contains H as an induced subgraph.

Proof. Note that $G[V(M) \cup \{x\}]$ contains $K_1 + |V(H)|K_2$ as an induced subgraph, where $x \in T_0$. If $H = K_1 + (r_1K_1 \cup r_2K_2)$ for some integers r_1 and r_2 , then $K_1 + |V(H)|K_2$ contains H as an induced subgraph, and hence G also contains H as an induced subgraph, as desired. Thus we may assume that $H = K_2 + mK_1$ for some integer m $(1 \leq m \leq j)$. If T_0 is an independent set of G, then $G[\{u, v\} \cup T_0]$ contains H as an induced subgraph, where $uv \in M$, as desired. Thus we may assume that $G[T_0]$ has an edge xy. Since $|V(M)| \ge 2|V(H)|$, there exists an independent set $A \subseteq V(M)$ of G with $|A| = |V(H)| - 2$. Then $\{x, y\} \cup A$ induces H in G. □

Our main result in this section is the following.

Proposition 3.2. Let t, k and d be positive integers with $\max\{k, t + \lfloor\frac{k-1}{2}\rfloor\} \le$ $d \leq t + k - 2$. Then the following hold.

- (a) $\mathcal{H}(t, k, d) \supset \mathcal{K}(2d 2t k + 3)$.
- (b) If $t > 4$ and $(k, d) = (4, t + 1)$, then $\mathcal{H}(t, k, d) \supseteq \mathcal{K}(2)$.

Proof. Let G be a graph with $\delta(G) \geq d$, and assume that G has no k vertexdisjoint $K_{1,t}$. Suppose for the moment that $|V(G)| \geq (k-1)(2t^2+1)+1$. Let X be a maximum t-proper set of G, and let $X_0 = \bigcup_{X \in \mathcal{X}} X$. Then $|\mathcal{X}| \leq k-1$ and $|X_0| \leq (k-1)(t+1)$. This together with Lemma [2.2](#page-3-0) implies that there exists a set $S \subseteq X_0$ such that $|S \cap X| = 1$ for each $X \in \mathcal{X}$ and the number of vertices y in $V(G) - X_0$ with $N_G(y) \cap X_0 \subseteq S$ is at least $|V(G)| - (k-1)(2t^2+1)$. Let $Y = \{y \in V(G) - X_0 : N_G(y) \cap X_0 \subseteq S\}$. Note that $|Y| \geq |V(G)| - (k-1)(2t^2+1) \geq 1$.

Since $\delta(G) \geq d$ and $\delta(G - X_0) \leq t-1$ by the maximality of $\mathcal{X}, \, |N_G(y) \cap$ $|S| \geq d-t+1$ for every $y \in Y$. In particular, $|S| \geq d-t+1$. For each $y \in Y$, let $T_y \in {S \choose d-t+1}$ be a set so that $T_y \subseteq N_G(y)$ (without regard to the intersection of $S - T_y$ and $N_G(y)$). For each $T \in {S \choose d-t+1}$, set $Y_T = \{y \in Y : T_y = T\}$. Then $\bigcup_{T \in {S \choose d-t+1}} Y_T = Y$ and $Y_T \cap Y_{T'} = \emptyset$ for all $T, T' \in {S \choose d-t+1}$ with $T \neq T'$. For each $T \in {S \choose d-t+1}$, let $Z_T \subseteq Y_T$ be the set of vertices which are adjacent to no vertex in $V(G) - (S \cup Y)$.

For two sets $U_1, U_2 \subseteq V(G)$ (which might not be disjoint), an edge $e \in E(G)$ is a U_1-U_2 edge if one endvertex of e belongs to U_1 and the other belongs to U_2 .

Claim 3.1. Let m be a positive integer, and suppose that $|V(G)| \geq (k 1)(2m\binom{k-1}{d-t+1}^2(t^2-3t+3)+2t^3+t)$. Then for some sets $T_1, T_2 \in \binom{S}{d-t+1}$, there exists an induced matching M of G[Y] with $|V(M)| \geq 2m$ which consists of Z_{T_1} -Y_{T₂} edges.

Proof of Claim [3.1.](#page-6-1) By the maximality of X, every vertex in $V(G) - (X_0 \cup Y)$ is adjacent to at most $t-1$ vertices in $V(G) - X_0$. Hence

$$
\begin{vmatrix}\n\bigcup_{T \in {s \choose d-t+1}} Z_T \bigg| = |Y| - \left| \bigcup_{T \in {s \choose d-t+1}} (Y_T - Z_T) \right| \\
\geq |Y| - (t-1)(|V(G)| - |X_0| - |Y|) \\
\geq t|Y| - (t-1)|V(G)| \\
\geq t(|V(G)| - (k-1)(2t^2 + 1)) - (t-1)|V(G)| \\
= |V(G)| - (k-1)(2t^3 + t) \\
\geq 2m(k-1) \left(\frac{k-1}{d-t+1} \right)^2 (t^2 - 3t + 3).\n\end{vmatrix}
$$

Choose $T_1 \in \binom{S}{d-t+1}$ so that $|Z_{T_1}|$ is as large as possible. Then by (3.1) ,

$$
(3.2) \qquad |Z_{T_1}| \ge \frac{\left| \bigcup_{T \in {S \choose d-t+1}} Z_T \right|}{\left| {S \choose d-t+1} \right|} \ge 2m(k-1) {k-1 \choose d-t+1} (t^2 - 3t + 3).
$$

Since $\delta(G) \geq d \geq k > |S|$, every vertex in Z_{T_1} is adjacent to a vertex in Y. In particular, $G[Y]$ has an edge which is incident with a vertex in Z_{T_1} . Let M be an induced matching of $G[Y]$ such that every edge in M is incident with a vertex in Z_{T_1} . Choose M so that $|V(M)|$ is as large as possible.

Suppose that $|V(M)| < 2m {k-1 \choose d-t+1}$. Let $W = \bigcup_{z \in V(M)} (N_{G[Y]}(z) \cup$ $N_{G[Y]}^{(2)}(z)$). Note that $V(M) \subseteq W$. Since every vertex in Y is adjacent to at most t – 1 vertices in Y, $|W| \leq |V(M)| + (t-2)|V(M)| + (t-2)^2|V(M)| =$ $|V(M)|(t^2-3t+3) < 2m\binom{k-1}{d-t+1}(t^2-3t+3)$. On the other hand, $|Z_{T_1}| \ge$ $2m\binom{k-1}{d-t+1}(t^2-3t+3)$ by [\(3.2\)](#page-7-1). Hence $Z_{T_1} - W \neq \emptyset$. Let $z_1 \in Z_{T_1} - W$. Since $d_G(z_1) \geq d \geq k$, $N_{G[Y]}(z_1) \neq \emptyset$ by the definition of Z_{T_1} . Let $z'_1 \in N_{G[Y]}(z_1)$. Then $M' = M \cup \{z_1 z_1'\}$ is an induced matching of $G[Y]$ such that every edge in M' is incident with a vertex in Z_{T_1} , which contradicts the maximality of *M*. Consequently $|V(M)| \geq 2m {k-1 \choose d-t+1}$.

For $T \in \binom{S}{d-t+1}$, let $M_T = \{uv \in M : u \in Z_{T_1}, v \in Y_T\}$. Note that $\bigcup_{T \in {S \choose d-t+1}} M_T = M$ and $M_{T_1} = \{uv \in M : u, v \in Y_{T_1}\}$. Let $T_2 \in {S \choose d-t+1}$ be a set so that $|V(M_{T_2})|$ is as large as possible. Then

$$
|V(M_{T_2})| \ge \frac{|V(M)|}{|\binom{S}{d-t+1}|} \ge 2m.
$$

 \Box

Since every edge in M_{T_2} is $Z_{T_1}Y_{T_2}$ edge, T_1 and T_2 are desired sets.

We first show (a). Let $H \in \mathcal{K}(2d - 2t - k + 3)$, and set $m = |V(H)|$. Assume that $|V(G)| \ge (k-1)(2m\binom{k-1}{d-t+1}^2(t^2-3t+3)+2t^3+t)$. We show that G contains H as an induced subgraph. By Claim [3.1,](#page-6-1) for some sets $T_1, T_2 \in$ S_{d-t+1}^{S} , there exists an induced matching M of $G[Y]$ with $|V(M)| \geq 2m$ which consists of Z_{T_1} -Y_{T₂} edges. Since $|T_1 \cup T_2| \leq |S| \leq k-1, |T_1 \cap T_2| = |T_1|+1$ $|T_2|-|T_1\cup T_2|\geq 2(d-t+1)-(k-1)=2d-2t-k+3.$ Furthermore, every vertex in $V(M)$ is adjacent to all vertices in $T_1 \cap T_2$. Hence, applying Lemma [3.1](#page-5-0) with T_0 replaced by $T_1 \cap T_2$, G contains H as an induced subgraph. Since H is arbitrary, (a) holds.

We next consider (b). Assume that $t \geq 4$ and $(k, d) = (4, t + 1)$. We show that $\mathcal{H}(t, k, d) = \mathcal{H}(t, 4, t + 1) \supseteq \mathcal{K}(2)$. By (a), $\mathcal{H}(t, 4, t + 1) \supseteq \mathcal{K}(1)$. Since $\mathcal{H}(t, 3, t + 1) \supseteq \mathcal{K}(2)$ by (a), if G has no 3 vertex-disjoint $K_{1,t}$ and the order of G is sufficiently large, then G contains $K_2 + 2K_1$ as an induced subgraph. Thus it suffices to show that if G has 3 vertex-disjoint $K_{1,t}$ and $|V(G)| \geq 6t^3 + 108t^2 - 321t + 324$, then G contains $K_2 + 2K_1$ as an induced subgraph. Note that $|\mathcal{X}| = |S| = 3$, $d - t + 1 = 2$ and $|V(G)| \geq 6t^3 + 108t^2 321t + 324 = (k-1)(2 \cdot 2({k-1 \choose d-t+1})^2(t^2-3t+3) + 2t^3+t)$. Then by Claim [3.1,](#page-6-1) for some sets $T_1, T_2 \in {\binom{S}{2}}$, there exists an induced matching M of $G[Y]$ with $|V(M)| \geq 4$ consisting of Z_{T_1} -Y_{T₂} edges. For each edge $e \in M$, fix an endvertex u_e of M belonging to Z_{T_1} . Note that $\{u_e : e \in M\}$ is independent.

Claim 3.2. If Y_{T_1} is not independent, then G contains $K_2 + 2K_1$ as an induced subgraph.

Proof of Claim [3.2.](#page-8-0) Assume that Y_{T_1} is not independent, and let $uv \in G[Y_{T_1}]$. If T_1 is independent, then $\{u, v\} \cup T_1$ induces K_2+2K_1 in G, as desired. Thus we may assume that $G[T_1]$ has an edge (i.e., $G[T_1] \simeq K_2$). Then $T_1 \cup \{u_e, u_{e'}\}$ induces $K_2 + 2K_1$ in G, where $e, e' \in M$ with $e \neq e'$. \Box

By Claim [3.2,](#page-8-0) we may assume that Y_{T_1} is independent.

Claim 3.3. For an edge $e \in M$, if $S \nsubseteq N_G(u_e)$, then G contains $K_2 + 2K_1$ as an induced subgraph.

Proof of Claim [3.3.](#page-8-1) Let $e \in M$, and suppose that $S \nsubseteq N_G(u_e)$. Since $T_1 \subseteq$ $N_G(u_e)$, $S - N_G(u_e)$ consists of exactly one vertex, say s_0 . Since $d_G(u_e) \geq$ $t + 1 \geq 5$, $|N_G(u_e) \cap Y| \geq 3$. This together with the assumption that Y_{T_1} is independent leads to $|N_G(u_e) \cap Y_T| \geq 2$ for some $T \in \binom{S}{2} - \{T_1\}$. Let $y_1, y_2 \in N_G(u_e) \cap Y_T$ with $y_1 \neq y_2$. Note that $T = (T_1 \cap T) \cup \{s_0\}$ (i.e., $(T_1 \cap T)$) $T) \cup \{s_0\} \subseteq N_G(y_i)$ for $i \in \{1,2\}$. If $y_1y_2 \in E(G)$, $\{u_e, s_0, y_1, y_2\}$ induces $K_2 + 2K_1$ in G; if $y_1y_2 \notin E(G)$, then $(T_1 \cap T) \cup \{u_e, y_1, y_2\}$ induces $K_2 + 2K_1$ in G. In either case, G contains $K_2 + 2K_1$ as an induced subgraph. ப

By Claim [3.3,](#page-8-1) we may assume that $S \subseteq N_G(u_e)$ for every $e \in M$. If $G[S]$ contains an edge xx' , then $\{u_e, u_{e'}, x, x'\}$ induces K_2+2K_1 in G, where $e, e' \in$ M with $e \neq e'$, as desired. Thus we may assume that S is an independent set of G. Let $uv \in M$. Then both u and v are adjacent to all vertices in T_2 . Hence $T_2 \cup \{u, v\}$ induces $K_2 + 2K_1$ in G. Consequently (b) holds.

This completes the proof of Proposition [3.2.](#page-6-0)

4. Proof of Theorems [1.1](#page-2-0) and [1.2](#page-2-1)

 \Box

In this section, we complete the proof of Theorems [1.1](#page-2-0) and [1.2.](#page-2-1) By Propo-sitions [2.1](#page-3-1) and [2.4,](#page-4-0) we obtain Theorem $1.1(v)$ $1.1(v)$ and (i), respectively. Furthermore, the following two propositions which will be proved in this section imply Theorem $1.1(i)$ $1.1(i)$ (iii).

Proposition 4.1. Let t, k and d be positive integers with $\max\{k, t + \lfloor\frac{k-1}{2}\rfloor\} \leq$ $d \leq t+k-2$. Then $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(\max\{2d-2t-k+3, t-1\})$. Furthermore, if $k = 2$, then $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(1)$.

Proposition 4.2. Let t, k and d be positive integers with $\max\{k, t + \lfloor\frac{k-1}{2}\rfloor\} \le$ $d \leq t + k - 2$. Then the following hold:

- (a) If $d \ge \min\{\frac{3t+k-4}{2}, \frac{t^2+(k-2)t-k+1}{t}\},\$ then $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(2d-2t-k+3)$.
- (b) If $t \geq 4$, then $\mathcal{H}(t, 4, t + 1) = \mathcal{K}(2)$.

Proof of Proposition [4.1.](#page-9-0) We let $H \in \mathcal{H}(t, k, d)$ and show that $H \in$ $\mathcal{K}(\max\{2d-2t-k+3,t-1\})$. By the definition of H, there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$.

Now we construct two graphs G_1 and G_2 similar to graphs in the proof of Proposition [2.4.](#page-4-0) Let X be a set with $|X| = k - 1$, and for each i $(1 \le i \le n)$, let Y_i be a complete graph of order t. Let G_1 be the graph defined by

$$
V(G_1) = X \cup \left(\bigcup_{1 \le i \le n} V(Y_i)\right)
$$

and

$$
E(G_1) = \{xx' : x, x' \in X, x \neq x'\}
$$

$$
\cup \left(\bigcup_{1 \leq i \leq n} (E(Y_i) \cup \{xy : x \in X, y \in V(Y_i)\})\right);
$$

that is to say $G_1 \simeq K_{k-1} + nK_t$. Since $|X| = k - 1$, we have $d - t + 1 \leq$ $|X| \leq 2(d-t+1)$. Hence there exist two sets $X_1, X_2 \subseteq X$ with $|X_i|$ $d-t+1$ $(i \in \{1,2\})$ and $X_1 \cup X_2 = X$. Note that $|X_1 \cap X_2| = 2d-2t-k+3 \ge$ $2(t + \lfloor \frac{k-1}{2} \rfloor) - 2t - k + 3 > 0$. For $i \in \{1, 2\}$ and $1 \le j \le \max\{n, d\}$, let $A_i^{(j)}$ be a set with $|A_i^{(j)}| = t - 1$. Let G_2 be the graph defined by

$$
V(G_2) = X \cup \left(\bigcup_{1 \le j \le \max\{n,d\}} (A_1^{(j)} \cup A_2^{(j)}) \right)
$$

and

$$
E(G_2) = \bigcup_{1 \le j \le \max\{n,d\}} \left\{ x_1 a_1, x_2 a_2, a_1 a_2 : x_1 \in X_1, x_2 \in X_2, \right\}
$$

$$
a_1 \in A_1^{(j)}, a_2 \in A_2^{(j)} \right\}.
$$

Then G_h $(h \in \{1,2\})$ is a connected graph with $|V(G_h)| \geq n$ and $\delta(G_h) \geq d$. Furthermore, since any subgraphs $K_{1,t}$ of G_h contain a vertex in X, G_h has no k vertex-disjoint $K_{1,t}$. Hence G_1 and G_2 are not H-free (i.e., H is a common induced subgraph of G_1 and G_2).

Let $U_1 \subseteq V(G_1)$ be a set with $G_1[U_1] \simeq H$. Since G_2 contains no K_4 , H also contains no K_4 . This implies that if $|U_1 \cap Z| \geq 3$ for some $Z \in$ $\{X\}\cup\{V(Y_i):1\leq i\leq n\}$, then H is a triangle (i.e., $H\in\mathcal{K}(\max\{2d-1\})$ $2t - k + 3, t - 1$)), as desired. Thus we may assume that $|U_1 \cap X| \leq 2$ and $|U_1 \cap V(Y_i)| \leq 2$ for every $1 \leq i \leq n$. Since $|V(H)| \geq 3$ and H is connected, $U_1 \cap X \neq \emptyset$. If $|U_1 \cap X| = 1$, then H is an induced subgraph of $K_1 + nK_2$ (i.e., $H \in \mathcal{K}(\max\{2d-2t-k+3,t-1\})$), as desired. In particular, if $k=2$, then $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(1)$. Thus we may assume that $|U_1 \cap X| = 2$. Since H contains no K_4 , we see that $|U_1 \cap V(Y_i)| \leq 1$ for every $1 \leq i \leq n$, and hence $H = K_2 + mK_1$ for some $m \geq 1$.

Now we fix an edge uv of G_2 . Since $G_2[X]$ contains no edge, we may assume that $u \in V(G_2)-X$. If $v \notin X$, then $N_{G_2}(u) \cap N_{G_2}(v) = X_1 \cap X_2$, and hence $|N_{G_2}(u) \cap N_{G_2}(v)| = 2d - 2t - k + 3$; if $v \in X$, then $N_{G_2}(u) \cap N_{G_2}(v) \subseteq$ $N_{G_2}(u) - X$, and hence $|N_{G_2}(u) \cap N_{G_2}(v)| \leq t - 1$. In either case, we have $|N_{G_2}(u) \cap N_{G_2}(v)| \leq \max\{2d - 2t - k + 3, t - 1\}.$ Since uv is arbitrary, if K_2+mK_1 is an induced subgraph of G_2 , then $m \leq \max\{2d-2t-k+3, t-1\}$. Therefore $H \in \mathcal{K}(\max\{2d-2t-k+3,t-1\})$. Since H is arbitrary, we have $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(\max\{2d - 2t - k + 3, t - 1\}).$

This completes the proof of Proposition [4.1.](#page-9-0)

$$
\Box
$$

Now we give a lemma which is useful when we construct some examples. Let t, k and d be positive integers with $\max\{k, t + \lfloor\frac{k-1}{2}\rfloor\} \leq d \leq t + k - 2$, and let $[k-1] = \{1, 2, \dots, k-1\}$. For a K_3 -free $(t-1)$ -regular graph G , a labeling $f: V(G) \to \binom{[k-1]}{d-t+1}$ of G is (t, k, d) -good if

- (F1) for every $i \in [k-1]$, there exists a vertex $u \in V(G)$ with $i \in f(u)$,
- (F2) for every $uv \in E(G)$, $|f(u) \cap f(v)| \leq 2d 2t k + 3$, and
- (F3) for every $i \in [k-1]$, if $i \in f(u)$, then $|\{v \in N_G(u) : i \in f(v)\}| \le$ $2d - 2t - k + 3.$

Lemma 4.3. Let t, k and d be positive integers with $\max\{k, t + \lfloor \frac{k-1}{2} \rfloor\}$ $d \leq t+k-2$. If there exists a K_3 -free $(t-1)$ -regular graph having a (t, k, d) good labeling, then $\mathcal{H}(t, k, d) = \mathcal{K}(2d - 2t - k + 3)$.

Proof. By Proposition [3.2,](#page-6-0) it suffices to show that $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(2d - 2t - 1)$ $k+3$). Let $H \in \mathcal{H}(t, k, d)$. We show that $H \in \mathcal{K}(2d-2t-k+3)$. If H is an induced subgraph of $K_1 + nK_2$ for some $n \geq 1$, then $H \in \mathcal{K}(2d-2t-k+3)$, as desired. Thus by Proposition [4.1,](#page-9-0) we may assume that $H = K_2 + mK_1$ for some integer $m\ (1 \leq m \leq \max\{2d-2t-k+3,t-1\})$. By the definition of H, there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$.

Let A be a K₃-free $(t-1)$ -regular graph having a (t, k, d) -good labeling. Let $s = \max\{n, d\}$. Let A_1, \dots, A_s be s disjoint copies of A, and for each i $(1 \leq i \leq s)$, let f_i be a (t, k, d) -good labeling of A_i . Let G be the graph defined by

$$
V(G) = [k-1] \cup \left(\bigcup_{1 \le i \le s} V(A_i)\right)
$$

and

$$
E(G) = \bigcup_{1 \le i \le s} (E(A_i) \cup \{uj : u \in V(A_i), j \in [k-1], j \in f(u)\}).
$$

Then $|V(G)| \ge n$ and $\delta(G) = d$. Furthermore, since any subgraphs $K_{1,t}$ of G contain a vertex in $[k-1]$, G has no k vertex-disjoint $K_{1,t}$. Hence G is not H-free. Let $U \subseteq V(G)$ be a set such that $G[U] \simeq H$, and let $uv \in E(G[U])$ be an edge which is contained in all triangles of $G[U]$. We may assume that $u \in \bigcup_{1 \leq i \leq s} V(A_i)$. If $v \in [k-1]$, then $|N_G(u) \cap N_G(v)| \leq 2d - 2t - k + 3$ by the condition (F3); if $v \notin [k-1]$, then $|N_G(u) \cap N_G(v)| \leq 2d - 2t$ $k + 3$ by the condition (F2) since A is K_3 -free. In either case, we have $|N_G(u) \cap N_G(v)| \leq 2d - 2t - k + 3$, and hence $H = K_2 + mK_1$ for some $1 \leq m \leq 2d - 2t - k + 3$. Consequently, $H \in \mathcal{K}(2d - 2t - k + 3)$. Since H is arbitrary, we have $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(2d - 2t - k + 3)$. \Box

Proof of Proposition [4.2.](#page-9-1) We first prove (a). If $d \geq \frac{3t+k-4}{2}$, then $t-1 \leq$ $2d-2t-k+3$, and hence $\mathcal{H}(t, k, d) \subseteq \mathcal{K}(2d-2t-k+3)$ by Proposition [4.1.](#page-9-0) Thus we may assume that $d < \frac{3t+k-4}{2}$ (and so $d \geq \frac{t^2+(k-2)t-k+1}{t}$). Then $t(t + k - 2 - d) \leq k - 1$. We let $H \in \mathcal{H}(t, k, d)$, and show that $H \in \mathcal{K}(2d 2t-k+3$. By Proposition [4.1,](#page-9-0) $H \in \mathcal{K}(\max\{2d-2t-k+3,t-1\})$. If H is an induced subgraph of $K_1 + nK_2$ for some $n \geq 1$, then $H \in \mathcal{K}(2d-2t-k+3)$, as desired. Thus we may assume that $H = K_2 + mK_1$ for some m ($1 \le m \le$ $\max\{2d-2t-k+3,t-1\}$. By the definition of H, there exists an integer $n = n(H)$ such that every H-free graph G with $|V(G)| \geq n$ and $\delta(G) \geq d$ has k vertex-disjoint $K_{1,t}$.

Case 1: $t < 3$.

By simple calculations, $(t, k, d) = (3, 2, 3)$ and $(t, k, d) = (3, 4, 4)$ are the only triples satisfying all conditions. If $(t, k, d) = (3, 2, 3)$, then $\mathcal{H}(t, k, d) \subseteq$ $\mathcal{K}(1)$ by Proposition [4.1,](#page-9-0) as desired. Thus we may assume that (t, k, d) $(3, 4, 4)$. Let $C = x_1 x_2 \cdots x_6$ be the cycle of order 6, and let $f: V(G) \rightarrow {\binom{[3]}{2}}$ be a labeling with

$$
f(x) = \begin{cases} \{1,2\} & (x \in \{x_1, x_4\}) \\ \{2,3\} & (x \in \{x_2, x_5\}) \\ \{1,3\} & (x \in \{x_3, x_6\}). \end{cases}
$$

Then C is a K_3 -free 2-regular graph and f is a $(3,4,4)$ -good labeling of C. Hence by Lemma [4.3,](#page-11-0) we have $\mathcal{H}(3, 4, 4) = \mathcal{K}(1)$.

Case 2: $t \geq 4$.

Let X be a set with $|X| = k - 1$. Since $t(t + k - 2 - d) \leq k - 1$, there exist disjoint t sets $X_1, \cdots, X_t \in {X \choose t+k-2-d}$. Note that if $d = t + k - 2$, then $X_i = \emptyset$ for each $1 \leq i \leq t$. Let $s = \max\{n, d\}$. For each $1 \leq j \leq s$, let Y_i be a complete graph of order t, and write $V(Y_j) = \{y_1^{(j)}, \dots, y_t^{(j)}\}$. Let G_1 be the graph defined by

$$
V(G_1) = X \cup \left(\bigcup_{1 \leq j \leq s} V(Y_j)\right)
$$

and

$$
E(G_1) = \bigcup_{1 \leq j \leq s} \left(E(Y_j) \cup \left(\bigcup_{1 \leq i \leq t} \{xy_i^{(j)} : x \in X - X_i\} \right) \right).
$$

Then G_1 is a connected graph with $|V(G_1)| \ge n$ and $\delta(G_1) = d_{G_1}(y_1^{(1)}) =$ $(t-1) + (k-1-(t+k-2-d)) = d$. Furthermore, since any subgraphs $K_{1,t}$ of G_1 contain a vertex in X, G_1 has no k vertex-disjoint $K_{1,t}$. Hence G_1 is not H -free.

Now we fix an edge uv of G_1 . Since $G_1[X]$ contains no edge, we may assume that $u \in V(G_1)-X$. If $v \in X$, then $N_{G_1}(u) \cap N_{G_1}(v)$ induces a complete graph in G_1 ; if $v \notin X$, then the independence number of $G_1[N_{G_1}(u) \cap N_{G_1}(v)]$ is exactly $(k-1) - 2(t + k - 2 - d) = 2d - 2t - k + 3$ because $t \ge 4$. In either case, the independence number of $G_1[N_{G_1}(u) \cap N_{G_1}(v)]$ is at most $2d - 2t - k + 3$. Since uv is arbitrary, if $K_2 + mK_1$ is an induced subgraph of G_1 , then $m \leq 2d - 2t - k + 3$. Therefore $H \in \mathcal{K}(2d - 2t - k + 3)$. Since H is arbitrary, (a) holds.

We next show (b). By (a), $\mathcal{H}(t, 3, t+1) \subseteq \mathcal{K}(2)$. Furthermore, we see that $\mathcal{H}(t, 4, t + 1) \subseteq \mathcal{H}(t, 3, t + 1)$, and hence $\mathcal{H}(t, 4, t + 1) \subseteq \mathcal{K}(2)$. This together with Proposition [3.2\(](#page-6-0)b) implies that $\mathcal{H}(t, 4, t + 1) = \mathcal{K}(2)$.

This completes the proof of Proposition [4.1.](#page-9-0)

Now we complete the proof of Theorem [1.1.](#page-2-0) It suffices to show Theo-rem [1.1\(](#page-2-0)iv). Let p and q be positive integers with $p \geq 2q + 1$. Let $f_{p,q}$: $\binom{[p]}{q} \to \binom{[p]}{p-q}$ be a mapping with $f_{p,q}(A) = [p] - A$ for all $A \in \binom{[p]}{q}$. Then we can easily verify the following observation.

Observation 4.4. Let p and q be positive integers with $p \geq 2q + 1$. Then $f_{p,q}$ satisfies the following:

- (1) for every $i \in [p]$, there exists $A \in \binom{[p]}{q}$ with $i \in f_{p,q}(A)$,
- (2) for every $A_1, A_2 \in \binom{[p]}{q}$ with $A_1 \cap A_2 = \emptyset$, $|f_{p,q}(A_1) \cap f_{p,q}(A_2)| = p-2q$, and
- (3) for every $i \in [p]$, if $i \in f_{p,q}(A)$, then $|\{A' : A \cap A' = \emptyset, i \in f_{p,q}(A')\}| =$ $\binom{p-q-1}{q}$.

The Kneser graph, denoted by $KN(p, q)$, is the graph on $\binom{[p]}{q}$ such that for $A_1, A_2 \in \binom{[p]}{q}, A_1 \text{ and } A_2 \text{ are adjacent in } \text{KN}(p, q) \text{ if and only if } A_1 \cap A_2 = \emptyset.$ By the definition, $KN(3,1)$ is isomorphic to K_3 and $KN(5,2)$ is isomorphic to the Petersen graph. Furthermore, we have the following observation.

Observation 4.5. Let p and q be positive integers with $p \geq 2q + 1$. Then $KN(p, q)$ is $\binom{p-q}{q}$ -regular. Furthermore, if $p \leq 3q - 1$, then $KN(p, q)$ is K_3 free.

We let $t \geq 2$, and focus on $f_{2t-3,t-2}$ and KN(2t – 3, t – 2). By Observation [4.4,](#page-13-0) we have the following:

 \Box

- (1) for every $i \in [2t-3]$, there exists $A \in \binom{[2t-3]}{t-2}$ with $i \in f_{2t-3,t-2}(A)$,
- (2) for every $A_1, A_2 \in \binom{[2t-3]}{t-2}$ with $A_1 \cap A_2 = \emptyset$, $|f_{2t-3,t-2}(A_1) \cap A_2|$ $f_{2t-3,t-2}(A_2)|=1$, and
- (3) for every $i \in [2t-3]$, if $i \in f_{2t-3,t-2}(A)$, then $|\{A' : A \cap A' = \emptyset, i \in$ $f_{2t-3,t-2}(A')\}|=1.$

By Observation [4.5,](#page-13-1) KN(2t – 3, t – 2) is K₃-free and $(t-1)$ -regular. In particular, $f_{2t-3,t-2}$ is a $(t, 2t-2, 2t-2)$ -good labeling of KN(2t-3, t-2). This together with Lemma [4.3](#page-11-0) implies $\mathcal{H}(t, 2t - 2, 2t - 2) = \mathcal{K}(1)$. Consequently, we obtain Theorem 1.1 (iv).

Finally, we show Theorem [1.2.](#page-2-1) By Theorem [1.1,](#page-2-0) it suffices to show that $\mathcal{H}(4, k, k) = \mathcal{K}(k-5)$ for $k \in \{7, 8\}$. For each $k \in \{7, 8\}$, let Y_k be the graph, vertices of which are labeled by $k-3$ elements of $[k-1]$ $[k-1]$ $[k-1]$, as in Figure 1 (to simplify the labeling, we use sequences instead of sets). Then Y_k is a K_3 free 3-regular graph having a $(4, k, k)$ -good labeling. Hence it follows from Lemma [4.3](#page-11-0) that $\mathcal{H}(4, k, k) = \mathcal{K}(k-5)$ for $k \in \{7, 8\}$, as desired.

5. Concluding remarks

In this paper, we characterize $\mathcal{H}(t, k, d)$ for almost all triples (t, k, d) . By Theorems [1.1](#page-2-0) and [1.2,](#page-2-1) $\mathcal{H}(t, k, d)$ have not been determined yet for triples (t, k, d) with $t \geq 5$ satisfying (H1) and (H2).

As we checked above, it is an important problem to find K_3 -free $(t-1)$ regular graphs having (t, k, d) -good labelings, and the Kneser graphs have nice properties for good labeling. On the other hand, there exist non-Kneser graphs having a good labeling (for example, Y_7 and Y_8 are such graphs). However, Y_8 is a subgraph of $KN(7, 2)$ and its good labeling can be obtained from $f_{7,2}$. Hence Kneser graphs might be strong tools.

By observing Proposition [4.1,](#page-9-0) such families $\mathcal{H}(t, k, d)$ may equal to $\mathcal{K}(2d 2t - k + 3$). On the other hand, for example, we can easily check that every K_3 -free 4-regular graph has no $(5, 6, 7)$ -good labeling. So we cannot judge whether $\mathcal{H}(5, 6, 7)$ is equal to $\mathcal{K}(1)$ or not from Lemma [4.3.](#page-11-0) (Indeed, we suspect that $\mathcal{H}(5, 6, 7) \neq \mathcal{K}(1)$.) We conclude this paper by presenting a problem related to the determination of $\mathcal{H}(t, k, d)$.

Problem 1. Let t, k and d be positive integers with $t \geq 5$ satisfying (H1) and (H2). Is it true that $\mathcal{H}(t, k, d) = \mathcal{K}(2d - 2t - k + 3)$ if and only if there exists a K₃-free $(t - 1)$ -regular graph having a (t, k, d) -good labeling?

Figure 1: Graphs Y_7 and Y_8 .

Acknowledgments

The authors would like to thank the referees for valuable suggestions. In particular, one of the referees found a (t, k, d) -good labeling of Kneser graphs.

References

- [1] S. Chiba, Vertex-disjoint t-claws in graphs, SUT J. Math. **43** (2007) 149–172. [MR2417538](http://www.ams.org/mathscinet-getitem?mr=2417538)
- [2] V. Chv´atal, Tree-complete graph Ramsey numbers, J. Graph Theory **1** (1977) 93. [MR0465920](http://www.ams.org/mathscinet-getitem?mr=0465920)
- [3] M. Chudnovsky and P. Seymour, The structure of claw-free graphs, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., **327**, Cambridge Univ. Press, (2005) pp. 153–171. [MR2187738](http://www.ams.org/mathscinet-getitem?mr=2187738)
- [4] R. Diestel, "Graph Theory" (4th edition), Graduate Texts in Mathematics **173**, Springer (2010). [MR2744811](http://www.ams.org/mathscinet-getitem?mr=2744811)
- [5] Y. Egawa and K. Ota, Vertex-disjoint claws in graphs, Discrete Math. **197/198** (1999) 225–246. [MR1674865](http://www.ams.org/mathscinet-getitem?mr=1674865)
- [6] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen **9** (1962) 3–12. [MR0150756](http://www.ams.org/mathscinet-getitem?mr=0150756)
- [7] J. Fujisawa, K. Ota, K. Ozeki and G. Sueiro, Forbidden induced subgraphs for star-free graphs, Discrete Math. **311** (2011) 2475–2484. [MR2832146](http://www.ams.org/mathscinet-getitem?mr=2832146)
- [8] S. Fujita, Vertex-disjoint $K_{1,t}$'s in graphs, Ars Combin. **64** (2002) 211– 223. [MR1914209](http://www.ams.org/mathscinet-getitem?mr=1914209)
- [9] S. Fujita, Forbidden pairs for vertex-disjoint claws, Far East J. Appl. Math. **18** (2005) 209–213. [MR2145762](http://www.ams.org/mathscinet-getitem?mr=2145762)
- [10] S. Fujita, Disjoint stars and forbidden subgraphs, Hiroshima Math. J. **36** (2006) 397–403. [MR2290665](http://www.ams.org/mathscinet-getitem?mr=2290665)
- [11] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory **8** (1984) 139–146. [MR0732027](http://www.ams.org/mathscinet-getitem?mr=0732027)
- [12] K. Ota, Vertex-disjoint stars in graphs, Discuss. Math. Graph Theory **21** (2001) 179–185. [MR1892809](http://www.ams.org/mathscinet-getitem?mr=1892809)
- [13] D. P. Sumner, 1-factors and antifactor sets, J. London Math. Soc. **13** (1976) 351–359. [MR0409287](http://www.ams.org/mathscinet-getitem?mr=0409287)

Michitaka Furuya College of Liberal Arts and Science Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara, Kanagawa 252-0373 Japan E-mail address: michitaka.furuya@gmail.com

NAOKI MATSUMOTO Department of Computer and Information Science SEIKEI UNIVERSITY 3-3-1 Kichijoji-Kitamachi Musashino-shi, Tokyo 180-8633 Japan E-mail address: naoki.matsumo10@gmail.com

Received 8 June 2014