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Monochromatic homeomorphically irreducible trees
in 2-edge-colored complete graphs∗

Michitaka Furuya and Shoichi Tsuchiya

It has been known that every 2-edge-colored complete graph has
a monochromatic connected spanning subgraph. In this paper, we
study a condition which can be imposed on such a monochromatic
subgraph, and show that almost all 2-edge-colored complete graphs
have a monochromatic spanning tree with no vertices of degree 2.
As a corollary of our main theorem, we obtain a Ramsey type
result: Every 2-edge-colored complete graph of order n ≥ 8 has a
monochromatic tree T with no vertices of degree 2 and |V (T )| ≥
n− 1.
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1. Introduction

All graphs considered here are finite simple graphs.
It has been known that every 2-edge-colored complete graph has a mono-

chromatic connected spanning subgraph. One may impose an additional
condition on monochromatic spanning trees in a 2-edge-colored complete
graph. For example, the following theorems are known (where a broom is a
tree obtained from a star and a path by identifying the center of the star
and one endpoint of the path).

Theorem A ([3]). Every 2-edge-colored complete graph has a monochro-
matic spanning broom.

Theorem B ([1, 8, 9]). Every 2-edge-colored complete graph has a monochro-
matic spanning subgraph of diameter at most three.

However, for a property P of graphs, it is not always true that every
2-edge-colored complete graph has a monochromatic connected spanning
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subgraph satisfying P . Thus a natural Ramsey type problem arises: For a
property P of graphs and a natural number m0, determine the minimum
number n0 such that every 2-edge-colored complete graph of order n ≥ n0

has a monochromatic subgraph of order m ≥ m0 satisfying P . To put it sim-
ply, we want to find a large monochromatic subgraph satisfying a given prop-
erty in 2-edge-colored complete graphs. In 2-edge-colored complete graphs,
Gyárfás [6] found a large monochromatic path, Erdös and Fowler [5] found
a large monochromatic subgraph of diameter at most two, and Bollobás and
Gyárfás [2] found a large monochromatic 2-connected subgraph. Further-
more, Gyárfás and Sárközy [7] proved the following theorem.

Theorem C ([7]). Every 2-edge-colored complete graph of order n has a
monochromatic tree of diameter at most three and order at least (3n+1)/4.

Considering Theorem C, it is natural to find a large subtree having small
diameter in a 2-edge-colored complete graph. Now we focus on a special class
of trees having small diameter. A tree T is a homeomorphically irreducible
tree (or HIT) if T has no vertices of degree 2. The diameter of HITs tends
to be small. Indeed, many trees of diameter at most three are HITs, and so
it seems that the class of HITs is wider than the class of trees of diameter
at most three. In particular, one may expect that a 2-edge-colored complete
graph of order n has a HIT of order larger than (3n + 1)/4. In this paper,
we give an affirmative result for this expectation.

Theorem 1. Every 2-edge-colored complete graph of order n ≥ 8 has a
monochromatic HIT of order at least n− 1.

In fact, we prove a stronger theorem which gives a necessary and suffi-
cient condition for a 2-edge-colored complete graph to have a monochromatic
spanning HIT (or HIST). LetKm,n denote the complete bipartite graph with
partite sets having cardinality m and n. Let K−

m,n denote the graph obtained

from Km,n by deleting one edge, and Zn denote the complement of K−
2,n−2

(see Figure 1). Our main result is the following.

Theorem 2. Let G be a 2-edge-colored complete graph of order n ≥ 8 colored
with 1 and 2, and for each i ∈ {1, 2}, let Gi be the spanning subgraph of G
induced by all edges of color i. Then G has a monochromatic HIST if and
only if Gi is isomorphic to neither K2,n−2 nor K−

2,n−2 for each i ∈ {1, 2}.

Since we can easily check that K2,n−2 and K−
2,n−2 have a HIT of order

n− 1, Theorem 1 follows from Theorem 2.

Remark 1. If n = 7, Theorem 2 does not hold. For example, the graph G
of order 7 depicted in Figure 2 is a counterexample. In fact, both G and
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Kn−2

K−
2,n−2 Zn

Figure 1: Graphs K−
2,n−2 and Zn.

Figure 2: A graph G of order 7.

the complement of G are not isomorphic to K2,n−2 or K−
2,n−2 and have no

HIST.

Our notation and terminology are standard, and mostly taken from [4].
Possible exceptions are as follows. Let G be a graph. For x, y ∈ V (G), we
let dG(x, y) denote the distance between x and y. When G is connected, we
define the diameter of G by diam(G) := max{dG(x, y) | x, y ∈ V (G)}. For
x ∈ V (G), we let NG(x) denote the neighborhood of x, and dG(x) denote the
degree of x in G. We let Δ(G) and δ(G) denote the maximum degree and
the minimum degree of G, respectively. For two disjoint sets X,Y ⊆ V (G),
we let EG(X,Y ) = {xy ∈ E(G) | x ∈ X, y ∈ Y }. A maximal 2-connected
subgraph of G containing at most one cutvertex of G is called an endblock
of G.

2. Fundamental properties

In this section, we give two useful lemmas.
Let G be a graph. A pair (x1, x2) of vertices of G is branchable if

(P1) x1x2 ∈ E(G),
(P2) NG(x1) ∪NG(x2) = V (G), and
(P3) for i ∈ {1, 2}, if dG(xi) = 2, then dG(x3−i) = |V (G)| − 1.
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A quadruplet (x1, x2, x3; y) of vertices of G is branchable if

(Q1) x1x3, x2x3, x3y ∈ E(G),

(Q2) NG(x1) ∪NG(x2) ⊇ V (G)− {x1, x2, y}, and
(Q3) |NG(xi)− {x3−i, x3, y}| ≥ 2 for each i ∈ {1, 2}.

Lemma 1. Let G be a graph of order n ≥ 8. If G has a branchable pair or

a branchable quadruplet, then G has a HIST.

Proof. Assume that G has a branchable pair or a branchable quadruplet.

Case 1: G has a branchable pair (x1, x2).

We may assume that |NG(x1)−(NG(x2)∪{x2})| ≥ |NG(x2)−(NG(x1)∪
{x1})|. If dG(x1) = n − 1, then G has a spanning star with the center x1,

as desired. Thus we may assume that dG(x1) ≤ n − 2. By (P2) and (P3),

we have NG(x2) − (NG(x1) ∪ {x1}) 	= ∅ and dG(x2) ≥ 3. Then there exists

a subset X2 of NG(x2) − {x1} satisfying X2 ⊇ NG(x2) − (NG(x1) ∪ {x1})
and |X2| ≥ 2. Choose X2 so that |X2| is as small as possible. Let X1 =

NG(x1)− (X2∪{x2}). Then X1 and X2 are disjoint and by (P2), X1∪X2 =

V (G)−{x1, x2}. If |X2| = 2, then |X1| ≥ 2 because |V (G)| ≥ 8; if |X2| ≥ 3,

then |NG(x2)−(NG(x1)∪{x1})| ≥ 3, and hence |X1| ≥ |NG(x1)−(NG(x2)∪
{x2})| ≥ |NG(x2) − (NG(x1) ∪ {x1})| ≥ 3. Hence the spanning subgraph T

of G with E(T ) = {x1x2} ∪ (
⋃

i∈{1,2}{xiu | u ∈ Xi}) is a HIST of G.

Case 2: G has a branchable quadruplet (x1, x2, x3; y).

We may assume that |NG(x1) − (NG(x2) ∪ {x2, x3, y})| ≥ |NG(x2) −
(NG(x1) ∪ {x1, x3, y})|. By (Q3), there exists a subset X2 of NG(x2) −
{x1, x3, y} satisfying X2 ⊇ NG(x2) − (NG(x1) ∪ {x1, x3, y}) and |X2| ≥ 2.

Choose X2 so that |X2| is as small as possible. Let X1 = NG(x1) − (X2 ∪
{x2, x3, y}). Then X1 and X2 are disjoint and by (Q2), X1 ∪X2 ⊇ V (G)−
{x1, x2, x3, y}. If |X2| = 2, then |X1| ≥ 2 because |V (G)| ≥ 8; if |X2| ≥ 3,

then |NG(x2) − (NG(x1) ∪ {x1, x3, y})| ≥ 3, and hence |X1| ≥ |NG(x1) −
(NG(x2) ∪ {x2, x3, y})| ≥ |NG(x2) − (NG(x1) ∪ {x1, x3, y})| ≥ 3. Hence the

spanning subgraph T of G with E(T ) = {x1x3, x2x3, x3y} ∪ (
⋃

i∈{1,2}{xiu |
u ∈ Xi}) is a HIST of G.

Lemma 2. Let G be a graph, and let x, y ∈ V (G) be two distinct vertices

with NG(x)∩NG(y) 	= ∅. If G−{x, y} has a HIST, then G also has a HIST.

Proof. Let z ∈ NG(x)∩NG(y), and let T be a HIST of G−{x, y}. Then the

spanning graph T ′ of G with E(T ′) = E(T ) ∪ {xz, yz} is a HIST of G.
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3. Proof of Theorem 2

In this section, we prove Theorem 2. We start with a key lemma.

Lemma 3. Let G, n, G1 and G2 be as in Theorem 2. If G has no monochro-
matic HIST and for each i ∈ {1, 2}, Gi is isomorphic to neither K2,n−2

nor K−
2,n−2, then for each i ∈ {1, 2}, Gi is connected, δ(Gi) ≥ 3 and

diam(Gi) = 2.

Proof. Assume that G has no monochromatic HIST and for each i ∈ {1, 2},
Gi is isomorphic to neither K2,n−2 nor K−

2,n−2. By Lemma 1, for each i ∈
{1, 2}, Gi has no branchable pair and no branchable quadruplet. We first
show some claims.

Claim 1. For each i ∈ {1, 2}, Gi is connected.

Proof. Suppose that Gi is disconnected for some i ∈ {1, 2}. Then there
exist disjoint non-empty subsets X and Y of V (G) with X ∪Y = V (G) and
EGi

(X,Y ) = ∅. We may assume that |X| ≥ |Y |. Let x ∈ X and y ∈ Y . Then
NG3−i

(x) ⊇ Y and NG3−i
(y) ⊇ X, and in particular, NG3−i

(x) ∪NG3−i
(y) =

V (G3−i). Since (x, y) is not branchable and |X| ≥ |Y |, this implies that
dG3−i

(x) = 2 and dG3−i
(y) ≤ n − 2. Hence |Y | ≤ dG3−i

(x) = 2 and |X| ≤
dG3−i

(y) ≤ n − 2. Since |X| + |Y | = n, this forces |X| = n − 2, |Y | = 2,
NG3−i

(x) = Y and NG3−i
(y) = X. Since x and y are arbitrary, G3−i is

isomorphic to K2,n−2, which is a contradiction.

Claim 2. For each i ∈ {1, 2}, Gi has no endblock C which is a clique of
order at most three. In particular, δ(Gi) ≥ 2 for each i ∈ {1, 2}.
Proof. Suppose that Gi has an endblock C which is a clique of order at most
three for some i ∈ {1, 2}. Since |V (C)| ≤ 3 and Gi is connected by Claim 1,
C contains a cutvertex z of Gi. If dGi

(z) = n−1, then Gi has a HIST, which
is a contradiction. Thus V (G) − (NGi

(z) ∪ {z}) 	= ∅. Let x ∈ V (C) − {z}
and y ∈ V (G) − (NGi

(z) ∪ {z}). Since dGi
(x, y) ≥ 3, xy ∈ E(G3−i) and

NG3−i
(x) ∪ NG3−i

(y) = V (G). Since dG3−i
(x) ≥ n − 3 and (x, y) is not

branchable in G3−i, dG3−i
(y) = 2, and hence NG3−i

(y) = {x, z}. This implies
that V (C) = {x, z} and y is adjacent to all vertices in V (G)−{x, y, z} in Gi.
Since y is arbitrary, every vertex in NGi

(z)− {x} is adjacent to all vertices
in V (G)− (NGi

(z)∪ {z}) in Gi and V (G)− (NGi
(z)∪ {z}) induces a clique

in Gi. Let w ∈ NGi
(z) − {x}. Since NGi

(z) ∪NGi
(w) = V (G) and (z, w) is

not branchable in Gi, either dGi
(z) = 2 or dGi

(w) = 2. If dGi
(z) = 2, then

NGi
(z) = {x,w}, and hence Gi is isomorphic to Zn, which is a contradiction.

Thus dGi
(w) = 2. Since w is arbitrary, |V (G) − (NGi

(z) ∪ {z})| = 1 and
NGi

(z)−{x} is an independent set of Gi. This implies that Gi is isomorphic
to K−

2,n−2, which is a contradiction.
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Claim 3. For each i ∈ {1, 2}, δ(Gi) ≥ 3.

Proof. We first show that for each i ∈ {1, 2}, Gi has no edge x1x2 with
dGi

(x1) = dGi
(x2) = 2. Suppose that for some i ∈ {1, 2}, Gi has an edge

x1x2 with dGi
(x1) = dGi

(x2) = 2. For each j ∈ {1, 2}, write NGi
(xj) =

{x3−j , yj}. If y1 = y2, then {x1, x2, y1} induces an endblock of Gi, which
contradicts Claim 2. Thus y1 	= y2. For j ∈ {1, 2}, if there exists a vertex
w ∈ V (G)− (NGi

(yj) ∪ {x3−j , y1, y2}), then NG3−i
(xj) = V (G)− {x3−j , yj}

and {x1, x2, yj} ⊆ NG3−i
(w), and hence (xj , w) is a branchable pair of G3−i,

which is a contradiction. Thus for each j ∈ {1, 2}, V (G) − {x3−j , y1, y2} ⊆
NGi

(yj) (i.e., NG3−i
(yj) ⊆ {x3−j , y3−j}). If y1y2 ∈ E(Gi), then (y1, y2) is

a branchable pair of Gi, which is a contradiction. Thus y1y2 ∈ E(G3−i).
Let z, z′ ∈ V (G) − {x1, x2, y1, y2} with z 	= z′. Then either zz′ ∈ E(G1) or
zz′ ∈ E(G2). If zz

′ ∈ E(Gi), then (y1, y2, z; z
′) is a branchable quadruplet of

Gi; if zz
′ ∈ E(G3−i), then (x1, x2, z; z

′) is a branchable quadruplet of G3−i.
In either case, we get a contradiction. Thus

Gi has no edge x1x2 with dGi
(x1) = dGi

(x2) = 2 for each i ∈ {1, 2}.(1)

Suppose that for some i ∈ {1, 2}, Gi has a vertex x of degree 2, and
write NGi

(x) = {y1, y2}. Since NG3−i
(x) = V (G) − {x, y1, y2}, if there ex-

ists a vertex z ∈ NG3−i
(y1) ∩ NG3−i

(y2), then (x, z) is a branchable pair of
G3−i, which is a contradiction. Thus NG3−i

(y1) ∩NG3−i
(y2) = ∅, and hence

NGi
(y1)∪NGi

(y2) ⊇ V (G)−{y1, y2}. Since dGi
(yj) ≥ 3 for each j ∈ {1, 2} by

(1), if y1y2 ∈ E(Gi), then (y1, y2) is a branchable pair of Gi, which is a con-
tradiction. Thus y1y2 	∈ E(Gi), and so y1y2 ∈ E(G3−i). For each j ∈ {1, 2},
write NG3−j

(yj) = {y3−j , z
(j)
1 , · · · z(j)sj }, where sj = dG3−i

(yj)− 1.

Subclaim 3.1. For some j ∈ {1, 2}, if dG3−i
(yj) ≥ 3, then for each s ∈

{1, 2}, NG3−i
(z

(j)
s ) ⊆ {x, yj , z(j)3−s}.

Proof. Suppose thatNG3−i
(z

(j)
s )−{x, yj , z(j)3−s} 	= ∅, and let w ∈ NG3−i

(z
(j)
s )−

{x, yj , z(j)3−s}. Since NG3−i
(y1) ∩NG3−i

(y2) = ∅, w 	= y3−j . Since NG3−i
(x) =

V (G) − {x, y1, y2} and {y3−j , z
(j)
3−s} ⊆ NG3−i

(yj), NG3−i
(x) ∪ NG3−i

(yj) ⊇
V (G)− {x, yj , w} and |NG3−i

(yj)− {x, z(j)s , w}| ≥ 2. Hence (x, yj , z
(j)
s ;w) is

a branchable quadruplet of G3−i, which is a contradiction.

Since y1y2 ∈ E(G3−i), dG3−i
(yj) ≥ 3 for some j ∈ {1, 2} by (1). We may

assume that dG3−i
(y1) ≥ 3. Suppose that dG3−i

(y2) = 2. Then NGi
(y2) =

V (G) − {y1, y2, z(2)1 }. Since |V (G)| ≥ 8, there exists a vertex u ∈ V (G) −
{x, y1, y2, z(1)1 , z

(1)
2 , z

(2)
1 }. Then by Subclaim 3.1, y2z

(1)
1 , z

(1)
1 u, z

(1)
1 z

(2)
1 , z

(2)
1 y1,
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z
(2)
1 z

(1)
2 ∈ E(Gi). This implies that (y2, z

(2)
1 , z

(1)
1 ;u) is a branchable quadru-

plet of Gi, which is a contradiction. Thus dG3−i
(y2) ≥ 3. Then by Sub-

claim 3.1,NGi
(z

(2)
1 ) ⊇ V (G)−{x, y2, z(2)2 }. Furthermore, y2x, y2z

(1)
2 ∈ E(Gi).

This implies that (y2, z
(2)
1 , z

(1)
1 ; z

(2)
2 ) is a branchable quadruplet of Gi, which

is a contradiction.

By Claims 1 and 3, it suffices to show that diam(Gi) = 2 for each
i ∈ {1, 2}. Suppose that diam(Gi) 	= 2 for some i ∈ {1, 2}. Since Gi has
no vertex of degree n − 1, diam(Gi) 	= 1, and so diam(Gi) ≥ 3. Then there
exist vertices x, y ∈ V (G) with dGi

(x, y) = 3. Note that xy ∈ E(G3−i) and
NG3−i

(x)∪NG3−i
(y) = V (G) becauseNGi

(x)∩NGi
(y) = ∅. Since δ(G3−i) ≥ 3

by Claim 3, (x, y) is a branchable pair of G3−i, which is a contradiction.
Consequently diam(Gi) = 2 for each i ∈ {1, 2}.

This completes the proof of Lemma 3.

Now we prove Theorem 2.

Proof of Theorem 2. By the definition of HISTs, if a graph is disconnected,
then the graph has no HIST. Also, if a graph has a cutset each of whose ver-
tices has degree 2, then the graph has no HIST. So, we obtain the following
fact which guarantees the “only if” part of Theorem 2.

Fact 4. Let G, n, G1 and G2 be as in Theorem 2. For some i ∈ {1, 2}, if
either Gi � K2,n−2 or Gi � K−

2,n−2, then G has no monochromatic HIST.

Thus it suffices to show the “if” part of Theorem 2. Let G, n, G1 and
G2 as in Theorem 2, and assume that for each i ∈ {1, 2}, Gi is isomorphic
to neither K2,n−2 nor K−

2,n−2. Suppose that G has no monochromatic HIST.
Choose n (≥ 8) so that n is as small as possible. By Lemma 3, Gi is con-
nected, δ(Gi) ≥ 3 and diam(Gi) = 2. Furthermore, by Lemma 1, for each
i ∈ {1, 2}, Gi has no branchable pair and no branchable quadruplet.

Claim 5. n ≥ 10.

Proof. Suppose that n ∈ {8, 9}. We may assume that Δ(G1) ≥ Δ(G2).
Let x ∈ V (G) with dG1

(x) = Δ(G1). Since dG1
(x) + dG2

(x) = n − 1 and
dG2

(x) ≥ 3, one of the following holds;

- dG1
(x) = n− 4; or

- n = 9 and G1 is 4-regular.

Write NG1
(x) = {y1, · · · , yl}, where l = dG1

(x), and write V (G)−(NG1
(x)∪

{x}) = {z1, · · · , zn−l−1}. Note that if dG1
(x) = n − 4, then n − l − 1 = 3;

if n = 9 and G1 is 4-regular, then n − l − 1 = 4. If a vertex y ∈ NG1
(x)

is adjacent to all of z1, · · · , zn−l−1 in G1, then (x, y) is a branchable pair,
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which is a contradiction. Thus no vertex in NG1
(x) is adjacent to all of

z1, · · · , zn−l−1 in G1.
We first suppose that a vertex in NG1

(x) is adjacent to n − l − 2 of
z1, · · · , zn−l−1 in G1. We may assume that {z1, · · · , zn−l−2} ⊆ NG1

(y1). For
each i (2 ≤ i ≤ l), the graph Ti on V (G)− {yi, zn−l−1} with E(Ti) = {xyj |
j 	= i} ∪ {y1zj | 1 ≤ j ≤ n− l − 2} is a HIST of G− {yi, zn−l−1}. Hence by
Lemma 2,

NG1
(zn−l−1) ∩NG1

(yi) = ∅ for each i (2 ≤ i ≤ l).(2)

Since diam(G1) = 2, this leads to {yi | 2 ≤ i ≤ l} ⊆ NG1
(zn−l−1). Again

by (2), {yi | 2 ≤ i ≤ l} is an independent set of G1. If y1yi ∈ E(G) for
some i (2 ≤ i ≤ l), then (y1, zn−l−1, yi;x) is a branchable quadruplet of G1,
which is a contradiction. Hence {yi | 1 ≤ i ≤ l} is an independent set of
G1. Since dG1

(y1, zn−l−1) ≤ 2 and y1zn−l−1 	∈ E(G1), zn−l−1 is adjacent to
one of z1, · · · , zn−l−2 in G1. We may assume that z1zn−l−1 ∈ E(G1). By
(2), yiz1 	∈ E(G1) for every i (2 ≤ i ≤ l). Since {yi | 1 ≤ i ≤ l} is an
independent set of G1, NG1

(yi) ⊆ {x} ∪ {zj | 2 ≤ j ≤ n − l − 1} for each
i (2 ≤ i ≤ l). Suppose that dG1

(x) = n − 4 (i.e., n − l − 1 = 3). Since
dG1

(y2) ≥ 3, this forces NG1
(y2) = {x, z2, z3(= zn−l−1)}. Then (x, z3, y2; z2)

is a branchable quadruplet of G1, which is a contradiction. Thus n = 9 and
G1 is 4-regular (i.e., n− l− 2 = 4). Then NG1

(yi) = {x, z2, z3, z4(= zn−l−1)}
for each i (2 ≤ i ≤ l). This forces NG1

(z2) = NG1
(z3) = NG1

(x), and hence
NG1

(z1) = {y1, z4}, which contradicts the 4-regularity of G. Therefore

every vertex in NG1
(x) is adjacent to at most n− l − 3 of z1, · · · , zn−l−1

(3)

in G1.

Case 1: dG1
(x) = n− 4 (i.e., n− l − 1 = 3).

By (3), the number of edges of G1 between NG1
(x) and {z1, z2, z3} is at

most l (≤ 5). This together with the fact that dG1
(z1)+dG1

(z2)+dG1
(z3) ≥ 9

implies that the subgraph of G1 induced by {z1, z2, z3} has at least two
edges. We may assume that z1z2, z1z3 ∈ E(G1). Since diam(G1) = 2,
NG1

(z1)∩NG1
(x) 	= ∅. We may assume that z1y1 ∈ E(G1). Since dG1

(y1) ≥
3, NG1

(y1) ∩NG1
(x) 	= ∅ by (3). We may assume that y1y2 ∈ E(G1). Then

(x, z1, y1; y2) is a branchable quadruplet of G1, which is a contradiction.

Case 2: n = 9 and G1 is 4-regular (i.e., n− l − 1 = 4).
Suppose that a vertex in NG1

(x) is adjacent to two of z1, · · · , z4 in G1.
We may assume that y1z1, y1z2 ∈ E(G1). For each i ∈ {3, 4}, since G1

is 4-regular and ziy1 	∈ E(G1) by (3), |NG1
(zi) ∩ {y2, y3, y4, z1, z2}| ≥ 3.
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In particular, NG1
(z3) ∩ NG1

(z4) 	= ∅. On the other hand, the graph T on
V (G)−{z3, z4} with E(T ) = {xyi | 1 ≤ i ≤ 4}∪{y1z1, y1z2} is a HIST ofG1−
{z3, z4}. Hence by Lemma 2, G also has a HIST, which is a contradiction.
Thus every vertex in NG1

(x) is adjacent to at most one of z1, · · · , z4 in G1.
Since diam(G1) = 2, NG1

(zi) ∩NG1
(x) 	= ∅ for each i (1 ≤ i ≤ 4). We may

assume that yizi ∈ E(G1) for each i (1 ≤ i ≤ 4). Since G1 is 4-regular, this
implies that NG1

(z1) = {y1, z2, z3, z4} and NG1
(y1) ∩ NG1

(x) 	= ∅. We may
assume that y1y2 ∈ E(G1). Then (x, z1, y1; y2) is a branchable quadruplet
of G1, which contradicts Lemma 1.

This completes the proof of Claim 5.

Claim 6. There exist two distinct vertices x, y ∈ V (G) with NG1
(x) ∩

NG1
(y) 	= ∅ and NG2

(x) ∩NG2
(y) 	= ∅.

Proof. Let p and q be vertices of G with p 	= q. Without loss of generality, we
may assume that pq ∈ E(G1). Since diam(G2) = 2 and pq 	∈ E(G2),NG2

(p)∩
NG2

(q) 	= ∅. If NG1
(p)∩NG1

(q) 	= ∅, then the desired conclusion holds. Thus
we may assume that NG1

(p) ∩NG1
(q) = ∅. Since δ(G1) ≥ 3, there exist two

distinct vertices u, v ∈ NG1
(p)−{q}. Note that p ∈ NG1

(u)∩NG1
(v), and so

NG1
(u) ∩NG1

(v) 	= ∅. Since NG1
(p) ∩NG1

(q) = ∅, u, v 	∈ NG1
(q), and hence

u, v ∈ NG2
(q). Therefore NG2

(u) ∩NG2
(v) 	= ∅.

Let x, y ∈ V (G) be vertices assured in Claim 6. Let G′ be the 2-edge-
colored complete graph obtained from G by deleting x and y, and for each
i ∈ {1, 2}, let G′

i be the spanning subgraph of G′ induced by all edges of
color i. Note that |V (G′)| = n−2 ≥ 8 by Claim 5. If G′ has a monochromatic
HIST, then G also has a monochromatic HIST by Lemma 2. Thus we may
assume that G′ has no monochromatic HIST. Then by the minimality of n,
for some i ∈ {1, 2}, either G′

i � K2,n−4 or G′
i � K−

2,n−4.

Case 1: G′
i � K2,n−4.

Let A and B be the bipartition of G′
i with |A| = 2 and |B| = n − 4.

Suppose that NGi
(x) ∩ NGi

(y) ∩ B 	= ∅. Let a ∈ A and b ∈ NGi
(x) ∩

NGi
(y)∩B. Then (a, b) is a branchable pair of Gi, which is a contradiction.

Thus NGi
(x) ∩ NGi

(y) ∩ B = ∅. Since NGi
(x) ∩ NGi

(y) 	= ∅, there exists
a vertex a′ ∈ A with a′x, a′y ∈ E(Gi). Let b′ ∈ B. Since δ(Gi) ≥ 3, b′ is
adjacent to at least one of x and y. Then (a′, b′) is a branchable pair of Gi,
which is a contradiction.

Case 2: G′
i � K−

2,n−4.
Note that G′

3−i � Zn−2. Let a be the unique vertex of G′
3−i with

dG′
3−i

(a) = 1. Write NG′
3−i

(a) = {b}, and write NG′
3−i

(b) = {a, c}. Note
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that dG′
3−i

(c) = n−4. Since δ(G3−i) ≥ 3, xa, ya ∈ E(G3−i) and b is adjacent
to at least one of x and y in G3−i. We may assume that xb ∈ E(G3−i). If ei-
ther yb ∈ E(G3−i) or yc ∈ E(G3−i), then (b, c) is a branchable pair of G3−i,
which is a contradiction. Thus yb, yc 	∈ E(G3−i). Since δ(G3−i) ≥ 3, y is ad-
jacent to a vertex u ∈ V (G)− {a, b, c, x, y}. Let v ∈ V (G)− {a, b, c, x, y, u}.
Note that NG3−i

(u) ⊇ V (G)−{a, b, x} and cv ∈ E(G3−i). Then we can check
that (b, u, c; v) is a branchable quadruplet of G3−i, which is a contradiction.

This completes the proof of Theorem 2.
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[2] B. Bollobás and A. Gyárfás, Highly connected monochromatic sub-
graphs, Discrete Math. 308 (2008) 1722–1725. MR2392611

[3] S. A. Burr, Either a graph or its complement contains a spanning broom,
manuscript.

[4] R. Diestel, “Graph Theory” (4th edition), Graduate Texts in Mathemat-
ics 173, Springer (2010). MR2744811

[5] P. Erdös and T. Fowler, Finding large p-colored diameter two subgraphs,
Graphs Combin. 15 (1999) 21–27. MR1684498
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