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Polychromatic colorings on the hypercube
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∗
, Ryan R. Martin

†
,

David Offner, John Talbot, and Michael Young

Given a subgraph G of the hypercube Qn, a coloring of the edges
of Qn such that every embedding of G contains an edge of every
color is called a G-polychromatic coloring. The maximum number
of colors with which it is possible to G-polychromatically color the
edges of any hypercube is called the polychromatic number of G.
To determine polychromatic numbers, it is only necessary to con-
sider a specific type of coloring, which we call simple. The main tool
for finding upper bounds on polychromatic numbers is to translate
the question of polychromatically coloring the hypercube so every
embedding of a graph G contains every color into a question of col-
oring the 2-dimensional grid so that every so-called shape sequence
corresponding to G contains every color. After surveying the tools
for finding polychromatic numbers, we apply these techniques to
find polychromatic numbers of a class of graphs called punctured
hypercubes. We also consider the problem of finding polychromatic
numbers in the setting where larger subcubes of the hypercube are
colored. We exhibit two new constructions which show that this
problem is not a straightforward generalization of the edge color-
ing problem.
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1. Introduction

For n ∈ Z, n ≥ 1, the n-dimensional hypercube, denoted by Qn, is the graph
with V (Qn) = {0, 1}n, and edges between vertices which differ in exactly
one coordinate. For any graphs G, H, a subgraph of H isomorphic to G is
called an embedding of G in H. Given a set R of r colors, an edge coloring
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of a graph G with r colors is a surjective function χ : E(G) → R assigning a
color to each edge of G. All colorings of graphs will refer to edge colorings,
unless otherwise noted. Given a graph G, an edge coloring of a hypercube
with r colors such that every embedding of G contains an edge of every color
is called a G-polychromatic r-coloring, and we denote by p(G) the maximum
number of colors with which it is possible to G-polychromatically color the
edges of any hypercube. Call p(G) the polychromatic number of G.

Motivated by Turán type problems on the hypercube, Alon, Krech, and
Szabó [1] introduced the notion of polychromatic coloring on the hypercube
and proved bounds for the polychromatic number of Qd.

Theorem 1 (Alon, Krech, and Szabó [1]). For all d ≥ 1,

(
d+ 1

2

)
≥ p(Qd) ≥

{
(d+1)2

4 if d is odd
d(d+2)

4 if d is even.

The exact value of the polychromatic number of Qd was determined in
[6].

Theorem 2 (Offner [6]). For all d ≥ 1,

p(Qd) =

{
(d+1)2

4 if d is odd
d(d+2)

4 if d is even.

Prior to the work of Alon, Krech, and Szabó [1], coloring arguments had
also been used to give bounds on Turán type problems on the hypercube,
for example by Conder [5] and Axenovich and Martin [2]. In [7], a condition
was given which, if satisfied by a graph G, implies p(G) ≥ 3.

In this paper, we begin by surveying what is known about polychromatic
colorings on the hypercube. In Section 2, we establish that when studying
polychromatic colorings, we need only consider a specific type of coloring
called a simple coloring (such colorings were called Ramsey in [6]). In Sec-
tion 3, we use the idea of simple coloring to transform the problem of edge
coloring the hypercube so that a given subgraph is polychromatic to one of
coloring a rectangular grid so that a collection of subsets is polychromatic.
In this context, Lemma 5 provides the key insight to prove upper bounds on
polychromatic numbers. All known lower bounds for polychromatic numbers
come from explicit constructions, and at the end of the section we give an
example by proving the lower bounds in Theorems 1 and 2.

Following this survey, we show in Section 4 how to use these methods
to determine the value of p(G) for some graphs G where p(G) was not pre-
viously known, for example hypercubes with one edge or vertex deleted.
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We call these graphs punctured hypercubes. Theorem 10 gives the poly-
chromatic number for any odd-dimensional punctured hypercube, and The-
orems 11 and 12 give the polychromatic number for punctured Q4’s. For
even-dimensional punctured hypercubes with dimension greater than 4, The-
orem 14 provides a lower bound on the polychromatic number, but we can
not determine it exactly. The current best bounds are summarized in Corol-
lary 15. The section concludes with suggestions for future research.

Section 5 concerns a generalization of the problem proposed by Alon,
Krech, and Szabó [1] where instead of edges, subcubes of a fixed dimen-
sion are colored. Previously, Özkahya and Stanton [8] had generalized the
bounds given in Theorem 1 to this setting. If this more general problem were
a straightforward generalization of the edge-coloring problem, the polychro-
matic number would be equal to the lower bound. However, Theorems 21
and 22 provide two constructions that show this is not the case, and thus new
ideas will be required to determine polychromatic numbers in this setting.

1.1. Notation for hypercubes

We refer to the n coordinates of a vertex as bits, and given an edge {x, y};
we refer to the unique bit where xi �= yi as the flip bit. We represent an edge
of Qn by an n-bit vector with a star in the flip bit. For example, in Q4, we
represent the edge between vertices [0100] and [0101] by [010∗]. Similarly,
we represent an embedding of Qd in Qn by an n-bit vector with stars in d
coordinates. For instance [1∗00∗] is the embedding of Q2 in Q5 with ver-
tices {[10000], [11000], [10001], [11001]} and edges {[1∗000], [1000∗], [1∗001],
[1100∗]}. We call edges with the same flip bit parallel, and the class of edges
with flip bit i the ith parallel class. For an edge e ∈ E(Qn) with flip bit j
define the prefix sum l(e) =

∑j−1
i=1 xi and postfix sum r(e) =

∑n
i=j+1 xi.

2. Simple colorings

Recall that for an edge e ∈ E(Qn), l(e) is the number of ones to the left of
the star in e, and r(e) is the number of ones to the right. Call a coloring χ of
the hypercube simple if χ(e) is determined by l(e) and r(e) (such colorings
were called Ramsey in [6]). The following lemma tells us that when studying
polychromatic colorings on the hypercube, we need only consider simple
ones. The proof is essentially from [6], building on ideas from [1].

Lemma 3. Let k ≥ 1 and G be a subgraph of Qk. If p(G) = r, then there
is a simple G-polychromatic r-coloring on Qk.
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Proof. Fix k. We show that if n is sufficiently large and Qn has a G-
polychromatic r-coloring, then it contains a subgraph Qk with a simple
coloring.

Suppose that n is large and χ is a G-polychromatic r-coloring of Qn. We
will use Ramsey’s theorem for k-uniform hypergraphs with rk2

k−1

colors. We
define a rk2

k−1

-coloring of the k-subsets of [n]. Fix an arbitrary ordering of
the edges of Qk. For an arbitrary subset S of the indices, define cube(S)
to be the subcube whose ∗ coordinates are at the positions of S and all
other coordinates are 0. Let S be a k-subset of [n], and define the color of
S to be the vector whose coordinates are the χ-values of the edges of the
k-dimensional subcube cube(S) (according to our fixed ordering of the edges
of Qk). By Ramsey’s theorem, if n is large enough, there is a set T ⊆ [n] of
k2+k−1 coordinates such that the color-vector is the same for any k-subset
of T . Fix a set S of k particular coordinates from T : those which are the
(ik)th elements of T for i ∈ [k].

We show the coloring of cube(S) is simple. Let e1 and e2 be two edges
of cube(S) such that l(e1) = l(e2) and r(e1) = r(e2). Since there are at least
k−1 elements in T in between each coordinate of S, as well as k−1 elements
to the left of the first coordinate of S and to the right of the last coordinate
of S, there is a set of k coordinates S′ ⊆ T and an edge e3 of cube(S′) such
that

(i) e3 is the same edge when restricted to S as e1 and
(ii) e3 occupies the same position in the ordering of edges in cube(S′) as

e2 occupies in cube(S).

Thus χ(e1) = χ(e3) = χ(e2), so the coloring of cube(S) is a simple G-
polychromatic r-coloring.

For example, suppose k = 6 and ignoring all coordinates not in T , sup-
pose

e1 = xxxxx0xxxxx1xxxxx1xxxxx∗xxxxx0xxxxx1xxxxx
e2 = xxxxx1xxxxx1xxxxx∗xxxxx0xxxxx1xxxxx0xxxxx

where the coordinates in T but not S are represented by x. Then a possibility
for e3 is

e3 = xxxxxxxxxxx1xxxxx1xxxxx∗xxxxx0xxxxx10xxxx.

3. Techniques for finding bounds on p(G)

In a simple coloring of the hypercube, we refer to all edges e with the same
value of (l(e), r(e)) as a color class. For example, all edges e with l(e) = 2 and



Polychromatic colorings on the hypercube 635

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

...

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

...

(2,0)

(2,1)

(2,2)

(2,3)

...

(3,0)

(3,1)

(3,2)

...

(4,0)

(4,1)

...

(5,0)

...
. . .

Figure 1: Initial part of the grid of color classes.

r(e) = 5 are in color class (2, 5). We begin with an elementary example of

how Lemma 3 allows us to prove upper bounds on polychromatic numbers.

Proposition 4. Denote by Q3 \ v the graph Q3 with one vertex deleted.

Then p(Q3 \ v) ≤ 3.

Proof. By Lemma 3, we need to consider only simple colorings. Consider

the embedding of Q3 \ v with the vertex [1110000 . . .] deleted from the cube

[∗∗∗0000 . . .]. This graph has edges in only three color classes, (0, 0), (1, 0),

and (0, 1), and thus can only contain three colors in a simple coloring.

This example illustrates a general scheme for proving upper bounds on

p(G): Given a graph G, show that in an arbitrary simple coloring there is

some embedding of G in Qn that contains edges in only a small number of

color classes. For instance, applying the argument of Proposition 4 to Qd

gives the upper bound in Theorem 1. To do better, we need Lemma 5.

Arrange the set of color classes in a rectangular grid, with the ith row

containing the color classes (a, b), with a + b = i, and the ith column con-

taining classes of the form (i, j), as shown in Figure 1. We translate the

question of polychromatically coloring the hypercube so every embedding of

a graph G contains every color into a question of coloring the grid of color

classes so that every so-called shape sequence corresponding to G (which is

defined below) contains every color.



636 John Goldwasser et al.

Figure 2: Four instances of a given shape sequence (for Q3). In the two
instances at the bottom, the shapes overlap, which is allowed as long as
they remain in order.

Define a region of the grid to be all color classes contained in some
consecutive rows and consecutive columns. A shape is a finite set of ele-
ments of the grid. Two shapes are congruent if one is a translation of the
other, i.e. if S = {(a1, b1), (a2, b2), . . . , (ak, bk)} then S′ ∼= S if and only if
S′ = {(a1 + i, b1 + j), (a2 + i, b2 + j), . . . , (ak + i, bk + j)} for some i, j ∈ Z.
The width w(S) of a shape S = {(a1, b1), (a2, b2), . . . , (ak, bk)} is given by
maxi,j |ai − aj |. We say S is located at the column of its leftmost element,
i.e. S is located at column mini(ai). A shape list is a finite list of shapes
S1, . . . , Sk, with the restriction that if i < j then Si is not to the right
of Sj . Two shape lists are congruent if each contains the same number of
shapes, and corresponding shapes in the lists are congruent and are horizon-
tal translations of each other. A shape sequence S is the set of all shape lists
congruent to a specific list. An instance of a shape sequence S is one partic-
ular list–when the context is clear, we will not always distinguish between
a shape sequence and an instance of a shape sequence, since specifying any
instance determines all other instances of the sequence (see Figure 2). Let
the width w(S) of a sequence equal the width of its widest shape. For the
height h(S) of a sequence, if is is the smallest row index where some shape
in S contains some element, and if il is the largest row index where some
shape in S contains some element, let h(S) = il − is + 1. Finally, given a
shape sequence S, let p(S) be the maximum number of colors such that for
any rectangular grid, there is a coloring of the elements of the grid so that
every instance of S contains an element of every color.

Lemma 5. Consider a shape sequence S of shapes S1, . . . , Sk, with elements
in rows is, . . . , il. Let X

i
j be the number of elements in Sj in row i, and let
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X i = maxj X
i
j. Then

p(S) ≤
il∑

i=is

X i.

Proof. Consider a region R with h(S) rows and n columns colored with col-
ors {1, 2, . . . , p(S)}. Assume that every instance of S in this region contains
every color, i.e. it is not possible to find an instance of S in these rows
where every shape in the sequence lacks a particular color. Thus for each
color l, 1 ≤ l ≤ p(S), we can partition the interval [1, n] into kl intervals
[1, cl1), [c

l
1, c

l
2), . . . , [c

l
kl−1, n], with the property that kl ≤ k and all copies

of Sj located at columns in the jth interval contain color l. We adopt the
convention that cl0 = 1, clkl

= n and if clj−1 = clj then the interval [clj−1, c
l
j) is

empty. The following procedure describes how to do this for a given color l.

1. Set α = 1.
2. If all copies of Sα at locations ≥ clα−1 contain color l, then

• Set clα = n

• Set kl = α.

• STOP.

3. Else

• Let clα be the smallest number such that clα ≥ clα−1 and the copy
of Sα at column clα does not contain color l.

• Increment α by 1.

• Return to Step 2.

The condition that every instance of S contains every color guaran-
tees that this procedure returns a partition: If the procedure reaches a
state where α = k, then there are values cl1 ≤ cl2 ≤ · · · ≤ clk−1 such

that the shape Sj at location clj does not contain color l. Thus since ev-

ery instance of S contains l, every copy of Sk at location ≥ clk−1 must
contain color l, and the procedure will terminate in Step 2. Let C be the

set {1, c11, c12, . . . , c1k1
, c21, c

2
2, . . . , c

2
k2
, . . . , c

p(S)
1 , c

p(S)
2 , . . . , c

p(S)
kp(S)

}. Relabel the el-
ements of C so that C = {c1, c2, . . . , cq} and c1 ≤ c2 ≤ · · · ≤ cq. Since q ≤
k ·p(S)+1 and we can choose n as large as we want, we can find a difference
cp−cp−1 as large as we want. Choose n large enough so that this numberm =
cp − cp−1 is much bigger than w(S). This difference corresponds to a region
R′ with m columns (the columns in the interval [cp−1, cp)), where for each
color l there is a shape Sl ∈ S such that every copy of Sl contains the color l.
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For each color l, and all 1 ≤ i ≤ h(S) let li be the number of times the
color l appears in the ith row in R′. Any appearance of l in the ith row can
be contained in at most X i copies of Sl. There are at least m−w(S) copies
of Sl in the region, and thus

l1X
1 + l2X

2 + · · ·+ lh(S)X
h(S) ≥ m− w(S).

Since there are m columns in the region R′, 1i + 2i + · · · + p(S)i = m,
and if we add up the equations for each color, we get

X1m+X2m+ · · ·+Xh(S)m ≥ (m− w(S))p(S).

To finish the proof, divide both sides by m, and note that by making m
large, (m− w(S))/m can be as close to 1 as desired.

Now to prove upper bounds on p(G), we translate problems about poly-
chromatically coloring graphs into problems about polychromatically color-
ing shape sequences. We consider an arbitrary simple coloring of an enor-
mous hypercube. Then we note that the color classes covered by an embed-
ding of G are a shape sequence S in the grid of color classes. Further, any
instance of S corresponds to the color classes covered by the edges of some
embedding of G. Since Lemma 5 gives an upper bound on p(S), we get an
upper bound on p(G).

As an example of how to apply Lemma 5, we now prove the upper bound
on p(Qd) in Theorem 2. This result was originally proved in [6], but this
proof is more streamlined, and will provide useful preparation for proving
new results later. Define an i × j parallelogram to be a set of color classes
of the following form: {(a+ α, b+ β) : 0 ≤ α < j, 0 ≤ β < i}. We say that a
color class is at coordinate (α, β) in such a parallelogram if it is of the form
(a+ α, b+ β).

For an example of a shape sequence corresponding to an embedding of
a graph, consider the embedding [1101∗100010∗111∗00101∗] of Q4 in Q22

(see Figure 3). Edges using the leftmost star are in color classes (3,7), (3,8),
(3,9), and (3,10), a 4 × 1 parallelogram. Edges using the second star from
the left are in color classes (5,5), (5,6), (5,7), (6,5), (6,6), and (6,7), a 3× 2
parallelogram. Edges using the third star from the left are in color classes
(8,2), (8,3), (9,2), (9,3), (10,2), and (10,3), a 2×3 parallelogram. Edges using
the fourth star from the left are in color classes (10,0), (11,0), (12,0), and
(13,0), a 1× 4 parallelogram. Thus the shape sequence corresponding to Q4

consists of four parallelograms, all occupying the same four rows, where each
parallelogram corresponds to the edges using one of the four stars. Further,
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(6,7)

(7,3)

(7,4)

(7,5)

(7,6)

(8,2)

(8,3)

(8,4)

(8,5)

(9,1)

(9,2)

(9,3)

(9,4)

(10,0)

(10,1)

(10,2)

(10,3)

(11,0)

(11,1)

(11,2)

(12,0)

(12,1) (13,0)

Figure 3: The shape sequence corresponding to the embedding
[1101∗100010∗111∗00101∗] of Q4 in Q22.

we can create any other instance of this shape sequence in the same four rows
by rearranging some of the stars. For example, [1101∗100010∗111∗∗00101]
would have the first three shapes identical, with the fourth shape shifted
two columns to the left. These observations are generalized for Qd in the
following fact.

Fact 6. Let n ≥ d ≥ 1. Every shape sequence for an embedding of Qd in Qn

consists of d shapes S1, . . . , Sd where Si is a (d − i + 1) × i parallelogram,
and each shape occupies the same d rows. The color classes in Si correspond
to the edges using the ith star from the left. Conversely, every instance of
such a shape sequence corresponds to some embedding of Qd in Qn.

See Figures 2, 4, and 5 for examples of shape sequences corresponding
to Q3, Q4, and Q5, respectively.

Proof of Theorem 2, upper bound. By Lemma 3, we may consider a simple
Qd-polychromatic p(Qd)-coloring on an arbitrarily large hypercube. Fact
6 describes the shape sequence for Qd. For any of the parallelograms in
the shape sequence, the maximum number of color classes in the ith row
is min{i, d − i + 1}. Thus, using the notation of Lemma 5, in the shape
sequence for Qd, X

i = maxj X
i
j = min{i, d− i+ 1}. Applying Lemma 5, we

get p(Qd) ≤ 1 + 2 + · · · + 
d/2� + · · · + 2 + 1 = (d + 1)2/4 if d is odd, and
d(d+ 2)/4 if d is even.

We now turn our attention to lower bounds. To prove lower bounds on
p(G), we explicitly describe a simple coloring of the hypercube by assigning
a particular color to each color class. Then we analyze what color classes
must be contained in the shape sequence of any embedding of the graph G,
and show it contains all colors. For instance, here is a proof of the lower
bound for Theorems 1 and 2:
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Figure 4: A shape sequence for Q4.

Figure 5: A shape sequence for Q5.

Proof of Theorems 1 and 2, lower bound. Consider the simple coloring χ

where χ(e) = 
d+1
2 � · l(e) + r(e) (mod q), where q = (d+1)2

4 if d is odd,

and q = d(d+2)
4 if d is even. Then the 
d2�th shape in the shape sequence

for Qd is a 
d+1
2 � × 
d2� parallelogram, and thus contains q color classes.

The elements in each column in this parallelogram contain 
d+1
2 � consec-

utive colors (mod q), and no two columns of the parallelogram share any
colors, so this shape contains all q colors regardless of its position in the grid
of color classes. Thus any shape sequence corresponding to Qd contains all
colors.

4. Polychromatic numbers for punctured cubes

We now use the techniques of Section 3 to determine p(G) for other sub-
graphs G of the hypercube besides subcubes. In each case, we explicitly
describe a simple coloring to prove a lower bound on p(G), and examine
possible shape sequences corresponding to G and apply Lemma 5 to prove
an upper bound.

We consider graphs which are obtained by deleting a vertex or edge from
a hypercube. We call such graphs punctured hypercubes or punctured cubes
for short. Let Qd \ v and Qd \ e denote the graphs obtained by deleting
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one vertex or one edge from Qd, respectively. If d is odd we call these odd
punctured cubes, and if d is even we call them even punctured cubes. When
embedding a punctured cube in a larger hypercube, we can think of gener-
ating each embedding by first embedding Qd, then deleting a given vertex
or edge from the embedded graph (not from the base graph of course). The
shape sequence corresponding to such an embedding depends on which ver-
tex or edge is deleted. Since an embedding of Qd in Qn can be represented as
an n-bit vector with d stars, we say that deleting the vertex corresponding
to some d-bit string corresponds to deleting from the embedding of Qd that
vertex in Qn which replaces the d stars with that given d-bit string. We also
use the same notion for edges. For example, we might consider the subgraph
Q3 \ v in Q6 corresponding to the embedding [01∗0∗∗] of Q3 with the vertex
corresponding to [011] deleted, so the embedded subgraph will not contain
the vertex [010011] or any incident edges.

Proposition 7. If G is a subgraph of H, and both are subgraphs of the
hypercube, then p(G) ≤ p(H).

Corollary 8. For any d ≥ 2,

p(Qd−1) ≤ p(Qd \ v) ≤ p(Qd \ e) ≤ p(Qd).

Letting d = 2k when d is even, or d = 2k− 1 when d is odd, Theorem 2
states that p(Q2k−1) = k2 and p(Q2k) = k2 + k. Thus Corollary 8 implies
for odd punctured cubes

k2 − k = p(Q2k−2) ≤ p(Q2k−1 \ v) ≤ p(Q2k−1 \ e) ≤ p(Q2k−1) = k2,

and for even punctured cubes

k2 = p(Q2k−1) ≤ p(Q2k \ v) ≤ p(Q2k \ e) ≤ p(Q2k) = k2 + k.

In the case of odd punctured cubes, we determine the polychromatic
number exactly. In the case of even punctured cubes, we give upper and lower
bounds but, with a few exceptions, we do not know the exact polychromatic
number.

Lemma 9. For all d ≥ 2, p(Qd \ v) ≤ p(Qd)− 1.

Proof. Recall that the shape sequence corresponding to Qd is a sequence
of d parallelograms as described in Fact 6. If the vertex corresponding to
[11 . . . 1] is deleted from Qd, then the shape sequence corresponding to this
embedding is identical to the shape sequence forQd except the single element
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Figure 6: A shape sequence for Q4 \ v where v corresponds to [1111].

in the dth row is deleted from each parallelogram. For example, for Q4 \ v,
the resulting shape sequence is shown in Figure 6. Since the rest of the rows
are not altered, the result follows from Lemma 5.

Theorem 10. For all k ≥ 2, p(Q2k−1 \ v) = p(Q2k−1 \ e) = k2 − 1.

Proof. By Corollary 8 it suffices to show that k2 − 1 ≤ p(Q2k−1 \ v) and
p(Q2k−1 \ e) ≤ k2 − 1.

To prove the first inequality, we show that the simple coloring χ :
E(Qn) → [k2 − 1] where χ(e) = k · l(e) + r(e) (mod k2 − 1) is (Q2k−1 \ v)-
polychromatic.

The kth shape in the shape sequence for Q2k−1 is a k × k parallelo-
gram. Since each column in this parallelogram contains k consecutive col-
ors (mod k2 − 1), and only the first and last columns in the parallelogram
share any colors (the color at coordinate (0,0) and the color at coordinate
(k − 1, k − 1) are the same), this shape contains all k2 − 1 colors. Since all
the edges in the color classes in this parallelogram form a matching, deleting
a vertex can remove at most one edge in any of these color classes. Every
color class except the ones at coordinates (0,0), (k−1, k−1), (0, k−1), and
(k − 1, 0) contains at least two edges, and since the colors at coordinates
(0,0) and (k − 1, k − 1) are the same, there are only four vertices which
can be deleted from Q2k−1 where in the corresponding shape sequence for
Q2k−1 \v the kth shape will not contain all colors. In these vertices, the first
k − 1 entries are all zeros or all ones, and the last k − 1 entries are all ones
or all zeros, opposite from the first k − 1 entries. The kth entry can be 1 or
a 0. For instance, if k = 3, the vertices in question correspond to [00011],
[11100], [00111], and [11000].

Since k(l + 1) + (r − 1) − (kl + r) = k − 1, and since (k − 1) divides
k2 − 1, the coloring χ(e) = k · l(e) + r(e) (mod k2 − 1) has the property
that there are exactly k+1 colors in each row, each congruent (mod k−1).
Further, consecutive rows have colors in consecutive congruence classes. See
Figures 7 and 8 for examples where k = 3.
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Figure 7: A shape sequence for Q5 \ v, where v corresponds to [11100], with
the coloring χ(e) = 3 · l(e) + r(e) (mod 8).
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Figure 8: A shape sequence for Q5 \ v, where v corresponds to [11000], with
the coloring χ(e) = 3 · l(e) + r(e) (mod 8).

Consider an embedding of Q2k−1 \ v and assume v is one of the four

vertices where the kth shape does not contain all colors. This choice of v

deletes one color class from the kth row of the kth shape. In the shape

sequence for Q2k−1 \ v the colors in the kth row are also found only in the

first and (2k − 1)th row. Without loss of generality assume these colors are

congruent to 0 (mod k − 1).

In the two cases where the kth entry of v is the same as the entries before

it, the (k−1)st shape will remain intact (a (k+1)×(k−1) parallelogram). In

the two cases where the kth entry of v is the same as the entries after it, the

(k+1)st shape will remain intact (a (k−1)× (k+1) parallelogram). Thus it

suffices to show that both of these parallelograms contain all colors congruent

to 0 (mod k− 1). In the (k− 1)st shape, a (k+1)× (k− 1) parallelogram,

the colors at coordinates (0,0), (0, k− 1), (1, k− 2), . . ., (k− 2, 1), (k− 2, k)

are (k + 1) consecutive multiples of k − 1 (mod k2 − 1). In the (k + 1)st

shape, the colors at coordinates (0,0), (k, k − 2), (1, k − 2), (2, k − 3), . . .,

(k − 1, 0) are (k + 1) consecutive multiples of k − 1 (mod k2 − 1). Hence

the coloring χ is (Q2k−1 \ v)-polychromatic, as claimed.
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Figure 9: A shape sequence for Q5 \ e, where e corresponds to [11∗00].

We now prove the inequality p(Q2k−1 \ e) ≤ k2 − 1. If the edge corre-
sponding to the edge with a star in the kth position, zeros to the left and
ones to the right (e.g. for k = 3, e = [00∗11]) is deleted, then a single color
class in the kth row of the kth shape is deleted from the shape sequence
for Q2k−1 (Figure 9 shows the shape sequence for k = 3). This reduces the
maximum width of the shapes in the kth row by one, leaving the other rows
intact, and the inequality follows from Lemma 5.

We now turn our attention to even punctured cubes, first giving exact
values for p(Q4 \ v), p(Q4 \ e), and p(Q6 \ e).
Theorem 11. p(Q4 \ v) = 5.

Proof. Since p(Q4) = 6, the upper bound follows from Lemma 9.
For the lower bound, we show that the simple coloring χ : E(Qn) → [5]

where χ(e) = 3·l(e)+r(e) (mod 5) is (Q4\v)-polychromatic (see Figure 10).
To see this, note that the shape sequence for Q4 contains all five colors in
both the second shape and the third shape regardless of where those shapes
appear. If a vertex other than one corresponding to [0000], [1111], [0011], or
[1100] is deleted, then the shape sequence corresponding to Q4 \ v will have
the second or third shape still intact, and thus be polychromatic. If either
of the first two of these are deleted, then even though the second shape will
lose one element, it will still contain all five colors, and if either of the last
two are deleted, the same holds for the third shape.

Theorem 12. p(Q4 \ e) = 6.

Proof. Since p(Q4) = 6, the upper bound follows from Corollary 8.
For the lower bound, we show that the simple coloring χ : E(Qn) → [6]

where χ(e) = 4·l(e)+r(e) (mod 6) is (Q4\e)-polychromatic (see Figure 11).
Since deleting an edge affects at most one color class, it suffices to show that
each color is present in two shapes of the shape sequence for Q4. For this
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Figure 10: A shape sequence for Q4 with the coloring χ(e) = 3 · l(e) + r(e)
(mod 5).
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Figure 11: A shape sequence for Q4 with the coloring χ(e) = 4 · l(e) + r(e)
(mod 6).

coloring, each row contains only two colors, which are congruent (mod 3),
and adjacent rows contain consecutive congruence classes. In the four rows
containing a shape sequence for Q4, the two colors in the first and fourth
rows are in the first and third shapes, and the colors in the two middle rows
are in the second and third shapes.

Theorem 13. p(Q6 \ e) = 12.

Proof. Since p(Q6) = 12, the upper bound follows from Corollary 8.
For the lower bound, we show that the simple coloring χ : E(Qn) → [12]

where χ(e) = 5·l(e)+r(e) (mod 12) is (Q6\e)-polychromatic (see Figure 12).
Since deleting an edge affects at most one color class, it suffices to show that
each color is present in two shapes of the shape sequence for Q6. For this
coloring, each row contains only three colors, which are congruent (mod 4),
and adjacent rows contain consecutive congruence classes. In the six rows
containing a shape sequence for Q6, the six colors in the first, second, fifth
and sixth rows are in the second and fifth shapes, while the other six colors
in the two middle rows are in the third and fourth shapes.

Theorem 14. For all k ≥ 3, p(Q2k \ v) ≥ k2 + k − 2 = (k − 1)(k + 2).
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Figure 12: The second, third, fourth, and fifth shapes in the shape sequence
for Q6 with the coloring χ(e) = 5 · l(e) + r(e) (mod 12).

Proof. We show that the simple coloring χ : E(Qn) → [(k−1)(k+2)] where

χ(e) = k · l(e) + r(e) (mod (k − 1)(k + 2)) is (Q4 \ v)-polychromatic. In

this coloring, each row only contains k + 2 colors, which are all congruent

(mod k−1). Adjacent rows contain colors in consecutive congruence classes.

First note that a k×(k+1) parallelogram, the (k+1)st shape in the shape

sequence for Q2k, contains all colors. All color classes in this parallelogram

except for the ones at coordinates (0, 0), (k, 0), (0, k−1), and (k, k−1) have

at least two parallel edges, and thus deleting a vertex from Q2k will leave at

least one edge in each of these color classes. Further, the edges in the classes

at coordinates (0, 0) and (k, k − 1) have the same color. Thus the only four

vertices whose deletion will cause this shape to lose a color are those with

first k coordinates all 0 or all 1, and last k − 1 coordinates all 1 or all 0,

opposite from the first. For one of these vertices, if the first k coordinates are

all 1, the color class at coordinate (k, 0) is deleted. If the first k coordinates

are all 0, the color class at coordinate (0, k − 1) is deleted. Without loss of

generality, assume that the color classes at coordinates (0, k − 1) and (k, 0)

are in rows containing colors congruent to 0 and 1 (mod k−1) respectively.

See Figure 13 for an example with k = 4 and v = [11110000].

In either of these cases, the kth shape in the shape sequence for Q2k \
v must contain the deleted color. In the kth shape, the color classes at

coordinates (0, 0), (0, k−1), (1, k−2), . . ., (k−2, 1), (k−2, k), and (k−1, k−1)

contain k+ 2 consecutive multiples of k− 1 (mod (k− 1)(k+ 2)) and thus

contain all colors congruent to 0 (mod k−1). Similarly, the color classes at

coordinates (0, 1), (1, 0), (1, k − 1), (2, k − 2), . . ., (k − 1, 1), and (k − 1, k),

contain k+2 consecutive numbers (mod (k− 1)(k+2)) that are congruent

to 1 (mod k − 1) and thus contain all colors congruent to 1 (mod k − 1).
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Figure 13: The fourth and fifth shapes in the shape sequence for Q8 \ v,
where v corresponds to [11110000], with the coloring χ(e) = 4 · l(e) + r(e)
(mod 18).

None of these color classes can be deleted by deleting any of the four vertices
under consideration.

Corollary 15. For all k ≥ 3,

k2 + k − 2 ≤ p(Q2k \ v) ≤ k2 + k − 1.

For all k ≥ 4,

k2 + k − 2 ≤ p(Q2k \ e) ≤ k2 + k.

4.1. Open problems

We conclude with some directions for future research on polychromatic edge
colorings.

Problem 16. For which other graphs G can we determine p(G)?

A first step might be to determine the polychromatic numbers for even
punctured cubes, starting with p(Q6 \ v) and p(Q8 \ e). If these polychro-
matic numbers are smaller than the upper bounds given in Corollary 15, it
would provide our first example of a polychromatic number not equal to the
bound given by Lemma 5. In turn, such a result might give insight into how
Lemma 5 might be strengthened–for example, its proof only uses horizon-
tal translations, but shape sequences can be translated in any direction–or
whether other ideas are necessary.
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Problem 17. For each r ≥ 2, is there some G such that p(G) = r?

The smallest open case for Problem 17 is r = 7. It would be interesting
even to show that the gaps between polychromatic numbers are bounded.
It might also be interesting to investigate whether (and under what circum-
stances) polychromatic numbers can “jump.” In other words, if an edge is
deleted from a graph G, by how much can the polychromatic number of the
resulting graph differ from p(G)?

We remark that in this paper, we follow the definition of embedding
given in Alon, Krech, and Szabó [1], where a subgraph H of the hypercube
is considered an embedding of G if there is a graph isomorphism from H to
G. For the purpose of this discussion we refer to this type of embedding as a
subgraph embedding. When considering Problems 16 and 17, it may also be
interesting to consider a more restrictive definition of embedding that we call
isometric embedding. In this definition, we first choose a fixed embedding of
G in a hypercube Qm. Then the embeddings of G in some larger hypercube
Qn are exactly the images of G when Qm is embedded in Qn.

For all subgraphs of the hypercube considered in this paper (hypercubes
and punctured cubes of dimension 3 or greater) the two types of embeddings
yield the same set of subgraphs. However, in general, this is not true. For
example, any path with three edges is considered a subgraph embedding of
Q2\e, while only those paths whose endpoints are at distance one are consid-
ered isometric embeddings of Q2 \e. Considering only isometric embeddings
rather than subgraph embeddings would change the polychromatic number
for many graphs. For example, using subgraph embeddings, p(Q2 \ e) = 1,
whereas with isometric embeddings, where every embedding of Q2 \ e must
contain 3 edges of a 4-cycle, p(Q2 \ e) = 2 (just color the edges according to
their level (mod 2)).

We do not know the answer to Problem 17 in the case of subgraph
embeddings, but in the case of isometric embeddings the answer is yes: Fix
r ≥ 1, and let G be the graph consisting of all edges that use the first star
in a copy of Qr (i.e. G is a perfect matching in Qr with all edges parallel).
Then every isometric embedding of G contains edges on r consecutive levels,
so by coloring the edges according to their level (mod r) we obtain a G-
polychromatic r-coloring, and p(G) ≥ r. However, the embedding of G in
[∗ . . . ∗00 . . . 0] where all edges use the first star covers only r color classes in
a simple coloring (the classes (0, 0), (0, 1), . . . , (0, r − 1)) and so p(G) ≤ r.

Finally, Bialostocki [3] proved that any subgraph of the hypercube not
containing Q2 as a subgraph and intersecting every Q2 has at most (n +√
n)2n−2 edges. This implies for large n, every Q2-polychromatic 2-coloring
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has approximately half the edges of each color. Is it possible to generalize

Bialostocki’s theorem?

Problem 18. For large n, given a G-polychromatic coloring of Qn with

p(G) colors, is it true that the proportion of edges in each color class must

approach 1/p(G)?

5. Coloring subcubes of higher dimension

Alon, Krech, and Szabó [1] suggested a generalization of the problem of find-

ing polychromatic numbers on the hypercube where instead of edges (which

themselves can be thought of as one-dimensional hypercubes), subcubes of

a fixed dimension of the hypercube are colored. Let pi(G) be the polychro-

matic number of the graph G if Qi’s are colored, i.e. pi(G) is the largest

number of colors with which it is possible to color the Qi’s in any hypercube

so that every embedding of G contains a Qi of every color. To determine

these polychromatic numbers, many of the ideas from edge colorings can

be directly generalized. However, in Theorems 21 and 22 we show that not

everything about edge coloring generalizes in a straightforward way.

When Qi’s are colored, a simple coloring is one where the color of a Qi

is determined by the vector of length (i + 1) where the first coordinate is

the number of ones to the left of the first star, the (i+1)st coordinate is the

number of ones to the right of the ith star, and for 1 < j < i + 1, the jth

coordinate is the number of ones between the (j − 1)st and jth stars. With

this definition, a proof almost identical to that of Lemma 3 (see Özkahya

and Stanton [8]) gives the following generalization.

Lemma 19. Let k ≥ i ≥ 1 and G be a subgraph of Qk. If p
i(G) = r, then

there is a simple G-polychromatic r-coloring of the Qi’s in Qk.

Thus we restrict our attention to simple colorings, and consider color

classes in an (i+1)-dimensional grid. As with edge colorings, we refer to all

Qi’s with the same vector in a simple coloring as a color class. For example,

the embedding [01110∗0∗11∗01001∗11011] of Q4 in Q22 would be in color

class (3, 0, 2, 2, 4). Define two color classes in a (i + 1)-dimensional grid to

be on the same level if their entries have the same sum. Define a j1 × j2 ×
· · · × jl parallelepiped to be a set of color classes of the following form:

{(a1 + α1, a2 + α2, . . . , al + αl) : 0 ≤ αk < jk}. For the remainder of the

section, we restrict our attention to the case where G = Qd. Shape sequences

for Qd are characterized by the following generalization of Fact 6.
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Sets of two stars Q2’s using those stars Color classes Dimensions of shape
3rd and 4th [11110011010110∗101∗001] (9, 2, 1) 3× 1× 1

[11110011110110∗101∗001] (10, 2, 1)
[11111011010110∗101∗001] (10, 2, 1)
[11111011110110∗101∗001] (11, 2, 1)

2nd and 4th [11110011∗101100101∗001] (6, 5, 1) 2× 2× 1
[11110011∗101101101∗001] (6, 6, 1)
[11111011∗101100101∗001] (7, 5, 1)
[11111011∗101101101∗001] (7, 6, 1)

1st and 4th [1111∗0110101100101∗001] (4, 7, 1) 1× 3× 1
[1111∗0110101101101∗001] (4, 8, 1)
[1111∗0111101100101∗001] (4, 8, 1)
[1111∗0111101101101∗001] (4, 9, 1)

1st and 3rd [1111∗011010110∗1010001] (4, 5, 3) 1× 2× 2
[1111∗011010110∗1011001] (4, 5, 4)
[1111∗011110110∗1010001] (4, 6, 3)
[1111∗011110110∗1011001] (4, 6, 4)

2nd and 3rd [11110011∗10110∗1010001] (6, 3, 3) 2× 1× 2
[11110011∗10110∗1011001] (6, 3, 4)
[11111011∗10110∗1010001] (7, 3, 3)
[11111011∗10110∗1011001] (7, 3, 4)

1st and 2nd [1111∗011∗1011001010001] (4, 2, 6) 1× 1× 3
[1111∗011∗1011001011001] (4, 2, 7)
[1111∗011∗1011011010001] (4, 2, 7)
[1111∗011∗1011011011001] (4, 2, 8)

Figure 14: The six shapes for the embedding [1111∗011∗10110∗101∗001] of
Q4 in Q22.

Fact 20. Let n ≥ d ≥ i ≥ 1. Every shape sequence for an embedding of
Qd in Qn consists of

(
d
i

)
shapes where each shape is a j1 × j2 × · · · × ji+1

parallelepiped where j1+ j2+ · · ·+ ji+1 = d+1, and each shape occupies the
same d levels. The color classes in each shape correspond to the Qi’s using
the same set of i stars. Conversely, every instance of such a shape sequence
where the shapes are arranged in a proper relative position corresponds to
some embedding of Qd in Qn.

For example, if Q2’s are colored, the embedding [1111∗011∗10110∗101∗
001] of Q4 in Q22 contains 24 Q2’s, partitioned into

(
4
2

)
= 6 sets according

to which two stars they use. These six sets give rise to six shapes, all paral-
lelepipeds containing color classes in levels 12, 13, and 14 (see Figure 14).

Özkahya and Stanton [8] proved lower bounds on pi(Qd) precisely analo-
gous to those in Theorem 1. Suppose the shape with the most elements in the
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shape sequence for Qd contains r color classes. Then there is an r-coloring of
the Qi’s where the largest shape in the shape sequence contains all r colors
for every copy of Qd. The number of colors of this shape is the largest prod-
uct of i+1 natural numbers that sum to d+1, and is obtained by minimizing
the difference between these numbers. The exact value depends on the re-
mainder of d+1 (mod i+1); if the remainder is zero, the number of colors

is
(
d+1
i+1

)i+1
. From this, one obtains lower bounds of p2(Q3) ≥ 1 · 1 · 2 = 2,

p2(Q4) ≥ 1 · 2 · 2 = 4, p2(Q5) ≥ 2 · 2 · 2 = 8, p2(Q6) ≥ 2 · 2 · 3 = 12, and so
forth.

Özkahya and Stanton [8] also proved the upper bound analogous to The-
orem 1, which is pi(Qd) ≤

(
d+1
i+1

)
. This is the number of color classes covered

by an embedding of Qd with d stars and all other entries 0. For exam-
ple, if Q2’s are colored, the embedding of Q3 represented by [∗∗∗00000 . . .]
has Q2’s only in color classes (0,0,0), (1,0,0), (0,1,0), and (0,0,1), and so
p2(Q3) ≤ 4 =

(
3+1
2+1

)
.

In the case of edge colorings, the polychromatic number for Qd turned
out to be the lower bound in Theorem 1, but this is not the case for colorings
of larger subcubes; the polychromatic number may be larger than the size
of the largest shape. We show this first in the case of p2(Q3). All shapes in
the shape sequence for Q3 when Q2’s are colored have two elements, and
the bounds corresponding to Theorem 1 are 2 ≤ p2(Q3) ≤ 4.

Theorem 21. p2(Q3) = 3.

Proof. Lower bound: Consider the simple 3-coloring χ that assigns colors to
any Q2 in color class (x1, x2, x3) the color χ(x1, x2, x3), where

χ(x1, x2, x3) =

{
x1 + x2 + x3 (mod 3) if x2 ≡ 0 (mod 2)

x1 + x2 + x3 + 1 (mod 3) if x2 ≡ 1 (mod 2).

Consider an embedding of Q3 where there are a1 ones to the left of the first
star, a2 ones between the first and second stars, a3 ones between the second
and third stars, and a4 ones to the right of the third star. We show that it
contains all three colors. Without loss of generality assume a1+a2+a3+a4 ≡
0 (mod 3), and a1 = a4 = 0. For 1 ≤ i < j ≤ 3, denote by Sij the shape
using stars i and j. The tables in Figure 15 list the color classes in each of
the three shapes, and the colors in each shape for the four possibilities for
a2 and a3 (mod 2). For each possibility, each of the three colors is in at
least one of the three shapes.

Upper bound: A computer search found that no Q3-polychromatic 4-
coloring, simple or otherwise, is possible on Q5.
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Shape Color Classes
S12 (0, a2, a3), (0, a2, a3 + 1)
S13 (0, a2 + a3, 0), (0, a2 + a3 + 1, 0)
S23 (a2, a3, 0), (a2 + 1, a3, 0)

a2 a3 S12 S13 S23

0 0 0,1 0,2 0,1
0 1 0,1 1 1,2
1 0 1,2 1 0,1
1 1 1,2 0,2 1,2

Figure 15: The colors of the Q2’s contained in each shape for the 4 possi-
bilities for a2 and a3 (mod 2) in an embedding of Q3, using the coloring χ
from Theorem 21.

For a human-checkable proof, we know that if the Q2’s in Qn can be
4-colored so that every Q3 is polychromatic, then it can be done with a
simple coloring. We try to construct a simple coloring χ on Q5, eventually
showing that it is impossible.

For the sake of notational compactness, in this proof color classes are
represented by strings rather than tuples. For example we will represent the
color class (1, 0, 1) by the string 101. The embedding [∗∗∗00] of Q3 contains
only color classes 000, 100, 010, and 001, so these color classes must all be
distinct, and without loss of generality we assign them the colors 1, 2, 3,
and 4, respectively.

To assign colors to the color classes 110, 101, 011, 200, 020, and 002, we
examine the embeddings [1∗∗∗0], [∗1∗∗0], [∗∗1∗0], and [∗∗∗10]. A straight-
forward but tedious examination shows there are only five simple 4-colorings
of the Q4 [∗∗∗∗0], falling into two patterns: One is χ1, below. The other four
are χ2, where χ2(020) can be chosen to be any color.

Color class 000 100 010 001 101 011 002 110 020 200

χ1 1 2 3 4 1 3 2 3 1 4

χ2 1 2 3 4 3 1 2 1 * 4

We now attempt to extend these colorings to the Q4’s [1∗∗∗∗] and
[∗∗∗∗1]. In the case of [1∗∗∗∗], we already know the colors of 100, 200,
110, and 101, so the colors for the color classes for [1∗∗∗∗] must fit one of
the following four patterns. For i, j ∈ {1, 2}, χij is the coloring generated by
extending the χi coloring with the χj pattern.

Color class 100 200 110 101 201 111 102 210 120 300

χ11 2 4 3 1 2 3 4 3 2 1

χ12 2 4 3 1 3 2 4 2 * 1

χ21 2 4 1 3 2 1 4 1 2 3

χ22 2 4 1 3 1 2 4 2 * 3
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In the Q4 [∗∗∗∗1], color classes 001, 101, 011, 002, 102, 111, and 201 are

already assigned. It is impossible to extend χ12 and χ22 consistent with the

patterns χ1 or χ2, while χ11 and χ21 extend uniquely as follows.

Color class 001 101 011 002 102 012 003 111 021 201

χ11 4 1 3 2 4 3 1 3 4 2

χ21 4 3 1 2 4 1 3 1 4 2

Now every color class except for 030 is assigned a color. However in either

of the colorings, the embedding [∗1∗1∗] (containing color classes 110, 210,

020, 030, 011, and 012) has at most two colors before 030 is assigned. Thus

it cannot contain four colors regardless of the choice for the color of 030.

Theorem 22. p2(Q4) ≥ 5.

Proof. Consider the simple 5-coloring χ that assigns to any Q2 in color class

(x1, x2, x3) the color χ(x1, x2, x3), where

χ(x1, x2, x3) =

⎧⎪⎨
⎪⎩
x1 + x2 + x3 (mod 5) if x2 ≡ 0 (mod 3)

x1 + x2 + x3 + 1 (mod 5) if x2 ≡ 1 (mod 3)

x1 + x2 + x3 + 2 (mod 5) if x2 ≡ 2 (mod 3).

Consider an embedding of Q4 where there are a1 ones to the left of the

first star, a2 ones between the first and second stars, a3 ones between the

second and third stars, a4 ones between the third and fourth stars, and a5
ones to the right of the fourth star. We show that it contains all five colors.

Without loss of generality assume a1 + a2 + a3 + a4 + a5 ≡ 0 (mod 5) and

a1 = a5 = 0. For 1 ≤ i < j ≤ 4, denote by Sij the shape using stars i and j.

The following table lists the color classes in each of the six shapes.
Shape Color Classes

S12 (0, a2, a3 + a4), (0, a2, a3 + a4 + 1), (0, a2, a3 + a4 + 2)

S13 (0, a2 + a3, a4), (0, a2 + a3 + 1, a4),
(0, a2 + a3, a4 + 1), (0, a2 + a3 + 1, a4 + 1)

S14 (0, a2 + a3 + a4, 0), (0, a2 + a3 + a4 + 1, 0),
(0, a2 + a3 + a4 + 2, 0)

S24 (a2, a3 + a4, 0), (a2 + 1, a3 + a4, 0),
(a2, a3 + a4 + 1, 0), (a2 + 1, a3 + a4 + 1, 0)

S34 (a2 + a3, a4, 0), (a2 + a3 + 1, a4, 0), (a2 + a3 + 2, a4, 0)

S23 (a2, a3, a4), (a2 + 1, a3, a4), (a2, a3, a4 + 1),
(a2 + 1, a3, a4 + 1)
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a2 a3 a4 S12 S13 S14 S24 S34 S23

0 0 0 0,1,2 0,1,2,3 0,2,4 0,1,2,3 0,1,2 0,1,2
1 1 1 1,2,3 2,1,3 0,2,4 2,1,3 1,2,3 1,2,3
2 2 2 2,3,4 1,2,3,4 0,2,4 1,2,3,4 2,3,4 2,3,4
1 0 0 1,2,3 1,2,3,4 1,3,2 0,1,2,3 0,1,2 0,1,2
0 1 0 0,1,2 1,2,3,4 1,3,2 1,2,3,4 0,1,2 1,2,3
0 0 1 0,1,2 0,1,2,3 1,3,2 1,2,3,4 1,2,3 0,1,2
1 1 0 1,2,3 2,1,3 2,1,3 1,2,3,4 0,1,2 1,2,3
1 0 1 1,2,3 1,2,3,4 2,1,3 1,2,3,4 1,2,3 0,1,2
0 1 1 0,1,2 1,2,3,4 2,1,3 2,1,3 1,2,3 1,2,3
2 0 0 2,3,4 2,1,3 2,1,3 0,1,2,3 0,1,2 0,1,2
0 2 0 0,1,2 2,1,3 2,1,3 2,1,3 0,1,2 2,3,4
0 0 2 0,1,2 0,1,2,3 2,1,3 2,1,3 2,3,4 0,1,2
2 1 0 2,3,4 2,1,3 0,2,4 1,2,3,4 0,1,2 1,2,3
1 2 0 1,2,3 0,1,2,3 0,2,4 1,2,3,4 0,1,2 2,3,4
2 0 1 2,3,4 2,1,3 0,2,4 1,2,3,4 1,2,3 0,1,2
1 0 2 1,2,3 1,2,3,4 0,2,4 2,1,3 2,3,4 0,1,2
0 2 1 0,1,2 2,1,3 0,2,4 0,1,2,3 1,2,3 2,3,4
0 1 2 0,1,2 1,2,3,4 0,2,4 0,1,2,3 2,3,4 1,2,3
2 1 1 2,3,4 0,1,2,3 1,3,2 2,1,3 1,2,3 1,2,3
1 2 1 1,2,3 0,1,2,3 1,3,2 0,1,2,3 1,2,3 2,3,4
1 1 2 1,2,3 2,1,3 2,1,3 0,1,2,3 2,3,4 1,2,3
2 2 0 2,3,4 1,2,3,4 1,3,2 2,1,3 0,1,2 2,3,4
2 0 2 2,3,4 2,1,3 1,3,2 2,1,3 2,3,4 0,1,2
0 2 2 0,1,2 2,1,3 1,3,2 2,1,3 2,3,4 2,3,4
1 2 2 1,2,3 0,1,2,3 1,3,2 1,2,3,4 2,3,4 2,3,4
2 1 2 2,3,4 0,1,2,3 1,3,2 0,1,2,3 2,3,4 1,2,3
2 2 1 2,3,4 1,2,3,4 1,3,2 0,1,2,3 1,2,3 2,3,4

Figure 16: The colors of the Q2’s contained in each shape for the 27 possibil-
ities for a2, a3, and a4 (mod 3) in an embedding of Q4, using the coloring
χ from Theorem 22.

Figure 16 lists the colors contained in each shape for the 27 possibilities

for a2, a3, and a4 (mod 3). For each possibility, each of the five colors is in

at least one of the six shapes.

Theorem 23. For all d ≥ i ≥ 1, j ≥ 1, pi+j(Qd+j) ≥ pi(Qd).

Proof. Suppose χ is a Qd-polychromatic k-coloring of the Qi’s in Qn, where

n ≥ d+ j. Consider the k-coloring of the Qi+j ’s in Qn given by
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χ′(x1, x2, . . . , xi+1, . . . , xi+j+1) = χ(x1, x2, . . . , xi+1).

We show χ′ is Qd+j-polychromatic.
Let Gd+j be an embedding of Qd+j in Qn represented by an n-bit vector

with d + j stars. Let Gd be the embedding of Qd in Qn represented by the
same vector with the (d+1)st star and every coordinate to the right replaced
by zeros. For example, if d = 4, j = 2, and Gd+j = [0∗111∗1011∗∗110∗0∗01],
then Gd = [0∗111∗1011∗∗11000000]. The i+1 coordinates of the color classes
for Gd are identical to the first i+1 coordinates of the color classes for Gd+j

in the shapes that use the last j stars. Since χ is Qd-polychromatic, Gd

contains Qi’s of each of the k colors, and Gd+j must also contain a Qi+j of
each color with the coloring χ′.

Corollary 24. For all d ≥ 2, pd(Qd+1) ≥ p2(Q3) = 3.

It is not clear whether the colorings in Theorems 21 and 22 have natural
generalizations, or whether they are sporadic small cases. Thus almost any
progress in determining polychromatic numbers when larger subcubes are
colored would be interesting.

Problem 25. Improve any of the following bounds:

• For d ≥ 3, d+ 2 ≥ pd(Qd+1) ≥ 3.
• 10 ≥ p2(Q4) ≥ 5.
• For d ≥ 5,

(
d+1
3

)
≥ p2(Qd) ≥ p(Qd−1).

Added in proof: Recently Chen [4] has improved the lower bound on
p2(Qd) for all d ≥ 4.

Theorem 26 (Chen [4]). For all d ≥ 4,

p2(Qd) ≥

⎧⎪⎨
⎪⎩
(k2 + 1)(k + 1) d = 3k

(k2 + k + 1)(k + 1) d = 3k + 1

(k2 + k + 1)(k + 2) d = 3k + 2.
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