Rainbow arithmetic progressions in finite abelian groups

Michael Young

For positive integers n and k, the *anti-van der Waerden number* of \mathbb{Z}_n , denoted by aw (\mathbb{Z}_n, k) , is the minimum number of colors needed to color the elements of the cyclic group of order n and guarantee there is a rainbow arithmetic progression of length k. Butler et al. showed a reduction formula for $aw(\mathbb{Z}_n, 3)$ in terms of the prime divisors of n. In this paper, we analagously define the anti-van der Waerden number of a finite abelian group G and show $aw(G, 3)$ is determined by the order of G and the number of groups with even order in a direct sum isomorphic to G. The unitary anti-van der Waerden number of a group is also defined and determined.

1. Introduction

Let G be a finite additive abelian group. A k-term arithmetic progression $(k-AP)$ of G is a sequence of the form

$$
a, a+d, a+2d, ..., a+(k-1)d,
$$

where $a, d \in G$. For the purposes of this paper, an arithmetic progression is referred to as a set of the form $\{a, a+d, a+2d, \ldots, a+(k-1)d\}$. A k-AP is non-degenerate if the arithmetic progression contains k distinct elements; otherwise, the arithmetic progression is degenerate.

An *r*-coloring of G is a function $c: G \to [r]$, where $[r] := \{1, \ldots, r\}$. An r-coloring is exact if c is surjective. Given $c : G \to [r]$, an arithmetic progression is called *rainbow* (under c) if $c(a + id) \neq c(a + id)$ for all $0 \leq$ $i < j \leq k - 1$. Given $P \subseteq G$, $c(P)$ denotes the set of colors assigned to the elements of P, i.e. $c(P) = \{c(i) : i \in P\}.$

The anti-van der Waerden number $aw(G, k)$ is the smallest r such that every exact r-coloring of G contains a rainbow k -term arithmetic progression. If G contains no k-AP, then $aw(G, k) = |G| + 1$ to be consistent with

arXiv: [1603.08153](http://arxiv.org/abs/1603.08153)

the property that there is a coloring with $aw(G, k) - 1$ colors that has no rainbow k-AP.

Throughout the paper, \mathbb{Z}_n will denote the cyclic group of order n consisting of the set $\{0, 1, \ldots, n-1\}$ under the operation of addition modulo n. Define the direct product $[\mathbb{Z}_n]^s := \mathbb{Z}_n \times \mathbb{Z}_n \times \cdots \times \mathbb{Z}_n$ $\overbrace{\hspace{2.5cm}}^s$ times .

Jungić, Licht, Mahdian, Nešetril, and Radoičić established several results on the existence of rainbow $3-APs$ in [\[4\]](#page-10-0). Jungić et al. proved that every 3-coloring of N, where each color class has density at least 1/6, contains a rainbow 3-AP. They also prove results about rainbow 3-APs in \mathbb{Z}_n . Other results on colorings of the integers with no rainbow 3-APs have been obtained in $[1]$ and $[2]$ $[2]$.

Anti-van der Waerden numbers were first defined by Uherka in a preliminary study (see [\[5\]](#page-10-3)). Butler et. al., in [\[3](#page-10-4)], proved upper and lower bounds for anti-van der Waerden numbers of [n] and \mathbb{Z}_n for k -APs, for $3 \leq k$.

Many of the extremal colorings that are constructed to prove lower bounds of $aw(G, 3)$ require colorings that use some color exactly once, which leads to the need of the following definitions.

An r-coloring of G is unitary if there is an element of G that is uniquely colored, which will be referred to as a unitary color. (A unitary coloring is referred to as a singleton coloring in $[3]$.) The smallest r such that every exact r-coloring of G that is unitary contains a rainbow k -term arithmetic progression is denoted by $aw_u(G, k)$. Similar to the anti-van der Waerden number, $aw_u(G, k) = |G| + 1$ if G has no k-AP.

Butler et al. use Proposition [1](#page-1-0) to determine the exact value of $aw(\mathbb{Z}_n, 3)$.

Proposition 1. [\[3](#page-10-4), Proposition 3.5], For every prime number p,

$$
3 \le \mathrm{aw}_u(\mathbb{Z}_p, 3) = \mathrm{aw}(\mathbb{Z}_p, 3) \le 4.
$$

Let $n = 2^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ such that p_j is prime and $0 \le e_j$ for $0 \le j \le s$, $\mathrm{aw}(\mathbb{Z}_{p_j},3) = 3$ for $1 \leq j \leq \ell$, and $\mathrm{aw}(\mathbb{Z}_{p_j},3) = 4$ for $\ell + 1 \leq j \leq s$. Then Corollary 3.15 in [\[3](#page-10-4)] can be stated as follows:

Theorem 1. [\[3,](#page-10-4) Corollary 3.15] For any integer $n \geq 2$,

$$
aw(\mathbb{Z}_n,3) = \begin{cases} 2 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^s 2e_j & \text{if } e_0 = 0, \\ 3 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^s 2e_j & \text{if } 1 \le e_0. \end{cases}
$$

In this paper, Theorem [1](#page-1-1) is extended to all finite abelian groups while the following special case is generalized to finite abelian groups with order that is a power of 2.

Theorem 2. $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ *Theorem 3.5] For all positive integers m,*

$$
aw(\mathbb{Z}_{2^m},3)=3.
$$

In Section [2,](#page-2-0) a closed formula for $aw(G, 3)$ is given. This closed formula is determined by the order of G and the number of groups with even order in a direct sum isomorphic to G . In Section [3,](#page-7-0) a similar closed formula for $aw_u(G, 3)$ is given.

2. Anti-van der Waerden numbers

In this section, a reduction formula for the anti-van der Waerden number of groups that have odd order is created. Determining the anti-van der Waerden number of an abelian group with odd order is equivalent to determining the anti-van der Waerden number of $\mathbb{Z}_m \times \mathbb{Z}_n$ for some positive odd integers m and *n*. First we provide a proof of a useful remark from $[3]$.

Proposition 2. [\[4](#page-10-0), Remark 3.16] For all positive integers n,

$$
\mathrm{aw}_u(\mathbb{Z}_n,3)=\mathrm{aw}(\mathbb{Z}_n,3).
$$

Proof. It is obvious that $aw_u(\mathbb{Z}_n, 3) \leq aw(\mathbb{Z}_n, 3)$. The inequality $aw(\mathbb{Z}_n, 3) \leq$ $\mathrm{aw}_u(\mathbb{Z}_n, 3)$ will be shown by induction on the number of odd prime divisors of n. It is obviously true if n is a power of 2. Assume n is not a power of 2.

Let $\mathbb{Z}_n = G \times \mathbb{Z}_p$, where G is a finite cyclic group and p be an odd prime. Let c_G be a unitary coloring of G with exactly $aw_u(G, 3) - 1$ colors and no rainbow 3-AP, and c_p be a unitary coloring of \mathbb{Z}_p with exactly aw_u(\mathbb{Z}_p , 3) – 1 different colors. Without loss of generality, let 0 be uniquely colored by c_G and c_p . For each $(g, h) \in G \times \mathbb{Z}_p$, define c as follows:

$$
c(g, h) = \begin{cases} c_G(g) & \text{if } h = 0, \\ c_p(h) & \text{if } h \neq 0. \end{cases}
$$

Let $\{(a_1, a_2), (a_1 + d_1, a_2 + d_2), (a_1 + 2d_1, a_2 + 2d_2)\}\$ be a 3-AP of $G \times$ \mathbb{Z}_p . Since p is odd, $\{a_2, a_2 + d_2, a_2 + 2d_2\}$ is a non-degenerate 3-AP in \mathbb{Z}_p . Therefore, 0, 1, or 3 elements of $\{(a_1, a_2), (a_1+d_1, a_2+d_2), (a_1+2d_1, a_2+2d_2)\}\$ will be assigned a color by c_G .

If $a_2 = 0$ and $d_2 = 0$, then the 3-AP is colored by c_G and is not rainbow. If $a_2 \neq 0$ and $d_2 = 0$, then all the elements of the 3-AP are colored with the same color. If $d_2 \neq 0$, then the 3-AP is colored by c_p (since $c_p(0)$ is a unitary color) and is not rainbow. Therefore no 3-AP in $G \times \mathbb{Z}_p$ is rainbow under c.

The color $c(0,0)$ is unique; therefore, c is a unitary coloring of $G \times \mathbb{Z}_p$. So,

$$
aw_u(G \times \mathbb{Z}_p, 3) - 1 \geq |c(G \times \mathbb{Z}_p)|
$$

= $aw_u(G, 3) + aw_u(\mathbb{Z}_p, 3) - 3$
(by induction hypothesis) = $aw(G, 3) + aw(\mathbb{Z}_p, 3) - 3$
(by Theorem 1) = $aw(G \times \mathbb{Z}_p, 3) - 1$.

Therefore, $aw_u(\mathbb{Z}_n, 3) \geq aw(\mathbb{Z}_n, 3)$.

Now a coloring with no rainbow 3-APs is constructed to determine a lower bound.

Proposition 3. For all positive integers n,

$$
aw(G,3) + aw(\mathbb{Z}_n,3) - 2 \le aw(G \times \mathbb{Z}_n,3).
$$

Proof. It suffices to show that $aw(G, 3) + aw_u(\mathbb{Z}_n, 3) - 2 \leq aw(G \times \mathbb{Z}_n, 3)$. For each $g \in G$, let $P_q = \{(g, h) : h \in \mathbb{Z}_n\}$. Let c_G be a coloring of G with aw(G, 3)−1 colors with no rainbow 3-AP and c_n be a unitary coloring of \mathbb{Z}_n with $aw_u(\mathbb{Z}_n, 3)-1$ colors with no rainbow 3-AP. Without loss of generality, assume that 0 is an element of \mathbb{Z}_n that is uniquely colored by c_n .

Now define a coloring of $G \times \mathbb{Z}_n$ with $aw(G, 3) + aw_u(\mathbb{Z}_n, 3) - 2$ colors as follows:

$$
c(g, h) = \begin{cases} c_G(g) & \text{if } h \neq 0, \\ c_n(h) & \text{if } h = 0. \end{cases}
$$

Under the coloring c, there can be no rainbow 3-AP in any P_a . Since n is odd, every other 3-AP must contain an element from P_a , P_{a+d} , and P_{a+2d} for some $a, d \in \mathbb{Z}_n$. However, such a 3-AP is not rainbow because $\{a, a+d, a+2d\}$ is not a rainbow 3-AP under c_G . \Box

The main tool used for determining the anti-van der Waerden number of abelian groups with odd order is applying Lemma [1](#page-4-0) to create a well-defined auxiliary coloring of a specific subgroup.

Let G be a group and n be an odd positive integer. Partition $G \times \mathbb{Z}_n$ by letting $P_q = \{(g, x) | x \in \mathbb{Z}_n\}$ for each $g \in G$. Without loss of generality, let $|c(P_q)| \le |c(P_0)|$ for all $g \in G$.

 \Box

Since *n* is odd, 2 has a unique multiplicative inverse in \mathbb{Z}_n . Therefore, for every $x \in \mathbb{Z}_n$ there exists a $d \in \mathbb{Z}_n$ such that $x = 2d$. So given an AP in G, say $\{x_1, y_1, z_1\}$, and $x_2, z_2 \in \mathbb{Z}_n$, there exists a unique $y_2 \in \mathbb{Z}_n$ such that $x_2 + z_2 = 2y_2$, which yields $\{(x_1, x_2), (y_1, y_2), (z_1, z_2)\}\$, a 3-AP in $G \times \mathbb{Z}_n$.

Lemma 1. If c is a coloring of $G \times \mathbb{Z}_n$ with no rainbow 3-AP, then $|c(P_q) \setminus$ $|c(P_0)| \leq 1$ for all $g \in G$.

Proof. Assume there is a $g \in G$ such that $2 \leq |c(P_q)\setminus c(P_0)|$. Let $\alpha, \beta \in G$ $c(P_g)\backslash c(P_0)$ and $\gamma, \rho \in c(P_0)\backslash c(P_g)$. By maximality of $c(P_0), \gamma$ and ρ exists, and neither are equal to α or β .

If there exists a $z \in P_{2q}$ such that $c(z)$ is not a color in $c(P_0)$, then there is a $y \in P_g$ such that $c(y) \in {\alpha, \beta}$ and $c(y) \neq c(z)$. Therefore, there is an $x \in P_0$ such that $\{x, y, z\}$ is a 3-AP in $G \times \mathbb{Z}_n$ and x does not have the same color as y or z. This is a contradiction since this arithmetic progression is rainbow.

If there exists a $z \in P_{2g}$ such that $c(z)$ is not a color in $c(P_g)$ and $g \neq |G|/2$, then there is an $x \in P_0$ such that $c(x) \in \{\gamma, \rho\}$ and $c(x) \neq c(z)$. Therefore, there is a $y \in P_0$ such that $\{x, y, z\}$ is a 3-AP in $G \times \mathbb{Z}_n$ and y does not have the same color as x or z. This is a contradiction since this arithmetic progression is rainbow.

Therefore, P_{2q} must contain every color in $c(P_0)$ and $c(P_q)$, which is a contradiction to the maximality of $c(P_0)$. □

If $|c(P_g) \setminus c(P_0)| \leq 1$ for all $g \in G$, then the following auxiliary coloring of G is well defined:

$$
\overline{c}(g) = \begin{cases} \alpha & \text{if } c(P_g) \subset c(P_0), \\ c(P_g) \backslash c(P_0) & \text{otherwise.} \end{cases}
$$

The next lemma goes on to show that if $G \times \mathbb{Z}_n$ does not contain a rainbow 3-AP, then \bar{c} can not create a rainbow 3-AP in G .

Lemma 2. If \bar{c} contains a rainbow 3-AP in G, then there exists a rainbow 3-AP in $G \times \mathbb{Z}_n$.

Proof. Let $\{a, a+d, a+2d\}$ be a rainbow arithmetic progression colored by \overline{c} in G. Without loss of generality, there are two cases to consider: $\overline{c}(a+d) \neq \alpha$ and $\overline{c}(a+d) = \alpha$.

If $\overline{c}(a+d) = \beta$ and $\overline{c}(a+2d) = \gamma$, then there exists an $x \in P_a$, $y \in P_{a+d}$, and $z \in P_{a+2d}$ such that $\{x, y, z\}$ is a 3-AP in $G \times \mathbb{Z}_n$, $c(y) = \beta$, and $c(z) = \gamma$. However, $\overline{c}(a) \neq \beta, \gamma$, which implies $\beta, \gamma \notin P_a$, so $c(x) \neq \beta, \gamma$. This implies that $\{x, y, z\}$ is a rainbow arithmetic progression in $G \times \mathbb{Z}_n$, which is a contradiction.

624 Michael Young

If $\bar{c}(a) = \beta$, $\bar{c}(a+d) = \alpha$, and $\bar{c}(a+2d) = \gamma$, then there exists an $x \in P_a$, $y \in P_{a+d}$, and $z \in P_{a+2d}$ such that $\{x, y, z\}$ is a 3-AP in $G \times \mathbb{Z}_n$, $c(x) = \beta$ and $c(z) = \gamma$. However, $c(y) \neq \beta, \gamma$ because $\overline{c}(a+d) = \alpha$. This implies that $\{x, y, z\}$ is a rainbow arithmetic progression in $G \times \mathbb{Z}_n$, which is a contradiction. \Box

Theorem 3. If G is a finite abelian group and n is an odd positive integer, then

$$
aw(G \times \mathbb{Z}_n, 3) = aw(G, 3) + aw(\mathbb{Z}_n, 3) - 2.
$$

Proof. The lower bound for $aw(G \times \mathbb{Z}_n, 3)$ is by Proposition [3.](#page-3-0) For the upper bound, it suffices to show $\mathrm{aw}(G \times \mathbb{Z}_n, 3) \leq \mathrm{aw}(G, 3) + \mathrm{aw}_u(\mathbb{Z}_n, 3) - 2$. Let c be a coloring of $G\times\mathbb{Z}_n$ with $\mathrm{aw}(G,3)+\mathrm{aw}_u(\mathbb{Z}_n,3)-2$ colors and no rainbow 3-APs. The statement will be proved by contradiction, showing that no such coloring exists.

For each $g \in G$, let $P_q = \{(g, h) : h \in \mathbb{Z}_n\}$. Without loss of generality, let $|c(P_g)| \le |c(P_0)|$ for all $g \in G$. Since there are no rainbow 3-APs and P_0 is isomorphic to \mathbb{Z}_n , $|c(P_0)| \leq \text{aw}(\mathbb{Z}_n) - 1$. Also, by Lemma [1,](#page-4-0) $|c(P_q)\backslash c(P_0)| \leq 1$, for all $g \in G$. Define a coloring of G as follows:

$$
\overline{c}(g) = \begin{cases} \alpha & \text{if } c(P_g) \subset c(P_0), \\ c(P_g) \backslash c(P_0) & \text{otherwise.} \end{cases}
$$

The total number of colors used by c is $|c(P_0)|+|\overline{c}(G)|-1 \leq (\text{aw}(\mathbb{Z}_n,3)-1)$ 1)+(aw(G, 3)−1)−1. Therefore $|c(P_0)| \leq \text{aw}(\mathbb{Z}_n, 3)$ or $|\overline{c}(G)| \leq \text{aw}(G, 3)$ \Box

This leads to the following corollary which implies that for positive odd integers m and n, $aw(\mathbb{Z}_m \times \mathbb{Z}_n, 3) = aw(\mathbb{Z}_{mn}, 3)$.

Corollary 1. Let n be the largest odd divisor of the order of G. There exists a finite abelian group G' such that the order of G' is a power of 2 and

$$
aw(G,3) = aw(G',3) + aw(\mathbb{Z}_n,3) - 2.
$$

Proof. For each odd prime p and positive integer e, $aw(\mathbb{Z}_{p^e}, 3) = (aw(\mathbb{Z}_p, 3) 2)e + 2$, by Theorem [1.](#page-1-1) Theorem [3](#page-5-0) implies $aw(\mathbb{Z}_{p^{e_1}} \times \mathbb{Z}_{p^{e_2}} \cdots \mathbb{Z}_{p^{e_\ell}}, 3) =$ $2 + (\text{aw}(\mathbb{Z}_p, 3) - 2) \sum_{i=1}^{\ell} e_i$. So the anti-van der Waerden number is the same for any two finite abelian groups having the same odd order.

Now let $G = G' \times \mathbb{Z}_n$ and $n = \prod_{i=1}^{\ell} p_i^{e_i}$, where p_i is an odd prime for all *i*, where $1 \leq i \leq \ell$. Then

aw(G,3) = aw(G' × Z_n, 3)
= aw(G',3) +
$$
\sum_{i=1}^{\ell} e_i
$$
(aw(Z_{p_i}, 3) - 2)
= aw(G',3) + aw(Z_n, 3) - 2. □

2.1. Groups with power of 2 order

In order to completely use Corollary [1](#page-5-1) the anti-van der Waerden number of groups with order that is a power of 2 must be determined.

Proposition 4. For any finite abelian group G,

$$
\operatorname{aw}(G \times \mathbb{Z}_2, 3) \le 2 \operatorname{aw}(G, 3) - 1.
$$

Proof. Let $A = \{(g, 0) : g \in G\}$ and $B = \{(g, 1) : g \in G\}$. In any exact $(2 \text{ aw}(G, 3)-1)$ -coloring of $G \times \mathbb{Z}_2$, either A or B will have at least aw $(G, 3)$ colors. Therefore, a rainbow 3-AP will exist since A and B are both isomorphic to G. □

An inductive argument, using Proposition [4](#page-6-0) as the base case, gives the following corollary.

Corollary 2. For all positive integers s,

$$
\operatorname{aw}([\mathbb{Z}_2]^s,3) \le 2^s + 1.
$$

Theorem 4. For $1 \leq i \leq s$, let m_i be a positive integer. Then

$$
aw(\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}, 3) = 2^s + 1.
$$

Proof. Let $m_1 \leq m_2 \leq \ldots \leq m_s$ and $x = (x_1, x_2, \ldots, x_s) \in \mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times$ $\cdots \times \mathbb{Z}_{2^{m_s}}$. Define $c(x)=(x_1, x_2, \ldots, x_s) \mod 2$. The function c is an exact 2^s-coloring of $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$. Since $c(x) = c(x + 2d)$, for any $d \in \mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$, this coloring does not contain any rainbow arithmetic progressions. Therefore, $2^s + 1 \leq \text{aw}(\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}, 3)$.

The proof of the upper bound is inductive on (s, m_s) . The base case of $(1, m)$ is true for all positive integers m by Theorem [2](#page-2-1) and the base case of $(s, 1)$ is true for all positive integers s by Corollary [2.](#page-6-1) Assume the statement is true for parameters (s', m) for all $1 \le s' < s$ and $1 \le m < m_s$.

It will be shown that the statement is true for parameters (s, m_s) by assuming there exists a coloring of $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$ with exactly $2^s + 1$ colors and no rainbow 3-AP, then arriving at a contradiction.

For each $i \in \mathbb{Z}_{2^{m_s}}$, let $P_i = \{(x, i) : x \in \mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_{(s-1)}}}\}\.$ So P_i is isomorphic to $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_{(s-1)}}}$ for all i. Let A be the set of P_i with i even, and B be the set of P_i with i odd. So A and B are both isomorphic to $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{(m_s-1)}}$. By the induction hypothesis, A and B both have at most 2^s colors. So there exists $\alpha \in c(A) \backslash c(B)$ and $\beta \in c(B) \backslash c(A).$

Assume without loss of generality, $x_\alpha := c^{-1}(\alpha) \in P_0$ and $x_\beta := c^{-1}(\beta) \in$ P_j , where j is odd. Then $\{x_\alpha, x_\beta, 2x_\beta - x_\alpha\}$ is a 3-AP in $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times$ $\mathbb{Z}_{2^{m_s}}$. So $2x_\beta - x_\alpha \in P_{2j}$. Since there are no rainbow 3-APs $c(2x_\beta - x_\alpha)$ must be α .

Similarly, $\{(i-1)x_{\beta}-(i-2)x_{\alpha}, ix_{\beta}-(i-1)x_{\alpha}, (i+1)x_{\beta}-ix_{\alpha}\}\)$ is a 3-AP for all i and $c((i-1)x_{\beta}-(i-2)x_{\alpha})$ must be equal to $c((i+1)x_{\beta}-ix_{\alpha})$ if it is not rainbow. This implies that $\alpha \in c(P_i)$ for all even i, and $\beta \in c(P_i)$, for all odd i.

By the induction hypothesis, P_i has at most 2^{s-1} colors for all i. Therefore, $|c(P_0) \cup c(P_i)| \leq 2^s$. So there exists a color γ that is not in $c(P_0)$ or $c(P_i)$. Now define an exact 3-coloring of $\mathbb{Z}_{2^{m_s}}$ as follows:

$$
\overline{c}(i) = \begin{cases} \alpha & \text{if } \alpha \in c(P_i) \text{ and } \gamma \notin c(P_i), \\ \beta & \text{if } \beta \in c(P_i) \text{ and } \gamma \notin c(P_i), \\ \gamma & \text{if } \gamma \in c(P_i). \end{cases}
$$

The coloring \bar{c} is an exact 3-coloring and creates a rainbow 3-AP in $\mathbb{Z}_{2^{m_s}}$ by Theorem [2.](#page-2-1) Let $\{a, a+d, a+2d\}$ be such a rainbow arithmetic progression. Without loss of generality, there are two cases to consider: $\overline{c}(a+d) \neq \gamma$ and $\overline{c}(a+d) = \gamma.$

If $\overline{c}(a) = \alpha$, $\overline{c}(a + d) = \gamma$, and $\overline{c}(a + 2d) = \beta$, then a must be even and $a + 2d$ must be odd, which is a contradiction.

If $\overline{c}(a) = \alpha$, $\overline{c}(a + d) = \beta$, and $\overline{c}(a + 2d) = \gamma$, then there exists an $x \in P_a$, $y \in P_{a+d}$, and $z \in P_{a+2d}$ such that $\{x, y, z\}$ is a 3-AP in $\mathbb{Z}_{2^{m_1}} \times$ $\mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$, $c(y) = \beta$ and $c(z) = \gamma$. However, $c(x) \neq \beta$ or γ because $\overline{c}(a) = \alpha$. This implies that $\{x, y, z\}$ is a rainbow arithmetic progression in $\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$, which is a contradiction.

Therefore, $aw(\mathbb{Z}_{2^{m_1}} \times \mathbb{Z}_{2^{m_2}} \times \cdots \times \mathbb{Z}_{2^{m_s}} , 3) \leq 2^s + 1$. \Box

3. Unitary anti-van der Waerden numbers

Proposition 5. For all positive integers p and q,

$$
\mathrm{aw}_u(\mathbb{Z}_p,3)+\mathrm{aw}_u(\mathbb{Z}_q,3)-2\leq \mathrm{aw}_u(\mathbb{Z}_p\times \mathbb{Z}_q,3).
$$

Proof. This is the same as the proof of Proposition [3](#page-3-0) with $\overline{c}_{\mathbb{Z}_p}$ changed to a unitary coloring of \mathbb{Z}_p with aw_u(\mathbb{Z}_p , 3) – 1 colors and no rainbow 3-AP. \Box

Theorem 5. For any positive odd integers n,

$$
\mathrm{aw}_u(G \times \mathbb{Z}_n, 3) = \mathrm{aw}_u(G, 3) + \mathrm{aw}_u(\mathbb{Z}_n, 3) - 2.
$$

Proof. The lower bound is a direct result of Proposition [5.](#page-7-1) So it suffices to show the upper bound. Assume c is a coloring of $G \times \mathbb{Z}_n$ that is unitary with exactly $aw_u(G, 3) + aw_u(\mathbb{Z}_n, 3) - 2$ colors and no rainbow 3-AP. For all $h \in \mathbb{Z}_n$, let $P_h = \{(g, h) \mid g \in G\}$. Without loss of generality, let $|c(P_h)| \le$ $|c(P_0)|$ for all $h \in \mathbb{Z}_n$.

By Lemma [1,](#page-4-0) $|c(P_h)\setminus c(P_0)| \leq 1$, for all $h \in \mathbb{Z}_n$. Define a coloring of \mathbb{Z}_n as follows:

$$
\overline{c}(g) = \begin{cases} \alpha & \text{if } c(P_h) \subset c(P_0), \\ c(P_h) \setminus c(P_0) & \text{otherwise.} \end{cases}
$$

Let ρ be a color used exactly once by c to color $G \times \mathbb{Z}_n$. Now consider the two cases in which $\rho \in P_0$ and $\rho \notin P_0$.

Case 1: If $\rho \in c(P_0)$, then $|c(P_0)| \leq \mathrm{aw}_u(G) - 1$. Therefore $\mathrm{aw}_u(\mathbb{Z}_n, 3) =$ $(\mathrm{aw}_u(G, 3)+\mathrm{aw}_u(\mathbb{Z}_n, 3)-2)-(\mathrm{aw}_u(G)-1)+1\leq |\overline{c}(\mathbb{Z}_n)|.$ Since $\mathrm{aw}(\mathbb{Z}_n, 3)=$ $aw_u(\mathbb{Z}_n, 3)$, Lemma [2](#page-4-1) implies that c creates a rainbow 3-AP.

Case 2: If $\rho \in c(P_d)$, where $0 \neq d$, then \overline{c} must be a unitary coloring of \mathbb{Z}_n and not have any 3-APs by Lemma [2.](#page-4-1) So $|\overline{c}(\mathbb{Z}_n)| \leq \mathrm{aw}_u(\mathbb{Z}_n, 3) - 1$, which implies $aw_u(G, 3) = (aw_u(G, 3) + aw_u(\mathbb{Z}_n, 3) - 2) - (aw_u(\mathbb{Z}_n) - 2) \leq |c(P_0)|$.

If there exists $\gamma \in c(P_0) \setminus c(P_{-d})$, then there is an $x \in G$ such that $c(x, 0) = \gamma$. Now choose (y, d) such that $c(y, d) = \rho$. Then $\{(2x - y, -d),$ $(x, 0), (y, d)$ is a rainbow 3-AP. Therefore, $|c(P_0)| = |c(P_{-d})|$. If $|c(P_0)| >$ $|c(P_d)|$, then there exist $\beta, \gamma \in c(P_0) \setminus c(P_d)$ because $\rho \notin c(P_0)$. Now a rainbow 3-AP can be attained by choosing elements of P_0 and P_{-d} that are assigned β and γ , respectively, and the corresponding element of P_d . Hence, $aw_u(G, 3) \leq |c(P_0)| = |c(P_d)|$. However, since there is only one element in P_d with the color ρ , this implies that P_d contains a rainbow 3-AP, which is a contradiction. \Box

Theorem [5](#page-8-0) yields the following Corollary that is analogous to Corollary [1.](#page-5-1)

Corollary 3. Let n be the largest odd divisor of the order of G. There exists a finite abelian group G' such that the order of G' is a power of 2 and

$$
aw_u(G,3) = aw_u(G',3) + aw_u(\mathbb{Z}_n,3) - 2.
$$

628 Michael Young

3.1. Groups with power of 2 order

Proposition 6. For all positive integers s,

$$
\mathrm{aw}_u([\mathbb{Z}_2]^s,3) = s+2.
$$

Proof. This proof is by induction on s. The base case of $s = 1$ is trivial since $2 < \text{aw}_u([\mathbb{Z}_2]^s, 3) \leq \text{aw}([\mathbb{Z}_2]^s, 3) = 3.$ Assume $1 < s$.

Let c' be a coloring of $[\mathbb{Z}_2]^{s-1}$ with $s+1$ colors, no rainbow 3-AP and a be an element of $[\mathbb{Z}_2]^{s-1}$ that does not share a color with any other element. For all $g \in [\mathbb{Z}_2]^{s-1}$ and $h \in \mathbb{Z}_2$, except $(a,0)$, let $c(g,h) = c'(g)$ and assign $c(a, 0)$ a new color. Then c is a unitary $(s + 1)$ -coloring of $[\mathbb{Z}_2]^s$ with no rainbow 3-AP. So, $s + 2 \leq \text{aw}_u([\mathbb{Z}_2]^s, 3)$.

Now assume $[\mathbb{Z}_2]^s$ is colored with a unitary coloring that has exactly $s + 2$ colors and no rainbow 3-AP. Let $A = \{(g, 0) : g \in [\mathbb{Z}_2]^{s-1}\}\$ and $B = \{(g, 1) : g \in [\mathbb{Z}_2]^{s-1}\}.$ Without loss of generality, let $(a, 0)$ be an element of $[\mathbb{Z}_2]^s$ that does not share a color with any other element. Therefore, by induction, $|c(A)| \leq s$. So there exists 2 colors, $\alpha, \beta \in c(B) \setminus c(A)$. Then there exists an element $(b, 1)$ such that $c(b, 1) \in \{\alpha, \beta\}$ and $2a \neq 2b$. Therefore, the 3-AP $\{(a, 0), (b, 1), (2b - a, 0)\}\$ must be rainbow, which is a contradiction. So, $aw_u([Z_2]^s, 3) \leq s + 2$. \Box

Theorem 6. For $1 \leq i \leq s$, let m_i be a positive integer. Then

$$
\mathrm{aw}_u(\mathbb{Z}_{2^{m_1}}\times\cdots\times\mathbb{Z}_{2^{m_s}},3)=s+2.
$$

Proof. This proof is inductive on $\sum_{i=1}^{s} m_i$. The base case of $\sum_{i=1}^{s} m_i = s$ is true by Proposition [6.](#page-9-0) So assume $s < \sum_{i=1}^{s} m_i$ and $2 \leq m_s$.

Let c' be a coloring of $\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$ with s+1 colors, no rainbow 3-AP and a be an element of $\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_{(s-1)}}}$ that does not share a color with any other element. For all $g \in \mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m(s-1)}}$ and $h \in \mathbb{Z}_{2^{m_s}}$, except $(a, 0)$, let $c(g, h) = c'(g)$ and assign $c(a, 0)$ a new color. Then c is a unitary $(s + 1)$ -coloring of $\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$ with no rainbow 3-AP. So, $s + 2 \leq \mathrm{aw}_u(\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}, 3).$

Now assume $\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$ is colored with a unitary coloring that has exactly $s + 2$ colors and no rainbow 3-AP. Let $A = \{(g, h) : g \in \mathbb{Z}_{2^{m_1}} \times$ $\dots \times \mathbb{Z}_{2^{m_{s-1}}}, h \in \mathbb{Z}_{2^{m_s}}$, and h is even} and $B = \{(g, h) : g \in \mathbb{Z}_{2^{m_1}} \times \dots \times \mathbb{Z}_{2^{m_s}}\}$ $\mathbb{Z}_{2^{m_{s-1}}}, h \in \mathbb{Z}_{2^{m_s}}$, and h is odd}. Without loss of generality, let $(a, 0)$ be an element of $\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}$ that does not share a color with any other element. Therefore, by induction, $|c(A)| \leq s$. So there exists 2 colors, $\alpha, \beta \in$ $c(B) \setminus c(A)$. Then there exists an element $(b, 2j + 1)$ such that $c(b, 2j + 1) \in$ $\{\alpha, \beta\}$ and $2a \neq 2b$. Therefore, the 3-AP $\{(a, 0), (b, 2j + 1), (2b - a, 4j + 2)\}\$ must be rainbow, which is a contradiction. So, $aw_u(\mathbb{Z}_{2^{m_1}} \times \cdots \times \mathbb{Z}_{2^{m_s}}, 3) \leq$ $s+2$. П **Corollary 4.** Let G be a finite abelian group. Then $aw(G, 3) = aw_u(G, 3)$ if and only if the order of G is odd or G is cyclic.

Proof. By Corollary [1](#page-5-1) and Theorem [6,](#page-9-1)

$$
aw(G,3) = 2s + aw(\mathbb{Z}_n,3) - 1,
$$

for some nonnegative integer s and odd integer n. By Corollary [3](#page-8-1) and Theorem [4,](#page-6-2)

$$
aw_u(G,3) = s + aw_u(\mathbb{Z}_n,3),
$$

for the same s and n. Therefore, $aw(G, 3) = aw_u(G, 3)$ if and only if $2^s - 1 =$ s; hence, $aw(G, 3) = aw_u(G, 3)$ if and only if s is 0 or 1. \Box

References

- [1] M. Axenovich, D. Fon-Der-Flaass, On rainbow arithmetic progressions. Electronic Journal of Combinatorics **11**(1) (2004), Research Paper 1, 7pp. [MR2034415](http://www.ams.org/mathscinet-getitem?mr=2034415)
- [2] M. Axenovich and R. R. Martin, Sub-Ramsey numbers for arithmetic progressions. Graphs Comb. **22** (2006), no. 1, 297–309. [MR2264853](http://www.ams.org/mathscinet-getitem?mr=2264853)
- [3] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. Kramer, J. Lin, R. Martin, D. Stolee, N. Warnberg, and M. Young, Rainbow arithmetic progressions. Journal of Combinatorics **7**(4) (2016), 595–626. [MR3538156](http://www.ams.org/mathscinet-getitem?mr=3538156)
- [4] V. Jungić, J. Licht (Fox), M. Mahdian, J. Nešetril, and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. Comb. Probab. Comput. **12**(5–6) (2003), 599–620. [MR2037073](http://www.ams.org/mathscinet-getitem?mr=2037073)
- [5] K. Uherka, An introduction to Ramsey theory and anti-Ramsey theory on the integers. Master's Creative Component (2013), Iowa State University.

Michael Young IOWA STATE UNIVERSITY Mathematics Department 396 Carver Hall Ames, IA, 50021 USA E-mail address: myoung@iastate.edu

Received 26 March 2016