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Rainbow arithmetic progressions in finite abelian
groups

Michael Young

For positive integers n and k, the anti-van der Waerden number of
Zn, denoted by aw(Zn, k), is the minimum number of colors needed
to color the elements of the cyclic group of order n and guarantee
there is a rainbow arithmetic progression of length k. Butler et al.
showed a reduction formula for aw(Zn, 3) in terms of the prime
divisors of n. In this paper, we analagously define the anti-van der
Waerden number of a finite abelian group G and show aw(G, 3) is
determined by the order of G and the number of groups with even
order in a direct sum isomorphic to G. The unitary anti-van der
Waerden number of a group is also defined and determined.

1. Introduction

Let G be a finite additive abelian group. A k-term arithmetic progression

(k-AP) of G is a sequence of the form

a, a+ d, a+ 2d, . . . , a+ (k − 1)d,

where a, d ∈ G. For the purposes of this paper, an arithmetic progression is

referred to as a set of the form {a, a+ d, a+ 2d, . . . , a+ (k − 1)d}. A k-AP
is non-degenerate if the arithmetic progression contains k distinct elements;

otherwise, the arithmetic progression is degenerate.

An r-coloring of G is a function c : G → [r], where [r] := {1, . . . , r}.
An r-coloring is exact if c is surjective. Given c : G → [r], an arithmetic
progression is called rainbow (under c) if c(a + id) �= c(a + jd) for all 0 ≤
i < j ≤ k − 1. Given P ⊆ G, c(P ) denotes the set of colors assigned to the

elements of P , i.e. c(P ) = {c(i) : i ∈ P}.
The anti-van der Waerden number aw(G, k) is the smallest r such that

every exact r-coloring of G contains a rainbow k-term arithmetic progres-

sion. If G contains no k-AP, then aw(G, k) = |G| + 1 to be consistent with
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the property that there is a coloring with aw(G, k) − 1 colors that has no
rainbow k-AP.

Throughout the paper, Zn will denote the cyclic group of order n con-
sisting of the set {0, 1, . . . , n−1} under the operation of addition modulo n.
Define the direct product [Zn]

s := Zn × Zn × · · · × Zn︸ ︷︷ ︸
s times

.

Jungić, Licht, Mahdian, Nes̆etril, and Radoic̆ić established several re-
sults on the existence of rainbow 3-APs in [4]. Jungić et al. proved that
every 3-coloring of N, where each color class has density at least 1/6, con-
tains a rainbow 3-AP. They also prove results about rainbow 3-APs in Zn.
Other results on colorings of the integers with no rainbow 3-APs have been
obtained in [1] and [2].

Anti-van der Waerden numbers were first defined by Uherka in a prelim-
inary study (see [5]). Butler et. al., in [3], proved upper and lower bounds
for anti-van der Waerden numbers of [n] and Zn for k-APs, for 3 ≤ k.

Many of the extremal colorings that are constructed to prove lower
bounds of aw(G, 3) require colorings that use some color exactly once, which
leads to the need of the following definitions.

An r-coloring of G is unitary if there is an element of G that is uniquely
colored, which will be referred to as a unitary color. (A unitary coloring is
referred to as a singleton coloring in [3].) The smallest r such that every
exact r-coloring of G that is unitary contains a rainbow k-term arithmetic
progression is denoted by awu(G, k). Similar to the anti-van der Waerden
number, awu(G, k) = |G|+ 1 if G has no k-AP.

Butler et al. use Proposition 1 to determine the exact value of aw(Zn, 3).

Proposition 1. [3, Proposition 3.5], For every prime number p,

3 ≤ awu(Zp, 3) = aw(Zp, 3) ≤ 4.

Let n = 2e0pe11 pe22 · · · pess such that pj is prime and 0 ≤ ej for 0 ≤ j ≤ s,
aw(Zpj

, 3) = 3 for 1 ≤ j ≤ �, and aw(Zpj
, 3) = 4 for � + 1 ≤ j ≤ s. Then

Corollary 3.15 in [3] can be stated as follows:

Theorem 1. [3, Corollary 3.15] For any integer n ≥ 2,

aw(Zn, 3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 +
�∑

j=1
ej +

s∑
j=�+1

2ej if e0 = 0,

3 +
�∑

j=1
ej +

s∑
j=�+1

2ej if 1 ≤ e0.
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In this paper, Theorem 1 is extended to all finite abelian groups while
the following special case is generalized to finite abelian groups with order
that is a power of 2.

Theorem 2. [4, Theorem 3.5] For all positive integers m,

aw(Z2m , 3) = 3.

In Section 2, a closed formula for aw(G, 3) is given. This closed formula
is determined by the order of G and the number of groups with even order
in a direct sum isomorphic to G. In Section 3, a similar closed formula for
awu(G, 3) is given.

2. Anti-van der Waerden numbers

In this section, a reduction formula for the anti-van der Waerden number of
groups that have odd order is created. Determining the anti-van der Waerden
number of an abelian group with odd order is equivalent to determining the
anti-van der Waerden number of Zm × Zn for some positive odd integers m
and n. First we provide a proof of a useful remark from [3].

Proposition 2. [4, Remark 3.16] For all positive integers n,

awu(Zn, 3) = aw(Zn, 3).

Proof. It is obvious that awu(Zn, 3) ≤ aw(Zn, 3). The inequality aw(Zn, 3) ≤
awu(Zn, 3) will be shown by induction on the number of odd prime divisors
of n. It is obviously true if n is a power of 2. Assume n is not a power of 2.

Let Zn = G×Zp, where G is a finite cyclic group and p be an odd prime.
Let cG be a unitary coloring of G with exactly awu(G, 3)− 1 colors and no
rainbow 3-AP, and cp be a unitary coloring of Zp with exactly awu(Zp, 3)−1
different colors. Without loss of generality, let 0 be uniquely colored by cG
and cp. For each (g, h) ∈ G× Zp, define c as follows:

c(g, h) =

{
cG(g) if h = 0,
cp(h) if h �= 0.

Let {(a1, a2), (a1 + d1, a2 + d2), (a1 + 2d1, a2 + 2d2)} be a 3-AP of G ×
Zp. Since p is odd, {a2, a2 + d2, a2 + 2d2} is a non-degenerate 3-AP in Zp.
Therefore, 0, 1, or 3 elements of {(a1, a2), (a1+d1, a2+d2), (a1+2d1, a2+2d2)}
will be assigned a color by cG.
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If a2 = 0 and d2 = 0, then the 3-AP is colored by cG and is not rainbow.
If a2 �= 0 and d2 = 0, then all the elements of the 3-AP are colored with the
same color. If d2 �= 0, then the 3-AP is colored by cp (since cp(0) is a unitary
color) and is not rainbow. Therefore no 3-AP in G×Zp is rainbow under c.

The color c(0, 0) is unique; therefore, c is a unitary coloring of G × Zp.
So,

awu(G× Zp, 3)− 1 ≥ |c(G× Zp)|
= awu(G, 3) + awu(Zp, 3)− 3

(by induction hypothesis) = aw(G, 3) + aw(Zp, 3)− 3

(by Theorem 1) = aw(G× Zp, 3)− 1.

Therefore, awu(Zn, 3) ≥ aw(Zn, 3).

Now a coloring with no rainbow 3-APs is constructed to determine a
lower bound.

Proposition 3. For all positive integers n,

aw(G, 3) + aw(Zn, 3)− 2 ≤ aw(G× Zn, 3).

Proof. It suffices to show that aw(G, 3) + awu(Zn, 3) − 2 ≤ aw(G × Zn, 3).
For each g ∈ G, let Pg = {(g, h) : h ∈ Zn}. Let cG be a coloring of G with
aw(G, 3)−1 colors with no rainbow 3-AP and cn be a unitary coloring of Zn

with awu(Zn, 3)−1 colors with no rainbow 3-AP. Without loss of generality,
assume that 0 is an element of Zn that is uniquely colored by cn.

Now define a coloring of G × Zn with aw(G, 3) + awu(Zn, 3) − 2 colors
as follows:

c(g, h) =

{
cG(g) if h �= 0,
cn(h) if h = 0.

Under the coloring c, there can be no rainbow 3-AP in any Pg. Since
n is odd, every other 3-AP must contain an element from Pa, Pa+d, and
Pa+2d for some a, d ∈ Zn. However, such a 3-AP is not rainbow because
{a, a+ d, a+ 2d} is not a rainbow 3-AP under cG.

The main tool used for determining the anti-van der Waerden number of
abelian groups with odd order is applying Lemma 1 to create a well-defined
auxiliary coloring of a specific subgroup.

Let G be a group and n be an odd positive integer. Partition G×Zn by
letting Pg = {(g, x)|x ∈ Zn} for each g ∈ G. Without loss of generality, let
|c(Pg)| ≤ |c(P0)| for all g ∈ G.
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Since n is odd, 2 has a unique multiplicative inverse in Zn. Therefore,
for every x ∈ Zn there exists a d ∈ Zn such that x = 2d. So given an AP in
G, say {x1, y1, z1}, and x2, z2 ∈ Zn, there exists a unique y2 ∈ Zn such that
x2 + z2 = 2y2, which yields {(x1, x2), (y1, y2), (z1, z2)}, a 3-AP in G× Zn.

Lemma 1. If c is a coloring of G×Zn with no rainbow 3-AP, then |c(Pg) \
c(P0)| ≤ 1 for all g ∈ G.

Proof. Assume there is a g ∈ G such that 2 ≤ |c(Pg)\c(P0)|. Let α, β ∈
c(Pg)\c(P0) and γ, ρ ∈ c(P0)\c(Pg). By maximality of c(P0), γ and ρ exists,
and neither are equal to α or β.

If there exists a z ∈ P2g such that c(z) is not a color in c(P0), then there
is a y ∈ Pg such that c(y) ∈ {α, β} and c(y) �= c(z). Therefore, there is an
x ∈ P0 such that {x, y, z} is a 3-AP in G×Zn and x does not have the same
color as y or z. This is a contradiction since this arithmetic progression is
rainbow.

If there exists a z ∈ P2g such that c(z) is not a color in c(Pg) and
g �= |G|/2, then there is an x ∈ P0 such that c(x) ∈ {γ, ρ} and c(x) �= c(z).
Therefore, there is a y ∈ P0 such that {x, y, z} is a 3-AP in G × Zn and y
does not have the same color as x or z. This is a contradiction since this
arithmetic progression is rainbow.

Therefore, P2g must contain every color in c(P0) and c(Pg), which is a
contradiction to the maximality of c(P0).

If |c(Pg) \ c(P0)| ≤ 1 for all g ∈ G, then the following auxiliary coloring
of G is well defined:

c(g) =

{
α if c(Pg) ⊂ c(P0),
c(Pg)\c(P0) otherwise.

The next lemma goes on to show that if G × Zn does not contain a
rainbow 3-AP, then c can not create a rainbow 3-AP in G.

Lemma 2. If c contains a rainbow 3-AP in G, then there exists a rainbow
3-AP in G× Zn.

Proof. Let {a, a+d, a+2d} be a rainbow arithmetic progression colored by c
in G. Without loss of generality, there are two cases to consider: c(a+d) �= α
and c(a+ d) = α.

If c(a+d) = β and c(a+2d) = γ, then there exists an x ∈ Pa, y ∈ Pa+d,
and z ∈ Pa+2d such that {x, y, z} is a 3-AP in G × Zn, c(y) = β, and
c(z) = γ. However, c(a) �= β, γ, which implies β, γ /∈ Pa, so c(x) �= β, γ. This
implies that {x, y, z} is a rainbow arithmetic progression in G × Zn, which
is a contradiction.
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If c(a) = β, c(a + d) = α, and c(a + 2d) = γ, then there exists an

x ∈ Pa, y ∈ Pa+d, and z ∈ Pa+2d such that {x, y, z} is a 3-AP in G × Zn,

c(x) = β and c(z) = γ. However, c(y) �= β, γ because c(a + d) = α. This

implies that {x, y, z} is a rainbow arithmetic progression in G × Zn, which

is a contradiction.

Theorem 3. If G is a finite abelian group and n is an odd positive integer,

then

aw(G× Zn, 3) = aw(G, 3) + aw(Zn, 3)− 2.

Proof. The lower bound for aw(G×Zn, 3) is by Proposition 3. For the upper

bound, it suffices to show aw(G× Zn, 3) ≤ aw(G, 3) + awu(Zn, 3)− 2. Let c

be a coloring of G×Zn with aw(G, 3)+awu(Zn, 3)−2 colors and no rainbow

3-APs. The statement will be proved by contradiction, showing that no such

coloring exists.

For each g ∈ G, let Pg = {(g, h) : h ∈ Zn}. Without loss of generality, let

|c(Pg)| ≤ |c(P0)| for all g ∈ G. Since there are no rainbow 3-APs and P0 is

isomorphic to Zn, |c(P0)| ≤ aw(Zn)−1. Also, by Lemma 1, |c(Pg)\c(P0)| ≤ 1,

for all g ∈ G. Define a coloring of G as follows:

c(g) =

{
α if c(Pg) ⊂ c(P0),
c(Pg)\c(P0) otherwise.

The total number of colors used by c is |c(P0)|+|c(G)|−1 ≤ (aw(Zn, 3)−
1)+(aw(G, 3)−1)−1. Therefore |c(P0)| ≤ aw(Zn, 3) or |c(G)| ≤ aw(G, 3)

This leads to the following corollary which implies that for positive odd

integers m and n, aw(Zm × Zn, 3) = aw(Zmn, 3).

Corollary 1. Let n be the largest odd divisor of the order of G. There exists

a finite abelian group G′ such that the order of G′ is a power of 2 and

aw(G, 3) = aw(G′, 3) + aw(Zn, 3)− 2.

Proof. For each odd prime p and positive integer e, aw(Zpe , 3) = (aw(Zp, 3)−
2)e + 2, by Theorem 1. Theorem 3 implies aw(Zpe1 × Zpe2 · · ·Zpe� , 3) =

2+(aw(Zp, 3)−2)
∑�

i=1 ei. So the anti-van der Waerden number is the same

for any two finite abelian groups having the same odd order.

Now let G = G′ ×Zn and n =
∏�

i=1 p
ei
i , where pi is an odd prime for all

i, where 1 ≤ i ≤ �. Then
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aw(G, 3) = aw(G′ × Zn, 3)

= aw(G′, 3) +
�∑

i=1

ei(aw(Zpi
, 3)− 2)

= aw(G′, 3) + aw(Zn, 3)− 2.

2.1. Groups with power of 2 order

In order to completely use Corollary 1 the anti-van der Waerden number of
groups with order that is a power of 2 must be determined.

Proposition 4. For any finite abelian group G,

aw(G× Z2, 3) ≤ 2 aw(G, 3)− 1.

Proof. Let A = {(g, 0) : g ∈ G} and B = {(g, 1) : g ∈ G}. In any exact
(2 aw(G, 3)−1)-coloring of G×Z2, either A or B will have at least aw(G, 3)
colors. Therefore, a rainbow 3-AP will exist since A and B are both isomor-
phic to G.

An inductive argument, using Proposition 4 as the base case, gives the
following corollary.

Corollary 2. For all positive integers s,

aw([Z2]
s, 3) ≤ 2s + 1.

Theorem 4. For 1 ≤ i ≤ s, let mi be a positive integer. Then

aw(Z2m1 × Z2m2 × · · · × Z2ms , 3) = 2s + 1.

Proof. Let m1 ≤ m2 ≤ . . . ≤ ms and x = (x1, x2, . . . , xs) ∈ Z2m1 × Z2m2 ×
· · · ×Z2ms . Define c(x) = (x1, x2, . . . , xs) mod 2. The function c is an exact
2s-coloring of Z2m1 × Z2m2 × · · · × Z2ms . Since c(x) = c(x + 2d), for any
d ∈ Z2m1 × Z2m2 × · · · × Z2ms , this coloring does not contain any rainbow
arithmetic progressions. Therefore, 2s+1 ≤ aw(Z2m1 ×Z2m2 ×· · ·×Z2ms , 3).

The proof of the upper bound is inductive on (s,ms). The base case of
(1,m) is true for all positive integers m by Theorem 2 and the base case of
(s, 1) is true for all positive integers s by Corollary 2. Assume the statement
is true for parameters (s′,m) for all 1 ≤ s′ < s and 1 ≤ m < ms.

It will be shown that the statement is true for parameters (s,ms) by
assuming there exists a coloring of Z2m1 × Z2m2 × · · · × Z2ms with exactly
2s + 1 colors and no rainbow 3-AP, then arriving at a contradiction.
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For each i ∈ Z2ms , let Pi = {(x, i) : x ∈ Z2m1 ×Z2m2 × · · ·×Z2
m(s−1)}. So

Pi is isomorphic to Z2m1 × Z2m2 × · · · × Z2
m(s−1) for all i. Let A be the set

of Pi with i even, and B be the set of Pi with i odd. So A and B are both
isomorphic to Z2m1 × Z2m2 × · · · × Z2(ms−1) . By the induction hypothesis,
A and B both have at most 2s colors. So there exists α ∈ c(A)\c(B) and
β ∈ c(B)\c(A).

Assume without loss of generality, xα := c−1(α) ∈ P0 and xβ := c−1(β) ∈
Pj , where j is odd. Then {xα, xβ , 2xβ −xα} is a 3-AP in Z2m1 ×Z2m2 ×· · ·×
Z2ms . So 2xβ−xα ∈ P2j . Since there are no rainbow 3-APs c(2xβ−xα) must
be α.

Similarly, {(i − 1)xβ − (i − 2)xα, ixβ − (i − 1)xα, (i + 1)xβ − ixα} is a
3-AP for all i and c((i−1)xβ− (i−2)xα) must be equal to c((i+1)xβ− ixα)
if it is not rainbow. This implies that α ∈ c(Pi) for all even i, and β ∈ c(Pi),
for all odd i.

By the induction hypothesis, Pi has at most 2s−1 colors for all i. There-
fore, |c(P0) ∪ c(Pj)| ≤ 2s. So there exists a color γ that is not in c(P0) or
c(Pj). Now define an exact 3-coloring of Z2ms as follows:

c(i) =

⎧⎨
⎩

α if α ∈ c(Pi) and γ /∈ c(Pi),
β if β ∈ c(Pi) and γ /∈ c(Pi),
γ if γ ∈ c(Pi).

The coloring c is an exact 3-coloring and creates a rainbow 3-AP in Z2ms

by Theorem 2. Let {a, a+d, a+2d} be such a rainbow arithmetic progression.
Without loss of generality, there are two cases to consider: c(a+ d) �= γ and
c(a+ d) = γ.

If c(a) = α, c(a + d) = γ, and c(a + 2d) = β, then a must be even and
a+ 2d must be odd, which is a contradiction.

If c(a) = α, c(a + d) = β, and c(a + 2d) = γ, then there exists an
x ∈ Pa, y ∈ Pa+d, and z ∈ Pa+2d such that {x, y, z} is a 3-AP in Z2m1 ×
Z2m2 × · · · × Z2ms , c(y) = β and c(z) = γ. However, c(x) �= β or γ because
c(a) = α. This implies that {x, y, z} is a rainbow arithmetic progression in
Z2m1 × Z2m2 × · · · × Z2ms , which is a contradiction.

Therefore, aw(Z2m1 × Z2m2 × · · · × Z2ms , 3) ≤ 2s + 1.

3. Unitary anti-van der Waerden numbers

Proposition 5. For all positive integers p and q,

awu(Zp, 3) + awu(Zq, 3)− 2 ≤ awu(Zp × Zq, 3).



Rainbow arithmetic progressions in finite abelian groups 627

Proof. This is the same as the proof of Proposition 3 with cZp
changed to a

unitary coloring of Zp with awu(Zp, 3)− 1 colors and no rainbow 3-AP.

Theorem 5. For any positive odd integers n,

awu(G× Zn, 3) = awu(G, 3) + awu(Zn, 3)− 2.

Proof. The lower bound is a direct result of Proposition 5. So it suffices to

show the upper bound. Assume c is a coloring of G × Zn that is unitary

with exactly awu(G, 3)+awu(Zn, 3)− 2 colors and no rainbow 3-AP. For all

h ∈ Zn, let Ph = {(g, h) | g ∈ G}. Without loss of generality, let |c(Ph)| ≤
|c(P0)| for all h ∈ Zn.

By Lemma 1, |c(Ph)\c(P0)| ≤ 1, for all h ∈ Zn. Define a coloring of Zn

as follows:

c(g) =

{
α if c(Ph) ⊂ c(P0),
c(Ph)\c(P0) otherwise.

Let ρ be a color used exactly once by c to color G × Zn. Now consider the

two cases in which ρ ∈ P0 and ρ /∈ P0.

Case 1: If ρ ∈ c(P0), then |c(P0)| ≤ awu(G)− 1. Therefore awu(Zn, 3) =

(awu(G, 3)+awu(Zn, 3)−2)− (awu(G)−1)+1 ≤ |c(Zn)|. Since aw(Zn, 3) =

awu(Zn, 3), Lemma 2 implies that c creates a rainbow 3-AP.

Case 2: If ρ ∈ c(Pd), where 0 �= d, then c must be a unitary coloring of

Zn and not have any 3-APs by Lemma 2. So |c(Zn)| ≤ awu(Zn, 3)−1, which

implies awu(G, 3) = (awu(G, 3)+ awu(Zn, 3)− 2)− (awu(Zn)− 2) ≤ |c(P0)|.
If there exists γ ∈ c(P0) \ c(P−d), then there is an x ∈ G such that

c(x, 0) = γ. Now choose (y, d) such that c(y, d) = ρ. Then {(2x − y,−d),

(x, 0), (y, d)} is a rainbow 3-AP. Therefore, |c(P0)| = |c(P−d)|. If |c(P0)| >
|c(Pd)|, then there exist β, γ ∈ c(P0) \ c(Pd) because ρ /∈ c(P0). Now a

rainbow 3-AP can be attained by choosing elements of P0 and P−d that are

assigned β and γ, respectively, and the corresponding element of Pd. Hence,

awu(G, 3) ≤ |c(P0)| = |c(Pd)|. However, since there is only one element in

Pd with the color ρ, this implies that Pd contains a rainbow 3-AP, which is

a contradiction.

Theorem 5 yields the following Corollary that is analogous to Corollary 1.

Corollary 3. Let n be the largest odd divisor of the order of G. There exists

a finite abelian group G′ such that the order of G′ is a power of 2 and

awu(G, 3) = awu(G
′, 3) + awu(Zn, 3)− 2.
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3.1. Groups with power of 2 order

Proposition 6. For all positive integers s,

awu([Z2]
s, 3) = s+ 2.

Proof. This proof is by induction on s. The base case of s = 1 is trivial since
2 < awu([Z2]

s, 3) ≤ aw([Z2]
s, 3) = 3. Assume 1 < s.

Let c′ be a coloring of [Z2]
s−1 with s+ 1 colors, no rainbow 3-AP and a

be an element of [Z2]
s−1 that does not share a color with any other element.

For all g ∈ [Z2]
s−1 and h ∈ Z2, except (a, 0), let c(g, h) = c′(g) and assign

c(a, 0) a new color. Then c is a unitary (s + 1)-coloring of [Z2]
s with no

rainbow 3-AP. So, s+ 2 ≤ awu([Z2]
s, 3).

Now assume [Z2]
s is colored with a unitary coloring that has exactly

s + 2 colors and no rainbow 3-AP. Let A = {(g, 0) : g ∈ [Z2]
s−1} and

B = {(g, 1) : g ∈ [Z2]
s−1}. Without loss of generality, let (a, 0) be an element

of [Z2]
s that does not share a color with any other element. Therefore, by

induction, |c(A)| ≤ s. So there exists 2 colors, α, β ∈ c(B)\c(A). Then there
exists an element (b, 1) such that c(b, 1) ∈ {α, β} and 2a �= 2b. Therefore, the
3-AP {(a, 0), (b, 1), (2b − a, 0)} must be rainbow, which is a contradiction.
So, awu([Z2]

s, 3) ≤ s+ 2.

Theorem 6. For 1 ≤ i ≤ s, let mi be a positive integer. Then

awu(Z2m1 × · · · × Z2ms , 3) = s+ 2.

Proof. This proof is inductive on
∑s

i=1mi. The base case of
∑s

i=1mi = s is
true by Proposition 6. So assume s <

∑s
i=1mi and 2 ≤ ms.

Let c′ be a coloring of Z2m1 × · · · × Z2ms with s+1 colors, no rainbow
3-AP and a be an element of Z2m1 × · · · × Z2

m(s−1) that does not share a
color with any other element. For all g ∈ Z2m1 ×· · ·×Z2

m(s−1) and h ∈ Z2ms ,
except (a, 0), let c(g, h) = c′(g) and assign c(a, 0) a new color. Then c is
a unitary (s + 1)-coloring of Z2m1 × · · · × Z2ms with no rainbow 3-AP. So,
s+ 2 ≤ awu(Z2m1 × · · · × Z2ms , 3).

Now assume Z2m1 × · · · × Z2ms is colored with a unitary coloring that
has exactly s+ 2 colors and no rainbow 3-AP. Let A = {(g, h) : g ∈ Z2m1 ×
· · · × Z2ms−1 , h ∈ Z2ms , and h is even} and B = {(g, h) : g ∈ Z2m1 × · · · ×
Z2ms−1 , h ∈ Z2ms , and h is odd}. Without loss of generality, let (a, 0) be an
element of Z2m1 × · · · × Z2ms that does not share a color with any other
element. Therefore, by induction, |c(A)| ≤ s. So there exists 2 colors, α, β ∈
c(B) \ c(A). Then there exists an element (b, 2j +1) such that c(b, 2j +1) ∈
{α, β} and 2a �= 2b. Therefore, the 3-AP {(a, 0), (b, 2j + 1), (2b− a, 4j + 2)}
must be rainbow, which is a contradiction. So, awu(Z2m1 × · · · × Z2ms , 3) ≤
s+ 2.
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Corollary 4. Let G be a finite abelian group. Then aw(G, 3) = awu(G, 3)
if and only if the order of G is odd or G is cyclic.

Proof. By Corollary 1 and Theorem 6,

aw(G, 3) = 2s + aw(Zn, 3)− 1,

for some nonnegative integer s and odd integer n. By Corollary 3 and The-
orem 4,

awu(G, 3) = s+ awu(Zn, 3),

for the same s and n. Therefore, aw(G, 3) = awu(G, 3) if and only if 2s−1 =
s; hence, aw(G, 3) = awu(G, 3) if and only if s is 0 or 1.
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