
Journal of Combinatorics

Volume 9, Number 4, 659–679, 2018

Inverting the rational sweep map

Adriano Garsia
∗
and Guoce Xin

†

We present a simple algorithm for inverting the sweep map on
rational (m,n)-Dyck paths for a co-prime pair (m,n) of positive
integers. This work is inspired by Thomas-Williams work on the
modular sweep map. A simple proof of the validity of our algorithm
is included.

MSC 2010 subject classifications: 05A19, 05A99, 05E05.
Keywords and phrases: Rational Dyck paths, sweep maps, path dia-
grams.

1. The algorithm

Inspired by the Thomas-William algorithm [4] for inverting the general mod-
ular sweep map, we find a simple algorithm to invert the sweep map for ra-
tional Dyck paths. The fundamental fact that made it so difficult to invert
the sweep map in this case is that all previous attempts used only the ranks
of the vertices of the rational Dyck paths. Moreover the geometry of rational
Dyck paths was not consistent with those ranks.

A single picture will be sufficient here to understand the idea. In what
follows, we always denote by (m,n) a co-prime pair of positive integers,
South end (by letter S) for the starting point of a North step and West
end (by letter W) for the starting point of an East step, unless specified
otherwise. This is convenient and causes no confusion because we usually
talk about the starting points of these steps.

Figure 1 illustrates a rational (m,n)-Dyck path D for (m,n) = (7, 5) and
its sweep map image D on its right. Recall that the ranks of the starting
vertices of an (m,n)-Dyck path D are recursively computed starting with
rank 0, and adding m after a North step and subtracting n after an East
step as shown in Figure 1. To obtain the sweep image D of D, we let the

∗The first named author is grateful to Nathan Williams for the time and effort
that he spent to communicate his pioneering proof of invertibility of the general
sweep map. The first named author was supported by NFS grant DMS13–62160.

†The second named author was supported by National Natural Science Founda-
tion of China (11171231).

659

http://www.intlpress.com/JOC/

660 Adriano Garsia and Guoce Xin

Figure 1: A rational (7, 5)-Dyck path and its sweep map image.

Figure 2: Transformation of the (7, 5)-Dyck paths in Figure 1.

main diagonal (with slope n/m) sweep from right to left and successively
draw the steps of D as follows: i) draw a South end (and hence a North
step) when we sweep a South end of D; ii) draw a West end (hence an East
step) when we sweep a West end of D. The steps of D can also be obtained
by rearranging the steps of D by increasing ranks of their starting vertices.

The sweep map has become an active subject in the recent 15 years.
Variations and extensions have been found, and some classical bijections
turn out to be the disguised version of the sweep map. See [1] for detailed
information and references.

The open problem was the reconstruction of the path on the left from
the path on the right. The idea that leads to the solution of this problem is
to draw these two paths as in Figure 2.

Inverting the rational sweep map 661

That is we first stretch all the arrows so that their lengths correspond
to the effect they have on the ranks of the vertices of the path then add
an appropriate clockwise rotation to obtain the two path diagrams in Fig-
ure 2. The path diagrams are completed by writing an S for each South
end in our original path and a W for each West end. On the left we have
added a list of each level. The ranks of D become visually the levels of the
staring points of the arrows. On the right, at each level we count the red
(solid) segments and the blue (dashed)1 segments which traverse that level
and record their difference. Of course these differences, called row counts or
(signed) row sum, turn out to be all equal to 0, for obvious reasons. This will
be referred to as the 0-row-count property. Theorem 3 states that this is a
characteristic property of rational Dyck paths, which becomes evident when
paths are drawn in this manner. This fact is conducive to the discovery of
our algorithm for constructing the pre-image of any (m,n)-Dyck path.

Figure 3: A given rational Dyck path and its starting path diagram on the
right.

The first step in our algorithm is to vertically shift the arrows of the
path on the left of Figure 3. The resulting path diagram is on the right,
whose arrows have their starting ranks minimally strictly increasing. More

1Suggested by the referee, we have drawn blue dashed arrows for convenience
of black-white print. We will only use “red” and “blue” in our transformed Dyck
paths, but in our context, red, solid, up and positive slope are equivalent; blue,
dashed, down and negative slope are equivalent.

662 Adriano Garsia and Guoce Xin

precisely the first three red arrows are lowered in their columns to start at
levels 0, 1, 2. To avoid placing part of the first blue arrow below level 0 we
lower it to start at level 5. This done all the remaining arrows are successively
placed to start at levels 6, 7, 8, 9, 10, 11, 12, 13. Notice the row counts at the
right of the resulting path diagram. Our aim is to progressively reduce them
all to zeros, which are the row counts characterization of the path diagram
we are working to reconstruct.

The miracle is that this can be achieved by a sequence of identical steps.
More precisely, at each step of our algorithm we locate the lowest row sum
that is greater than 0. We next notice that there is a unique arrow that
starts immediately below that row sum. This done we move that arrow
one unit upwards. However, to keep the ranks strictly increasing we also
shift, when necessary, some of the successive arrows by one unit upwards. In
this particular case our MATHEMATICA implementation of the resulting
algorithm produced the sequence of 18 path diagrams in Figures 4 and 5.
Notice, the green (thick) line has been added in each path diagram to make
evident the height of the lowest positive row count. Of course each step ends
with an updating of the row counts.

The final path diagram yields a path that is easily shown to be the
desired pre-image. For example, in Figure 6, to obtain the left path from the
middle balanced increasing path diagram, we simply start with the leftmost
red arrow, and at each step we proceed along the arrow that starts at the
rank reached by the previous arrow. Continue until all the arrows have been
used. The reason why there always is an arrow that starts at each reached
rank, is an immediate consequence of the 0-row-count property of the middle
path diagram. Such an arrow is unique in our case, since (m,n) is a coprime
pair. On the other hand, to obtain the sweep map image of the left path,
we reorder the arrows according to their starting ranks, which corresponds
to horizontally shift the arrows (without changing the ranks) so that their
starting ranks are increasing. This gives the middle path diagram. Then we
read the arrows (ignoring their starting ranks) from left to right. This gives
the right path, as desired. This manner of drawing rational Dyck paths
makes many needed properties more evident than the traditional manner
and therefore also easier to prove. As a case in point, we give a simple visual
way of establishing the following nontrivial result (see, e.g., [1]).

Lemma 1. The sweep image of an (m,n)-Dyck path is an (m,n)-Dyck path.

Proof. On the left of Figure 6 we have the final path yielded by our algo-
rithm. To obtain the path diagram in the middle we simply rearrange the
arrows (by horizontal shifts) so that their starting ranks are increasing. The
path on the right is obtained by vertically shifting the successive arrows so

Inverting the rational sweep map 663

Figure 4: Part 1 of the 18 path diagrams that our algorithm produced.

that they concatenate to a path. To prove that the resulting path is a (7, 5)-
Dyck path, we need only show that the successive partial (signed) sums
of the segments (i.e., a red segment is counted as 1 and a blue segment is
counted as −1.) of these arrows are all non-negative. This is a consequence
of the 0-row-count property. In fact, for example, let us prove that the sum
of the segments to the left of the vertical green line v is positive.

664 Adriano Garsia and Guoce Xin

Figure 5: Part 2 of the 18 path diagrams that our algorithm produced.

To this end, let A be the arrow that starts on v and � be its starting
rank. Let h be the horizontal green (thick) line at level �. Denote by L the
region below h, and let L1, L2 be the left and right portions of L split by
v. Let us also denote by |rL1|, |rL2|, the red arrow segment counts in the
corresponding regions and by |bL1|, |bL2| the corresponding blue segment
counts. This given, since red segments contribute a 1 and a blue segment
contributes −1 to the final count, it follows that

i) |rL1|+ |rL2| = |bL1|+ |bL2|, ii) |rL2| = 0.

In fact, i) is due to the 0-row-count property and ii) is simply due to the
fact that all red arrows to the right of v must start above h. Thus we must
have

Inverting the rational sweep map 665

Figure 6: A (7, 5)-Dyck path on the left; by horizontal shifts of the arrows we
obtain the middle path diagram whose starting ranks are increasing; then
by vertical shifts of the arrows to obtain a (7, 5)-Dyck path on the right
picture.

|rL1| − |bL1| = |bL2| ≥ 0.

This implies that the sum of the arrows to the left of v must be ≥ 0.

A proof of the validity of our algorithm may be derived from the Thomas-

Williams result by letting their modulus tend to infinity. However, our al-

gorithm deserves a more direct and simple proof.

Such a proof will be given in the following pages. This proof will be

based on the validity of a simpler but less efficient algorithm. To distinguish

the above algorithm from our later one, we will call them respectively the

StrongFindRank and the WeakFindRank algorithms, or “strong” and “weak”

algorithm for short.

The rest of the paper is organized as follows. Section 2 is devoted to

the proof of the WeakFindRank algorithms. It also includes all the necessary

concepts and concludes with Theorem 8, which asserts the invertibility of the

rational sweep map. Theorem 9 is the main result of Section 3. It allows us

to analyze the complexity of both the “strong” and the “weak” algorithms.

It is also used in Section 4, where we show the validity of the “strong”

algorithm. Finally, we discuss the difference between the Thomas-Williams

algorithm and our algorithm in Section 5. We also talk about some future

plans.

666 Adriano Garsia and Guoce Xin

Figure 7: A path diagram for m = 5, n = 7 and N = 21.

2. The proof

2.1. Balanced path diagrams

A path diagram T consists of an ordered set of n red arrows and m blue
arrows, placed on a (m+n)×N lattice rectangle, where N is a large positive
integer to be specified. See Figure 7.

A red arrow is the up vector (1,m) and a blue arrow is the down vector
(1,−n). The rows of lattice cells will be simply referred to as rows and the
horizontal lattice lines will be simply referred to as lines. On the left of each
line we have placed its y coordinate which we will simply refer to as its level.
The level of the starting point of an arrow is called its starting rank, and
similarly its end rank is the level of its end point. It will be convenient to
call row i the row of lattice cells delimited by the lines at levels i and i+ 1.
Lattice columns are defined in a similar way.

Given a word Σ with n letters S and m letters W , and a sequence
R = (r1, . . . , rm+n) of n +m nonnegative ranks, the path diagram T (Σ, R)
is obtained by placing the letters of Σ at the bottom of the lattice columns
and drawing in the ith column an arrow with starting rank ri and red (solid)
if the ith letter of Σ is Σi = S or blue (dashed) if Σi = W . See Figure 7, where
Σ = SSSWWWWSSWWW and R = (0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13).
The sequence R will be called the rank sequence of the path diagram T .
Notice that each lattice cell may contain a segment of a red arrow or a seg-
ment of a blue arrow or no segment at all. The red segment count of row

Inverting the rational sweep map 667

Figure 8: The difference c(j) − c(j − 1) is 1 in the left two cases, is −1 in
the right two cases, and is 0 in the previous cases.

j will be denoted cr(j) and the blue segment count is denoted cb(j). We
will set c(j) = cr(j) − cb(j) and refer to it as the count of row j. In the
above display on the right of each row we have attached its row count. The
following observation will be crucial in our development.

Lemma 2. Let T (Σ, R) be any path diagram. It holds for every integer j ≥ 1
that

c(j)− c(j − 1)(1)

= #{arrows starting at level j} −#{arrows ending at level j}.

Proof. Let us investigate the contribution to the difference c(j) − c(j − 1)
from a single arrow A. The contribution is 0 if i) A has no segments in rows
j and j − 1, ii) A has segments in row j and j − 1. In both cases, it is clear
that A cannot start nor end at level j. Thus the remaining cases are as listed
in Figure 8.

It will be convenient to say that a path diagram T (Σ, R) is balanced if
all its row counts are equal to 0. The word Σ is said to be the (S,W)-word
of a Dyck path D in Dm,n, if it is obtained by placing an S when D takes a
South end (hence a North step) and a W when D takes a West end (hence
an East step).

Theorem 3. Let Σ be the (S,W)-word of D ∈ Dm,n, and let R = (r1, r2, . . . ,
rm+n), with r1 = 0, be a weakly increasing sequence of integers. Then R is
a rearrangement of the rank sequence of a pre-image D (regarded as a path
diagram) of D under the sweep map, if and only if the path diagram T (Σ, R)
is balanced and the sequence R is strictly increasing.

Proof. Suppose that D is a pre-image of D. This given, let T (Σ, R) with Σ
the (S,W)-word of D, R the rank sequence of D, and height N chosen to be

668 Adriano Garsia and Guoce Xin

a number greater than nm+max(R). It is clear that the arrows of T (Σ, R)
can be depicted by starting at level 0 and drawing a red arrow (1,m) every
timeD takes a South end and a blue arrow (1,−n) every timeD takes a West
end, with each arrow starting where the previous arrow ended. It is obvious
that the row counts of T (Σ, R) are all 0 since, in each row every red segment
is followed by a blue segment. Now let T (Σ, R) be the path diagram of same
height N obtained by reordering the arrows by their starting ranks. This is
achieved by horizonal shifts. Since the co-primality of (m,n) assures that R
has distinct components, the resulting R is the increasing rearrangement of
R by a unique permutation. Likewise, the word Σ is obtained by rearranging
the letters of Σ by the same permutation, and it is the sweep image of Σ.
Thus we may say that the same permutation can be used to change T (Σ, R)
into T (Σ, R). Since this operation only permutes (or shifts) segments within
each row, it follows that all the row counts of T (Σ, R) must also be 0. This
proves the necessity. See the left two pictures in Figure 6.

For the sufficiency, suppose that the path diagram T (Σ, R) is balanced,
with D the Dyck path whose word is Σ and R a weakly increasing sequence.
Then by Lemma 2 it follows that for every level j, either i) no arrow starts
or ends at this level, or ii) if k > 0 arrows end (start) at this level then
exactly k arrows start (end) at this level. This given, we will construct a
Dyck path D by the following algorithm. Starting at level 0 we follow the
first arrow, which we know is necessarily red and starts at level 0. This
arrow ends at level m. Since there is at least one arrow that starts at this
level follow the very next arrow that does. Proceeding recursively thereafter,
every time we reach a level, we follow the very next arrow that starts at that
level. This process stops when we are back at level 0, and we must since in
Σ there are n S and m W . Let D be the resulting path. Using the colors
of the successive arrows of D gives us the Σ word of D. Now notice that D
must be a path in Dm,n since all its starting ranks are nonnegative due to
the weakly increasing property of R and therefore they must necessarily be
distinct by the co-primality of (m,n). In particular, if R denotes the sequence
of starting ranks of D we are also forced to conclude that its components
are distinct. Since the components of R are only a rearrangement of the
components of R we deduce that R must have been strictly increasing to
start with. This implies that D must be a Sweep map image of D since the
successive letters of Σ can be obtained by rearranging the letters of Σ by
the same permutation that rearranges R to R. This completes the proof of
sufficiency.

This given, we can easily see that the validity of our “strong” algorithm
hinges on establishing that it produces a balanced path diagram after a fi-
nite number of steps. Theorem 3 allows us to relax the strictly increasing

Inverting the rational sweep map 669

Figure 9: Shifting up one unit an arrow from level a to level b will decrease
c(a) by 1 and increase c(b) by 1.

requirements on the rank sequences of the successive path diagrams pro-
duced by the algorithm. The WeakFindRank algorithm, defined below, has
precisely that property. This results in a simpler proof of the termination
property of both algorithms.

2.2. Algorithm WeakFindRank and the justification

Algorithm WeakFindRank

Input: A path diagram T (Σ, R(0)) with Σ the word of a Dyck pathD ∈ D�,\,

a weakly increasing sequence R(0) = (r
(0)
1 , r

(0)
2 , . . . , r

(0)
m+n).

Output: A balanced path diagram T (Σ, R).
It will be convenient to keep the common height equal to N for all the

successive path diagrams constructed by the algorithm, whereN = U+2mn,
with U = max(R(0)) +m+ 1.

Step 1 Starting with T (Σ, R(0)) repeat the following step until the resulting
path diagram is balanced.

Step 2 In T (Σ, R(s)), with R(s) = (r
(s)
1 , r

(s)
2 , . . . , r

(s)
m+n), find the lowest row

j with c(j) > 0 and find the rightmost arrow that starts at level j.
Suppose that arrow starts at (i, j). Move up the arrow one level to

construct the path diagram T (Σ, R(s+1)) with r
(s+1)
i = r

(s)
i + 1 and

r
(s+1)
i′ = r

(s)
i′ for all i′ �= i. If all the row counts are ≤ 0 then stop the

algorithm, since all row counts must necessarily vanish.

Figure 9 shows that we are weakly reducing the number of rows with
positive row counts in Step 2. It also makes the following key observation
evident.

Lemma 4. If at some point c(k) becomes ≥ 0 then for ever after it will
never become negative. In particular, since c(k) = 0 with k > U for the

670 Adriano Garsia and Guoce Xin

initial path diagram T (Σ, R(0)) we will have c(k) ≥ 0 when k > U for all
successive path diagrams produced by the algorithm.

Proof. The lemma holds true because we only decrease a row count when it
is positive.

We need some basic properties to justify the algorithm.

Lemma 5. We have the following basic properties.

(i) If row j is the lowest with c(j) > 0 then there is an arrow that starts
at level j. In this situation, we say that we are working with row j.

(ii) The successive rank sequences are always weakly increasing.

(iii) If T (Σ, R) has no positive row counts, then it is balanced. Conse-
quently, if the algorithm terminates, the last path diagram is balanced.

Proof.

(i) By the choice of j, we have c(j) > 0 and c(j − 1) ≤ 0. Thus c(j) −
c(j−1) > 0, which by Lemma 2, shows that there is at least one arrow
starting at rank j.

(ii) Our choice of i in step (2) assures that the next rank sequence remains
weakly increasing.

(iii) Since each of our path diagrams T (Σ, R) has n red arrows of length
m and m blue arrows of length n, the total sum of row counts of any
T (Σ, R) has to be 0. Thus if T (Σ, R) has no positive row counts, then
it must have no negative row counts either, and is hence balanced.

Justification of Algorithm WeakFindRank. By Lemma 5, we only need to
show that the algorithm terminates. To prove this we need the following
auxiliary result.

Lemma 6. Suppose we are working with row k, that is c(k) > 0 and c(i) ≤ 0
for all i < k. If row � has no segments for some � < k, then the current path
diagram T (Σ, R′) has no segments below row �.

Proof. Suppose to the contrary that T (Σ, R′) has a segment below row �,
then let V be the right most arrow that contains such a segment and say
that it starts at column i. Since row � has no segments, the starting rank of
V must be ≤ �. This implies that i+ 1 < m+ n since the arrow that starts
at level k must be to the right of V (by the increasing property of R′). This
given, the current path diagram could look like in Figure 10, where the two
green (thick) lines divide the plane into 4 regions, as labelled in the display.

Inverting the rational sweep map 671

Figure 10: When row � has no segments, there will be no segments in regions
B and C.

The weakly increasing property of R′ forces no starting ranks in C,

therefore there are no segments there. By the choice of V there cannot be

any segments in B. Thus the (gray) empty row � forces no segments within

both B and C.

Now notice that since Σ is the word of a path D ∈ Dm,n the number of

red segments to the left of column i+1 minus the number of blue segments

to the left of that column must result in a number s > 0. However, since

c(j) ≤ 0 for all j ≤ � it follows that c(0)+ · · ·+c(�−1) ≤ 0. But since regions

B and C have no segments it also follows that s = c(0) + · · ·+ c(�− 1) ≤ 0,

a contradiction.

Next observe that since each step of the algorithm increases one of the

ranks by one unit, after M steps we will have |R(M)−R(0)| =
∑m+n

i=1 r
(M)
i −∑m+n

i=1 r
(0)
i = M . This given, if the algorithm iterates Step 2 forever, then

the maximum rank will eventually exceed any given integer. In particular,

we will end up working with row k with k so large that k − U exceeds the

total number mn of red segments. At that point we will have c(k) > 0 and

c(j) = 0 for all the k − U values j = U,U + 1, . . . , k − 1. The reason for

this is that we must have c(j) ≤ 0 for all 0 ≤ j < k and by Lemma 4 we

must also have c(j) ≥ 0 for j ≥ U . Now, by the pigeon hole principle, there

must also be some U ≤ � < k for which cr(�) = 0. But then it follows that

cb(�) = cr(�)− c(�) = 0, too. That means that row � contains no segments.

672 Adriano Garsia and Guoce Xin

Then Lemma 6 yields that there cannot be any segments below row � either.
This implies that the total row count is

∑
j≥0 c(j) =

∑
j≥U c(j) ≥ c(k) > 0,

a contradiction.

Thus the WeakFindRank algorithm terminates and we can draw the fol-
lowing important conclusion.

Theorem 7. Given any (m,n)-Dyck path D with (S,W)-word Σ and any

initial weakly increasing rank sequence R(0) = (r
(0)
1 , r

(0)
2 , · · · , r(0)m+n), let

T (Σ, R) be the balanced path diagram produced by the WeakFindRank al-
gorithm. Then the rank sequence
R = (r1, r2, · · · , rm+n) will be strictly increasing. Moreover, the sequence

R̃ = (0, r2 − r1, r3 − r1, . . . , rm+n − r1)

is none other than the increasing rearrangement of the rank sequence of a
pre-image D of D under the sweep map.

Proof. Clearly, the path diagram T (Σ, R̃) of height N = r̃m+n +m+ 1 will
also be balanced. Thus, by Theorem 3, R̃ must be the increasing rearrange-
ment of the rank sequence of a pre-image D of D. In particular not only R̃
but also R itself must be strictly increasing.

This result has the following important corollary.

Theorem 8. For any co-prime pair (m,n) the rational (m,n)-sweep map
is invertible.

Proof. Lemma 1 shows that the rational (m,n)-sweep map is into. Theorem
7 gives a proof (independent of the Thomas-Wiliams proof) that it is onto.
Since the collection of (m,n)-Dyck paths is finite, the sweep map must be
bijective.

Figure 11 depicts the entire history of the WeakFindRank algorithm
applied to a (7, 5)-Dyck path D paired with initial rank sequence R(0) =
(0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). Both D (on the left) and its pre-image D (on
the right) are depicted below.

A boxed lattice square in column i with an integer k inside indicates that
arrow Ai was processed at the kth step of the algorithm. As a result Ai was
lifted from the level of the bottom of the square to its top level. For instance
the square with 63 inside indicates that the red arrow A7 was lifted at the
63rd step of the algorithm from starting at level 9 to starting at level 10. We
also see that the last time that the arrow A8 reached its final starting level
at step 87. The successive final starting levels of arrows A1, A2, . . . , A12 give

Inverting the rational sweep map 673

Figure 11: The top left picture is the balanced path diagram produced by
the WeakFindRank algorithm. The top right one is obtained by Theorem 3.

the increasing rearrangement of the ranks of the path D. Notice, arrows A1

and A3 were never lifted.

3. Tightness of algorithm WeakFindRank

Following the notations in Theorem 7, the number of steps needed for Algo-

rithm WeakFindRank is |R| − |R(0)| = |R̃| − |R(0)|+(m+n)r̄1. We will show

that a specific starting path diagram can be chosen so that r̄1 = 0.

For two rank sequences R = (r1, r2, . . . , rn+m) and R′ = (r′1, r
′
2, . . . ,

r′n+m) let us write R � R′ if and only if we have ri ≤ r′i for all 1 ≤ i ≤ m+n,

if ri < r′i for at least one i we will write R ≺ R′. The distance of R from R′,

674 Adriano Garsia and Guoce Xin

will be expressed by the integer

|R′ −R| =
m+n∑
i=1

(r′i − ri) =

m+n∑
i=1

r′i −
m+n∑
i=1

ri.

Given the (S,W)-word Σ of an (m,n)-Dyck path D, we will call the
initial starting sequence R(0) canonical for Σ if it is obtained by replacing
the first string of S in Σ by 0’s and all the remaining letters by n, and call
the balanced path diagram T (Σ, R̃) yielded by Theorem 7 canonical for Σ.
Clearly R(0) � R̃. This given, we can prove the following remarkable result.

Theorem 9. Let Σ be the (S,W)-word of a Dyck path D ∈ Dm,n. If R
(0)

and T (Σ, R̃) are canonical for Σ and R is any increasing sequence which
satisfies the inequalities

R(0) � R � R̃

then the WeakFindRank algorithm with starting path diagram T (Σ, R) will
have as output the rank sequence R̃.

Proof. Notice if |R̃−R| = 0 there is nothing to prove. Thus we will proceed
by induction on the distance of R from R̃. Now assume the theorem holds
for |R̃ − R| = K. We need to show that it also holds for |R̃ − R| = K + 1.
Suppose one application of step (2) on R gives R′. We need to show that
R′ � R̃. This is done since R and R′ only differ from one unit we will have
|R̃−R′| = K and then the inductive hypothesis would complete the proof.

Thus assume if possible that this step (2) cannot be carried out because
it requires increasing by one unit an ri = r̃i. Suppose further that under
this step (2) the level k was the lowest with c(k) > 0 and thus the arrow
Ai was the right most that started at level k. In particular this means that
ri = r̃i = k. Since |R̃ − R| ≥ 1, there is at least one i′ such that ri′ < r̃i′ .
If ri′ = k′ let i′ be the right most with ri′ = k′. Define R′′ to be the rank
sequence obtained by replacing ri′ by ri′ + 1 in R. The row count c(k′) is
decreased by 1 and another row count is increased by 1, so that c(k) in R′′ is
still positive. Since |R̃−R′′| = K the induction hypothesis assures that the
WeakFindRank algorithm will return R̃. But then in carrying this out, we
have to work on row k, sooner or later, to decrease the positive row count
c(k). But there is no way the arrow Ai can stop being the right most starting
at level k, since arrows to the right of Ai start at a higher level than Ai and
are only moving upwards. Thus the fact that the WeakFindRank algorithm
outputs R̃ contradicts that fact that the application of step (2) to R cannot
be carried out.

Inverting the rational sweep map 675

Figure 12: A (7, 5)-Dyck path with area 4. Removing the black cell changes
the rank 18 to 18− 7− 5 = 6.

Thus we will be able to lift Ai one level up as needed and obtain the

sequence R′ by replacing ri by ri + 1 in R. But now we will have |R̃ −
R′| =K with R′ ≺ R̃ and the inductive hypothesis will assure us that the

WeakFindRank algorithm starting from R will return R̃ as asserted.

It is clear now that the complexity of the WeakFindRank algorithm is

O(|R̃|). Recall that reordering R̃ gives the rank set {r1, r2, . . . , rm+n} of D.

It is known and easy to show that

area(D) =
1

m+ n

(
m+n∑
i=1

ri −
(
m+ n

2

))
,

where area(D) is the number of lattice cells between D and the diagonal.

Indeed, from Figure 12, it should be evident that reducing the area by 1

corresponds to reducing the sum r1 + · · ·+ rm+n by m+ n.

It follows that

|R̃| = (m+ n)area(D) +

(
m+ n

2

)
= O((m+ n)area(D)).(2)

Theorem 9 together with (2) gives the following result.

Corollary 10. Given any (m,n)-Dyck path D, its pre-image D can be pro-

duced in O((m+ n) area(D)) running time.

Proof. Let Σ be the (S,W)-word of D. We first construct the path diagram

T = (Σ, R(0)) with R(0) being canonical for Σ and compute the row counts

of the path diagram. Next we use the WeakFindRank algorithm to update T

until we get the balance path diagram (Σ, R̃) by Theorem 9. Finally we use

Theorem 7 to find the pre-image D.

676 Adriano Garsia and Guoce Xin

Iteration only appears in the middle part, where the WeakFindRank al-
gorithm performs |R̃| − |R(0)| times of Step 2. In each Step 2, we search for
the lowest positive row count c(j), then search for the rightmost arrow ri
that is equal to j, and finally update ri by ri+1 and the row counts at only
two rows (see Figure 9). Therefore, the total running time is O(|R̃|), and
the corollary follows by (2).

4. Validity of algorithm StrongFindRank

Let R = (r1 ≤ r2 ≤ · · · ≤ rl) be a sequence of nonnegative integers of length
l. The strict cover R′ = sc(R) = (r′1 < r′2 < · · · < r′l) of R is recursively de-
fined by r′1 = r1 and r′i = min(ri, r

′
i−1+1) for i ≥ 2. It is the unique minimal

strictly increasing sequence satisfying R′ � R. The following principle is
straightforward.

If R ≺ R with R weakly increasing and R strictly increasing, then
sc(R) � R.

A direct consequence is that R̂(0) = sc(R(0)) � R̃ if R(0) is canonical
for Σ. This sequence is exactly the starting rank sequence of our “strong”
algorithm (see Figure 3). It will be good to review our definitions before we
proceed.

Algorithm StrongFindRank

Input: A path diagram T (Σ, R̂(0)) with Σ the word of a Dyck path D ∈
Dm,n, the nonnegative strictly increasing rank sequence R̂(0) as above.

Output: The balanced path diagram T (Σ, R̂).

It will be convenient to keep the common height equal to N for all the
successive path diagrams constructed by the algorithm, whereN = U+2mn,
with U = max(R(0)) +m+ 1.

Step 1 Starting with T (Σ, R̂(0)) repeat the following step until the resulting
path diagram is balanced.

Step 2 In T (Σ, R̂(s)), with R̂(s) = (r̂
(s)
1 , r̂

(s)
2 , . . . , r̂

(s)
m+n) find the lowest row

j with c(j) > 0 and find the unique arrow that starts at level j.
Suppose that arrow starts at (i, j). Define R′ to be the rank se-

quence obtained from R̂(s) by the replacement r̂
(s)
i −→ r̂

(s)
i + 1, and

set R̂(s+1) = sc(R′). Construct the path diagram T (Σ, R̂(s+1)) and
update the row counts. If all the row counts of T (Σ, R̂(s)) are ≤ 0
then stop the algorithm and return R̂(s), since all these row counts
must vanish.

Inverting the rational sweep map 677

This given, the validity of the StrongFindRank algorithm is an immedi-
ate consequence of the following surprising result.

Theorem 11. Let D ∈ Dm,n with (S,W)-word Σ, and let the balanced path

diagram (Σ, R̃) be canonical for Σ. Then all the successive rank sequences
R̂(s) produced by the StrongFindRank algorithm satisfy the inequality

R̂(s) � R̃(3)

and since the successive rank sequences satisfy the inequalities

R̂(0) ≺ R̂(1) ≺ R̂(2) ≺ R̂(3) ≺ · · · ≺ R̂(s),(4)

there will necessarily come a step when T (Σ, R̂(s)) = T (Σ, R̃). At that time
the algorithm will stop and output R̃.

Proof. The inequality (4) clearly holds since we always shift arrows upwards.
We prove the inequality (3) by induction on s. The basic fact that will

play a crucial role is that the output R̃ is strictly increasing. See Theorem 3.
The case s = 0 of (3) is obviously true since R̂(0) is the strict cover of

R(0) � R̃. Assume R̂(s) � R̃ and we need to show (3) holds true for s + 1.
Now R̂(s+1) is the strict cover of R′, where R′ is the auxiliary rank sequence
used by Step 2 of the StrongFindRank algorithm. Since R′ is precisely the
successor of R̂(s) by Step 2 of the WeakFindRank algorithm, it will necessarily
satisfy the inequality R′ ≺ R̃ by Theorem 9. Our principle then guarantees
that we will also have

R̂(s+1) � R̃

unless R̂(s) = R̃ and the StrongFindRank algorithm terminates.

Remark 12. This proof makes it evident that, to construct the pre-image of
an (m,n) Dyck path, the StrongFindRank algorithm will be more efficient
than the WeakFindRank algorithm. This is partly due to the fact that the
distances |R̂(s+1) − R̂(s)| do turn out bigger than one unit most of the time,
as we can see in the following display.

In the middle of Figure 13 we have a Dyck path D, and below it, its pre-
image D. To recover D from D we applied to D the WeakFindRank algorithm
(on the left) and the StrongFindRank algorithm (on the right). The display
shows that the “weak” algorithm required about 3 times more steps than the
“strong” algorithm. The numbers in the Cyan squares reveal that, in several
steps, two or more arrows were lifted at the same time. For instance, in step
13, as many as 4 arrows were lifted. The other step saving feature of the

678 Adriano Garsia and Guoce Xin

Figure 13: Comparison of the WeakFindRank algorithm and the StrongFind-
Rank algorithm by an example.

“strong” algorithm is due to starting from the strict cover of the canonical
starting sequence. This is evidenced by the difference between the number
of white cells below the colored ones on the left and on the right diagrams.

5. Discussion and future plans

This work is done after the authors read [4] version 1, especially after the
first named author talked with Nathan Williams. The concept “balanced
path diagram” is a translation of “equitable partition” in [4]. The inter-
mediate object “increasing balanced path diagram” is what we missed in
our early attempts: The obvious 0-row-count property of Dyck paths gives
the necessary part of Theorem 3, but we never considered the 0-row-count
property to be sufficient until we read the paper [4].

Once Theorem 3 is established, inverting the sweep map is reduced to
searching for the corresponding increasing balanced path diagram. Our al-
gorithm is similar to the Thomas-Williams algorithm in the sense that both
algorithms proceed by picking an initial candidate and then repeat an iden-
tical updating process until terminates. In the rational Dyck path model,
our updating process is natural and has more freedom than the Thomas-

Inverting the rational sweep map 679

Williams algorithm. For instance, we can start with any weakly increasing
rank sequence.

The precise relation between our algorithm and the Thomas-Williams
one will be addressed in an upcoming paper, where we will extend the ar-
guments in this paper to a more general class of sweep maps. These sweep
maps have been defined in [1]. Though the invertibility of these sweep maps
can be deduced from the modular sweep map model [4], they deserve direct
proofs.

Even the rational sweep map needs further studied. The (m,n)-rational
sweep map on Dm,n is known to take the dinv statistic to the area statistic.
This result is proved combinatorially by Gorsky and Mazin in [3], but the
proof is indirect. Our view of Dyck paths leads to visual description of the
dinv statistics and a simple proof of the dinv and area result. See [2] for
detailed information and references.

References

[1] D. Armstrong, N. A. Loehr, and G. S. Warrington, Sweep maps: A con-
tinuous family of sorting algorithms, Adv. Math. 284 (2015), 159–185.
MR3391074

[2] A. Garsia and G. Xin, Dinv and Area, Electron. J. Combin., 24 (1)
(2017), P1.64. MR3651946

[3] E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan Num-
bers, J. Combin. Theory Ser. A, 120 (2013), 49–63. MR2971696

[4] H. Thomas and N. Williams, Sweepping up zeta, preprint,
arXiv:1512.01483. MR3678592

Adriano Garsia

Department of Mathematics

UCSD

USA

E-mail address: garsiaadriano@gmail.com

Guoce Xin

School of Mathematical Sciences

Capital Normal University

Beijing 100048

PR China

E-mail address: guoce.xin@gmail.com

Received 20 March 2016

http://www.ams.org/mathscinet-getitem?mr=3391074
http://www.ams.org/mathscinet-getitem?mr=3651946
http://www.ams.org/mathscinet-getitem?mr=2971696
http://www.ams.org/mathscinet-getitem?mr=3678592
mailto:garsiaadriano@gmail.com
mailto:guoce.xin@gmail.com

	The algorithm
	The proof
	Balanced path diagrams
	Algorithm WeakFindRank and the justification

	Tightness of algorithm WeakFindRank
	Validity of algorithm StrongFindRank
	Discussion and future plans
	References

