
Journal of Combinatorics

Volume 9, Number 4, 693–720, 2018

Combinatorial and arithmetical properties of the
restricted and associated Bell and factorial numbers

Victor H. Moll, José L. Raḿırez, and Diego Villamizar

Set partitions and permutations with restrictions on the size of the
blocks and cycles are important combinatorial sequences. Counting
these objects lead to the sequences generalizing the classical Stir-
ling and Bell numbers. The main focus of the present article is the
analysis of combinatorial and arithmetical properties of them. The
results include several combinatorial identities and recurrences as
well as some properties of their p-adic valuations.

1. Introduction

The (unsigned) Stirling numbers of the first kind denoted by c(n, k) or
[
n
k

]
enumerate the number of permutations on n elements with k cycles. The
corresponding Stirling numbers of the second kind, denoted by S(n, k) or{
n
k

}
, enumerate the number of partitions of a set with n elements into k non-

empty blocks; see [19] for general information about them. The recurrences[
n+ 1

k

]
=

[
n

k − 1

]
+ n

[
n

k

]
and{

n+ 1

k

}
=

{
n

k − 1

}
+ k

{
n

k

}
,

with the initial conditions[
0

0

]
= 1,

[
n

0

]
=

[
0

n

]
= 0,{

0

0

}
= 1,

{
n

0

}
=

{
0

n

}
= 0,

hold for n ≥ 1. They are related to each other by the orthogonality relation∑
k≥0

{
n

k

}[
k

m

]
(−1)n−k = δn,m,

where δn,m is the Kronecker delta function.

693

http://www.intlpress.com/JOC/


694 Victor H. Moll et al.

The Bell numbers, Bn, enumerate the set partitions of a set with n

elements, so that Bn =
∑n

k=0

{
n
k

}
. The Spivey’s formula [39]

Bn+m =

n∑
k=0

m∑
j=0

jn−k

{
m

j

}(
n

k

)
Bk,(1)

gives a recurrence for them. Further properties of this sequence appear in

[19, 28].

The literature contains several generalizations of Stirling numbers; see

[29]. Among them, the so-called restricted and associated Stirling numbers

of both kinds (cf. [10, 15, 16, 17, 19, 23, 24, 25, 26, 32]) constitute the central

character of the work presented here.

The restricted Stirling numbers of the second kind
{
n
k

}
≤m

give the num-

ber of partitions of n elements into k subsets, with the additional restriction

that none of the blocks contain more than m elements. Komatsu et al. [23]

derived the recurrences

{
n+ 1

k

}
≤m

=

m−1∑
j=0

(
n

j

){
n− j

k − 1

}
≤m

(2)

= k

{
n

k

}
≤m

+

{
n

k − 1

}
≤m

−
(
n

m

){
n−m

k − 1

}
≤m

,

with initial conditions
{
0
0

}
≤m

= 1 and
{
n
0

}
≤m

= 0, for n ≥ 1. The restricted

Bell numbers defined by [33]

Bn,≤m =

n∑
k=0

{
n

k

}
≤m

,

enumerate partitions of n elements into blocks, each one of them with at

most m elements. For example, B4,≤3 = 14, the partitions being

{{1}, {2}, {3}, {4}} , {{1, 2}, {3}, {4}} , {{1, 2}, {3, 4}} , {{1, 3}, {2}, {4}} ,
{{1, 3}, {2, 4}} , {{1, 4}, {2}, {3}} , {{1, 4}, {2, 3}} , {{1, 2, 3}, {4}} ,
{{1, 2, 4}, {3}} , {{1, 3, 4}, {2}} , {{1}, {2, 3, 4}} , {{1}, {2}, {3, 4}} ,
{{1}, {2, 4}, {3}} , {{1}, {2, 3}, {4}} .

An associated sequence is the restricted Stirling numbers of the first kind[
n
k

]
≤m

. This gives the number of permutations on n elements with k cycles
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with the restriction that none of the cycles contain more than m items (see
[32] for more information). Komatsu et al. [24] established the recurrence

[
n+ 1

k

]
≤m

=

m−1∑
j=0

n!

(n− j)!

[
n− j

k − 1

]
≤m

(3)

= n

[
n

k

]
≤m

+

[
n

k − 1

]
≤m

− n!

(n−m)!

[
n−m

k − 1

]
≤m

,

with initial conditions
[
0
0

]
≤m

= 1 and
[
n
0

]
≤m

= 0. The restricted factorial

numbers, see [32], are defined by

An,≤m =

n∑
k=0

[
n

k

]
≤m

.

These enumerate all permutations of n elements into cycles with the condi-
tion that every cycle has at most m items. For example, A4,≤3 = 18 with
the permutations being

(1)(2)(3)(4), (1)(2)(43), (1)(32)(4), (1)(342), (1)(432),

(1)(42)(3), (21)(3)(4), (21)(43), (231)(4), (241)(3),

(321)(4), (31)(2)(4), (341)(2), (31)(42), (421)(3),

(431)(2), (41)(2)(3), (41)(32).

The outline of the paper is this: Section 2 contains some known identities
of the restricted Bell numbers Bn,≤2. In this case, m = 2, the restricted Bell
and restricted factorial numbers coincide, i.e., Bn,≤2 = An,≤2. Information
about their Hankel transform is included. Section 3 contains extensions of
these properties to m = 3 and Sections 4 and 5 present the general case.
Section 6 establishes the log-convexity of the restricted Bell and factorial
sequences, extending classical results. Some conjectures on the roots of the
restricted Bell polynomials are proposed here. Finally, Section 7 presents
some preliminary results on the p-adic valuations of these sequences. Explicit
expressions for the prime p = 2 are established. A more complete discussion
of these issues is in preparation.

2. Restricted Bell numbers Bn,≤2 and restricted factorial
numbers An,≤2

This section discusses the sequence Bn,≤2, which enumerates partitions of n
elements into blocks of length at most 2. Then Bn,≤2 = An,≤2 is precisely
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the number of involutions of the n elements, denoted in [5] by Inv1(n). This
sequence is also called Bessel numbers of the second kind, see [14] for further
information.

The well-known recurrence

(4) Bn,≤2 = Bn−1,≤2 + (n− 1)Bn−2,≤2,

with initial conditions B0,≤2 = B1,≤2 = 1, yields the exponential generating
function

(5)

∞∑
n=0

Bn,≤2
xn

n!
= exp

(
x+ 1

2x
2
)

as well as the closed-form expression

(6) Bn,≤2 =

�n/2�∑
j=0

(
n

2j

)
(2j)!

2j j!
.

The recurrence

(7) Bn1+n2,≤2 =
∑
k≥0

k!

(
n1

k

)(
n2

k

)
Bn1−k,≤2Bn2−k,≤2

is established in [5].
Congruences for the involution numbers appeared in Mező [32], in a

problem on the distribution of last digits of related sequences. These include
(8)
Bn,≤2 ≡ Bn+5,≤2 mod 10 if n > 1 and Bn,≤3 ≡ Bn+5,≤2 mod 10 if n > 3.

2.1. The Hankel transform of Bn,≤2

For a sequence A = (an)n∈N, its Hankel matrix Hn of order n is defined by

Hn =

⎡
⎢⎢⎢⎣
a0 a1 a2 · · · an
a1 a2 a3 · · · an+1
...

...
...

...
an an+1 an+2 · · · a2n

⎤
⎥⎥⎥⎦ .

The Hankel transform of A is the sequence (detHn)n∈N. Aigner [1] showed
that the Hankel transform of the Bell numbers is the sequence of the product
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of first n factorials, so-called superfactorials, i.e., (1!, 1!2!, 1!2!3!, . . . ). The-
orem 2.2 below shows that the Hankel transform of Bn,≤2 is also given by
superfactorials.

The first result gives the binomial transform of Bn,≤2. This involves the
double factorials

(2n− 1)!! =

n∏
k=1

(2k − 1) =
(2n)!

n!2n
.

Proposition 2.1. The binomial transform of the sequence Bn,≤2 is

n∑
i=0

(−1)i
(
n

i

)
Bi,≤2 =

{
(n− 1)!!, if n is even;

0, if n is odd.

The numbers on the right are called the aerated double factorial.

Proof. The exponential generating function A(x) of a sequence (an)n≥0 and
that of its binomial transform S(x) are related by S(x) = e−xA(x). The
result now follows from (5).

Combinatorial Proof of Proposition 2.1: Let Bn,≤2 be the set of all partitions
into blocks of length at most 2. Let Sn,i = {π ∈ Bn,≤2 : {i} ∈ π} be the
set of partitions of [n] in blocks of length less or equal to 2, where i is a
singleton block. There are Bn−1,≤2 of them. Then

Bn,≤2 =

n⋃
i=1

Sn,i

⋃
(Bn,≤2 \ (

n⋃
i=1

Sn,i))︸ ︷︷ ︸
Denote this by Ln

.

The inclusion-exclusion principle gives

Bn,≤2 =

n∑
i=1

(−1)i−1

(
n

i

)
Bn−i,≤2 + |Ln|,

that yields

|Ln| = Bn,≤2 −
n∑

i=1

(−1)i−1

(
n

i

)
Bn−i,≤2(9)

=

n∑
i=0

(−1)i
(
n

i

)
Bn−i,≤2
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=

n∑
i=0

(−1)n−i

(
n

i

)
Bi,≤2.

On the other hand, Ln = {π ∈ Bn,≤2 : such that if B ∈ π then |B| = 2},
because it is the complement of the partitions with at least one singleton.

Thus

|Ln| =
(

n
2,2,...,2

)(
n
2

)
!

=
n!

2n/2
(
n
2

)
!

if n is even and 0 if n is odd. This establishes the identity.

Barry and Hennessy [7, Example 16] show that the Hankel transform of

the aerated double factorial is the superfactorials. The fact that any integer

sequence has the same Hankel transform as its binomial transform [27, 40],

gives the next result.

Theorem 2.2. The Hankel transform of the restricted Bell numbers Bn,≤2

is the superfactorials; that is, for any fixed n,

det

⎡
⎢⎢⎢⎣
B0,≤2 B1,≤2 B2,≤2 · · · Bn,≤2

B1,≤2 B2,≤2 B3,≤2 · · · Bn+1,≤2
...

...
...

...
Bn,≤2 Bn+1,≤2 Bn+2,≤2 · · · B2n,≤2

⎤
⎥⎥⎥⎦ =

n∏
i=0

i!.

The Theorem 2.2 was proved by Ehrenborg [20, Theorem 3] for the

restricted Bell polynomials.

3. The restricted Bell numbers Bn,≤3 and the restricted
factorial numbers An,≤3

The goal of the current section is to extend some results in the previous

section to the case m = 3. Recurrences established here are employed in

Section 7 to discuss arithmetic properties of Bn,≤3 and An,≤3.

The first statement relates Bn,≤3 to the involution numbers Bn,≤2.

Theorem 3.1. The restricted Bell numbers Bn,≤3 are given by

(10) Bn,≤3 =

�n/3�∑
j=0

(
n

3j

)
(3j)!

(3!)j j!
Bn−3j,≤2.
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Proof. Count the set of all partitions of [n] into block of size at most 3, with
exactly j blocks of size 3. To do so, first choose a subset of [n] of size 3j to
place the j blocks of size 3. This is done in

(
n
3j

)
ways. Then, the number

of set partitions of [3j] such that each block has three elements is (3j)!
(3!)j j! .

The remaining n− 3j elements produce Bn−2j,≤2 partitions. Summing over
j completes the argument.

The next result gives a recurrence for Bn,≤3.

Theorem 3.2. The restricted Bell numbers Bn,≤3 satisfy the recurrence

(11) Bn,≤3 = Bn−1,≤3 +

(
n− 1

1

)
Bn−2,≤3 +

(
n− 1

2

)
Bn−3,≤3,

with initial conditions B0,≤3 = 1, B1,≤3 = 1, B2,≤3 = 2.

Proof. The expression for Bn,≤2 in (6) and (10) produce

Bn,≤3 =

�n3 �∑
i=0

�n2 �∑
j=0

(
n

3i

)
(3i)!

6ii!

(
n− 3i

2j

)(
2j

j

)
j!

2j
,

that may be written as

Bn,≤3 =

�n3 �∑
i=0

�n2 �∑
j=0

(
n

3i+ 2j

)(
3i+ 2j

2j

)(
2j

j

)
(3i)! j!

6i i! 2j
.

The recurrence is obtained as a routine application of the WZ-method [35,
36].

Combinatorial proof of Theorem 3.2: Suppose the first block is the size i
with i = 1, 2 or 3. Since this block contains the minimal element, one only
needs to choose l elements, with l = 0, 1 or 2. Therefore, the number of
set partitions of [n] with exactly i elements in the first block is given by(
n−1
i

)
Bn−i,≤3 for i = 1, 2, 3. Summing over i completes the argument.

The above recurrence produces the exponential generating function

(12)

∞∑
n=0

Bn,≤3
xn

n!
= exp

(
x+ 1

2x
2 + 1

3!x
3
)
.

The next result is an extension of (7) for the case of partitions with
blocks of length at most 3. It is an analog of the Spivey-like formula (1).
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Theorem 3.3. Define a(i, j) = 1
3(2i − j − k). Then the restricted Bell

numbers Bn,≤3 satisfy the relation

Bn+m,≤3

=

n∑
i=0

(
n

i

)
Bn−i,≤3

min{m,2i}∑
j=
⌈
i
2

⌉
(
m

j

)
Bm−j,≤3

×
min{i,j,2i−j,2j−i}∑

k=0
k≡−i−j mod 3

(
i

k

)(
j

k

)
k!

(
i− k

a(j, i)

)(
j − k

a(i, j)

)
(2a(i, j))! (2a(j, i))!

2a(i,j)+a(j,i)

=

n∑
i=0

min{m,2i}∑
j=	 i

2



min{i,j,2i−j,2j−i}∑
k=0

k≡−i−j mod 3

n!m!Bn−i,≤3Bm−j,≤3

k!(n− i)!(m− j)!a(i, j)!a(j, i)!2
i+j−2k

3

.

Proof. The set of n + m elements whose partitions are enumerated by

Bn+m,≤3 is split into two disjoint sets I1 and I2 of cardinality n and m,

respectively. Any such partition π can be written uniquely in the form

π = π1 ∪ π2 ∪ π3, where π1 is a partition of a subset of I1, π2 is a par-

tition of a subset of I2 and the blocks in π3 contain elements of both I1 and

I2. Denote by a2 the number of blocks in π1 and a5 those in π2.

The blocks in π3 come in three different forms:

Type 1. The block is of the form x = {α1, β1} with α1 ∈ I1 and β1 ∈ I2.

Let a1 be the number of them. The n+m elements can be placed into these

type of blocks in (
n

a1

)(
m

a1

)
a1! ways.

Type 2. The form is now x = {α1, β1, β2} with α1 ∈ I1 and βj ∈ I2, for

j = 1, 2. Let a3 denote the number of these type of blocks. These contributed(
n

2a3

)(
m

a3

)
(2a3)!

2a3
to the placement of the n+m elements.

Type 3. The final form is x = {α1, α2, β1} with αj ∈ I1, j = 1, 2 and β1 ∈ I2.

Denote by a4 the number of such blocks. These contribute(
n

a4

)(
m

2a4

)
(2a4)!

2a4
to the count.
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Therefore the total number of partitions is given by

Bn+m,≤3

=
∑(

n

a1, a2, a3, 2a4

)(
m

a1, a5, a4, 2a3

)
a1!

(2a3)!

2a3

(2a4)!

2a4
Ba2,≤nBa5,≤m,

where the sum extends over all indices 0 ≤ n1, n2, n3, n4, n5 such that

a1 + a2 + a3 + 2a4 = n and a1 + a5 + 2a3 + a4 = m.

Introduce the notation i = n − a2, j = m − a5 and k = a1 (so that
i, j, k ≥ 0) and solve for a3 and a4 from

a3 + 2a4 = i− k,

2a3 + a4 = j − k

to obtain

(13) a3 =
2j − i− k

3
and a4 =

2i− j − k

3
.

The fact that a3, a4 ∈ N is equivalent to i+ j+ k ≡ 0 mod 3. This gives the
result.

The following theorem is the analog of Theorems 3.1, 3.2 and (12). The
proof is similar, so it is omitted. The interested reader can find the proof of
this theorem in [43].

Theorem 3.4. The restricted factorial sequence An,≤3 is given by

An,≤3 =

�n/3�∑
j=0

(
n

3j

)
(3j)!

3j j!
An−3j,≤2.

Moreover, it satisfies the recurrence

An,≤3 = An−1,≤3 + (n− 1)An−2,≤3 + (n− 1)(n− 2)An−3,≤3,

with initial conditions A0,≤3 = 1, A1,≤3 = 1, A2,≤3 = 2. Its generating func-
tion is

∞∑
n=0

An,≤3
xn

n!
= exp

(
x+ 1

2x
2 + 1

3x
3
)
.
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4. The general case Bn,≤m

In this section, some recurrences of the restricted Bell numbers are gener-

alized. A relation between this sequence and the associated Bell numbers is

established. The first statement generalizes (6) and (10).

Theorem 4.1. The restricted Bell numbers Bn,≤m satisfy the recurrence

(14) Bn,≤m =

� n

m
�∑

i=0

n!

i!(m!)i(n− im)!
Bn−im,≤m−1.

Proof. Count the set of all partitions of [n] with blocks of size at most k

and contain exactly i blocks of size m. To do so, select m · i elements from

n without any order. This is done in
(

n
m,m, . . . ,m︸ ︷︷ ︸

i times

)
= n!

m!i(n−im)! ways. Now

divide by i! to take into account the order of the blocks. The n−im remaining

elements of [n] are placed in blocks of size m − 1 or less elements, counted

by Bn−im,≤m−1. The result follows by summing over i.

A direct argument generalizes Theorems 3.2 and (12). This result ap-

pears in [33].

Theorem 4.2. The restricted Bell numbers Bn,≤m satisfy the recurrence

Bn,≤m =

m−1∑
k=0

(
n− 1

k

)
Bn−k−1,≤m.

Moreover, their exponential generating function is

(15)

∞∑
n=0

Bn,≤mxn

n!
= exp

(
m∑
i=1

xi

i!

)
.

The next result generalizes Theorem 3.3.

Theorem 4.3. Denote f(i, j) = 2 + j +
(
i−1
2

)
, then

Bn+m,≤k = n!m!
∑
X

Ba1,≤kBa2≤k

a1!a2!
∏k

i=2

∏i−1
j=1 j!

af(i,j)(i− j)!af(i,j)af(i,j)!
,

where X stands for the following set of variables
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X = {(a1, a2, . . . , a1+k+(k−1

2 )) :

a1 +

k∑
i=2

i−1∑
j=1

jaf(i,j) = n ∧ a2 +

k∑
i=2

i−1∑
j=1

(i− j)af(i,j) = m}.

Proof. The set of n + m elements, whose partitions are enumerated by

Bn+m,≤3, is split into two disjoint sets I1 = [n] and I2 = [n + m] \ [n]

of cardinality n and m, respectively. Any such partition π can be written

uniquely in the form π = π1 ∪ π2 ∪ π3, where blocks in π1 are subsets of I1,

blocks in π2 are subsets of I2 and the blocks in π3 contain elements of I1
and I2. Denote by a1 the number of elements that are going to be in blocks

of π1 and by a2 the numbers of elements that are going to be in blocks of

π2. These are counted by Ba1,≤kBa2,≤k.

The blocks in π3 come in different forms depending in how many elements

are in the blocks and how many come from [n] and how many from [n+m]\
[n]. Denote by af(i,j) the number of blocks in π3 which have j > 0 elements

of [n] and i−j > 0 from [n+m]\ [n]. It is required to choose jaf(i,j) elements

from [n] and (i− j)af(i,j) from [n+m] \ [n]. The total number of choices for

grouping the af(i,j) blocks is given by

(
(i− j)af(i,j)

i− j, i− j, . . . , i− j︸ ︷︷ ︸
af(i,j) times

)(
jaf(i,j)

j, j, . . . , j︸ ︷︷ ︸
af(i,j) times

)
1

af(i,j)!
=

(jaf(i,j))!((i− j)af(i,j))!

j!af(i,j)(i− j)!af(i,j)af(i,j)!
.

The multinomial coefficient accounts for the possible groups of each side

and the factorial in the denominator accounts for the order of the blocks.

Summing over all possible configurations gives the result.

4.1. Relations between restricted and associated Bell numbers

The associated Stirling numbers of the second kind
{
n
k

}
≥m

give the number of

partitions of n elements into k subsets under the restriction that every block

contains at least m elements. Komatsu et al. [23] derived the recurrence

{
n+ 1

k

}
≥m

=

n∑
j=m−1

(
n

j

){
n− j

k − 1

}
≥m

= k

{
n

k

}
≥m

+

(
n

m− 1

){
n−m+ 1

k − 1

}
≥m

,
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with initial conditions
{
0
0

}
≥m

= 1 and
{
n
0

}
≥m

= 0. The associated Bell
numbers are defined by

Bn,≥m =

n∑
k=0

{
n

k

}
≥m

.

They enumerate partitions of n elements into blocks with the condition that
every block has at least the m elements. For example, B4,≥3 = 1 with the
partition being {{1, 2, 3, 4}}. Their generating function is

(16)

∞∑
n=0

Bn,≥mxn

n!
= exp

(
exp(x)−

m−1∑
i=0

xi

i!

)
.

In the case m = 2, Bn,≥2 enumerate partitions of n elements without
singleton blocks, it satisfies (cf. [10])

(17) Bn = Bn,≥2 +Bn+1,≥2,

and its exponential generating function is given by

(18)

∞∑
n=0

Bn,≥2
xn

n!
= exp (exp(x)− 1− x).

Therefore, the binomial transform of Bn,≥2 is the Bell sequence Bn, i.e.,

(19)

n∑
i=0

(
n

i

)
Bi,≥2 = Bn.

The fact that integer sequences and their inverse binomial transform have
the same Hankel transform [40], gives the following result. Note that Theo-
rem 4.4 is a particular case of Theorem 3 in [20].

Theorem 4.4. The Hankel transform of the associated Bell numbers Bn,≥2

is the superfactorials. That is, for any fixed n,

det

⎡
⎢⎢⎢⎣
B0,≥2 B1,≥2 B2,≥2 · · · Bn,≥2

B1,≥2 B2,≥2 B3,≥2 · · · Bn+1,≥2
...

...
...

...
Bn,≥2 Bn+1,≥2 Bn+2,≥2 · · · B2n,≥2

⎤
⎥⎥⎥⎦ =

n∏
i=0

i!.
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Theorem 4.5. The associated Bell numbers Bn,≥2 and the Bell numbers
Bn are related by

Bn,≥2 =

n∑
i=0

(−1)i
(
n

i

)
Bn−i.

Proof. Let Bn be the set of all partitions of [n], and let Bn,≥2 be the set of
all partitions into blocks of length of at least 2. Denote by Sn,i the set of
partitions where i is in a singleton block. Then

(20) Bn,≥2 = Bn \
⋃
i∈[n]

Sn,i,

and the inclusion-exclusion principle produces

Bn,≥2 = Bn −
n∑

i=1

(−1)i−1
∑

a1<a2<···<ai

∣∣∣∣∣∣
i⋂

j=1

Sn,aj

∣∣∣∣∣∣ .
The identity now follows from

∣∣∣⋂i
j=1 Sn,aj

∣∣∣ = Bn−i.

The next result gives a reduction for the associated Bell numbers Bn,≥k,
in the index k counting the minimal number of elements in a block.

Theorem 4.6. The associated Bell numbers Bn,≥k satisfy

Bn,≥k = Bn,≥k−1 −
� n

k−1
�∑

i=1

n!

(k − 1)!i(n− (k − 1)i)!i!
Bn−(k−1)i,≥k.

Proof. Denote by Bn,≥k the set of all partitions with blocks of length at
least than k. Then Bn,≥k ⊆ Bn,≥k−1 and let A = Bn,≥k−1 \ Bn,≥k be the set
difference. For 1 ≤ k ≤ n, define

Ai = {π ∈ Bn,≥k−1 : the number of blocks of size k − 1 is i},

and observe that

A :=

n⋃
i=1

Ai = Bn,≥k−1 \ Bn,≥k.

The sets {Ai} form a partition of A with

(21) |Ai| =
1

i!

(
n

k − 1, k − 1, . . . , k − 1

)
Bn−i(k−1),≥k.

The identity follows from this.
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Theorem 4.7. The associated Bell numbers can be calculated from the Bell

numbers and restricted Bell numbers via

(22) Bn,≥k = Bn −
n∑

i=1

(
n

i

)
Bi,≤k−1Bn−i,≥k.

Proof. Recall that Bn is the set of partitions of [n]. For any such partition,

write π = {A,B}, where A = {π ∈ Bn : if D ∈ π, then |D| ≥ k}, and B

the complement of A in Bn. Then |A|+ |B| = Bn. Now |A| = Bn,≥k and B

can be partitioned in {Ci}i∈[n] where Ci contains the partitions such that

there are exactly i elements of [n] that are in blocks with length less than

k and the remaining n − i are in blocks with length greater or equal to k.

Therefore

|Ci| =
(
n

i

)
Bi,≤k−1Bn−i,≥k,

and the result follows by summing over all partitions of [n].

The next result is the analog of Theorem 4.3 for the case of the associated

Bell numbers.

Theorem 4.8. Denote f(i, j) = 2 + j +
(
i−1
2

)
, then

Bn+m,≥k = n!m!
∑
X

Ba1,≥kBa2,≥k

a1!a2!
∏n+m

i=k

∏i−1
j=1 j!

af(i,j)(i− j)!af(i,j)af(i,j)!
,

where X stands for the following set of variables

X =
{
(a1, a2, a3+(k−1

2 ), . . . , a2+n+m−1+(n+m−1

2 )) :

a1 +

n+m∑
i=k

i−1∑
j=1

jaf(i,j) = n ∧ a2 +

n+m∑
i=k

i−1∑
j=1

(i− j)af(i,j) = m

⎫⎬
⎭ .

5. The general case An,≤m

This section discusses the results presented in the previous section corre-

sponding to the class An,≤m.

The first statement generalizes Theorem 3.4 and is the analog of Theo-

rem 4.1. The proof is similar to the one given above. Details are omitted.
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Theorem 5.1. The restricted factorial numbers An,≤m are given by

An,≤m =

� n

m
�∑

i=0

n!

mii!(n− im)!
An−im,≤m−1.

The next statement is found in [32].

Theorem 5.2. The restricted factorial sequence An,≤m satisfies the recur-
rence

An,≤m =

m−1∑
j=0

(n− 1)!

(n− 1− j)!
An−1−j,≤m,

with initial conditions A0,≤m = 1 and A1,≤m = 1. Its generating function is

∞∑
n=0

An,≤m
xn

n!
= exp

(
x+ 1

2x
2 + 1

3x
3 + · · ·+ 1

mxm
)
.

The next reduction formula gives An+m,≤k in terms of lower value of the
first index.

Theorem 5.3. Denote f(i, j) = 2 + j +
(
i−1
2

)
, then

An+m,≤k = n!m!
∑
X

Aa1,≤kAa2≤k

a1!a2!

k∏
i=2

i−1∏
j=1

(
i

j

)af(i,j) 1

iaf(i,j) · af(i,j)!
,

where X stands for the following set of variables

X = {(a1, a2, . . . , a1+k+(k−1

2 )) :

a1 +

k∑
i=2

i−1∑
j=1

jaf(i,j) = n ∧ a2 +

k∑
i=2

i−1∑
j=1

(i− j)af(i,j) = m}.

Example 5.4. The special case k = 3 gives

An+m,≤3 =

n∑
i=0

m∑
j=0

min{n−i,m−j}∑
l=0

l≡−n−m+i+j mod 3

n!m!Ai,≤3Aj,≤3

i!j!l!
(
2m−n+i−2j−l

3

)
!
(
2n−m−2i+j−l

3

)
!
.

5.1. The associated factorial numbers An,≥m

This section presents analogous results for sequence built from the associated
Stirling numbers of the first kind

[
n
k

]
≥m

. These numbers satisfy the following

recurrence [24]
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[
n+ 1

k

]
≥m

=

n∑
j=m−1

n!

(n− j)!

[
n− j

k − 1

]
≥m

= n

[
n

k

]
≥m

+
n!

(n−m+ 1)!

[
n−m+ 1

k − 1

]
≥m

,

with the initial conditions
[
0
0

]
≥m

= 1 and
[
n
0

]
≥m

= 0. The associated facto-
rial numbers defined by

An,≥m =

n∑
k=0

[
n

k

]
≥m

,

enumerate all permutations of n elements into cycles with the condition that
every cycle has at least the m items. Its generating function is given by [44]

∞∑
n=0

An,≥m
xn

n!
= exp

( ∞∑
n=m

xn

n

)
= exp

(
log

1

1− x
−

m−1∑
n=1

xn

n

)
.

In particular, if m = 2 we obtain the number of permutations of n elements
with no fixed points, the classical derangements numbers. This sequence
satisfies that (cf. [9])

An,≥2 = nAn−1,≥2 + (−1)n, n ≥ 1,(23)

= (n− 1)(An−1,≥2 +An−2,≥2).(24)

Radoux [37] has shown that the Hankel transform of the associated factorial
numbers An,≥2 is given by

∏n
i=1 i!

2.
The following theorem is the analog of Theorem 4.6, with a similar proof.

The details are omitted.

Theorem 5.5. For n, k ∈ N with k > 1, the associated factorial numbers
An,≥k satisfy

An,≥k = An,≥k−1 −
� n

k−1
�∑

i=1

n!

(k − 1)i(n− (k − 1)i)!i!
An−(k−1)i,≥k.

The following result corresponds to Theorem 5.3.

Theorem 5.6. Denote f(i, j) = 2 + j +
(
i−1
2

)
, then

An+m,≥k = n!m!
∑
X

Aa1,≥kAa2≥k

a1!a2!

n+m∏
i=k

i−1∏
j=1

(
i

j

)af(i,j) 1

iaf(i,j) · af(i,j)!
,
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where X stands for the following set of variables

X = {(a1, a2, . . . , a1+k+(k−1

2 )) :

a1 +

n+m∑
i=k

i−1∑
j=1

jaf(i,j) = n ∧ a2 +

n+m∑
i=k

i−1∑
j=1

(i− j)af(i,j) = m}.

The next statement generalizes (24).

Theorem 5.7. The associated factorial numbers An,≥k satisfy

An,≥k = (n− 1)An−1,≥k + (n− 1)k−1An−k,≥k, n ≥ 1,

where nk := n(n− 1) · · · (n− (k − 1)) = n!
(n−k)! and n0 = 1.

Proof. Denote by An,≥k the permutations σ on n elements such that the
length of every cycle in σ is not less than k (i.e.,An,≥k = {σ ∈ Sn : |〈i〉| ≥ k}.
Here 〈i〉 denotes the cycle of i ∈ [n] as a set). For σ ∈ An,≥k, there are two
cases for n ∈ [n]:

• Case 1 : here |〈n〉| = k. It is required to construct a cycle of length
k containing n. In order to do this, one must choose k − 1 numbers
from [n − 1] and place them in the same cycle. This can be done in(
n−1
k−1

)
ways and the total number of possible cycles is

(
n−1
k−1

)
(k − 1)! =

(n − 1)k−1. The other cycles are counted by An−k,≥k, for a total of
(n− 1)k−1An−k,≥k.

• Case 2 : now |〈n〉| > k. Then one needs to place n in any cycle of a
permutation σ′ ∈ An−1,≥k. There are (n− 1)An−1,≥k ways to do it.

The identity follows from this discussion.

6. Log-convex and log-concavity properties

A sequence (an)n≥0 of nonnegative real numbers is called log-concave if
anan+2 ≤ a2n+1, for all n ≥ 0. It is called log-convex if anan+2 ≥ a2n+1 for
all n ≥ 0. There is a large collection of results on log-concavity and log-
convexity and its relation to combinatorial sequences. Some of these appear
in [11], [30], [31], [38] and [44]. The Bell sequence is log-convex [6] and from
a general result given by Bender and Canfield [8] it is not difficult to verify
that the same is true for restricted Bell numbers and restricted factorial
numbers.
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Theorem 6.1 (Corollaries 1.1 and 1.2 of [8]). The restricted Bell sequence
(Bn,≤m)n≥0 and the restricted factorial sequence (An,≤m)n≥0 are log-convex
and the sequences (Bn,≤m/n!)n≥0 and (An,≤m/n!)n≥0 are log-concave.

6.1. Open questions

Some conjectured statements are collected here. The restricted Bell polyno-
mials are defined by

Bn,≤m(x) :=

n∑
k=0

{
n

k

}
≤m

xk.

The recurrence (2), produces

Bn+1,≤m(x) = xBn,≤m(x) + xB′
n,≤m(x)−

(
n

m

)
xBn−m,≤m(x).

This can be verified directly:

Bn+1,≤m(x) = x

n∑
k=0

k

{
n

k

}
≤m

xk−1 + x

n∑
k=0

{
n

k

}
≤m

xk

−
(
n

m

)
x

n−m∑
k=0

{
n−m

k

}
≤m

xk

= xB′
n,≤m(x) + xBn,≤m(x)−

(
n

m

)
xBn−m,≤m(x).

The authors have tried, without success, to establish the next two state-
ments:

Conjecture 6.2. The roots of the polynomial Bn,≤m(x) are real and non-
positive if m �= 3, 4.

Recall that a finite sequence {aj , 0 ≤ j ≤ n} of non-negative real num-
bers is called unimodal if there is an index j∗ such that aj−1 ≤ aj for
1 ≤ j ≤ j∗ and aj−1 ≥ aj for j

∗+1 ≤ j ≤ n. An elementary argument shows
that a log-concave sequence must be unimodal. The unimodality of the re-

stricted Stirling numbers
({

n
k

}
≤2

)
k≥0

was proved by Choi and Smith in [14].

Moreover, Han and Seo [21] gave a combinatorial proof of the log-concavity
of this sequence. The log-concavity of the associated Stirling numbers of
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the first kind was studied by Brenti in [12]. Moreover, Bóna and Mező [10]

proved that the associated Stirling numbers of the second kind
({

n
k

}
≥2

)
k≥0

are log-concave.

Conjecture 6.3. The sequence of restricted Stirling numbers
({

n
k

}
≤m

)
k≥0

is log-concave.

One of the main sources of log-concave sequences comes from the fol-

lowing fact: if P (x) is a polynomial all of whose zeros are real and negative,

its coefficient sequence is log-concave. (See [44, Theorem 4.5.2] for a proof).

Therefore the first conjecture implies the second one.

7. Some arithmetical properties

Given a prime p, the p-adic valuation of x ∈ N, denoted by νp(x), is the

highest power of p that divides x. For a given sequence of positive integers

(an)n≥0 a description of the sequence of valuations νp(an) often presents

interesting questions. The classical formula of Legendre for factorials

νp(n!) =

∞∑
k=1

⌊
n

pr

⌋

is one of the earliest such descriptions. This may also be expressed in closed-

form as

νp(n!) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n in its expansion in base p. The

reader will find in [3, 4, 13, 18, 22, 34, 41, 42] a selection of results on this

topic.

The 2-adic valuation of the Bell numbers has been described in [2].

Theorem 7.1. The 2-adic valuation of the Bell numbers satisfy ν2(Bn) = 0

if n ≡ 0, 1 mod 3. In the missing case, n ≡ 2 mod 3, ν2(B3n+2) is a periodic

sequence of period 4. The repeating values are {1, 2, 2, 1}.

The 2-adic valuation of the restricted Bell sequence Bn,≤2 was described

in [5].

Theorem 7.2. The 2-adic valuation of the restricted Bell numbers Bn,≤2

satisfy
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ν2(Bn,≤2) =
⌊n
2

⌋
− 2

⌊n
4

⌋
+

⌊
n+ 1

4

⌋
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 2, if n = 4k + 3.

This section discusses the 2-adic valuation of the numbers Bn,≥2 and
An,≥2. Figure 1 shows the first 100 values.

Figure 1: The 2-adic valuation of Bn,≥2 and An,≥2.

Theorem 7.3. The 2-adic valuation of the associated Bell numbers Bn,≥2

is given by

(25) ν2(Bn,≥2) = 0 if n ≡ 0, 2 mod 3.

For n ≡ 1 mod 3, the valuation satisfies ν2(Bn,≥2) ≥ 1.

Proof. The proof is by induction on n. Divide the analysis into three cases
according to the residue of n modulo 3. If n = 3k then (17) gives B3k−1 =
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B3k−1,≥2+B3k,≥2. Theorem 7.1 shows that B3k−1 is even and by the induc-
tion hypothesis B3k−1,≥2 is odd. Thus B3k,≥2 is odd, so that ν2(B3k,≥2) = 0.
The proof is analogous for the case 3k + 2. The case n ≡ 1 mod 3 follows
from the identity (17) in the form B3k = B3k,≥2+B3k+1,≥2 and the fact that
B3k is odd (by Theorem 7.2) and so is B3k,≥2 by the previous analysis.

A partial description of the valuations of Bn,≥2 for n ≡ 1 mod 3 is given
in the next conjecture.

Conjecture 7.4. The sequence of valuations ν2(B3k+1,≥2) satisfies the fol-
lowing pattern:

(26) ν2(Bn,≥2) =

{
2, if n ≡ 4 mod 12;

1, if n ≡ 7, 10 mod 12.

The remaining case n ≡ 1 mod 12, considered modulo 24, obeys the rule

(27) ν2(B24n+1,≥2) = 5 + ν2(n), for n ≥ 1,

with the case n ≡ 13 mod 24 remaining to be determined. Continuing this
process yields the conjecture

(28) ν2(B48n+37,≥2) = 5 and ν2(B96n+61,≥2) = 6.

The details of this analysis will appear elsewhere.

A closed-form for the valuation ν2(An,≥2) is simpler to obtain.

Theorem 7.5. The 2-adic valuation of the associated factorial numbers
An,≥2 is given by

ν2(An,≥2) =

{
0, if n = 2k and k ≥ 0;

ν2(k) + 1, if n = 2k + 1 and k ≥ 1.

Proof. If n is even, then (23) shows that An,≥2 is odd, so that ν2(An,≥2) = 0.
If n is odd then (24) gives ν2(A2k+1,≥2) = ν2(2k) = ν2(k) + 1.

7.1. Some additional patterns

In this subsection we show some additional examples of the p-adic valuation
of the restricted and associated Bell and factorial sequences.

Theorems 3.4 and 5.7 are now used to produce explicit formulas for the
2-adic valuation of the restricted and associated factorial numbers form = 3.
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Theorem 7.6. The 2-adic valuation of the restricted factorial numbers
An,≤3, for n ≥ 1, is given by

ν2(An,≤3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 1, if n = 4k + 3.

Proof. The proof is by induction on n. It is divided into four cases according
to the residue of n modulo 4. The symbols Oi denote an odd number. If
n = 4k then Theorem 3.4 and the induction hypothesis give

A4k,≤3 = A4k−1,≤3 + (4k − 1)A4k−2,≤3 + (4k − 1)(4k − 2)A4k−3,≤3

= 2kO1 + (4k − 1)2kO2 + (4k − 1)(4k − 2)2k−1O3

= 2k(O1 + (4k − 1)O2 + (4k − 1)(2k − 1)O3)

= 2kO4.

Therefore ν2(A4k,≤3) = k. The remaining cases are analyzed in a similar
manner.

Theorem 7.7. The 2-adic valuation of the associated factorial numbers
An,≥3, for n ≥ 1, is given by

ν2(An,≥3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
k, if n = 4k;

ν2(k) + k + 2, if n = 4k + 1;

ν2(k) + k + 4, if n = 4k + 2;

k + 1, if n = 4k + 3.

Proof. The proof is as in the previous theorem. If n = 4k then Theorem 5.7
and the induction hypothesis give

A4k,≥3 = (4k − 1)A4k−1,≥3 + (4k − 1)(4k − 2)A4k−3,≥3

= 2kO1 + (4k − 1)(4k − 2)2ν2(k−1)+k+1O2

= 2k(O1 + (4k − 1)(2k − 1)2ν2(k−1)+2O2)

= 2kO3.

Therefore ν2(A4k,≥3) = k.
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If n = 4k + 1 then Theorem 5.7 and the induction hypothesis now give

A4k+1,≥3 = (4k)A4k,≥3 + (4k)(4k − 1)A4k−2,≥3

= 2k+2kO1 + (4k)(4k − 1)2ν2(k−1)+k+3

= 2k+2kO1 + k2ν2(k−1)+k+5O3)

= 2k+2k(O1 + 2ν2(k−1)+3O3)

= 2k+2kO4.

Therefore ν2(A4k+1,≥3) = ν2(k) + k + 2. The remaining cases are analyzed

in a similar manner.

Divisibility properties of the sequences Bn,≤2 and Bn,≤3 by the prime

p = 3 turn out to be much simpler: 3 does not divide any element of this

sequence. The proof is based on the recurrences (4) and (11).

Theorem 7.8. The sequence of residues Bn,≤2 modulo 3 is a periodic se-

quence of period 3, with fundamental period {1, 1, 2}.

Proof. Assume n ≡ 0 mod 3 and write n = 3k. Then (4) gives

B3k,≤2 = B3k−1,≤2 + (3k − 1)B3k−2,≤2

≡ 2− 1 = 1 mod 3,

and Bn,≤2 ≡ 1 mod 3. The remaining two cases for n modulo 3 are treated

in the same form.

Theorem 7.9. The sequence of residues Bn,≤3 modulo 3 is a periodic se-

quence of period 6, with fundamental period {1, 1, 2, 2, 2, 1}.

Proof. Assume n ≡ 0 mod 6 and write n = 6k. Then (11) gives

B6k,≤3 = B6k−1,≤3 + (6k − 1)B6k−2,≤3 + (3k − 1)(6k − 1)B6k−3,≤3

≡ 1− 2 + 2 = 1 mod 3,

showing that Bn,≤3 ≡ 1 mod 3. The remaining five cases for n modulo 6 are

treated in the same form.

Corollary 7.10. The restricted Bell numbers Bn,≤2 and Bn,≤3 are not di-

visible by 3.

Using this type of analysis it is possible to prove the following results:
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• The 5-adic valuation of the sequence Bn,≤3 is given by

ν5(Bn,≤3) =

{
1, if n ≡ 3 mod 5;

0, if n �≡ 3 mod 5.

• The 7-adic valuation of the sequence Bn,≤3 satisfies ν7(Bn,≤3) = 0 if

n �≡ 4 mod 7.

• The sequence of residues Bn,≤5 modulo 7 is a periodic sequence of

period 7, with fundamental period {1, 1, 2, 5, 1, 3, 6}.
• The 3-adic valuation of the associated factorial numbers An,≥3 satisfy

ν3(An,≥3) = 0 if n ≡ 0 mod 3. For n = 3k + 1, the valuation is given

by ν3(An,≥3) = ν3(An+1,≥3) = ν3(n− 1). This covers all cases.

• The sequence of residues An,≤5 modulo 7 is a periodic sequence of

period 7, with fundamental period {1, 1, 2, 6, 3, 1, 5}.

Many other results of this type can be discovered experimentally. A

discussion of a general theory is in preparation.
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